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Abstract We prove a strong analogue of Liouville’s Theorem in Diophantine approx-
imation for points on arbitrary algebraic varieties. We use this theorem to prove a
conjecture of the first author for cubic surfaces in P

3.
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1 Introduction

The famous theorem of K.F.Roth (see for example [5, Part D]) gives a sharp upper
bound on how well an irrational algebraic number can be approximated by rational
numbers. In [10], the authors prove an analogue of Roth’s Theorem for algebraic points
on arbitrary algebraic varieties. In this paper we generalize, in the sense of [10], Liou-
ville’s Approximation Theorem to arbitrary varieties, as well as giving an extension
involving the stable base locus.
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930 D. McKinnon, M. Roth

The point of view of [10] is that Roth’s and Liouville’s Theorems are examples of
“localBombieri–Langphenomena”whereby local positivity of a line bundle influences
local accumulation of rational points. Specifically, given a variety X , an algebraic point
x ∈ X , and an ample line bundle L on X , these theorems are expressed as inequalities
between εx (L), the Seshadri constant, measuring local positivity of L near x , and
αx (L), an invariant measuring how well we can approximate x by rational points.

Roth’s Theorem is usually thought of as stronger than Liouville’s, but if the locus
being approximated is defined over the ground field, Liouville’s Theorem is strictly
better. On P

1 one gains a factor of two. For arbitrary varieties, however, moving past
the Seshadri constant into the non-nef part of the big cone can provide even larger
gains. We need this improvement for our application in Sect. 4 where we verify a
conjecture of the first author for cubic surfaces in P

3.
In Sect. 2 we review the definitions and elementary properties of αx and εx . In

Sect. 3 we prove the generalized Liouville Theorem (Theorem 3.3). We close the
paper in Sect. 4 by computing αx and εx for an arbitrary nef line bundle and rational
point, not on a line, on a smooth cubic surface (where the lines are also rational); we
then use this to verify [9, Conjecture 3.2].

2 Elementary properties of α and ε

In this section, we give a brief overview of the properties of α and ε used in this paper.
For a more detailed discussion of α, see [10]. For a more detailed discussion of ε,
there are many good references—see for example [7, Chapter 5]. Proofs of all of the
facts listed below can be found in [10].

Let k be a number field, and X a projective variety over Spec(k) (i.e., a reduced
subscheme of some finite-dimensional projective space P

r
k ).

The constant αx . In order to motivate the definition of αx it is helpful to recall the
classical case of approximation on the line. For a point x ∈ R the approximation
exponent τx of x is the unique extended real number τx ∈ (0,∞] such that the
inequality

∣
∣
∣
∣
x − a

b

∣
∣
∣
∣
� 1

bτx+δ

has only finitely many solutions a/b ∈ Q whenever δ > 0 (respectively has infinitely
solutions a/b ∈ Q whenever δ < 0). The approximation exponent measures a certain
tension between our ability to closely approximate x by rational numbers (the distance
term |x − a/b|) and the complexity (the 1/b term) of the number required to make
this approximation. In this notation the 1844 theorem of Liouville [8] is that τx � d
for x ∈ R algebraic of degree d over Q.

To generalize τx to arbitrary projective varieties over Spec(k) for a number field k,
we replace the function |x−a/b| by a distance function dv(x, ·) depending on a place
v of k, and measure the complexity of a point via a height function HL( ·) depending
on an ample line bundle L . For an introduction to the theory of heights the reader is
referred to any one of [2, Chapter 2], [5, Part B], [6, Chapter III], or [12, Chapter 2].
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An analogue of Liouville’s Theorem... 931

Unless otherwise specified all height functions in this paper are multiplicative, relative
to k, and come from line bundles on X defined over k. In this paperwe use the following
normalizations. The absolute values are normalized with respect to k: if v is a finite
place of k, π a uniformizer of the corresponding maximal ideal, and κ the residue
field then ‖π‖v = 1/# κ; if v is an infinite place corresponding to an embedding
i : k ↪→ C then ‖x‖v = ‖i(x)‖mv for all x ∈ k, where mv = 1 or 2 depending
on whether v is real or complex. The heights are then normalized so that for a point
x = [x0 : · · · :xn] ∈ P

n(k), the height with respect to OPn (1) is

H(x) =
∏

v

max(‖x0‖v, . . . , ‖xn‖v)

where the product ranges over all the places v of k.
In order to define a distance function we fix a place v of k and extension (which we

also call v) to k.

If v is archimedean. We choose a distance function on X (k) by choosing an embed-
ding X ↪→ P

r
k and pulling back (via v) the function on P

r (C)×P
r (C) given by the

formula

dv(x, y) =
(

1 −
∣
∣
∑r

i=0 xi yi
∣
∣
2

(∑r
i=0 |xi |2

)(∑r
j=0 |yj |2

)

)[kv :R]/2

where x = [x0 : · · · :xr ] and y = [y0 : · · · :yr ] are points of P
r (C), and | · | is the

absolute value on C extending the usual absolute value on R, i.e., such that |3 +
4
√−1| = 5.

If v is non-archimedean. We choose a distance function on X (k) by choosing an
embedding X ↪→ P

r
k and pulling back the distance function on P

r (k) given by the
formula

dv(x, y) = max0�i< j�r (‖xi yj − x j yi‖v)

max0�i�r (‖xi‖v)max0� j�r (‖yj‖v)

where x = [x0 : · · · :xr ] and y = [y0 : · · · :yr ] are points of P
r (k).

These definitions are standard in Arakelov theory, albeit here we have normalized
with respect to k rather than Q. (See for instance [2, Section 2.8] where a distance
function δv( ·, ·) is defined for each place v; the distance functions are related by
dv( ·, ·) = δv( ·, ·)[k:Q].)

Two real valued functions g and g′ with the same domain are called equivalent
if there are positive constants c � C such that cg � g′ � Cg for all values of
the domain. The distance functions defined above depend on the choice of embedding
into projective space, but by [10, Proposition 2.4] any two embeddings give equivalent
distance functions on X (kv)×X (kv). (We may restrict ourselves to points of X (kv)

since any point of X (k) that does not lie in X (kv) cannot be approximated by k-rational
points; see also Remark 2.7.) It follows from the definition of αx below that equivalent
distance functions produce the same value of αx ; thus our definition of αx does not
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932 D. McKinnon, M. Roth

depend on the projective embedding chosen to define dv . A more geometric definition
of distance, and a proof that it is equivalant to the distance formulae above, may be
found in Sect. 6.

Definition 2.1 Let X be a projective variety, x ∈ X (k), L a line bundle on X . For
any sequence {xi } ⊂ X (k) of distinct points with dv(x, xi ) → 0 (which we denote by
{xi } → x), we set

A({xi }, L) = {

γ ∈ R : dv(x, xi )
γ HL(xi ) is bounded from above

}

.

Remark 2.2 (a) It follows easily from the definition that if A({xi }, L) is nonempty then
it is an interval unbounded to the right, i.e., if γ ∈ A({xi }, L) then γ + δ ∈ A({xi }, L)

for any δ > 0.

(b) If {x ′
i } is a subsequence of {xi } then A({xi }, L) ⊆ A({x ′

i }, L).

Definition 2.3 If A({xi }, L) is empty we set αx ({xi }, L) = ∞. Otherwise we set
αx ({xi }, L) to be the infimum of A({xi }, L). We call αx ({xi }, L) the approximation
constant of {xi } with respect to L .

As i → ∞ we have dv(x, xi ) → 0. We thus expect that dv(x, xi )γ HL(xi ) goes to 0
for large γ and to ∞ for small γ . The number αx ({xi }, L) marks the transition point
between these two behaviours.

By Remark 2.2 (b) if {x ′
i } is a subsequence of {xi } then αx ({x ′

i }, L) � αx ({xi }, L).
Thus we may freely replace a sequence with a subsequence when trying to establish
lower bounds.

Definition 2.4 Let k be a number field, X a projective variety over Spec(k), L a
line bundle on X , and x ∈ X (k). Then αx (L) is defined to be the infimum of all
approximation constants of sequences of points in X (k) converging to x . If no such
sequence exists then set αx (L) = ∞.

To see the connection with the usual approximation exponent on P
1, suppose that L

is an ample line bundle. We may define an approximation constant τx (L) by simply
extending the definition on P

1, namely by defining τx (L) to be the unique extended
real number τx (L) ∈ [0,∞] such that the inequality

dv(x, y) <
1

HL(y)τx (L)+δ

has only finitely many solutions y ∈ X (k)whenever δ > 0 (respectively has infinitely
many solutions y ∈ X (k) whenever δ < 0). Then [10, Proposition 2.11] implies that
αx (L) = 1/τx (L). In particular the theorem of Liouville becomes αx (OP1(1)) � 1/d
for x ∈ R of degree d over Q, and it is this type of lower bound that we wish to
generalize to arbitrary varieties. The choice of using the reciprocal of τ is justified by
the resulting formal similarity with the Seshadri constant, and more natural behaviour
when we vary L (see, for example, Proposition 2.11).

We need two results on αx before continuing onto the Seshadri constant. First, we
will need to know how to calculate αx in one simple case.
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An analogue of Liouville’s Theorem... 933

Lemma 2.5 ([10, Lemma 2.13]) Let x ∈ P
n(k). Then αx,Pn (OPn (1)) = 1.

Second, it will be useful to know how the approximation constant changes when we
change the field k. Let K/k be a finite extension with K ⊂ k, and set XK = X×k K .
A point y ∈ X (k) is a map Spec(k) → X over Spec(k), and factors through the
map XK → X , i.e., such a point x gives a point of XK (k). We thus have a canonical
identification XK (k) = X (k) which we use implicitly in the paragraphs below. We
use the notation that αx ({xi }, L)K (respectively αx (L)K ) denotes the approximation
constant of a sequence (respectively point x) computed on XK with respect to K . This
means that when computing α, we use the height HL relative to K and normalize
dv relative to K (we define dv on XK using the same embedding used to define dv

on X ). If d = [K :k] and mv = [Kv :kv] (where Kv and kv denote the completions
of K and k with respect to v) then this means simply that HL(xi )K = HL(xi )dk and
dv(x, xi )K = dv(x, xi )

mv

k .

Proposition 2.6 Let X be a variety over Spec(k), x ∈ X (k) any point, L a line bundle
on X, and {xi } → x a sequence of points in X (k) approximating x. Let K be any finite
extension of k and set XK = X×k K . The base change of {xi } gives a sequence {yi }
of K -points of XK approximating x. Set mv = [Kv :kv], and let d = [K :k]. Then

αx ({yi }, L)K = d

mv

αx ({xi }, L)k .

In particular, we have the bound αx (L)K � dαx (L)k/mv .

Proof The claim that αx ({xi }, L)K = dαx ({xi }, L)k/mv follows immediately from
the equalities HL( ·)K = HL( ·)dk and dv( ·, ·)K = dv( ·, ·)mv

k . The inequality
αx (L)K � dαx (L)k/mv then follows since the sequences in XK (K ) approximat-
ing x which come from sequences {xi } in X (k) are a subset of all the sequences in
XK (K ) approximating x . 
�
Remark 2.7 Let x be a point of X (k) and let K be the field of definition of x . If
K � kv , or equivalently, Kv �= kv then it will be impossible to find a sequence of
points of X (k) converging (in terms of dv) to x . For example, when v is archimedean
this happens when kv = R and Kv = C. Thus, if we can approximate x by points of
X (k) we may assume that Kv = kv and so mv = 1.

The following result (appearing in [10] as Theorem 2.16 and in [9] as Theorem 2.8,
although the latter version is incorrectly stated) is obtained by combining Roth’s and
Dirichlet’s Theorems for approximation on P

1, as well as the local information about
the singularity type. It shows how to calculate αx on any singular k-rational curve.

Theorem 2.8 Let C be any singular k-rational curve and ϕ : P
1 → C the normal-

ization map. Then for any ample line bundle L on C, and any x ∈ C(k) we have the
equality

αx,C (L) = min
q∈ϕ−1(x)

d

rqmq
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934 D. McKinnon, M. Roth

where d = deg(L), mq is the multiplicity of the branch of C through x corresponding
to q, and

rq =

⎧

⎪⎨

⎪⎩

0 if κ(q) � kv,

1 if κ(q) = k,

2 otherwise.

Here κ(q) means the residue field of the point q, and we use rq = 0 as a shorthand
for d/rqmq = ∞.

The Seshadri constant. The Seshadri constant was introduced by Demailly in [4] for
the purposes of measuring the local positivity of a line bundle.

Definition 2.9 Let X be a projective variety, x a point of X , and L a nef line bundle
on X . The Seshadri constant, εx (L), is defined to be

εx (L) = sup{γ � 0 : π∗L − γ E is nef},

where π : X̃ → X is the blowup of X at x , with exceptional divisor E .

A basic property of the Seshadri constant is that if L is ample (as opposed to just being
nef) then π∗L − γ E is itself ample on X̃ for all rational γ ∈ (0, εx (L)). An argument
for this appears in the original paper of Demailly [4] defining the Seshadri constant1.

In the discussion of Conjecture 4.2 below we will need the following alternate
characterization of the Seshadri constant:

Proposition 2.10 ([7, Proposition 5.1.5]) With the same setup as in Definition 2.9,

εx (L) = inf
x∈C⊆ X

{
L ·C

multx (C)

}

where the infimum is taken over all reduced irreducible curves C passing through x.

In order to indicate the parallels between αx and εx , and for use below, we list a few
of their formal properties here.

Proposition 2.11 Let X be a projective variety over Spec(k), x ∈ X (k), and let L be
any nef line bundle on X.

(a) For any positive integer m, αx (mL) = mαx (L) and εx (mL) = mεx (L). (Thus α

and ε also make sense for nef Q-divisors.)
(b) αx and εx are concave functions of L: for any positive rational numbers a and

b, and any Q-divisors L1 and L2 (again defined over k, but with the exception of
the case that {αx (L1), αx (L2)} = {−∞,∞}) we have

αx (aL1+bL2) � aαx (L1) + bαx (L2)

1 This property appears as the statement “Fp,q is ample whenever p > q/εx (L)” in [4, p. 98].
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An analogue of Liouville’s Theorem... 935

and

εx (aL1+bL2) � aεx (L1) + bεx (L2)

where for the last inequality we assume that L1 and L2 are nef.
(c) If Z is a subvariety of X over Spec(k) then for any point z ∈ Z(k) we have

αz(L|Z ) � αz(L) and εz(L|Z ) � εz(L).
(d) If Y is also a variety over Spec(k), x ∈ X (k), y ∈ Y (k) and LX and LY are nef

line bundles on X and Y respectively then

αx×y,X×Y (LX �LY ) = min(αx,X (LX ), αy,Y (LY ))

and

εx×y,X×Y (LX �LY ) = min(εx,X (LX ), εy,Y (LY )).

Note that by LX �LY we mean the line bundle pr∗X L1 + pr∗Y L2 on X×Y , where prX
and prY are the projections. We prefer additive notation for line bundles since this is
in line with the behaviour of αx and εx , and hence use LX �LY rather than L1�L2.

Proof All the proofs follow from elementary arguments using the definitions. For the
statements about αx see [10, Proposition 2.14], and for the statements about εx see [10,
Proposition 3.4]. 
�

3 A Liouville lower bound for α

In this section, as in the previous one, we fix a number field k and let X be a projective
variety over Spec(k).

Lemma 3.1 Let x be a point of X (k), and π : X̃ → X the blowup of X at x with
exceptional divisor E. Choose an embedding ϕ : X ↪→ P

n so that x �→ [1:0: · · · :0].
Let Z0, . . . , Zn be the coordinates on P

n and define functions ui , i = 1, . . . , n, on the
open subset where Z0 �= 0 by ui = Zi/Z0. For each place v of k, define a function
ev : X (kv) → R�0 by

ev(y) =
{

1 if Z0(y) = 0,

min
(

1,max(‖u1(y)‖v, . . . , ‖un(y)‖v)
)

if Z0(y) �= 0.

Then

(a) 0 � ev � 1 for all places v.
(b) ev( ·) is equivalent to dv(x, ·) as a function on X (kv).
(c) For y ∈ X (k), y �= x, we have HE (y) = (∏

w ew(y)
)−1

.

Proof Part (a) is clear from the definition. We now prove (b). By [10, Proposition 2.4],
distance functions associated to different projective embeddings of X are equivalent on
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936 D. McKinnon, M. Roth

X (kv)×X (kv), sowemay assume that dv has been defined using the embeddingϕ. If v
is non-archimedean, then the formula for the distance function in the non-archimedean
case and the fact that x is sent to [1:0: · · · :0] give

dv(x, y) = max(‖Z1(y)‖v, ‖Z2(y)‖v, . . . , ‖Zr (y)‖v)

max(‖Z0(y)‖v, ‖Z1(y)‖v, . . . , ‖Zr (y)‖v)
for all y ∈ X (k).

For y ∈ X (kv), this is equal to ev(y).
In the case that v is archimedean, we may further assume that kv = C, since

the functions to be compared transform the same way under field extensions. From
the formula for the distance in the archimedean case and the fact that x is sent to
[1:0: · · · :0] we obtain

dv(x, y) = 1 − |y0|2
|y0|2 + · · · + |yr |2 = |y1|2 + · · · + |yr |2

|y0|2 + |y1|2 + · · · + |yr |2
= ‖y1‖v + · · · + ‖yr‖v

‖y0‖v + ‖y1‖v + · · · + ‖yr‖v

.

For y ∈ U (kv), y0 �= 0, and u j (y) = yj/y0 for j = 1, . . . , r . Thus dv(x, y) =
(‖u1(y)‖v + · · · + ‖ur (y)‖v)/(1+ ‖u1(y)‖v + · · · + ‖ur (y)‖v); it is then elementary
to check that

1

r
dv(x, y) � max(‖u1(y)‖v, . . . , ‖un(y)‖v) � 2dv(x, y),

for all y ∈ U (kv). For y ∈ X (kv)\U (kv) we have 1 = dv(x, y) = ev(y), and thus
dv(x, ·) is equivalent to ev( ·) on X (kv).

In (c) we are considering points y ∈ X (k), y �= x also to be points of X̃(k) via
the birational map π . To prove (c) it suffices, by using the functoriality of heights
under pullback, to consider the case that X = P

n. Then the blowup P̃
n of P

n at x
is a subvariety of P

n×P
n−1 and O

P̃n (E) is the restriction of OPn×Pn−1(1,−1) to P̃
n.

From this description of O
P̃n (E) we obtain the formula

HE (y) =
∏

w

max(‖Z0(y)‖w, ‖Z1(y)‖w, . . . , ‖Zn(y)‖w)

max(‖Z1(y)‖w, . . . , ‖Zn(y)‖w)

from which (c) follows easily. 
�
For the following lemma, we will need an additional definition. The stable base locus
of a line bundle L is the intersection of the base loci of mL as m → ∞. For details,
see [7, Definition 2.1.20].

Lemma 3.2 Suppose that x ∈ X (k) and let π : X̃ → X be the blowup at x with
exceptional divisor E. Let L be a line bundle on X and γ > 0 a rational number such
that Lγ = π∗L − γ E is in the effective cone of X̃ . Let B ′ be the stable base locus of
Lγ and set B = π(B ′).
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An analogue of Liouville’s Theorem... 937

Then there is a positive real constant M (depending only on x and L) such that for
any sequence of k-points {xi } → x with all points of {xi } outside of B, we have

HL(xi )dv(x, xi )
γ � M.

In particular, α({xi }, L) � γ .

Proof Let U = X̃ \B ′. Since B ′ is the stable base locus of Lγ there is a constant
c (depending only on x and L) so that HLγ (y) � c for all y ∈ U (k). Applying
Lemma 3.1, we then have

c � HLγ (xi ) = HL(xi )HE (xi )
−γ

Lemma 3.1 (c)= HL(xi )

(
∏

w

ew(xi )

)γ Lemma 3.1 (a)
� HL(xi )ev(xi )

γ.

By Lemma 3.1 (b), dv(x, xi ) and ev(xi ) are equivalent functions on X (k) and therefore
HL(xi )dv(x, xi )γ � M for some positive constant M , again depending only on x and
L .

For any δ > 0 we thus have HL(xi )dv(x, xi )γ−δ � Mdv(x, xi )−δ and so conclude
that γ − δ /∈ A({xi }, L) since c′dv(x, xi )−δ → ∞ as i → ∞. Therefore γ �
α({xi }, L). 
�
The main result of this section is the following implication of Lemma 3.2.

Theorem 3.3 (Liouville-type Theorem) Let X be an algebraic variety over Spec(k),
x ∈ X (k) any point, and set d = [K :k] where K is the field of definition of x. Set
XK = X×k K , let X̃ be the blowup of XK at x with exceptional divisor E, and set π
to be the composite π : X̃ → XK → X. Let L be a nef line bundle on X, and γ > 0
a rational number such that Lγ = π∗L − γ E is in the effective cone of X̃ . Finally
let B ′ be the stable base locus of Lγ and set B = π(B ′). Then there is a positive real
constant M such that for all y ∈ X (k)\B(k), we have HL(y)dv(x, y)γ /d � M, and

(a) For any sequence {xi } → x of k-points approximating x, if infinitely many points
of {xi } are outside B then α({xi }, L) � γ /d.

(b) If αx (L) < γ/d then x ∈ B and αx (L) = αx (L|B).
(c) If x ∈ B and αx (L|B) � γ /d then αx (L) � γ /d.

Furthermore, there is a subvariety Y of X such that x ∈ Y and for all y ∈ X (k), we
have HL(y)dv(x, y)γ /d � M, provided that (L − γ E)|Y is in the effective cone of Y .

Proof Let {xi } be a sequence approximating x . If infinitely many xi lie outside of
B then we may pass to the subsequence of points outside of B, which can only
approximate the point x better than the sequence as a whole. To prove part (a) we
may therefore assume that all points of {xi } lie outside B. Base changing {xi } we
obtain a sequence {yi } in XK (K ) approximating x ∈ XK (K ). Applying Lemma 3.2
to XK , we conclude that HL(yi )dv(x, yi )γ � M andα({yi }, L)K � γ . Since there is a
sequence of k-points approximating x we conclude by Remark 2.7 that (in the notation
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938 D. McKinnon, M. Roth

of Proposition 2.6) mv = 1. Therefore by Proposition 2.6, HL(yi )dv(x, yi )γ /d � M
and α({xi }, L)k = α({yi }, L)K /d � γ /d, proving (a).

If αx (L) < γ/d then there must be a sequence {xi } approximating x such that
α({xi }, L) < γ/d. By part (a), this implies that all but finitely many xi lie in B. Thus
x ∈ B since B is closed. Since omitting finitely many elements of a sequence does
not change the approximation constant we may assume that all xi are contained in B.
Since αx,X (L) is the infimum of the approximation constants for sequences {xi } with
α({xi }, L) < γ/d we conclude that αx (L) = αx (L|B) proving (b).

If αx (L) < γ/d then part (b) along with the hypothesis for part (c) lead to an
immediate contradiction. Thus, under the hypotheses of part (c), αx (L) � γ /d.

The final remark is obvious in cases (a) and (c), and in case (b), we may replace
X with B and L with L|B and apply Theorem 3.3 again. Iterating this, we deduce the
desired result. 
�
Remark 3.4 Theorem 3.3 still holds if we replace B by the Zariski closure of B(k).
This has the added advantage that every component of B is then absolutely irreducible
(see [10, Lemma 2.17]).

Corollary 3.5 Suppose that L is a nef line bundle on X such that π∗L − γ E has
empty stable base locus for all rational γ ∈ (0, εx (L)). Then αx (L) � εx (L)/d.

Proof For all rational γ ∈ (0, εx (L)) the stable base locus of π∗L − γ E is empty by
hypothesis, and thus, by Theorem 3.3 (a), we conclude that αx (L) � γ /d for any such
γ , and hence that αx (L) � εx (L)/d. 
�
Corollary 3.6 If L is an ample line bundle, then αx (L) � εx (L)/d.

Proof For all rational γ ∈ (0, εx (L)) the line bundle π∗L − γ E is ample on X̃ . (See
the discussion after Definition 2.9 for a proof of this.) In particular, the stable base
locus of π∗L − γ E is empty, so the result follows by Corollary 3.5. 
�
Remark 3.7 If X = P

1 then Corollary 3.6 and the fact that εx (OPn (1)) = 1 give
αx (OP1(1)) � 1/d. Thus on P

1 Corollary 3.6 amounts to the classic Liouville bound
τx � d. Liouville’s original result also includes an explicit relation between the height
and distance of approximating rational points, andTheorem3.3 has this feature aswell.
For this reason we consider Theorem 3.3 and its corollaries to be “Liouville bounds”
for αx .

The effective cone is usually larger than the nef cone, and in general the parts of
Theorem 3.3 imply amuch stronger lower bound for αx (L) than Corollary 3.5.Wewill
use this in the next section to computeα for the cubic surface, but give a brief illustration
now by calculating α for rational points of a non-split quadric surface in P

3. (A split
quadric surface is isomorphic to P

1×P
1, and αx (OP1×P1(a, b)) = min(a, b) when

a, b > 0, as implied by Proposition 2.11 (d) and computed in both [9, Theorem 3.1]
and [10, Section 2; Example (b) just before Lemma 2.17].)

Example 3.8 Let X be a smooth quadric surface in P
3 defined over k, and set L =

OP3(1)|X . We assume that no lines on X are defined over k. Let x be a k-point
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of X . By intersecting with a (rationally defined) hyperplane we may find a conic
C passing through x such that C is isomorphic to P

1 over k. By Lemma 2.5 and
Proposition 2.11 (a, c), we therefore have αx,X (L) � αx,C (L|C ) = αx,P1(OP1(2)) =
2. Since x lies on a line (over k), we have εx (L) = 1, and, applying Corollary 3.5,
we obtain αx (L) � 1. Thus 1 � αx (L) � 2, i.e., Corollary 3.5 does not give enough
information to determine αx (L) in this case.

However, let π : X̃ → X be the blowup of X at x with exceptional divisor E . Then
π∗L − 2E is effective with base locus the proper transform of the two lines passing
through x . In particular the image B of this base locus is the union of the two lines
of ruling passing through x . Since (by assumption) neither of these lines is defined
over k, x is the only k-point of B. Thus, by Theorem 3.3 (a), if {xi } is any sequence
of k-points approximating x then α({xi }, L) � 2, and in particular αx (L) � 2. Thus
αx (L) = 2 for all k-points of X .

Since X is non-split the Picard group of X (over k) has rank one with generator L .
Thus the above computation and the homogeneity in Proposition 2.11 (a) determines
α for all x ∈ X (k) and all ample line bundles on X defined over k.

4 The cubic surface

In this section, we will compute αx and εx for all k-rational points x on the blowup X
of P

2 at six k-rational points in general position. To begin, we will recall some notions
from [9].

Definition 4.1 A sequence {xi } → x whose approximation constant is equal to αx (L)

(if such a sequence exists) is called a sequence of best approximation to x . A curve C
passing through x is a called a curve of best approximation (with respect to L) if C
contains a sequence of best approximation to x .

In other words, ifC is a curve of best approximation to x on X , then the rational points
on C approximate x roughly as well as the rational points on X approximate x .

Note also that for a point x on a curve C and an ample divisor L on C , there is
always a sequence {xi } such that αx ({xi }, L) = αx (L). Thus, in particular, C is a
curve of best approximation if and only if αx (L|C ) = αx (L).

In the example of the non-split quadric—and in many others considered in [9]—
there is always a curve of best approximation to x . In [9, Section 4], it is shown
that if Vojta’s main conjectures (see [13] for statements) are true, then αx (L) finite
implies that αx (L) is computed on a subvariety V ⊆ X of negative Kodaira dimension
(possibly X itself, if X has negative Kodaira dimension). Since varieties of negative
Kodaira dimension are (again, conjecturally) covered by rational curves, one is led to
the following further prediction:

Conjecture 4.2 ([9, Conjecture 2.7]) Let X be an algebraic variety defined over k,
and L any ample divisor on X . Let x be any k-rational point on X and assume that
there is a rational curve defined over k passing through x . Then there exists a curve C
(necessarily rational) of best approximation to x on X with respect to L .
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In [9], the first author proves this conjecture inmany cases, and shows that inmany oth-
ers it follows from Vojta’s Conjecture. Those proofs use a slightly different definition
of α, but the proofs do not essentially change in the new setting.

TheSeshadri-constant analogue of a curve of best approximation is called aSeshadri
curve (cf. Proposition 2.10):

Definition 4.3 Let L be a nef divisor on an algebraic variety X , and x ∈ X any
point. A Seshadri curve for x with respect to L is a curve C such that εx,X (L) =
(L ·C)/multx (C).

In all currently known examples, there exists a Seshadri curve for x with respect to
L , but it is conjectured that this is not always the case. In particular, it is possible that
the Seshadri constant might sometimes be irrational (see [7, Remark 5.1.13]).

It is useful to know that for a fixed curve C , the set of line bundles for which C is a
curve of best approximation form a subcone of the Néron–Severi group, and similarly
for the property of being a Seshadri curve.

Proposition 4.4 Let X be a variety over Spec(k), and let x ∈ X (k) be any k-rational
point. Let D1 and D2 be nef divisors on X with height functions H1 and H2 bounded
belowbyapositive constant in someneighbourhoodof x. Let a1 anda2 be non-negative
integers, and let D = a1D1 + a2D2.

(a) If C is a curve of best approximation for D1 and D2, then C is also a curve of
best approximation for D.

(b) If C is a Seshadri curve for x with respect to D1 and D2, then C is also a Seshadri
curve for x with respect to D.

Proof Part (a) appears as [9, Corollary 3.2]. To prove part (b), note that Proposi-
tion 2.11 (b) implies the estimate

εx (a1D1+a2D2) � a1εx (D1) + a2εx (D2).

On the other hand, the hypotheses of part (b) give

C ·D
multx (C)

= C ·(a1D1+a2D2)

multx C
= a1(C ·D1)

multx (C)
+ a2(C ·D2)

multx (C)

= a1εx (D1) + a2εx (D2).

Thus, by Proposition 2.10, a1εx (D1)+a2εx (D2) is an upper bound for εx (D). There-
fore εx (a1D1+a2D2) = a1εx (D1) + a2εx (D2) and C is a Seshadri curve for D,
proving (b). 
�
We are now ready to begin the proof of the main result of this section. Before we state
and prove the general result, we will illustrate the fundamental techniques in the case
L = −K .

Theorem 4.5 Let X be a smooth cubic surface in P
3 defined over k, and isomorphic

over k to the blowup of P
2 at six k-rational points in general position. Let x ∈ X (k)

be any k-rational point, and let Cx be the curve of intersection of X with the tangent
plane to X at x. Then
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εx (−K ) =
⎧

⎨

⎩

1 if x lies on one of the 27 lines of X;
3

2
otherwise,

while

αx (−K ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if x lies on one of the 27 lines of X;
3

2
if x is not on one of the 27 lines, and if either

◦ Cx is cuspidal at x, or

◦ Cx is nodal at xwith tangent lines having

slopes in kv but not k;
2 otherwise.

(i.e.,Cx is nodal at x, and the slopes of

the tangent lines are in k or not in kv.)

Proof Set L = −K = OP3(1)|X , and let x be a point of X (k). If x lies on a line �

then, by Proposition 2.11 (c), we have εx,�(L|�) � εx,X (L) � εx,P3(OP3(1)). Since
εx,�(L|�) = εx,P3(OP3(1)) = 1, we conclude that εx (L) = 1. Similarly (using Propo-
sition 2.11 (c) again and the fact that αx,�(L|�) = αx,P3(OP3(1)) = 1 by Lemma 2.5)
we conclude that αx (L) = 1.

Wenowsuppose that x does not lie on a line. Letπ : X̃ → X be the blowupof X at x ,
with exceptional divisor E . ThenCx is a Seshadri curve for x with respect to L . To see
this, note first that Cx satisfies Cx ·L/multx (Cx ) = 3/2, so εx (L) � 3/2. Conversely,
if a > 3/2, then π∗L −aE is not nef, because (π∗L −aE)(π∗L −2E) = 3−2a < 0
and π∗L − 2E is the class of the proper transform of Cx . Thus, εx (L) � 3/2, and so
εx (L) = 3/2, and Cx is a Seshadri curve for x with respect to L .

We now turn to the computation of α. The stable base locus of π∗L − 2E is
C̃x , the proper transform of Cx . Hence, by Theorem 3.3 (b), either αx (L) � 2 or
αx (L) = αx,Cx (L|Cx ) (note that d = 1). By intersecting X with a hyperplane con-
taining x and one of the lines, we produce a k-rational conic passing through x ,
and approximating on the conic gives us 2 � αx (L). We therefore conclude that
αx (L) = min(2, αx,Cx (L|Cx )).

The curveCx is singular at x , and since x does not lie on a line,Cx is also irreducible.
In particular,Cx is an irreducible curve of geometric genus zero, and since x is defined
over k, Cx is birational to P

1 over k, via projection from x in the tangent plane.
Applying Theorem 2.8 to Cx , we find that

αx,Cx (L|Cx ) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3

2
if Cx : ◦ is cuspidal, or

◦ is nodal and the tangent lines have slopes in kv

but not in k;

3 if Cx is nodal and the tangent lines have slopes in k;

∞ if Cx is nodal and the tangent lines do not have

slopes in kv,
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942 D. McKinnon, M. Roth

and this implies the stated values of αx (L) above. 
�
We now treat the case of a general nef divisor D. In what follows, we assume that the
point x does not lie on a (−1)-curve on X . We begin with a calculation of the Seshadri
constant ε. To do this, we will need some notation.

Let ϕ : X → P
2 be the blowing down map, and let E1, . . . , E6 be the exceptional

divisors of ϕ. We define the following linear equivalence classes on X :

• L = ϕ∗O(1),
• Li = L − Ei , the strict transform of a line through Pi = ϕ(Ei ),
• Li j = 2L − (∑

En
) + Ei + E j (where i �= j), the strict transform of a conic

through the four points Pn with n �= i, j ,
• Bi = 3L − (∑

En
) − Ei , the strict transform of a cubic curve through all six

points Pn , with a node at Pi .

Let h be the class of a hyperplane in the anticanonical embedding X ⊂ P
3. For any

line � on X , the hyperplanes containing � give (after removing �) a base-point-free
pencil on X . If x ∈ X does not lie on a line then the unique curve in this pencil through
x is smooth and irreducible. The classes {Li , Li j , Bi } defined above are the 27 pencils
coming from the lines. Recall that for any point x on X we use Cx for the intersection
of X with its tangent plane at x (so Cx has class h). If x does not lie on a line, then Cx

is a plane cubic curve with one double point, at x .

Theorem 4.6 Let x be a point on X that does not lie on a (−1)-curve, and let D be a
nef divisor on X. The Seshadri constant εx (D) is equal to min{D ·Li , D ·Li j , D ·Bi ,
(D ·h)/2}.
Proof The nef cone � of X has 99 generators, which are listed in Sect. 5, Table 1.
Let S be the set of 27 divisor classes {Li , Li j , Bi } as i and j range over all possible
values, and for each element C in S, we define the subcone �(C) by

�(C) = {

D ∈ � : D ·C = min
C ′∈S

{D ·C ′} and D ·C � (D ·h)/2
}

.

Further define the subcone �(h) to be

�(h) = {

D ∈ � : (D ·h)/2 � min
C ′∈S

{D ·C ′}}.

It is clear that � is the union of these 28 subcones. To prove Theorem 4.6, it suffices
to show that for every subcone �(C), with C ∈ S, the curve through x in the pencil
corresponding to C is a Seshadri curve for x with respect to D for all D ∈ �(C)

(respectively, in the case of the subcone �(h), that Cx is a Seshadri curve for x with
respect to D for all D ∈ �(h)). By Proposition 4.4 (b), it further suffices to prove this
for D a generator of the cone �(C) (respectively �(h)).

The fundamental group of the space of all smooth cubic surfaces acts via mon-
odromy on the Néron–Severi lattice of X . This monodromy action preserves the
hyperplane class h and acts transitively on the classes of the lines. Thus, up to
monodromy action, there are only two of these subcones: �(L1) and �(h). Gener-
ators for each of these subcones can be found in Sect. 5. Let F = Fx,L1 be the
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unique curve in the pencil L1 passing through x . For each generator D of �(L1),
it is straightforward to verify that F is a Seshadri curve for x with respect to D.
These verifications also appear in Sect. 5. Each generator G of �(h) is also a gener-
ator of one of the other twenty-seven subcones �(C), and for each such G, we have
G ·C = (G ·h)/2 = (G ·Cx )/multx (Cx ). Thus, since C is a Seshadri curve for x with
respect to G, it follows that Cx is also a Seshadri curve for x with respect to G, and
so Cx is a Seshadri curve for every element of �(h). 
�

The next step is to calculate αx for a point on a cubic surface.

Theorem 4.7 Let x ∈ X (k) be a point that does not lie on a (−1)-curve, and let D be
a nef divisor on X. If the tangent curve Cx is a cuspidal cubic, or a nodal cubic whose
tangent lines at x are defined over kv but not defined over k, then αx (D) = εx (D).
Otherwise, αx (D) = min{D ·Li , D ·Li j , D ·Bi }.

Proof Suppose that D is in one of the cones �(C) for C ∈ S, and let Fx,C be the
element of the pencil corresponding to C which passes through x . Since Fx,C is a
smooth k-rational curve, we have

D ·C Theorem 2.8= αx (D|Fx,C )
Proposition 2.11 (c)

� αx (D)
Corollary 3.5

� εx (D)
Theorem 4.6= D ·C.

(Note that the blowup of X at a point not on a line is a del Pezzo surface of degree
two, and so every nef divisor on the blowup is semiample (see [1, Theorem 5.1.2.1]),
and thus has nonempty stable base locus. In particular the hypotheses of Corollary 3.5
are satisfied.) Thus αx (D) = D ·C and Fx,C is a curve of best approximation with
respect to D.

Now suppose that D ∈ �(h). If Cx is cuspidal, or nodal with tangent lines
having slopes in kv but not k, then Theorem 2.8 gives αx (D|Cx ) = D ·Cx/2 =
D ·Cx/multx (Cx ). By Theorem 4.6, εx (D) = D ·Cx/2, and so as above we conclude
that αx (D) = D ·Cx = εx (D), and that Cx is a curve of best approximation for D.

We now assume that Cx is nodal and the slopes of the tangent lines are in k or not
in kv . The codimension one faces of �(h) (i.e., the facets) occur where one of the
inequalities defining �(h) becomes an equality, so that each facet is the intersection
of �(h) and �(C) for some C ∈ S. For each C ∈ S set �̂(C) to be the cone generated
by �(C) and −K . Since −K is in the interior of �(h) it follows that � is the union of
the �̂(C), C ∈ S.

As above, for any C ∈ S, let Fx,C be the member of the pencil corresponding to C
passing through x . In the proof of Theorem 4.5 we have seen that Fx,C is a curve of
best approximation for −K , and in the first part of the argument above that Fx,C is a
curve of best approximation for all D ∈ �(C). By Proposition 4.4 (a), we conclude
that Fx,C is a curve of best approximation for all D ∈ �̂(C). The result follows. 
�

Note that as part of the proof we have shown that Conjecture 4.2 holds for every point
x ∈ X not on a (−1)-curve.
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5 Appendix A: Generators of nef cones and subcones for the cubic
surface

Aversion of this appendix, with additional tables and larger font, may be found at [11].
In all the tables below, the first column is a numerical identifier of the vector in that
row. In Tables 1, 2, and 4 the subsequent columns represent the coefficients of the
vector with respect to the basis {L , E1, . . . , E6} of the Néron–Severi group of X .
Thus, vector number 1 in Table 1 is the divisor class 2L − E1 − E2 − E3. Each of the
cones has 99 generators. There is no correspondence or relation between the rows in
Tables 1, 2, and 4 with the same numerical identifier.

Table 1, of generators of the nef cone, is reproducing information that has
been well known for some time, of course. It was calculated for these tables by
finding generators for the cone obtained as the intersection of the half-spaces cor-
responding to non-negative intersection with each of the 27 lines on the cubic
surface.

Table 1 Generators of the nef
cone � of a smooth cubic
surface

# L E1 E2 E3 E4 E5 E6

1 2 −1 −1 −1 0 0 0

2 2 −1 −1 0 −1 0 0

3 2 −1 −1 0 0 −1 0

4 2 −1 −1 0 0 0 −1

5 2 −1 0 −1 −1 0 0

6 2 −1 0 −1 0 −1 0

7 2 −1 0 −1 0 0 −1

8 2 −1 0 0 −1 −1 0

9 2 −1 0 0 −1 0 −1

10 2 −1 0 0 0 −1 −1

11 1 0 0 0 0 0 0

12 3 −2 −1 −1 −1 −1 0

13 3 −2 −1 −1 −1 0 −1

14 3 −2 −1 −1 0 −1 −1

15 3 −2 −1 0 −1 −1 −1

16 3 −2 0 −1 −1 −1 −1

17 1 −1 0 0 0 0 0

18 1 0 −1 0 0 0 0

19 1 0 0 −1 0 0 0

20 1 0 0 0 −1 0 0

21 1 0 0 0 0 −1 0

22 1 0 0 0 0 0 −1

23 2 0 −1 −1 −1 0 0

24 2 0 −1 −1 0 −1 0

25 2 0 −1 −1 0 0 −1

26 2 0 −1 0 −1 −1 0
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Table 1 continued
# L E1 E2 E3 E4 E5 E6

27 2 0 −1 0 −1 0 −1

28 2 0 −1 0 0 −1 −1

29 2 0 0 −1 −1 −1 0

30 2 0 0 −1 −1 0 −1

31 2 0 0 −1 0 −1 −1

32 2 0 0 0 −1 −1 −1

33 2 −1 −1 −1 −1 0 0

34 2 −1 −1 −1 0 −1 0

35 2 −1 −1 −1 0 0 −1

36 2 −1 −1 0 −1 −1 0

37 2 −1 −1 0 −1 0 −1

38 2 −1 −1 0 0 −1 −1

39 2 −1 0 −1 −1 −1 0

40 2 −1 0 −1 −1 0 −1

41 2 −1 0 −1 0 −1 −1

42 2 −1 0 0 −1 −1 −1

43 2 0 −1 −1 −1 −1 0

44 2 0 −1 −1 −1 0 −1

45 2 0 −1 −1 0 −1 −1

46 2 0 −1 0 −1 −1 −1

47 2 0 0 −1 −1 −1 −1

48 3 −1 −2 −1 −1 −1 0

49 3 −1 −2 −1 −1 0 −1

50 3 −1 −2 −1 0 −1 −1

51 3 −1 −2 0 −1 −1 −1

52 3 −1 −1 −2 −1 −1 0

53 3 −1 −1 −2 −1 0 −1

54 3 −1 −1 −2 0 −1 −1

55 3 −1 −1 −1 −2 −1 0

56 3 −1 −1 −1 −2 0 −1

57 3 −1 −1 −1 −1 −2 0

58 3 −1 −1 −1 −1 0 −2

59 3 −1 −1 −1 0 −2 −1

60 3 −1 −1 −1 0 −1 −2

61 3 −1 −1 0 −2 −1 −1

62 3 −1 −1 0 −1 −2 −1

63 3 −1 −1 0 −1 −1 −2

64 3 −1 0 −2 −1 −1 −1

65 3 −1 0 −1 −2 −1 −1

66 3 −1 0 −1 −1 −2 −1

67 3 −1 0 −1 −1 −1 −2
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Table 1 continued
# L E1 E2 E3 E4 E5 E6

68 3 0 −2 −1 −1 −1 −1

69 3 0 −1 −2 −1 −1 −1

70 3 0 −1 −1 −2 −1 −1

71 3 0 −1 −1 −1 −2 −1

72 3 0 −1 −1 −1 −1 −2

73 3 −2 −1 −1 −1 −1 −1

74 3 −1 −2 −1 −1 −1 −1

75 3 −1 −1 −2 −1 −1 −1

76 3 −1 −1 −1 −2 −1 −1

77 3 −1 −1 −1 −1 −2 −1

78 3 −1 −1 −1 −1 −1 −2

79 4 −2 −2 −2 −1 −1 −1

80 4 −2 −2 −1 −2 −1 −1

81 4 −2 −2 −1 −1 −2 −1

82 4 −2 −2 −1 −1 −1 −2

83 4 −2 −1 −2 −2 −1 −1

84 4 −2 −1 −2 −1 −2 −1

85 4 −2 −1 −2 −1 −1 −2

86 4 −2 −1 −1 −2 −2 −1

87 4 −2 −1 −1 −2 −1 −2

88 4 −2 −1 −1 −1 −2 −2

89 4 −1 −2 −2 −2 −1 −1

90 4 −1 −2 −2 −1 −2 −1

91 4 −1 −2 −2 −1 −1 −2

92 4 −1 −2 −1 −2 −2 −1

93 4 −1 −2 −1 −2 −1 −2

94 4 −1 −2 −1 −1 −2 −2

95 4 −1 −1 −2 −2 −2 −1

96 4 −1 −1 −2 −2 −1 −2

97 4 −1 −1 −2 −1 −2 −2

98 4 −1 −1 −1 −2 −2 −2

99 5 −2 −2 −2 −2 −2 −2

Table 2, of generators of the cone �(L1), was generated by using the half-spaces
defining � in addition to the half-spaces corresponding to the conditions D ·L1 =
minC ′∈S{D ·C ′} and D ·L1 � (D ·h)/2 for all D ∈ �.

We use Dn to refer to the divisor class represented by row n of Table 2. For any point
x ∈ X not on a (−1)-curve, the unique curve F = Fx,L1 in the pencil L1 passing
through x is smooth and irreducible. Row n in Table 3 below is a—very brief! —
justification of why F is a Seshadri curve for x with respect to Dn .
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Table 2 Generators Dn of the
cone �(L1)

# L E1 E2 E3 E4 E5 E6

1 4 −3 −1 −1 −1 −1 −1

2 2 −1 −1 0 0 0 0

3 2 −1 0 −1 0 0 0

4 2 −1 0 0 −1 0 0

5 2 −1 0 0 0 −1 0

6 2 −1 0 0 0 0 −1

7 1 0 0 0 0 0 0

8 3 −2 −1 −1 −1 0 0

9 3 −2 −1 −1 0 −1 0

10 3 −2 −1 −1 0 0 −1

11 3 −2 −1 0 −1 −1 0

12 3 −2 −1 0 −1 0 −1

13 3 −2 −1 0 0 −1 −1

14 3 −2 0 −1 −1 −1 0

15 3 −2 0 −1 −1 0 −1

16 3 −2 0 −1 0 −1 −1

17 3 −2 0 0 −1 −1 −1

18 1 −1 0 0 0 0 0

19 2 −1 −1 −1 0 0 0

20 2 −1 −1 0 −1 0 0

21 2 −1 −1 0 0 −1 0

22 2 −1 −1 0 0 0 −1

23 2 −1 0 −1 −1 0 0

24 2 −1 0 −1 0 −1 0

25 2 −1 0 −1 0 0 −1

26 2 −1 0 0 −1 −1 0

27 2 −1 0 0 −1 0 −1

28 2 −1 0 0 0 −1 −1

29 3 −1 −1 −1 −1 0 0

30 3 −1 −1 −1 0 −1 0

31 3 −1 −1 −1 0 0 −1

32 3 −1 −1 0 −1 −1 0

33 3 −1 −1 0 −1 0 −1

34 3 −1 −1 0 0 −1 −1

35 3 −1 0 −1 −1 −1 0

36 3 −1 0 −1 −1 0 −1

37 3 −1 0 −1 0 −1 −1

38 3 −1 0 0 −1 −1 −1

39 3 −1 −1 −1 −1 −1 0

40 3 −1 −1 −1 −1 0 −1

41 3 −1 −1 −1 0 −1 −1
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Table 2 continued
# L E1 E2 E3 E4 E5 E6

42 3 −1 −1 0 −1 −1 −1

43 3 −1 0 −1 −1 −1 −1

44 4 −1 −1 −1 −1 −1 −1

45 3 −2 −1 −1 −1 −1 0

46 3 −2 −1 −1 −1 0 −1

47 3 −2 −1 −1 0 −1 −1

48 3 −2 −1 0 −1 −1 −1

49 3 −2 0 −1 −1 −1 −1

50 4 −2 −2 −1 −1 −1 0

51 4 −2 −2 −1 −1 0 −1

52 4 −2 −2 −1 0 −1 −1

53 4 −2 −2 0 −1 −1 −1

54 4 −2 −1 −2 −1 −1 0

55 4 −2 −1 −2 −1 0 −1

56 4 −2 −1 −2 0 −1 −1

57 4 −2 −1 −1 −2 −1 0

58 4 −2 −1 −1 −2 0 −1

59 4 −2 −1 −1 −1 −2 0

60 4 −2 −1 −1 −1 0 −2

61 4 −2 −1 −1 0 −2 −1

62 4 −2 −1 −1 0 −1 −2

63 4 −2 −1 0 −2 −1 −1

64 4 −2 −1 0 −1 −2 −1

65 4 −2 −1 0 −1 −1 −2

66 4 −2 0 −2 −1 −1 −1

67 4 −2 0 −1 −2 −1 −1

68 4 −2 0 −1 −1 −2 −1

69 4 −2 0 −1 −1 −1 −2

70 4 −2 −2 −1 −1 −1 −1

71 4 −2 −1 −2 −1 −1 −1

72 4 −2 −1 −1 −2 −1 −1

73 4 −2 −1 −1 −1 −2 −1

74 4 −2 −1 −1 −1 −1 −2

75 5 −2 −2 −2 −1 −1 −1

76 5 −2 −2 −1 −2 −1 −1

77 5 −2 −2 −1 −1 −2 −1

78 5 −2 −2 −1 −1 −1 −2

79 5 −2 −1 −2 −2 −1 −1

80 5 −2 −1 −2 −1 −2 −1

81 5 −2 −1 −2 −1 −1 −2

82 5 −2 −1 −1 −2 −2 −1
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Table 2 continued
# L E1 E2 E3 E4 E5 E6

83 5 −2 −1 −1 −2 −1 −2

84 5 −2 −1 −1 −1 −2 −2

85 5 −3 −2 −2 −1 −1 −1

86 5 −3 −2 −1 −2 −1 −1

87 5 −3 −2 −1 −1 −2 −1

88 5 −3 −2 −1 −1 −1 −2

89 5 −3 −1 −2 −2 −1 −1

90 5 −3 −1 −2 −1 −2 −1

91 5 −3 −1 −2 −1 −1 −2

92 5 −3 −1 −1 −2 −2 −1

93 5 −3 −1 −1 −2 −1 −2

94 5 −3 −1 −1 −1 −2 −2

95 6 −3 −2 −2 −2 −2 −1

96 6 −3 −2 −2 −2 −1 −2

97 6 −3 −2 −2 −1 −2 −2

98 6 −3 −2 −1 −2 −2 −2

99 6 −3 −1 −2 −2 −2 −2

As an example, in row 1 of Table 3, the “Reason” is L1 ·D1 = 1, and thus
F ·D1 = L1 ·D1 = 1. We claim that for the divisors Dn , εx is always at least
one if it is nonzero. Furthermore, if n �= 18 then εx (Dn) � 1 for x not on a
(−1)-curve. Granting these claims, since by assumption, x does not lie on any (−1)-
curve (and since D1 �= D18), we have εx (D1) � 1. The curve F is smooth at x ,
and the reason given tells us that F has degree 1 with respect to D1. Therefore
(D1 ·F)/multx (F) = 1/1 = 1, hence εx (D1) = 1, and F is a Seshadri curve for
x with respect to D1.

To see the claims, notice that the generators of the nef cone � (see Table 1)
are all either morphisms to P

1 corresponding to pencils of conics on the cubic
surface, or else morphisms to P

2 that are the blowing down of six pairwise dis-
joint (−1)-curves. For a point x not on a (−1)-curve εx is at least one for the
blowdowns to P

2, and εx = 0 for the pencils no matter which point x is. It is
straightforward to check that all the generators listed in Table 2 are non-negative
integer linear combinations of the generators of the nef cones, and therefore (by
Proposition 2.11 (b)) enjoy the same property: for any point x , the Seshadri con-
stant εx (Di ) is either zero or else is at least one. Furthermore the only generator of
�(L1) which is morphism to P

1 is D18 = L1, and thus we have εx (Dn) � 1 for all
n �= 18.
Similar arguments explain other reasons of the form “Dn ·L1 = 1” or “= 0”.

As a second example of a reason, in row 29 of Table 3, the comment “L + L56”
means that the divisor D29 represented by that row is the sum of L and L56. Again
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Table 3 Reasons F is a
Seshadri curve for Dn

# Reason

1 L1 ·D1 = 1

2 L1 ·D2 = 1

3 L1 ·D3 = 1

4 L1 ·D4 = 1

5 L1 ·D5 = 1

6 L1 ·D6 = 1

7 L1 ·D7 = 1

8 L1 ·D8 = 1

9 L1 ·D9 = 1

10 L1 ·D10 = 1

11 L1 ·D11 = 1

12 L1 ·D12 = 1

13 L1 ·D13 = 1

14 L1 ·D14 = 1

15 L1 ·D15 = 1

16 L1 ·D16 = 1

17 L1 ·D17 = 1

18 L1 ·D18 = 0

19 L1 ·D19 = 1

20 L1 ·D20 = 1

21 L1 ·D21 = 1

22 L1 ·D22 = 1

23 L1 ·D23 = 1

24 L1 ·D24 = 1

25 L1 ·D25 = 1

26 L1 ·D26 = 1

27 L1 ·D27 = 1

28 L1 ·D28 = 1

29 L + L56
30 L + L46
31 L + L45
32 L + L36
33 L + L35
34 L + L34
35 L + L26
36 L + L25
37 L + L24
38 L + L23
39 L2 + L26
40 L2 + L25
41 L2 + L24
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Table 3 continued
# Reason

42 L2 + L23
43 L3 + L23
44 L23 + L2 + L3
45 L1 ·D45 = 1

46 L1 ·D46 = 1

47 L1 ·D47 = 1

48 L1 ·D48 = 1

49 L1 ·D49 = 1

50 D45 + L2
51 D46 + L2
52 D47 + L2
53 D48 + L2
54 D45 + L3
55 D46 + L3
56 D47 + L3
57 D45 + L4
58 D46 + L4
59 D45 + L5
60 D46 + L6
61 D47 + L5
62 D47 + L6
63 D48 + L4
64 D48 + L5
65 D48 + L6
66 D49 + L3
67 D49 + L4
68 D49 + L5
69 D49 + L6
70 B1 + L2
71 B1 + L3
72 B1 + L4
73 B1 + L5
74 B1 + L6
75 L3 + L34 + L56
76 L2 + L23 + L56
77 L2 + L23 + L46
78 L2 + L23 + L45
79 L3 + L23 + L56
80 L3 + L23 + L46
81 L3 + L23 + L45
82 L4 + L23 + L46
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Table 3 continued
# Reason

83 L4 + L23 + L45
84 L5 + L23 + L45
85 D45 + L45
86 D45 + L35
87 D45 + L34
88 D46 + L34
89 D45 + L25
90 D45 + L24
91 D46 + L24
92 D45 + L23
93 D46 + L23
94 D47 + L23
95 L23 + L46 + L56
96 L23 + L45 + L56
97 L23 + L45 + L46
98 L23 + L34 + L56
99 L23 + L24 + L56

suppose that x does not lie on a (−1)-curve. Any curve C passing through x that
has nonzero intersection with L must have L ·C/multx (C) � 1, since L is an iso-
morphism away from (−1)-curves. Similarly, any curve not contracted by L56 must
also satisfy L56 ·C/multx (C) � 1, so any curve not contracted by L56 or L must
satisfy (L+L56) ·C/multx (C) � 2. If C is contracted by L56, then it is either a (−1)-
curve, or else it is an element of the divisor class L56 itself, in which case it satisfies
(L+L56) ·C/multx (C) = 2 by direct calculation. In all cases, since x does not lie on
a (−1)-curve, we see that εx (L+L56) � 2. Since L1 ·L = L1 ·L56 = 1, we compute
that (L+L56) ·F/multx (F) = (1+1)/1 = 2 and therefore that εx (L+L56) = 2.
Hence F is a Seshadri curve for x with respect to D29 = L + L56. Similar arguments
explain the other reasons of the form “a + b” or “a + b + c”.

For these types of arguments, it is useful to know that L1 (and hence F) has
intersection number one with the divisors L , B1, Li for i �= 1, and Li j for i, j �= 1.

Table 4, of generators of the cone �(h), was generated by using the half-spaces
defining � in addition to the half-spaces corresponding to the intersection inequalities
(D ·h)/2 � minC ′∈S{D ·C ′} for all D ∈ �.

We use Gn to refer to the divisor class represented by row n of Table 4. The
rightmost column of row n is a divisor class C ∈ S such that Gn is also a gen-
erator of the subcone �(C). From the definition of the cones �(C) and �(h),
this implies that Gn ·C = (Gn ·h)/2. As explained in the proof of Theorem 4.7,
this provides a verification that Cx is a Seshadri curve for x with respect to
Gn .
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Table 4 Generators Gn of the
cone �(h)

# L E1 E2 E3 E4 E5 E6 Div. class

1 8 −3 −3 −3 −3 −3 −3 B1
2 4 −1 −1 −1 −1 −1 −1 L1
3 4 −2 −2 −1 −1 −1 −1 L1
4 4 −2 −1 −2 −1 −1 −1 L1
5 4 −2 −1 −1 −2 −1 −1 L1
6 4 −2 −1 −1 −1 −2 −1 L1
7 4 −2 −1 −1 −1 −1 −2 L1
8 4 −1 −2 −2 −1 −1 −1 L2
9 4 −1 −2 −1 −2 −1 −1 L2

10 4 −1 −2 −1 −1 −2 −1 L2
11 4 −1 −2 −1 −1 −1 −2 L2
12 4 −1 −1 −2 −2 −1 −1 L3
13 4 −1 −1 −2 −1 −2 −1 L3
14 4 −1 −1 −2 −1 −1 −2 L3
15 4 −1 −1 −1 −2 −2 −1 L4
16 4 −1 −1 −1 −2 −1 −2 L4
17 4 −1 −1 −1 −1 −2 −2 L5
18 5 −2 −2 −2 −1 −1 −1 L1
19 5 −2 −2 −1 −2 −1 −1 L1
20 5 −2 −2 −1 −1 −2 −1 L1
21 5 −2 −2 −1 −1 −1 −2 L1
22 5 −2 −1 −2 −2 −1 −1 L1
23 5 −2 −1 −2 −1 −2 −1 L1
24 5 −2 −1 −2 −1 −1 −2 L1
25 5 −2 −1 −1 −2 −2 −1 L1
26 5 −2 −1 −1 −2 −1 −2 L1
27 5 −2 −1 −1 −1 −2 −2 L1
28 5 −1 −2 −2 −2 −1 −1 L2
29 5 −1 −2 −2 −1 −2 −1 L2
30 5 −1 −2 −2 −1 −1 −2 L2
31 5 −1 −2 −1 −2 −2 −1 L2
32 5 −1 −2 −1 −2 −1 −2 L2
33 5 −1 −2 −1 −1 −2 −2 L2
34 5 −1 −1 −2 −2 −2 −1 L3
35 5 −1 −1 −2 −2 −1 −2 L3
36 5 −1 −1 −2 −1 −2 −2 L3
37 5 −1 −1 −1 −2 −2 −2 L4
38 7 −3 −3 −3 −2 −2 −2 B1
39 7 −3 −3 −2 −3 −2 −2 B1
40 7 −3 −3 −2 −2 −3 −2 B1
41 7 −3 −3 −2 −2 −2 −3 B1
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Table 4 continued
# L E1 E2 E3 E4 E5 E6 Div. class

42 7 −3 −2 −3 −3 −2 −2 B1
43 7 −3 −2 −3 −2 −3 −2 B1
44 7 −3 −2 −3 −2 −2 −3 B1
45 7 −3 −2 −2 −3 −3 −2 B1
46 7 −3 −2 −2 −3 −2 −3 B1
47 7 −3 −2 −2 −2 −3 −3 B1
48 7 −2 −3 −3 −3 −2 −2 B2
49 7 −2 −3 −3 −2 −3 −2 B2
50 7 −2 −3 −3 −2 −2 −3 B2
51 7 −2 −3 −2 −3 −3 −2 B2
52 7 −2 −3 −2 −3 −2 −3 B2
53 7 −2 −3 −2 −2 −3 −3 B2
54 7 −2 −2 −3 −3 −3 −2 B3
55 7 −2 −2 −3 −3 −2 −3 B3
56 7 −2 −2 −3 −2 −3 −3 B3
57 7 −2 −2 −2 −3 −3 −3 B4
58 6 −3 −2 −2 −2 −2 −1 B1
59 6 −3 −2 −2 −2 −1 −2 B1
60 6 −3 −2 −2 −1 −2 −2 B1
61 6 −3 −2 −1 −2 −2 −2 B1
62 6 −3 −1 −2 −2 −2 −2 B1
63 6 −2 −3 −2 −2 −2 −1 B2
64 6 −2 −3 −2 −2 −1 −2 B2
65 6 −2 −3 −2 −1 −2 −2 B2
66 6 −2 −3 −1 −2 −2 −2 B2
67 6 −2 −2 −3 −2 −2 −1 B3
68 6 −2 −2 −3 −2 −1 −2 B3
69 6 −2 −2 −3 −1 −2 −2 B3
70 6 −2 −2 −2 −3 −2 −1 B4
71 6 −2 −2 −2 −3 −1 −2 B4
72 6 −2 −2 −2 −2 −3 −1 B5
73 6 −2 −2 −2 −2 −1 −3 B6
74 6 −2 −2 −2 −1 −3 −2 B5
75 6 −2 −2 −2 −1 −2 −3 B6
76 6 −2 −2 −1 −3 −2 −2 B4
77 6 −2 −2 −1 −2 −3 −2 B5
78 6 −2 −2 −1 −2 −2 −3 B6
79 6 −2 −1 −3 −2 −2 −2 B3
80 6 −2 −1 −2 −3 −2 −2 B4
81 6 −2 −1 −2 −2 −3 −2 B5
82 6 −2 −1 −2 −2 −2 −3 B6
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Table 4 continued
# L E1 E2 E3 E4 E5 E6 Div. class

83 6 −1 −3 −2 −2 −2 −2 B2
84 6 −1 −2 −3 −2 −2 −2 B3
85 6 −1 −2 −2 −3 −2 −2 B4
86 6 −1 −2 −2 −2 −3 −2 B5
87 6 −1 −2 −2 −2 −2 −3 B6
88 5 −2 −2 −2 −2 −2 −1 B1
89 5 −2 −2 −2 −2 −1 −2 B1
90 5 −2 −2 −2 −1 −2 −2 B1
91 5 −2 −2 −1 −2 −2 −2 B1
92 5 −2 −1 −2 −2 −2 −2 B1
93 5 −1 −2 −2 −2 −2 −2 B2
94 3 −1 −1 −1 −1 −1 0 L1
95 3 −1 −1 −1 −1 0 −1 L1
96 3 −1 −1 −1 0 −1 −1 L1
97 3 −1 −1 0 −1 −1 −1 L1
98 3 −1 0 −1 −1 −1 −1 L1
99 3 0 −1 −1 −1 −1 −1 L2

6 Appendix B: Geometric description of the distance functions

In this section we give a more geometric definition of the distance function, and prove
its equivalence to the ones given by the formulae in Sect. 2.

Given a variety X defined over k let X̃×X be the blowup of X×X along the
diagonal, with exceptional divisor E . Let v be a place of k extended to k (which
we also call v), and choose a v-adic metric on O

X̃×X
(E), i.e., a (non-trivial) v-adic

norm | · |v on each fibre of O
X̃×X

(E)⊗kv , varying continuously with the points of

(X̃×X)(kv) (see e.g., [3, p. 162] for a discussion of v-adic metrics). We fix a nonzero
global section sE of O

X̃×X
(E) with divisor E . Given points x, y ∈ X (k) with x �= y,

then (x, y) is a point of X×X not on the diagonal, and hence corresponds to a unique

point, which we also label (x, y) of X̃×X . We then define a distance function d ′
v( ·, ·)

by

d ′
v(x, y) =

{

|sE (x, y)|v if x �= y,

0 if x = y.

Different choices of sE differ by a scalar, and induce equivalent distance functions.

Similarly, different choices of v-adic metrics differ multiplicatively on X̃×X by a
bounded function (see [3, p. 162, Lemma 7.1]), and again induce equivalent distance
functions.

The distance functions dv( ·, ·) in Sect. 2 are obtained by restricting distance func-
tions on P

r under an embedding X ↪→ P
r
k . We may also view the distance function
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d ′
v( ·, ·) defined above as being induced from a distance function on projective space,
and this will allow us to reduce the problem of showing the equivalence of the two
types of distance functions to the case X = P

r. To see this we note that an embedding

X ↪→ P
r
k induces an embedding X×X ↪→ P

r×P
r. Let P̃r×Pr be the blowup of

P
r×P

r along its diagonal Pr . The proper transform of X×X in P̃r×Pr is X̃×X .

Furthermore, the exceptional divisor E in P̃r×Pr restricts to the exceptional divisor

on X̃×X , and a v-adic metric onO
P̃r×Pr (E) restricts to one on the corresponding line

bundle on X̃×X . Thus the distance function d ′
v( ·, ·) on P

r restricts to the distance
function d ′

v( ·, ·) on X , and to show that d ′
v( ·, ·) and dv( ·, ·) are equivalent we may

assume that X = P
r.

Let ([Z0 : · · · :Zr ], [W0 : · · · :Wr ]) be coordinates on P
r×P

r. The diagonal of
P
r×P

r is cut out by the equations ZiW j − Z jWi = 0 for 0 � i < j � r . Set
N = (r+1

2

) − 1, and let Ui, j , 0 � i < j � r , be coordinates on P
N (in some chosen

order). The blowup P̃r×Pr is the closure in P
r×P

r×P
N of the graph of the rational

map

P
r×P

r ��� P
N

[Z0 : · · · :Zr ]×[W0 : · · · :Wr ] �→ [Z0W1 − Z1W0 : · · · : Zr−1Wr − ZrWr−1].

Among the equations cutting out P̃r×Pr in P
r×P

r×P
N are

(ZiW j − Z jWi )U�m = (Z�Wm − ZmW�)Ui j

for all pairs (i, j), (�,m), with 0 � i < j � r , and 0 � � < m � r . These equations
simply express that the functions ZiW j − Z jWi were used to give the rational map

to P
N. On an the open subset of P̃r×Pr where Ui j �= 0 and U�m �= 0, we can rewrite

this as the relation

ZiW j − Z jWi

Ui j

∣
∣
∣
∣
P̃r×Pr

= Z�Wm − ZmW�

U�m

∣
∣
∣
∣
P̃r×Pr

.

Let E be the exceptional divisor of the blowup. The line bundle O
P̃r×Pr (E) is the

restriction ofOPr×Pr×PN (1, 1,−1) to P̃r×Pr. On the open set of P̃r×Pr whereUi j �=
0, restricting (ZiW j − Z jWi )/Ui j gives a section of OPr×Pr×PN (1, 1,−1)|

P̃r×Pr =
O

P̃r×Pr (E). The equation above shows that these local sections patch together to give

a global section sE of O
P̃r×Pr (E). This section has divisor E , and so we may use it to

compute the distance. To give a v-adic metric on O
P̃r×Pr (E), we put v-adic metrics

on OPr×Pr×PN (1, 0, 0), OPr×Pr×PN (0, 1, 0), and OPr×Pr×PN (0, 0, 1), by putting an
explicit v-adic metric on OPr (1) and OPN (1) as described below, and pull these back
from the factors. These then give a v-adic metric on OPr×Pr×PN (1, 1,−1) which we
restrict to get a v-adic metric on O

P̃r×Pr (E). Here is our choice of v-adic metric on

OPr (1) (and similarly for OPN (1)). Let V be the k-vector space underlying P
r so that
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P
r = P(V ), and Z0, . . . , Zr the coordinates on P

r (i.e., a chosen basis for V ∗). Given
any x̃ ∈ V and section s ∈ H0(Pr,OPr (1)) = V ∗ we may evaluate s (̃x) to get an
element of kv . Given any x ∈ P

r we set

|s(x)|v = ‖s (̃x)‖v

max0�i�r (‖Zi (̃x)‖)
where x̃ ∈ V is any representative of x . The formula above does not depend on the
choice of representative x̃ , and so is well defined; for this reason we will use the
notation s(x) and Zi (x) in further formulae. If two sections s and s′ are equal at x ,
then |s(x)|v = |s′(x)|v , and hence the formula above puts a v-adic metric on the fibre
at x . This metric varies continuously with x ∈ X (kv).

Let x = [x0 : · · · :xr ] and y = [y0 : · · · :yr ] be points ofPr, with x �= y, so that (x, y)

is a point of P
r×P

r not on the diagonal. The corresponding point on P̃r×Pr (in the
coordinates of the embedding in P

r×P
r×P

N ) is ([x0 : · · · :xr ], [y0 : · · · :yr ], [x0y1 −
x1y0 : · · · :xr−1yr − xr yr−1]). I.e., up to independent scalars in the Z ,W , and U
variables, Zi (x, y) = xi , Wj (x, y) = yj , and Ui j (x, y) = xi yj − x j yi . Choosing
any (�,m) such that U�m(x, y) �= 0, so that sE can be represented near (x, y) by
(Z�Wm − ZmW�)/U�m we compute that

d ′
v(x, y) = |sE (x, y)|v

= max0�i< j�r (‖Ui j (x, y)‖v)

max0�i�r (‖Zi (x, y)‖v)max0� j�r (‖Wj (x, y)‖v)

·
∥
∥
∥
∥

(Z�Wm − ZmW�)(x, y)

U�m(x, y)

∥
∥
∥
∥

v

= max0�i< j�r (‖xi yj − x j yi‖v)

max0�i�r (‖xi‖v)max0� j�r (‖yj‖v)
· ‖x�ym − xm y�‖v

‖x�ym − xm y�‖v

= max0�i< j�r (‖xi yj − x j yi‖v)

max0�i�r (‖xi‖v)max0� j�r (‖yj‖v)
.

Here max(‖Zi (x, y)‖v), max(‖Wj (x, y)‖v), and max(‖Ui j (x, y)‖v), come from
the construction of the v-adic metric on O

P̃r×Pr (1, 0, 0), O
P̃r×Pr (0, 1, 0), and

O
P̃r×Pr (0, 0,−1), respectively, while the last factor is the evaluation of the local

representation of sE at (x, y).
As the equation shows, for non-archimedean v we have dv(x, y) = d ′

v(x, y). For
archimedean v we first consider the case that kv = C. The issue is then to compare

dv(x, y) = 1 −
∣
∣
∑r

i=0 xi yi
∣
∣
2

(∑r
i=0 |xi |2

)(∑r
j=0 |yj |2

) =
∑

0�i< j�r |xi yj − x j yi |2
(∑

0�i�r |xi |2
)(∑

0� j�r |yj |2
) ,

with

d ′
v(x, y) = max0�i< j�r (|xi yj − x j yi |2)

max0�i�r (|xi |2)max0� j�r (|yj |2) .
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On C
s with coordinate functions t1, . . . , ts , we have

1

s

(|t1|2 + · · · + |ts |2
)

� max
(|t1|2, . . . , |ts |2

)

� |t1|2 + · · · + |ts |2,

so that |t1|2 + · · · + |ts |2 and max(|t1|2, . . . , |ts |2) are equivalent functions on C
s.

Applying this equivalence between themax and the sum to the factors in the numerator
and denominator of dv( ·, ·) shows that dv( ·, ·) and d ′

v( ·, ·) are equivalent.
In the case that v is archimedean and kv = R, the comparison is between

dv(x, y) =
( ∑

0�i< j�r |xi yj − x j yi |2
(∑

0�i�r |xi |2
)(∑

0� j�r |yj |2
)

)1/2

and

d ′
v(x, y) = max0�i< j�r (|xi yj − x j yi |)

max0�i�r (|xi |)max0� j�r (|yj |) ,

which, after squaring the distance functions, reduces to the previous case. Thus in all
cases dv( ·, ·) and d ′

v( ·, ·) are equivalent distance functions.
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