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Abstract We show that over any algebraically closed field of positive characteristic,
there exists a smooth rational surface which violates Kawamata–Viehweg vanishing.
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1 Introduction

It is a well-known fact that Kodaira vanishing fails in positive characteristic [23].
Nevertheless, it has often been believed that a stronger version, namely Kawamata–
Viehweg vanishing, holds over a smooth rational surface (e.g. see [32,33]). In this
note, we show that this is in fact not true:
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Theorem 3.1 Let k be a field of positive characteristic. Then there exist a smooth
projective rational surface X over k, a Cartier divisor D, and aQ-divisor� � 0 such
that

• (X,�) is klt,
• D − (KX+�) is nef and big, and
• H1(X,OX (D)) �= 0.

To prove Theorem 3.1, we use some surfaces constructed by Langer [18]. If k = Fp,
then X can be obtained by taking the blowup of P2

Fp
along all the Fp-rational points.

Since the proper transforms L ′
1, . . . , L

′
p2+p+1

of the Fp-lines L1, . . . , Lp2+p+1 are
pairwise disjoint, we can contract all these curves and obtain a birational morphism
g : X → Y onto a klt surface Y such that ρ(Y ) = 1 (cf. Lemma 2.4). Note that −KY

is ample if and only if p = 2 (cf. Lemma 2.4). Further, we show:

• For any p > 0, Y is obtained as a purely inseparable cover of P2 (cf. Theorem 4.1).
If p = 2, then themorphismY → P2 is induced by the anti-canonical linear system
| − KY | (cf. Remark 4.2).

• If p = 2, then the Kleimann–Mori cone NE(X) is generated by exactly 14 curves
(cf. Theorem 5.4).

• If p = 2, then X is isomorphic to a surface constructed by Keel–McKernan (cf.
Proposition 6.4).

Related results. After Raynaud constructed the first counter-example to Kodaira van-
ishing in positive characteristic [23], several other people studied this problem (e.g.
see [3,4,6], [15, Section2.6], [21,26]). In particular, Fano varieties are known to
violate Kawamata–Viehweg vanishing. As far as the authors know, the examples con-
structed by Lauritzen and Rao [19] (of dimension at least 6) are the only ones over
an algebraically closed field. If we admit imperfect fields, then Schröer and Maddock
constructed log del Pezzo surfaces with H1(X,OX ) �= 0 [20,24]. In [2], the authors
and Witaszek showed that Kawamata–Vieweg vanishing holds for klt del Pezzo sur-
faces in large characteristic. On the other hand, if p = 2, then the surface mentioned
above is a smooth weak del Pezzo surface (cf. Lemma 2.4), hence our result cannot
be extended to characteristic two (see also Proposition 7.1).

2 Preliminaries

2.1 Notation

We say that X is a variety over a field k if X is an integral scheme which is separated
and of finite type over k. A curve (respectively surface) is a variety of dimension one
(respectively two). We say that two schemes X and Y over a field k are k-isomorphic
if there exists an isomorphism θ : X → Y of schemes such that both θ and θ−1

commute with the structure morphisms: X → Spec k and Y → Spec k. Given a
proper morphism f : X → Y between normal varieties, we say that two Q-Cartier
Q-divisors D1, D2 on X are numerically equivalent over Y , denoted D1≡ f D2, if their
difference is numerically trivial on any fibre of f .
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164 P. Cascini, H. Tanaka

We refer to [17, Section2.3] or [16, Definition 2.8] for the classical definitions
of singularities (e.g. klt) appearing in the minimal model programme. Note that we
always assume that for any klt pair (X,�), the Q-divisor � is effective.

2.2 Construction by Langer

We now recall the construction of a rational surface due to Langer [18] (see also [11,
Exercise III.10.7]). A similar method was used to construct also some K3 surfaces and
Calabi–Yau threefolds (cf. [5,12]).

Notation 2.1 Let q = pe, where p is a prime number and e is a positive integer. Let
P(0)
1 , . . . , P(0)

q2+q+1
be the Fq -rational points on P2

Fq
, and let L(0)

1 , . . . , L(0)
q2+q+1

be the

Fq -lines on P2
Fq
, i.e. the lines which are defined over Fq . Let

f (0) : X (0) → P2
Fq

be the blowup along all theFq -points P
(0)
1 , . . . , P(0)

q2+q+1
. For any i = 1, . . . , q2+q+1,

let E (0)
i be the f (0)-exceptional prime divisor lying over P(0)

i , hence E (0)
i

�−−→ P1
Fq
.

The proper transforms L ′(0)
1 , . . . , L ′(0)

q2+q+1
of the Fq -lines are disjoint with each other

and satisfy (L ′(0)
i )2 = −q for any i = 1, . . . , q2 + q + 1. Let

g(0) : X (0) → Y (0)

be the birational morphism contracting all of the curves L ′(0)
1 , . . . , L ′(0)

q2+q+1
.We define

(EY
i )(0) = g(0)∗ E (0)

i .

Let k be a field containing Fq and let

f : X → P2
k, g : X → Y

be the base changes of f (0) and g(0) induced by (−)×Fq k.We denote by Pi , Li , Ei , L ′
i

and EY
i the inverse images of P(0)

i , L(0)
i , E (0)

i , L ′(0)
i and (EY

i )(0), respectively.We fix an
arbitrary line H ∈ |OP2(1)| defined over k. By abuse of notation, each Pi (respectively
Li ) is also called an Fq -point (respectively an Fq -line), although these depend on the
choice of the homogeneous coordinates.

Notation 2.2 We use the same notation as in Notation 2.1 but we assume that q = 2,
i.e. p = 2 and e = 1.

Remark 2.3 The configuration of the Fq -points and the Fq -lines on P2
Fq

satisfies the
following properties:
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Smooth rational surfaces violating Kawamata–Viehweg… 165

• For any Fq -line L on P2
Fq
, the number of the Fq -points contained in L is equal to

q + 1.
• For any Fq -point P on P2

Fq
, the number of the Fq -lines passing through P is equal

to q + 1.

If q = 2, then the picture of the configuration is classically known as Fano plane (e.g.
see [22, Subsection3.1.1]).

2.3 Basic properties

We now summarise some basic properties of the surfaces X and Y constructed in
Notation 2.1.

Lemma 2.4 We use Notation 2.1. The following hold:

(i) ρ(Y ) = 1.
(ii) Y is klt.
(iii) Y has at most canonical singularities if and only if q = 2.
(iv) If q > 2, then KY is ample.
(v) If q = 2, then −KY is ample.
(vi) If q = 2, then −KX is nef and big.

Proof (i) follows immediately by the construction. Further, we have

g∗KY = KX +
(
1 − 2

q

) q2+q+1∑
i=1

L ′
i .

Thus, (ii) and (iii) hold.
We now show (iv) and (v). Since KX = f ∗KP2 + ∑

i Ei ∼ −3 f ∗H + ∑
i Ei and

(q2 + q + 1) f ∗H ∼ f ∗
(q2+q+1∑

i=1

Li

)
=
q2+q+1∑

i=1

L ′
i + (q + 1)

q2+q+1∑
i=1

Ei ,

we have

(q2 + q + 1)KX ∼ −3(q2 + q + 1) f ∗H + (q2 + q + 1)
q2+q+1∑

i=1

Ei

∼ −3
q2+q+1∑

i=1

L ′
i + (q2 − 2q − 2)

q2+q+1∑
i=1

Ei .

Taking the push-forward g∗, we get

(q2 + q + 1)KY ∼ (q2 − 2q − 2)
q2+q+1∑

i=1

EY
i .
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166 P. Cascini, H. Tanaka

Therefore, if q = 2 (respectively q > 2), then−KY (respectively KY ) is ample. Thus,
(iv) and (v) hold. (vi) follows directly from (iii) and (v). 
�
Lemma 2.5 We use Notation 2.1. We assume that k = Fq . For any Fq-point Pi ∈
P2
Fq

(Fq), let L j1 , . . . , L jq+1 be the Fq -lines passing through Pi . Then P2
Fq

(Fq) =
L j1(Fq) ∪ · · · ∪ L jq+1(Fq).

Proof Since we have L jα ∩ L jβ = Pi for any 1 � α < β � q + 1, the claim follows
by counting the number of Fq -rational points (cf. Remark 2.3):

# (L j1∪· · ·∪ L jq+1)(Fq) = q (q+1)+1 = q2+q+1 = P2
Fq

(Fq). 
�

3 Counter-examples to Kawamata–Viehweg vanishing

In this section, we construct some counter-examples to Kawamata–Viehweg vanishing
on a family of smooth rational surfaces.

Theorem 3.1 We use Notation 2.1. We consider the following Q-divisors on X:

• � = q/(q + 1) · ∑q2+q+1
i=1 L ′

i , and

• B = (q2 + 1) f ∗H − q
∑q2+q+1

i=1 Ei .

Then the following hold:

(i) (X,�) is klt.
(ii) B − � is nef and big.
(iii) h1(X,OX (KX+B)) � (q2 − q)/2.

In particular, Kawamata–Viehweg vanishing fails on X.

Proof Since L ′
1, . . . , L

′
q2+q+1

are pairwise disjoint, (i) follows immediately. We now
show (ii). We have

(q2 + q + 1) f ∗H ∼ f ∗
(q2+q+1∑

i=1

Li

)
=
q2+q+1∑

i=1

L ′
i + (q + 1)

q2+q+1∑
i=1

Ei .

It follows that

B = (q2 + 1) f ∗H − q
q2+q+1∑

i=1

Ei ∼Q

1

q + 1
f ∗H + q

q + 1

q2+q+1∑
i=1

L ′
i .

Thus, (ii) holds.
We now show (iii). By Riemann–Roch, it follows that

χ(X,OX (KX+ B)) = 1 + 1

2
(B2 + B ·KX ).
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Since

B2 =
(

(q2 + 1) f ∗H − q
q2+q+1∑

i=1

Ei

)2
= (q2 + 1)2 − q2(q2 + q + 1)

= −q3 + q2 + 1

and

B ·KX =
(

(q2 + 1) f ∗H − q
q2+q+1∑

i=1

Ei

)
·
(

−3 f ∗H +
q2+q+1∑

i=1

Ei

)

= −3(q2 + 1) + q (q2 + q + 1) = q3 − 2q2 + q − 3,

we have

χ(X, KX+B) = 1 + 1

2

(
(−q3 + q2 + 1) + (q3 − 2q2 + q − 3)

) = 1

2
(−q2 + q).

Thus, (iii) holds. 
�
Remark 3.2 We do not know whether there exist a klt del Pezzo surface X and a nef
and big Cartier divisor A on X such that H1(X,OX (A)) �= 0.

As an application, we now show that the pair
(
X,

∑
Ei + ∑

L ′
j

)
is not liftable to

W2(k). Note that, a similar result was proven in [18, Proposition 8.4].

Corollary 3.3 We use Notation 2.1. Assume that k is perfect. If p � 3, then

(
X,

q2+q+1∑
i=1

Ei +
q2+q+1∑

j=1

L ′
j

)

is not liftable to W2(k).

Proof We use the same notation as in Theorem 3.1. As in the proof of Theorem 3.1, it
follows that B − � − ∑

εi Ei is ample for some εi > 0. Thus, Theorem 3.1 and [10,
Corollary 3.8] imply the claim. 
�

4 Purely inseparable morphisms to P2

The main purpose of this section is to show that the surface Y , as in Notation 2.1,
can be obtained as a purely inseparable cover of P2 (cf. Theorem 4.1). Moreover if
q = 2, then the morphism Y → P2 is induced by the anti-canonical linear system (cf.
Remark 4.2).

We also show that the complete linear system |M |, appearing in Theorem 4.1,
does not have any smooth element (cf. Proposition 4.3), even though it is base point
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168 P. Cascini, H. Tanaka

free and big. We were not able to find a similar example in the literature (cf. [11,
Theorem II.8.18 and Corollary III.10.9]).

Theorem 4.1 We use Notation 2.1. Let

M = (q + 1) f ∗H −
q2+q+1∑

i=1

Ei .

Then the following hold:

(i) |M | is base point free.
(ii) M ·L ′

j = 0 for any j = 1, . . . , q2 + q + 1.

(iii) M2 = q.
(iv) Given the natural injective k-linear map

ι : H0(X,OX (M)) ↪→ H0(P2
k,OP

2
k
(q + 1)),

the following holds:

ι(H0(X,OX (M))) = k ·(xq y − xyq) + k ·(yq z − yzq) + k ·(zq x − zxq).

(v) There exists a Cartier divisor MY on Y such that M = g∗MY .
(vi) The morphism induced by the complete linear system |MY |

ϕ = �|MY | : Y → P2
k

is a finite universal homeomorphism of degree q.

Proof Wemay assume that k = Fq . We first show (i). Given a Fq -point Pi on P2
Fq
, we

denote by L j1, . . . , L jq+1 the Fq -lines passing through Pi . Then Lemma 2.5 implies
that

M = (q + 1) f ∗H −
q2+q+1∑
r=1

Er ∼
q+1∑
α=1

f ∗L jα −
q2+q+1∑
r=1

Er = qEi +
q+1∑
α=1

L ′
jα .

Thus, |M | is base point free by symmetry and (i) holds.
(ii) and (iii) are simple calculations, and (iv) follows from [27,28] (see also [13,

Proposition 2.1]1). Further, g : X → Y is the Stein factorisation of ψ = �|M| : X →
P2
k . Thus, (v) holds.
We now show (vi). Since M = g∗MY , (i) implies that |MY | is base point free and

(v) implies that h0(Y,OY (MY )) = 3. Since MY is ample, it follows that ϕ is a finite
surjective morphism. By (iii), the degree of ϕ is equal to q.

1 Note that we cite the arXiv version, as the published version omits the proof of [13, Proposition 2.1].
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It is enough to show that ϕ is a purely inseparable morphism. To this end, we may
assume that k = Fq . By (iv), we have that

ψ ◦ f −1 : P2
k ��� P2

k, [x :y :z] �→ [xq y − xyq :yq z − yzq :zq x − zxq ].

Generically, the rational map ψ ◦ f −1 can be written by

� : A2
k \

q+1⋃
i=1

L̃i → A2
k, (u, v) �→

(
vq − v

uqv − uvq
,

u − uq

uqv − uvq

)
,

where L̃1, . . . , L̃q+1 are the affine lines passing through the origin with coefficients

in Fq , and in particular
⋃q+1

i=1 L̃i = {uqv − uvq = 0}. Fix a general closed point
(α, β) ∈ A2

k . It is enough to show that its fibre �−1((α, β)) consists of one point.

Let (u, v) ∈ A2
k \ ⋃q+1

i=1 L̃i be such that �(u, v) = (α, β). Since (α, β) is chosen to
be general, we can assume that the denominators of the fractions appearing in the
following calculation are always nonzero. We have

α(uqv − uvq) = vq − v, β(uqv − uvq) = u − uq,

which implies
α(uq − uvq−1) = vq−1 − 1, (1)

and
β(uq−1v − vq) = 1 − uq−1. (2)

By (1), we have

vq−1 = αuq + 1

αu + 1
. (3)

Substituting (3) to (2), we get

v = 1

β

1 − uq−1

uq−1 − vq−1 = 1

β

1 − uq−1

uq−1 − (αuq + 1)/(αu + 1)
= − αu + 1

β
. (4)

Substituting (4) to (3), it follows that

αuq + 1 = (αu + 1)vq−1 = (αu + 1)

(
− αu + 1

β

)q−1

= (−1)q−1(αquq + 1)

βq−1 ,

which implies that

uq = −βq−1 + (−1)q−1

αβq−1 − (−1)q−1αq
.

Hence u is uniquely determined by (α, β), and so is v by (4). Thus, (vi) holds. 
�
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170 P. Cascini, H. Tanaka

Remark 4.2 Using the same notation as in Theorem 4.1, if q = 2, then M = −KX

and MY = −KY . This can be considered as an analogue of the fact that a smooth
del Pezzo surface S with K 2

S = 2 is a double cover of P2 which is induced by the
anti-canonical system | − KX |. Indeed, both X and S are obtained by taking blowups
along seven points.

Proposition 4.3 We use Notation 2.1. Let

M = (q + 1) f ∗H −
q2+q+1∑

i=1

Ei .

Then the following hold:

(i) If k = Fq , then for any element D ∈ |M |, there exists a unique Fq-point Pi on
P2
Fq

such that

D = qEi +
q+1∑
α=1

L ′
jα ,

where L j1, . . . , L jq+1 are the Fq -lines passing through Pi .
(ii) If k is an algebraically closed field, then a general member of |M | is integral.
(iii) Any element of |M | is not smooth.
Proof Note that for each Fq -point Pi on P2

Fq
, the divisor D = qEi + ∑q+1

α=1 L
′
jα
, as

in (i), is an element of |M |. Thus, there are q2 + q + 1 of such divisors. On the other
hand, (iv) of Theorem 4.1 implies

# |M | = q3 − 1

q − 1
.

Thus, (i) holds (see also [13, Proposition 2.3]).
We now show (ii) and (iii). To this end, we may assume that k is algebraically

closed. We set MY = g∗M . By (i), there exists an irreducible divisor in |MY |. Thus,
any general element of |MY | is irreducible.

Since, by Theorem 4.1, |MY | is base point free, if D ∈ |M | is a general element,
then D is irreducible. By Theorem 4.1, we may write

f∗D = {
γ (xq y − xyq) + α(yq z − yzq) + β(zq x − zxq) = 0

}

for some (α, β, γ ) ∈ k3\{(0, 0, 0)}. By the Jacobian criterion for smoothness, it
follows that [α1/q :β1/q :γ 1/q ] is a unique singular point of f∗D. Since f∗D is smooth
outside [α1/q :β1/q :γ 1/q ], we see that f∗D is reduced. Since α, β, γ are chosen to
be general, it follows that [α1/q :β1/q :γ 1/q ] is not an Fq -point. Thus, D is the proper
transform of f∗D, hence D is integral. Thus, (ii) holds. Since f∗D has a singular point
outside f (Ex( f )), it follows that D is not smooth. Thus, (iii) holds. 
�
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5 The Kleimann–Mori cone

The main result of this section is Theorem 5.4 which determines the generators of
the Kleimann–Mori cone of X as in Notation 2.2. To this end, we classify the curves
whose self-intersection numbers are negative (cf. Proposition 5.3).

Lemma 5.1 We use Notation 2.2. The following hold:

(i) If C is a curve on X which satisfies C2 = −1 and differs from any of E1, . . . , E7,
then deg f∗(C) � 3.

(ii) If C is a curve on X with C2 = −2, then deg f∗(C) � 2.

Proof We show (i). We have

C ∼ a f ∗OP2(1) +
7∑

i=1

bi Ei ,

where a = deg f∗(C) > 0 and b1, . . . , b7 ∈ Z. Since q = 2, Lemma 2.4 implies that
C is a (−1)-curve. Thus, we have

−1 = C2 = a2 −
7∑

i=1

b2i − 1 = KX ·C

=
(

−3 f ∗H +
7∑

i=1

Ei

)
·
(
a f ∗H +

7∑
i=1

bi Ei

)
= −3a −

7∑
i=1

bi .

By Schwarz’s inequality, we obtain

(3a − 1)2 =
( 7∑

i=1

bi

)2
� 7

7∑
i=1

b2i = 7(a2 + 1),

which implies a2 − 3a − 3 � 0. Thus, (i) holds. The proof of (ii) is similar. 
�
Lemma 5.2 We use Notation 2.2. Let C be a curve on X such that C0 = f (C) is a
conic or a cubic. Then C2 � 0.

Proof First, we assume that C0 is conic. Suppose that C0 passes through five of
the F2-points, say P1, . . . , P5. Let us derive a contradiction. Let P6 and P7 be the
remaining two F2-points. Since there are exactly three F2-lines passing through P6
(respectively P7), we can find an F2-line Li such that P6 /∈ Li and P7 /∈ Li . In
particular, C0 ∩ Li contains at least three points, within P1, . . . , P5. This contradicts
the fact that C0 ·Li = 2.

Now, we assume that C0 is cubic. If C0 is smooth, then C2 � C2
0 − 7 = 2. Thus,

we may assume that C0 is singular and C2 < 0. It follows that C0 must pass through
all the F2-points P1, . . . , P7 and the unique singular point of C0 is an F2-point, say
P1. Let L j be an F2-line passing through P1. Since C0 ∩ L j contains at least three
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172 P. Cascini, H. Tanaka

F2-rational points P1, Pi , Pi ′ , we have that C0 ·L j � 4. This contradicts the fact that
C0 ·L j = 3. Thus, the claim follows. 
�
Proposition 5.3 We use Notation 2.2. Let C be a curve on X with C2 < 0. Then C is
equal to one of the curves E1, . . . , E7, L ′

1, . . . , L
′
7.

Proof Assume that C /∈ {E1, . . . , E7}. Let C0 = f∗C . Since −KX is nef and big, we
have thatC2 � −2. Lemma 5.1 implies that degC0 � 3. By Lemma 5.2, we have that
degC0 = 1, hence C0 is a line. Then C0 passes through at least two of the F2-points.
It follows that C0 is equal to some Li , hence C = L ′

i , as desired. 
�
Theorem 5.4 We use Notation 2.2. Then

NE(X) = NE(X) =
7∑

i=1

R�0[Ei ] +
7∑

j=1

R�0[L ′
j ].

Proof Since there exists an effective Q-divisor � such that (X,�) is klt and
−(KX+�) is ample, the cone theorem [30, Theorem 1.7] implies that NE(X) is
closed and generated by the extremal rays spanned by curves. By [31, Theorem 4.3],
any extremal ray of NE(X) is generated by a curve C whose self-intersection number
is negative. Thus, the claim follows from Proposition 5.3. 
�

6 Relation to Keel–McKernan surfaces

The goal of this section is to prove Proposition 6.4 which shows that the surface
X , constructed in Notation 2.2, is isomorphic to some surface obtained by Keel–
McKernan [14, end of Section9].

We first recall their construction. Let k be a field of characteristic two. We fix a
k-rational point in P2

k and a conic over k as follows:

Q = [0:0:1] ∈ P2
k, C = {xy + z2 = 0} ⊂ P2

k .

Note that any line through Q is tangent toC . Let ϕ0 : S0 → P2
k be the blowup at Q. We

choose k-rational points P1, . . . , Pd at ϕ−1
0 (C). We first consider the blowup along

these points ψ : S′
0 → S0 and then we take the blowup S → S′

0 along the intersection
Ex(ψ)∩ψ−1∗ (ϕ−1(C)), whereψ−1∗ (ϕ−1

0 (C)) is the proper transform of ϕ−1(C). Note
that the intersection Ex(ψ) ∩ ψ−1∗ (ϕ−1(C)) is a collection of k-rational points. We
call S a Keel–McKernan surface of degree d over k.

Let us recall a well-known result on the theory of Severi–Brauer varieties.

Lemma 6.1 Let X be a projective scheme over Fq . Let Fq be the algebraic closure
of Fq . If the base change X×Fq Fq is Fq-isomorphic to Pn

Fq
, then X is Fq-isomorphic

to Pn
Fq
.
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Proof See, for example, [25, Chapter X, Sections5–7]. As an alternative proof,
one can conclude the claim from [7, Corollary 1.2] and Châtelet’s theorem [9,
Theorem 5.1.3]. 
�

The following two lemmas may be well-known, however we include proofs for the
sake of completeness.

Lemma 6.2 Let k be a field. Take k-rational points P1, . . . , P4, Q1, . . . , Q4 ∈ P2
k .

Assume that no three of P1, . . . , P4 (respectively Q1, . . . , Q4) lie on a single line of
P2
k . Then there exists a k-automorphism σ : P2

k → P2
k such that σ(Pi ) = Qi for any

i ∈ {1, 2, 3, 4}.

Proof We may assume that

P1 = [1:0:0], P2 = [0:1:0], P3 = [0:0:1], P4 = [1:1:1].

For each i ∈ {1, 2, 3, 4}, we write Qi = [ai :bi :ci ] for some ai , bi , ci ∈ k. Consider
the matrix

M =
⎛
⎝a1 a2 a3
b1 b2 b3
c1 c2 c3

⎞
⎠.

Since Q1, Q2, Q3 do not lie on a line, it follows that det M �= 0. Let τ : P2
k → P2

k be
the k-automorphism induced by M . In particular,

τ([1:0:0]) = Q1, τ ([0:1:0]) = Q2, τ ([0:0:1]) = Q3.

We may write τ−1(Q4) = [d :e: f ] for some d, e, f ∈ k. Again by the assumption,
we have that d, e, f �= 0. Then the k-automorphism

ρ : P2
k → P2

k, [x :y :z] �→ [dx :ey : f z]

satisfies

ρ([1:0:0]) = [1:0:0], ρ([0:1:0]) = [0:1:0],
ρ([0:0:1]) = [0:0:1], ρ([1:1:1]) = [d :e: f ].

Thus, the k-automorphism σ = τ ◦ρ satisfies σ(Pi ) = Qi for any i ∈ {1, 2, 3, 4}. 
�

Lemma 6.3 Let k be a field of characteristic two. Let C1 and C2 be smooth conics
in P2

k . Assume that there exist distinct four k-rational points P1, P2, P3, Q of P2
k such

that {P1, P2, P3} ⊂ C1 ∩ C2 and the tangent line TCi ,Pj of Ci at Pj passes through
Q for any i ∈ {1, 2} and j ∈ {1, 2, 3}. Then C1 = C2.
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Proof By Lemma 6.2, we may assume that

P1 = [1:0:0], P2 = [0:1:0], P3 = [1:1:1], Q = [0:0:1].

It is well known that C1 and C2 are strange curves (e.g. see [8, Theorem 1.1]). [8,
Proposition 2.1] implies that for each i ∈ {1, 2}, Ci is defined by a quadric homoge-
neous polynomial:

ai x
2 + bi xy + ci y

2 + di z
2 ∈ k [x, y, z].

Since P1, P2, P3 ∈ Ci , we get ai = ci = 0 and bi = di . In particular, both of C1 and
C2 are defined by the same polynomial xy + z2. 
�
Proposition 6.4 Let k be a field of characteristic two. Then any Keel–McKernan sur-
face S of degree 3 over k is k-isomorphic to the surface X constructed in Notation 2.2.

Proof Weuse the samenotation as above.Letπ : S0 → P1 be the inducedP1-fibration.
We divide the proof into two steps.

Step 1. In this step, we show that any two Keel–McKernan surfaces S and S′ of degree
3 over k are isomorphic over k.

There are three k-rational points P1, P2, P3 ∈ C (respectively P ′
1, P

′
2, P

′
3 ∈ C) such

that S (respectively S′) is the blowup of S0 twice along P1 ∪ P2 ∪ P3 (respectively
P ′
1 ∪ P ′

2 ∪ P ′
3). Thanks to Lemma 6.2, there is a k-automorphism σ : P2

k → P2
k such

that σ(Q) = Q and σ(Pi ) = P ′
i for i = 1, 2 and 3. Lemma 6.3 implies that σ(C) = C

and, in particular, σ induces a k-isomorphism σ̃ : S �−−→ S′, as desired.

Step 2. In this step, we assume that k = F2. Note that C has exactly three F2-rational
points:

Q1 = [1:0:0], Q2 = [0:1:0], Q3 = [1:1:1].

Let

P1 = ϕ−1
0 (Q1), P2 = ϕ−1

0 (Q2), P3 = ϕ−1
0 (Q3),

and S be the Keel–McKernan surface of degree 3 over F2 as above. We now show that
S is F2-isomorphic to X (0) defined in Notation 2.2.

There are pairwise disjoint (−1)-curves E1, . . . , E7 on S over F2, i.e. for any
i = 1, . . . , 7, Ei is F2-isomorphic to P1

F2
and satisfies KS ·Ei = E2

i = −1. Indeed,
we can check that the following seven curves listed below satisfy these properties.

• The exceptional curve over Q is a (−1)-curve over F2.
• For any i = 1, 2, 3, the exceptional curve over Qi obtained by the second blowup
is a (−1)-curve over F2.

• For any 1 � i < j � 3, the proper transform of the F2-line, passing through Qi

and Q j , is a (−1)-curve over F2.

Let ψ : S → T be the birational morphism with ψ∗OS = OT that contracts
E1, . . . , E7. Since T is a projective scheme over F2 whose base change to F2 is a
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projective plane, it follows that T is F2-isomorphic to P2
F2

by Lemma 6.1. Thus, S is

obtained by the blowup along all the F2-rational points of P2
F2

which implies S � X (0)

(cf. Notation 2.2), as desired.
By Steps 1 and 2, we are done. 
�

7 Appendix: Kawamata–Viehweg vanishing for smooth del Pezzo
surfaces

ByTheorem3.1, there exists a smoothweak del Pezzo surface of characteristic 2which
violates Kawamata–Viehweg vanishing. We now show that Kawamata–Viehweg van-
ishing holds on smooth del Pezzo surfaces.

Proposition 7.1 Let k be an algebraically closed field of characteristic p > 0. Let X
be a smooth projective surface over k such that −KX is ample and let (X,�) be a klt
pair for some effectiveQ-divisor�. Let D be aCartier divisor such that D−(KX+�)

is nef and big. Then Hi (X,OX (D)) = 0 for i > 0.

Proof After perturbing �, we may assume that D − (KX+�) is ample. We define
A = D − (KX+�). We run a (� + A)-MMP f : X → Y . Since −KX is ample,
Y is also a smooth del Pezzo surface. Moreover, this MMP can be considered as a
(KX+� + A)-MMP. By the Kawamata–Viehweg vanishing theorem for birational
morphisms (cf. [16, Theorem 10.4], [29, Theorem 2.12]), it follows that

Hi (X,OX (D)) � Hi (Y, f∗OX (D)) � Hi (Y,OY ( f∗D))

for any i , where the latter isomorphism follows from the fact that f is obtained by
running a D-MMP.

Therefore, after replacing X by Y , we may assume that�+ A is nef. Thus, D−KX

is nef and big. In this case, it is well-known that Hi (X,OX (D)) = 0 (e.g. see [21,
Proposition 3.2] or [1, Proposition 3.3]). 
�
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