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Abstract Following the work of Totaro and Pereira, we study sufficient conditions
under which collections of pairwise-disjoint divisors on a variety over an algebraically
closed field are contained in the fibers of a morphism to a curve. We prove that
ρw(X) + 1 pairwise-disjoint, connected divisors suffice for proper, normal varieties
X , where ρw(X) is a modification of the Néron–Severi rank of X (they agree when
X is projective and smooth). We then prove a strong counterexample in the affine
case: if X is quasi-affine and of dimension �2 over a countable, algebraically-closed
field k, then there exists a (countable) collection of pairwise-disjoint divisors which
cover the k-points of X , so that for any non-constant morphism from X to a curve,
at most finitely many are contained in the fibers thereof. We show, however, that an
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uncountable collection of pairwise-disjoint, connected divisors in any normal variety
over an algebraically-closed field must be contained in the fibers of a morphism to a
curve.

Keywords Disjoint divisors · Regular functions · Hodge index theorem ·
Chow group · Geometric reconstruction

Mathematics Subject Classification 14C05 · 14C25 · 14D05

1 Introduction

The goal of this note is to give a set-theoretic condition under which collections
of pairwise-disjoint divisors on varieties over an algebraically-closed field are con-
tained in the fibers of a single morphism to a curve. We first adapt the methods of
Totaro [15] and Pereira [12] to produce a stronger bound in the projective, smooth
case in characteristic zero, and we generalize these results to normal, proper varieties
in all characteristics.

We obtain the following result, which generalizes the theorems of Totaro and
Pereira, loc. cit., to normal, proper varieties of arbitrary characteristic. Here, ρw(X) is
an invariant of the variety X , equal to the Néron–Severi rank when X is smooth and
projective, and finite in all cases.

Theorem 1.1 Let X be a normal, proper, integral variety defined over an algebraically
closed field k. Let {Di }i∈I be a collection of pairwise-disjoint, reduced, codimension-
one, connected subvarieties of X. Assume that # I � ρw(X) + 1. Then there is a
smooth, projective curve C and a surjective morphism f : X → C with connected
fibers such that for any i ∈ I , the divisor Di is contained in a fiber of f . Furthermore,
there is a set � ⊆ I so that # I\� � ρw(X) − 2 and for each i ∈ �, Di is equal
(set-theoretically) to a fiber of f .

In Pereira and Totaro’s approaches—which work only in the smooth case—# I
must be at least ρw(X) + 2; our extra saving comes from an extra application of the
Hodge index theorem.

In the affine case we have the following explicit counterexample.

Theorem 1.2 LetA2
k be the affine plane over a countable, algebraically-closed field k.

Then there is a countable family {Di }i∈I of integral, Zariski-closed, codimension-one
subvarieties of X, such that:

• The divisors Di are pairwise disjoint and their k-points cover A
2, i.e. A

2(k) =⋃
i∈I Di (k).

• For any non-constant morphism f : A
2 → C to a curve, at most finitely many of

Di are contained in fibers of f .

As a corollary, we easily deduce

Theorem 1.3 Let X be a quasi-affine variety over a countable, algebraically-closed
field k. Then there is a countable family {Di }i∈I of connected, Zariski-closed, co-
dimension-one subvarieties of X, such that:
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Families of disjoint divisors on varieties 919

• The divisors Di are pairwise disjoint and their k-points cover X, i.e., X (k) =⋃
i∈I Di (k).

• For any non-constant morphism f : X → C, at most finitely many of the Di are
contained in fibers of f .

We can salvage this counterexample if I is uncountable.

Theorem 1.4 Let X be any normal variety over an algebraically-closed field k, and
let {Di }i∈I be an uncountable collection of pairwise-disjoint, reduced, codimension-
one, connected subvarieties of X. Then there is a normal curve C and a non-constant
morphism f : X → C with connected fibers so that each Di is contained in a fiber
of f .

In particular, if a set of divisors covers the k-points of the variety when k is uncount-
able, there are uncountably many divisors.

This paper provides a tool to approach the third author (A.S.)’s program of Geo-
metric Reconstruction [13] in the first author (F.B.)’s program of Birational Anabelian
Geometry. In Bogomolov’s program, we take a field K which is the function field of
an algebraic variety X of dimension�2 defined over an algebraically-closed field, and
the goal is to reconstruct K from its absolute Galois group GK . In Geometric Recon-
struction, the goal is to reconstruct individual varieties with a given function field K
as group-theoretically defined objects inGK . The results in this paper are crucial in an
upcoming paper by the third author in proving geometric reconstruction for function
fields K of transcendence degree 2 over Q from the maximal, 2-step nilpotent, pro-�
quotient of GK .

2 Disjoint divisors on proper varieties

In this section we prove Theorem 1.1, following the proof of Totaro [15], but with two
additional arguments. Totaro and Pereira prove the theorem in characteristic zero, for
smooth, projective varieties. First, in order to generalize to characteristic p, we reduce
the theorem for X normal and projective to the case of a general surface which is an
intersection of hyperplane sections; this allows us to use resolution of singularities
of surfaces, in arbitrary characteristic. By appealing to the Hodge index theorem we
reduce the number of pairwise-disjoint divisors to the theoretical minimum.

2.1 Divisors and Albanese varieties

We begin with the notion of divisor class group we will use throughout the paper.
Recall that for a variety Y over a field k we denote by Z1(Y ) the group of Weil prime
divisors on X—that is, finite, linear combinations of closed, integral, codimension-one
subvarieties and by CH1(Y ) the quotient of Z1(Y ) by linear equivalence.

Let X be a normal projective integral variety defined over an algebraically closed
field k andU ⊂ X be the smooth locus of X . Fix a prime � not equal to the characteristic
of k. Since X is normal, the singular locus is codimension �2 and the restriction map
CH1(X) → CH1(U ) is an isomorphism. Since U is smooth, we have the cycle class
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920 F.A. Bogomolov et al.

map CH1(U ) → H2
ét(U, Q�(1)) [4, 2.1.1].We then denote by CH1(X)hom ⊂ CH1(X)

the group of cycles homologically equivalent to zero as the kernel of the composition

CH1(X) ∼−−→ CH1(U ) → H2
ét(U, Q�(1)), � �= char k.

If X is just normal and proper, we can use Chow’s lemma [8, Theorem 5.6.1] to find
a projective, normal modification π : X̃ → X—where π is a projective, surjective,
birational morphism, and X̃ is a normal, projective variety (we can assume normality
because normalization is a projective morphism). For a normal, projective variety Y ,
define the group B1(Y ) = (CH1(Y )/CH1(Y )hom) ⊗ Q.

Note that if X is smooth, then algebraic equivalence (see [6, 10.3]) and numerical
equivalence tensored with Q coincide for codimension-one cycles ([9, 6.3]), also
numerical and homological equivalences tensored with Q coincide for codimension-
one cycles [1, 3.4.6.1]. In particular, B1(Y ) = NS(Y ) ⊗ Q.

Given a morphism f : Y → X , we have a few different notions of pullback of
divisors. If f is birational, we let f −1 : Z1(Y ) → Z1(X) denote the strict transform;
in general, this does not descend to a morphism on CH1. If X is normal and projec-
tive, and f is the inclusion of a linear section, we may define the intersection map
f ∗ : CH1(X) → CH1(Y ), which is proven to be well-defined in [6, Proposition 2.6].
If f is flat, f ∗ : CH1(X) → CH1(Y ) denotes the flat pullback. In Proposition 2.3
and Corollary 2.4 we will use these to construct pullback morphisms for resolutions
of singularities of surfaces, and resolutions of singularities of generic 2-dimensional
linear sections, respectively.

Lemma 2.1 Let X be a normal projective integral variety defined over an alge-
braically closed field k. Then:

(i) the algebraic and homological equivalences tensored over Q coincide for co-
dimension-one cycles on X;

(ii) dimQ B1(X) < ∞, and this number is independent of � chosen in the definition.

Proof Let U ⊆ X be the smooth locus. Note that if a codimension-one cycle α ∈
Z1(U ) is algebraically equivalent to 0, then it is homologically equivalent to 0. Hence,
for (i), it is enough to show that if the class of α is 0, then α is algebraically equivalent
to zero. Let f : X̃ → X be a smooth projective alteration of degree d, such that for
Z = X\U , Z̃ = f −1(Z) is a simple normal crossings divisor [10]. Let Ũ be the
inverse image of U and U0 ⊂ U an open subset, such that the induced morphism
Ũ0 = f −1(U0) → U0 is finite of degree d. Note that one can assume that the
complement of U0 in U is of codimension at least two: indeed, this follows from the
fact that in the Stein factorisation X̃ → Y → X of f , with X̃ → Y birational and
Y → X finite of degree d, the map X̃ → Y is an isomorphism over any point of
codimension-one, since X , and therefore also Y , is normal.

Assume now that α is homologically equivalent to 0 on X . Since Z̃ is a simple
normal crossings divisor, we deduce that there exists a codimension-one cycle β sup-
ported on Z̃ , so that f −1(α) + β is homologically equivalent to 0 on X̃ . Since X is
smooth, the discussion above the lemma shows that there is an integer n such that
n( f −1(α) + β) is algebraically equivalent to 0 on X̃ . Hence, its restriction n f −1(α)
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to Ũ0 is algebraically equivalent to 0. Since Ũ0 → U0 is finite of degree d, we deduce
that nα is algebraically equivalent to 0 on U0, hence on U , as the complement of U0
in U is of codimension at least two, and we obtain (i).

For (ii), the independence of � follows from (i). For the finiteness, it is enough to
show that there is no infinite collection of divisors in X with Q-linearly independent
classes in H2

ét(U0, Q�(1)). Via the trace map H2
ét(Ũ0, Q�(1)) → H2

ét(U0, Q�(1)) (see

[5, Exposé IX, (5.1.4)]) it is enough to establish the same property for Ũ 0, which
follows from the fact that the Néron–Severi group of the smooth variety X̃ is finitely
generated. ��
The lemma above allows us to make the following definition, independently of �.

Definition 2.2 The Weil divisor rank ρw(X) of X is the minimum dimension of the
Q-vector space B1(X̃) over all projective, normal modifications π : X̃ → X of X .

In what follows we will fix π : X̃ → X a projective, normal modification for which
the dimension of the group B1(X̃) is minimized.

Proposition 2.3 Let T ′ be a normal, projective surface, β : T → T ′ a resolution
of singularities which is an isomorphism on the smooth locus of T ′, � ⊆ B1(T ) the
Q-vector space generated by the divisors contracted byβ, and�⊥ the orthogonal com-
plement of � in B1(T ) under the intersection pairing. Then β−1 : Z1(T ′) → Z1(T )

induces an isomorphism β−1 : B1(T ′) → B1(T )/�, and composing with the projec-
tion to the orthogonal complement of � gives a canonical morphism β∗ : B1(T ′) →
�⊥ ⊆ B1(T ).

Proof Let η : V → T be the inclusion of the inverse image in T of the smooth
locus of T ′. Each exceptional divisor is in the kernel of the flat pullback morphism
η∗ : CH1(T ) → CH1(V ). The image of �⊗Q� under the cycle map in H2

ét(T, Q�(1))
is exactly the kernel of the restriction morphism to H2

ét (V, Q�(1)) by inductive use of
the Gysin sequence [11, Corollary 16.2]. But every element of Z1(T ) can be written as
the strict transform of an element of Z1(T ′) plus a linear combination of exceptional
divisors. Therefore,β−1 : B1(T ′) → B1(T )/� is an isomorphism.As the intersection
pairing on � is negative-definite by [2, Remark after Theorem 6.12], the Hodge index
theorem gives that B1(T ) = �⊕ �⊥, so �⊥ � B1(T )/�, and we have defined β∗. ��
As an immediate corollary, we have

Corollary 2.4 Let X be normal and projective. Let ι : T ′ → X be an intersection of
hyperplane sections of some projective embedding of X, smooth on the intersection
with the smooth locus of X (such sections are generic by [14, Theorem1]), of dimension
two. Let β : T → T ′ be a resolution of singularities which is an isomorphism on the
smooth locus of T ′ and for which the exceptional divisors are simple normal crossings
and let φ : T → X be the composition ι◦β. Then we have a pullback homomorphism
pT = β∗◦ι∗ : B1(X) → B1(T ).

We now recall some facts about Albanese varieties. Let Y be a variety defined over
an algebraically closed field k, Yi its irreducible components, and let x0,i be a smooth
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922 F.A. Bogomolov et al.

point of each Yi . We say a rational map (resp. morphism) f : Y → A with A an
abelian variety is admissible if f is defined at each x0,i and f (x0,i ) = 0. Following
Ghorpade and Lachaud [7, Section 9], we call an Albanese–Weil variety Albw(Y )

(resp., an Albanese–Serre variety Albs(Y )) of Y an abelian variety A over k with an
admissible rational map f (resp., morphism) from Y to A, such that the following
universal property holds: for any admissible rational map g (resp., morphism) from Y
to an abelian variety B there is a homomorphism of abelian varieties g̃ : A → B such
that g = g̃◦ f . We have the following properties:

• The variety Albw(Y ) and the universal rational map Y → Albw(Y ) exist, are
independent of the choice of x0,i up to a translation, and Albw(Y ) = ∏

i Albw(Yi ).
• If Y is normal, the variety Albs(Y ) exists, and is dual to the reduced Picard variety

(Pic0Y/k)red [7, paragraph after Example 9.2].
• If Y is smooth, the variety Albs(Y ) coincides withAlbw(Y ) and for Y normal, there
is a canonical surjective map ν : Albw(Y ) → Albs(Y ) with connected kernel [7,
Proposition 9.1].

• A birational morphism Y → X of varieties induces an isomorphism Albw(Y ) →
Albw(X) (this follows straight from the definition), so a resolution of singularities
Y → X induces an isomorphism Albs(Y ) → Albw(X).

We need the following Lefschetz-type property [7, Proposition 9.4].

Proposition 2.5 Let X ↪→ P
N be an embedding of X into a projective space. If

i : Y ↪→ X is a general linear section of X of dimension d � 2, the canonical map
i∗ : Albw(Y ) → Albw(X) induced by i is a purely inseparable isogeny.

2.2 The torsion case

We start with the following easy lemma.

Lemma 2.6 Let �1 and �2 be two effective, disjoint divisors on a proper, normal
variety Y over a field k, and suppose that

�1 − �2 ∼lin 0.

Then there exists amorphism f : Y → P
1
k such that�1 = f −1(0) and�2 = f −1(∞).

Proof By assumption, there exists a rational function g on Y such that �1 − �2 =
div(g). Thenwe define amap f : Y → P

1
k by f (x) = [g(x):1] if x is not in the support

of�2 and [1:0] (equivalently, [1:g(x)] if x is not in the support of�1) otherwise. Since
the divisors �1 and �2 are disjoint, we get a well-defined map as required. ��

Let now X be as in Theorem 1.1. We assume first that X is projective. Since
# I � ρw(X) + 1, there is a subset J ⊆ I and a nontrivial linear combination D =∑

j∈J λ j D j ∈ Z1(X), where λ j ∈ Z and D ∈ CH1
hom(X).

Proposition 2.7 If there exists N > 0 such that N D ∼lin 0, then there is a surjective
morphism f : X → P

1
k such that for any j ∈ J the divisor D j is contained in a fiber

of f .
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Proof It suffices to write ND = �1−�2 as a difference of two effective (and disjoint)
divisors and apply Lemma 2.6. We obtain a map f : X → P

1
k satisfying the required

properties. Note that for each i ∈ I\J the divisor Di is a subset of a fiber of f :
otherwise, for each j ∈ J , there would exist some i ∈ I so that Dj would intersect
Di , contradicting disjointness. ��

Tohandle the non-torsion case,we need that non-torsion elements ofCH1 specialize
under generic hyperplane sections to non-torsion elements.

Proposition 2.8 Let X ↪→ P
N be an embedding of X into a projective space. If D

is a non-torsion element of CH1(X) then for a general linear section τ : Y ⊂ X of
dimension d � 2 the restriction τ ∗D given by intersection of D with Y to CH1(Y ) is
also a non-torsion element.

Proof By induction, it suffices to prove the theorem for general Y of codimension-
one. We may assume Y is normal [14, Theorem 7], and that Y contains no irreducible
component of D, as Y is basepoint-free. Suppose there is an integer NY and a function
fY ∈ k(Y ) such that NY τ ∗D = div( fY ) in Z1(Y ). We can lift the function fY to an
element FY ∈ OX,Y ⊂ k(X). Define D′ = NY D − div(FY ) = ∑

ai Zi with ai ∈ Z

and Zi irreducible components of D′, that are included in X\Y by construction. Since
Y is ample, Y intersects every proper codimension-one subvariety, so X has no proper
codimension-one subvariety contained in X\Y , so that we have div(FY ) − NY D = 0
in CH1(X), contradicting our assumption on D. ��

2.3 The Hodge index theorem and the general case

Let S̃ be a projective resolution of singularities of a generic, normal, linear surface
section S ⊆ X , whose smooth locus is exactly the intersection of the smooth locus
of X with S. As a simple linear-algebraic corollary of the Hodge index theorem, we
have

Proposition 2.9 Let H = {Hj } j∈J ⊆ B1(S̃) be an orthogonal subset of nonzero
elements—that is, Hj ·Hj ′ = 0 for each j �= j ′. Assume furthermore that H is con-
tained in a subspace V ⊆ B1(S̃) of dimension d for which there exists M ∈ V so that
M ·M > 0. Define

J+(resp., J−, J0) = {
j ∈ J : Hj ·Hj > (resp., <,= ) 0

}
.

Then:

(i) J+ ∪ J− is a linearly independent set, and # J+ � 1 and # J− � d − 1.
(ii) If #(J+∪J0) � 2 then # J− � d − 2, # J+ = 0 and # J0 � # J − (d − 2).
(iii) The span of J0 is at most one-dimensional.

The pullback {D̃i }i∈I of {Di }i∈I to B1(S̃) is an orthogonal set of nonzero elements,
and is contained in the image of B1(X), by Proposition 2.4. The restriction of a general
ample divisor to S̃ is likewise ample, so the image of B1(X) in B1(S̃) is a subspace
of dimension � ρw(X) which contains an element of positive self-intersection. By
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Proposition 2.9, #(J+∪J−) � ρw(X)−2, so in fact # J0 � 3. Let i, j, t be distinct ele-
ments of J0, and let F = aD̃i −bD̃ j be an integral linear combination in CH1(S̃)hom.
Let I ′ = I\{i, j}.
Proposition 2.10 If F is not torsion, then for each l ∈ I ′, the map Albw(Dl) →
Albw(X) is not surjective.

Proof Fix a projective embedding X ⊂ P
N. By Proposition 2.5, if τ : S ⊂ X is

a general linear section of X of dimension two, then S is normal, and we have an
isogeny Albw(S) → Albw(X). By Proposition 2.8, the restriction of F ′ of F to
CH1(S)hom is not a torsion element. Let ν : S̃ → S be a resolution of singularities.
Since S is normal, wemay assume that ν is an isomorphism over the smooth locus Ssm,
which contains all codimension-one points of S. Let D̃l be a union of normalizations
of the components of ν−1(Dl ∩ S) (that is, the inverse image of the intersection of
Dl intersected with S). Since the support of F is disjoint from Dl , the line bundle
defined by F becomes trivial on D̃l and we conclude that D̃ is a non-torsion element
in the kernel of the map Pic0(S̃) → Pic0(D̃l). By duality, we obtain that the map
Albs(D̃l) → Albs(S̃) is not surjective. The maps Albs(S̃) → Albw(S) → Albw(X)

are isogenies, so Albw(D̃l) → Albw(X̃) cannot be surjective. ��
Proof of Theorem 1.1 In Proposition 2.7, we established the result if F is a torsion
element in CH1(X). Consider now the general case. Assume F ∈ CH1(X) non-
torsion. Let i, j, t be distinct elements of J0 as before. By Proposition 2.10, the map
Albw(D̃t ) → Albw(X) is not surjective.

By the universal property of the Albanese variety, we have the following commu-
tative diagram:

D̃t Albw(D̃t )

X Albw(X) Albw(X)/Albw(D̃t ),

showing that D̃t is contracted by the composite rational map g : X ��� Albw(X)/

Albw(D̃t ). Let us show that the image of g is a curve:

• We have dim Im(g) > 0 since the image of X in Albw(X) generates the abelian
variety Albw(X) by the universal property and Albw(Dt ) → Albw(X) is not
surjective.

• If dim Im(g) were greater than one, the image of the dimension of g restricted
to S̃ would also have image of dimension two. The morphism g restricted to S̃ is
a regular map, because it factors through Albs(S̃)/Albw(D̃t ), and the map from
S̃ → Albs(S̃) is defined everywhere. Any effective divisor on S̃ contracted by g
would need to have negative self-intersection [2, Remark after Theorem 6.12]. But
Dt is contracted and has self-intersection 0, so the image has to be of dimension
< 2.

We then see immediately that D̃ j is also contracted and should be (a multiple of) a
fiber of g restricted to S̃, since its self-intersection is zero. Therefore, Dj and Dt are
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(multiples of) fibers of the rational map to Albw(X)/Albw(Dt ); as they are disjoint,
and X is normal, g is in fact a regular map—that is, it is defined everywhere.

Therefore, the image of g : X → Albw(X)/Albw(Dt ) is a curveC ′, and all divisors
Dl for l ∈ I ′ are contained in fibers. If now

X
f−→ C → C ′

is the Stein factorization of g, C is a normal curve, in which the Dl are contained in
fibers for l ∈ I ′. By [3, Fact 1.1d], Dt is in fact a multiple of an entire fiber of f ; as Di

and Dj are disjoint from Dt , both Di and Dj are contained in fibers, and Dσ which
are (multiples of) fibers of f are exactly those for which σ ∈ J0. We may thus set J
to be J0.

Finally, if X is normal and proper, consider {π−1(Di )}i∈I , where π : X̃ → X is a
birational morphism given by the Chow lemma, with X̃ projective. By Zariski’s main
theorem, each π−1(Di ) is connected. Then there exists a function f̃ : X̃ → C for
which each of π−1(Di ) is contained in a fiber, and for at least two (in fact, three)
m1,m2,m3 ∈ I , π−1(Dmi ) is a (multiple of) a fiber. As X is normal, by Zariski’s
main theorem, to check that f̃ factors through a function to X we must merely check
that none of the divisors that π contracts intersects π−1(Dm1) and π−1(Dm2). But if
a divisor that π contracts intersected both of them, Dmi would not be disjoint. ��

3 Disjoint divisors on affine varieties

In this section we prove Theorems 1.2 and 1.3. Let y, z be the coordinates of A
2
k .

Consider the following family, constructed recursively:

1. Define d0 = 1, f0(y, z) = zd0 , and D0 = V ( f0), the zero locus of f0.
2. Define d1 = 2, f1(y, z) = yzd1 + 1, and D1 = V ( f1).
3. Let P2 ∈ A

2
k\(D0∪D1) and define

a2 = − f1(P)/ f0(P)2d1−1.

Since P2 /∈ D1, a2 �= 0. Define d2 = 2d1,

f2(y, z) = a2 f0(y, z)
d2−1 + f1(y, z)

d1,

and D2 = V ( f2). Note that in each case, di = degz fi , the degree of fi as a
polynomial in z.

4. Let now n > 2,we give a recursive definition of fn , given fi when i < n.We define
Di = V ( fi ) and di = degz fi . Define now dn = ∑n−1

i=1 di . Let Pn ∈ A
2
k\

⋃n−1
i=0 Di ,

define

an = −
n−1∏

i=1

fi (P)/ f0(P)dn−1.
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926 F.A. Bogomolov et al.

Again, an �= 0. Define

fn(y, z) = an f0(y, z)
dn−1 +

n−1∏

i=1

fi (y, z)

and Dn = V ( fn), by construction, dn = degz f .

If we enumerate the k-points of A
2
k , we may choose our Pi so that

⋃
i Di (k) =

A
2(k). By construction, Di are pairwise-disjoint: the radical of the ideal generated by

fn and fi for 0 < i < n contains f0 and fi ; and by construction, fi and f0 have no
common zeroes.

We now prove that each fn is irreducible, and that no infinite subset of Di could
be contained in the fibers of a non-constant morphism.

Toprove that fn is irreducible,wewill change coordinates.WeviewP
1
k = A

1
k∪{∞}.

Let X = P
1
k×P

1
k , and use the coordinates y, z to embed A

2
k as an open subset

A
2
k

∼−−→ A
1
k×A

1
k ↪→ X;

call this open subset X1. Let Di be the Zariski closure of Di in X . Define X2 ⊆ X as
A
1
k×(P1

k\{0}); this is isomorphic toA
2 with coordinates y, x = 1/z. Let D′

i = Di∩X2.
The defining ideals for D′

i are generated by:

• f ′
1(y, x) = y + x2;

• f ′
2(y, x) = a2x + (y + x2)2;

• f ′
n(y, x) = anx + ∏n−1

i=1 fi (y, x).

By Eisenstein’s criterion, applied to the ring k(x)[y], all polynomials f ′
n are irre-

ducible. Therefore, to check whether fi are irreducible, we must merely check that
V ( fi ) does not have any component contained in X1\(X1 ∩ X2). But X1\(X1 ∩ X2)

is just D0, and Di ∩ D0 = ∅ for i > 0.
As polynomials fi have unbounded degree and are irreducible, their zero sets could

not be the fibers of a morphism (or even a rational map!) to a curve and Theorem 1.2
is proved.

To prove Theorem 1.3, we choose algebraically independent y, z in the ring of
regular functions on X for which V (y) and V (z) are irreducible, and construct fi and
Di as above (replacing Di with its finite set of connected components at each stage,
if necessary). Any function to a curve with Di as fibers would factor through the map
to A

2 given by y and z.

Remark 3.1 This procedure is by no means unique. For instance, one could replace
f0 and f1 by any other two irreducible polynomials with no common roots in A

2
k , and

the above construction works. However, the following questions remain open:

• Does there exist an example as above where the curves are all smooth?
• In any example as above, is the geometric genus of the curves necessarily
unbounded? (That is, could we find such a counterexample consisting of only
rational curves?)
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• In any example as above, does there necessarily exist a divisor D such that
#(D∩Di ), the set-theoretic intersection, is unbounded?

We now prove Theorem 1.4, that any uncountable set of disjoint divisors must form
a family. In this proof, X will be normal and affine; the theorem follows immediately
for all normal varieties from this case.

Proposition 3.2 Let X be a normal quasi-projective variety over an uncountable
algebraically closed field k. Let {Di }i∈I be an uncountable collection of pairwise-
disjoint, reduced, connected, codimension-one, closed subvarieties of X. Then there
exist a smooth projective curve C defined over k and a dominant morphism ϕ : X → C
so that for any i ∈ I the divisor Di is contained in a fiber of f .

Proof Let X ⊂ X be a projectivemodel of X .Wemay assume that X is normal. Let Di

be the closure of Di in X . Note that if there is a subset I0 ⊂ I with # I0 � ρw(X)+ 1,
such that Di , i ∈ I0, are disjoint, then we can apply Theorem 1.1 for X to get a map
g : X → C such that all Di , i ∈ I0, are contained in the fibers of g. Since for i ∈ I ,
Di are disjoint, we can take ϕ to be the restriction of g to X .

There is an alteration f : Y → X , such that Y is smooth and for Y = f −1(X), we
have Y∞ = Y\Y is a simple normal crossings divisor [10]. Let Fi = f −1(Di ), then
Fi are disjoint and cover Y . Let Fi ⊂ Y be the closure of Fi in Y . Since Y is smooth,
each Fi gives a class in the Picard group Pic(Y ). Since NS(Y ) is countable, we obtain
that there is an uncountable J ⊂ I for which the divisors F j , j ∈ J , all have the same
class α ∈ NS(Y ). ��
Lemma 3.3 There is an infinite subset J ′ ⊂ J , a finite set of irreducible divisors
(Et )t∈T ⊂ Y∞ and M > 0 such that for any i, j ∈ J ′ one has Fi ·Fj = ∑

t∈T at Et

with 0 � at � M.

Proof Since the divisors (Fj ) j∈J intersect only on Y∞, for a fixed j ∈ J , any intersec-
tion Fj ∩Fj ′ with j ′ ∈ J is supported on components of Fj ∩Y∞, and the intersections
Fj ∩ Fj ′ are all in the same Néron–Severi class α2 on Y∞.

Let j0 ∈ J . Since J is infinite, there is an infinite subset J1 ⊂ J such that for any
j, j ′ ∈ J1 one has H0 = Fj0 ·Fj = Fj0 ·Fj ′ as a divisor (not only a class) on Y∞; we
may also assume that this intersection is nonzero. Fix now j1 ∈ J1. Similarly, one finds
an infinite subset J2 ⊂ J1 such that for any j, j ′ ∈ J2 one has H1 = Fj1 ·Fj = F j1 ·Fj ′ .

By the same procedure, we construct inductively the sets Jn and the divisors Hn .
Since all divisors Fj have the same divisor class, after a finite number of steps we
obtain Hn+r ⊂ ⋃

m<n Hm for all r � 0. We may then take J ′ to be that Jn and T the
set of irreducible components of

⋃
m<n Hm . ��

The lemma above gives the following bound on X : there is an integer N such that
for any closed Z ⊂ X that is a (set-theoretic) component of the intersection of D j and
D j ′ , j ∈ J ′, we have that locally in OX,Z , the ideal of the intersection of D j and D j ′
is contained in at most the N th power of the maximal ideal mN

Z ⊂ OX,Z of Z . Hence
after a finite number of blow-ups X̃ → X centered at X∞, the strict transforms D̃ j of
D j do not intersect. Now we can apply Theorem 1.1 to X̃ and the family (D̃ j ) j∈J ′ to
get a map f : X̃ → C , such that the restriction φ of f to X satisfies the conclusion of
the theorem.
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