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Abstract We study the moduli space In,r of rank-2r symplectic instanton vector
bundles on P

3 with r � 2 and second Chern class n � r + 1, n − r ≡ 1 (mod 2). We
introduce the notion of tame symplectic instantons by excluding a kind of pathological
monads and show that the locus I ∗

n,r of tame symplectic instantons is irreducible and
has the expected dimension equal to 4n(r + 1) − r(2r + 1). The proof is inherently
based on a relation between the spaces I ∗

n,r and the moduli spaces of 't Hooft instantons.
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1 Introduction

A symplectic instanton vector bundle of rank-2r and charge n on the projective 3-space
P

3 is an algebraic vector bundle E = E2r of rank-2r on P
3 which is equipped with a

symplectic structure φ : E ∼−−→ E∨, φ∨ = −φ and satisfies the vanishing conditions
h0(E) = h1(E ⊗OP3(−2)) = 0. The Chern classes c1(E) and c3(E) vanish, and we
also assume c2(E) = n � 1. We shall denote by In,r the moduli space of symplectic
(n, r)-instantons.

Rank-r symplectic instantons on P
3 relate in a natural manner with “physical”

Sp(r) instantons on the four-sphere S4, i.e., connections on principal Sp(r)-bundles
on S4 with self-dual curvature [1]; the moduli spaces of the former are in a sense
a complexification of the moduli spaces of the latter. This relation is expressed by
the so-called Atiyah–Ward correspondence [1,3], which relies on the fact that the
projective space P

3 is the twistor space of the four-sphere S4. The present paper and
its companion [7] are the first to study the geometry of the moduli spaces In,r . While [7]
studied the case n ≡ r (mod 2), with n � r , the present paper deals with the other
case, n ≡ r + 1 (mod 2), with n � r + 1. The main result of this paper is that a
component I ∗

n,r of In,r that is singled out by a certain open condition (which rules out
some “badly behaved” monads) is irreducible.

We exploit as usual the monad method [2,4–6,8,11,12], which allows one to study
instantons by means of hyperwebs of quadrics. Namely, we realize In,r as the quotient
space of a principal GL(Hn)/{±id}-bundle πn,r : MIn,r → In,r , where MIn,r is a
locally closed subset of the vector space Sn of hyperwebs of quadrics (precise defini-
tions will be given later on). The tame locus I ∗

n,r being open in In,r , its irreducibility
is equivalent to that of MI ∗

n,r = π−1
n,r (I ∗

n,r ). The key ingredient of our approach is the
reduction of the last problem to that of certain sets Zn−r+1 (see Sect. 3). The sets Zi

as locally closed subsets of some vector spaces related to Sn were first defined in [9].
It is shown in [9, Section 9] that Zi can be interpreted essentially as open subsets of
certain affine bundles over the monad spaces M tH

2i−1 of 't Hooft rank-2 mathematical
instantons of charge 2i − 1—see more details in Sect. 3.2. Thus the irreducibility of
Zn−r+1, hence that of I ∗

n,r , is reduced to the irreducibility of the moduli spaces of
't Hooft instantons of fixed charge, which is well known; see references in [9]. This
nontrivial relation between the spaces I ∗

n,r and the moduli of 't Hooft instantons is
crucial for the results in this paper. Note that this process of reduction from I ∗

n,r to
the moduli of 't Hooft instantons somewhat resembles Barth’s approach in [4] to the
proof of irreducibility of the moduli space I4 of instantons of charge 4. In that paper,
Barth reduces the problem to the irreducibility of the space Qn of commuting pairs of
(good in some sense) pencils of quadrics for n = 4. In our case the role of spaces Qn

is played by the moduli spaces of 't Hooft instantons.

Notationandconventions.Throughout this paper, we consider an algebraically closed
base field k of characteristic 0. All schemes will be Noetherian. By a general point of
an irreducible (but not necessarily reduced) scheme X we mean a closed point of a
dense open subset of X. An irreducible scheme is generically reduced if it is reduced
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at all general points. We follow the notation of [9]. So, we fix an integer n � 1, and
denote by Hn and V fixed vector spaces over k of dimension n and 4, respectively,
and set P

3 = P(V ). Furthermore, Sn (the space of hyperwebs of quadrics) will denote
the vector space S2H∨

n ⊗∧2V ∨. A hyperweb of quadrics A ∈ Sn is a skew-symmetric
homomorphism A : Hn ⊗V → H∨

n ⊗V ∨, and we denote by WA the vector space
Hn⊗V/ker A and by cA the canonical epimorphism Hn ⊗V � WA. A choice of A
induces a skew-symmetric isomorphism qA : WA

∼−−→W ∨
A , and A is the composition

Hn⊗V
cA−� WA

qA−−→∼ W ∨
A

c∨
A	→ H∨

n ⊗V ∨.

For any morphism of OX -sheaves f : F → F′ we denote by the same letter f the
induced morphism id⊗ f : U ⊗F → U ⊗F′, and analogously, for any homomorphism
f : U → U ′ of k-vector spaces, the induced morphism f ⊗ id : U ⊗F → U ′⊗F. For
A ∈ Sn we denote by aA the composition

H∨
n ⊗OP3(−1)

u−→ Hn ⊗V ⊗OP3
cA−−→ WA ⊗OP3 ,

where u is the tautological subbundle morphism. By abuse of notation, we denote by
the same symbol a k-vector space, say U , and the associated affine space V(U∨) =
Spec(Sym∗U∨).

2 Explicit construction of symplectic instantons

In this section we provide some examples and recall some facts about MIn,r , in partic-
ular, its relation with the moduli space In,r of symplectic instantons, see [7, Section 3].
Let us consider the set of (n, r)-instanton hyperwebs of quadrics

MIn,r =
{

A ∈ Sn :
(i) rk(A : Hn ⊗V → H∨

n ⊗V ∨) = 2n + 2r ,
(ii) the morphism a∨

A : W∨
A ⊗O

P3 → H∨
n ⊗O

P3 (1) is surjective,

(iii) h0(E2r (A)) = 0, where E2r (A) = ker(a∨
A ◦qA)/im aA

}

. (1)

Theorem 2.1 (i) For each n � 1, the space MIn,r of (n, r)-instanton nets of
quadrics is a locally closed subscheme of the vector space Sn, given locally
at any point A ∈ MIn,r by

(
2n − 2r

2

)

= 2n2 − n(4r + 1) + r(2r + 1) (2)

equations obtained as the rank condition (i) in (1).
(ii) The natural morphism

πn,r : MIn,r → In,r , A �→ [E2r (A)],
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is a principal GL(Hn)/{±id}-bundle in the étale topology. Hence In,r is a quo-
tient stack MIn,r/(GL(Hn)/{±id}), and is therefore an algebraic space.

The fibre F[E] = π−1
n ([E]) over a point [E] ∈ In,r is a principal homogeneous space

of GL(Hn)/{±id}, so that the irreducibility of (In,r )red amounts to the irreducibility
of the scheme (MIn,r )red. Besides, (2) yields

dimA MIn,r � dim Sn − (
2n2 − n(4r + 1) + r(2r + 1)

)

= n2 + 4n(r + 1) − r(2r + 1)
(3)

at all points A ∈ MIn,r . Thus, dim[E] In,r � 4n(r + 1) − r(2r + 1) at all points
[E] ∈ In,r , as MIn,r → In,r is an étale principal GL(Hn)/{±id}-bundle.

2.1 Symplectic (n+1, n)-instantons

We give a construction of symplectic (n+1, n)-instantons and describe their relation
to usual rank-2 instantons with second Chern class c2 = 2n. This will be established at
the level of spaces of hyperwebs of quadrics MIn+1,n and MI2n,1, regarded as spaces
of monads.

Denote by Isomn+1,n−1 the set of all isomorphisms

ζ : Hn+1⊕ Hn−1
∼−−→ H2n . (4)

This is the principal homogeneous space of the group GL(2n). Moreover, for any
ζ ∈ Isomn+1,n−1, let pζ : S2n � Sn+1 be the induced epimorphism, and, for any
monomorphism i : Hn ↪→ Hn+1, let pr(i) : Sn+1 → Sn be the induced epimorphism.

Note that MI2n,1 is irreducible [10, Theorem 1.1], and one has the following
result [10, Theorem 3.1].

Theorem 2.2 There exists a dense open subset MI ∗
2n,1 of MI2n,1 such that for any

hyperweb A ∈ MI ∗
2n,1 and a general ζ ∈ Isomn+1,n−1 the rank of the homomorphism

B = pζ (A) : Hn+1⊗V → H∨
n+1⊗V ∨ coincides with the rank of A : H2n⊗V →

H∨
2n⊗V ∨:

rk B = rk A = 4n + 2. (5)

Set W4n+2 = H2n⊗V/ker A and define the skew-symmetric isomorphism qA : W4n+2∼−−→ W ∨
4n+2 and the morphism of sheaves aA : H2n ⊗OP3(−1) → W4n+2⊗OP3 with

H2n and W4n+2 taken instead of Hn and WA, respectively. The morphism aA and its
transpose taA = a∨

A ◦qA : W4n+2⊗OP3 → H∨
2n⊗OP3(1) yield a monad

MA : 0 → H2n⊗OP3(−1)
aA−→ W4n+2⊗OP3

taA−→ H∨
2n ⊗OP3(1) → 0

with the cohomology sheaf E2(A), [E2(A)] ∈ I2n,1, see Theorem 2.1.
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Let iζ : Hn+1 ↪→ H2n be the monomorphism defined by the isomorphism (4). The
composition

aB : Hn+1⊗OP3(−1)
iζ

↪−→ H2n⊗OP3(−1)
aA−−→ W4n+2⊗OP3

and its transpose taB = a∨
B ◦qA yield a monad

MB : 0 → Hn+1⊗OP3(−1)
aB−→ W4n+2⊗OP3

t aB−−→ H∨
n+1⊗OP3(1) → 0

with the cohomology sheaf

E2n(B) = ker taB/im aB, c2(E2n(B)) = n + 1.

The symplectic isomorphism qA : W4n+2
∼−−→ W ∨

4n+2 induces a symplectic structure
on E2n(B),

φB : E2n(B) ∼−−→ E2n(B)∨. (6)

Moreover, (5) implies an isomorphism Hn+1⊗V/ker B � W4n+2, hence a monomor-
phism of spaces of sections

h0( taB) : W4n+2⊗OP3

taB−−→ H∨
n+1⊗V ∨

in the monad MB . Hence for this monad one has h0(E2n(B)) = 0. This together with
(6) means that E2n(B) is a symplectic instanton

[E2n(B)] ∈ In+1,n .

Note that, by construction, the monads MA and MB fit into the commutative diagram

0 �� Hn+1⊗O
P3 (−1)

aB ��
� �

iζ

��

W4n+2⊗O
P3

qA

∼=
��

∼=

W∨
4n+2⊗O

P3
a∨

B �� H∨
n+1⊗O

P3 (1) �� 0

0 �� H2n ⊗O
P3 (−1)

aA �� W4n+2⊗O
P3

qA

∼=
�� W∨

4n+2⊗O
P3

a∨
A ��

w∨ ∼=

H∨
2n ⊗O

P3 (1) ��

i∨
ζ

����

0.

(7)

In view of (6) and the canonical isomorphism H2n/ iζ (Hn+1) � Hn−1, this diagram
yields the quotient monad

MA,B : 0 → Hn−1⊗OP3(−1)
aA,B−−→ E2n(B)

φB−→� E2n(B)∨

a∨
A,B−−→ H∨

n−1⊗OP3(1) → 0

whose cohomology sheaf is E2(A) = ker
(
a∨

A,B ◦φB
)
/im aA.
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2.2 A special family of symplectic (2n− r+1, r)-instantons

For any integer r, 2 � r � n, with n � 2, consider a monomorphism

τ : H2n−r+1 ↪→ H2n

such that
τ(H2n−r+1) ⊃ iζ (Hn+1). (8)

The image of A ∈ MI2n,1 under the projection S2n � S2n−r+1 induced by τ produces
a hyperweb of quadrics Aτ ∈ S2n−r+1. This corresponds to a monad

Mτ : 0 → H2n−r+1⊗OP3(−1)
aτ−→ W4n+2⊗OP3

a∨
τ ◦qA−−−−→ H∨

2n−r+1⊗OP3(1) → 0,

whose cohomology is the rank-2r bundle

E2r (Aτ ) = ker
(
a∨
τ ◦qA

)
/im aτ , (9)

where aτ = aA◦τ . The bundle E2r (Aτ ) has a natural symplectic structure

φr : E2r (Aτ )
∼−−→ E2r (Aτ )

∨ (10)

induced by the antiselfduality of the monad Mτ . Moreover, by (8), the monad Mτ can
be included into diagram (7) as a middle row, thus obtaining a three-row commutative,
anti-self-dual diagram. Thus, in addition to the monadMA,B , we also have the monads

M′
τ : 0 → Hn−r ⊗OP3(−1)

a′
τ−→ E2n(B)

φ−→� E2n(B)∨
a′∨

τ−−→ H∨
n−r ⊗OP3(1) → 0,

with the cohomology E2r (Aτ ) = ker
(
a′∨

τ ◦φ
)
/im a′

τ , and

M′′
τ : 0 → Hr−1⊗OP3(−1)

a′′
τ−→ E2r (Aτ )

φτ−→� E2r (Aτ )
∨

a′′∨
τ−−→ H∨

r−1⊗OP3(1) → 0,

with the cohomology E2(A) = ker
(
a′′∨

τ ◦φτ

)
/im a′′

τ .
Since E2n(B) is a symplectic instanton, h0(E2n(B)) = hi (E2n(B)(−2)) = 0, and

the monad M′
τ yields

h0(E2r (Aτ )) = hi (E2r (Aτ )(−2)) = 0, i � 0, c2(E2r (Aτ )) = 2n − r + 1.

This, together with (10), means that [E2r (Aτ )] ∈ I2n−r+1,r .
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Remark 2.3 The maps τ lie in the set

Nn,r = {
τ ∈ Hom(H2n−r+1, H2n) : τ is injective and im τ ⊃ im iζ

}

which, for fixed A ∈ MI2n,1(ζ ), parameterizes a family of hyperwebs Aτ from
MI2n−r+1,r . Now, Nn,r is a principal GL(H2n−r+1)-bundle over an open subset
of the Grassmannian Gr(n−r, n−1), so it is irreducible. As a result, the family of
the three-row extensions of diagram (7) is parameterized by the irreducible variety
MI2n,1(ζ )× Nn,r . This in turn implies that the family Dn,r of isomorphism classes
of symplectic rank-2r bundles obtained from these diagrams by (9) is an irreducible,
locally closed subset of I2n−r+1,r . It is not clear a priori if the closure of Dn,r in
I2n−r+1,r is an irreducible component of I2n−r+1,r .

Let 2 � r � n. For every monomorphism i : Hn ↪→ H2n−r+1, denote by B(A, i) the
image of A ∈ MI2n−r+1,r under the projection S2n−r+1 � Sn induced by i . It may
be regarded as a homomorphism B(A, i) : Hn ⊗V → H∨

n ⊗V ∨.

Definition 2.4 We say that A ∈ MI2n−r+1,r satisfies property (∗) if there exists a
monomorphism i : Hn ↪→ H2n−r+1 such that B(A, i) is invertible.

This is an open condition on A. By Theorem 2.1, π2n−r+1,r : MI2n−r+1,r → I2n−r+1,r

is a principal bundle, so that, if an element A ∈ π−1
2n−r+1,r ([E2r ]) satisfies (∗), then

any other point A′ ∈ π−1
2n−r+1,r ([E2r ]) satisfies (∗). A symplectic instanton E2r from

I2n−r+1,r is said to be tame if some (hence all) A ∈ π−1
2n−r+1,r ([E2r ]) satisfies property

(∗). This is an open condition on [E2r ] ∈ I2n−r+1,r .

Remark 2.5 Using (8), we see that any [E2r ] ∈ Dn,r is tame. We define

I ∗
2n−r+1,r = I(1) ∪ · · · ∪ I(k),

where I(1), . . . , I(k) are the irreducible components of I2n−r+1,r whose general
points are tame symplectic instantons. As Dn,r ⊂ I ∗

2n−r+1,r by definition, I ∗
2n−r+1,r

is nonempty. If we define MI ∗
2n−r+1,r = π−1

2n−r+1,r

(
I ∗
2n−r+1,r

)
, then the map

π2n−r+1,r : MI ∗
2n−r+1,r → I ∗

2n−r+1,r is a principal GL(H2n−r+1)/{±1}-bundle.

3 Irreducibility of I∗
2n−r+1,r

3.1 A dense open subset of MI∗
2n−r+1,r

We want to obtain the irreducibility of I ∗
n,r by reducing it to that of Xn,r , a dense open

subset of MI ∗
2n−r+1,r . The subset Xn,r is a locally closed subset of the product of an

affine space and an affine cone over a Grassmannian. Given an integer n � 1, we
define the following dense open subset of Sn :

S0
n = {

A ∈ Sn : A : Hn⊗V → H∨
n ⊗V ∨ an invertible map

}
.
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We need some more notation. By definition, an element B ∈ S0
n is an invertible anti-

self-dual map Hn⊗V → H∨
n ⊗V ∨. Its inverse B−1 : H∨

n ⊗V ∨ → Hn ⊗V is also
anti-self-dual. Consider the vector space �n,r = H∨

n−r+1⊗ H∨
n ⊗∧2V ∨. An element

C ∈ �n,r can be viewed as a linear map C : Hn−r+1⊗V → H∨
n ⊗V ∨, and its dual

C∨ : Hn⊗V → H∨
n−r+1⊗V ∨. As the composition C∨◦ B−1◦C is anti-self-dual, we

can consider it as an element of
∧2(H∨

n−r+1⊗V ∨) � Sn−r+1⊕∧2 H∨
n−r+1⊗S2V ∨.

Thus the condition

D − C∨◦ B−1◦C ∈ Sn−r+1, D ∈ ∧2(H∨
n−r+1⊗V ∨)

,

makes sense.
Under an arbitrary direct sum decomposition

ξ : Hn ⊕ Hn−r+1
∼−−→ H2n−r+1 (11)

we can represent the hyperweb A ∈ S2n−r+1, regarded as a homomorphism

A : Hn ⊗V ⊕ Hn−r+1⊗V → H∨
n ⊗V ∨⊕ H∨

n−r+1⊗V ∨,

as the (8n − 4r + 4)×(8n − 4r + 4)-matrix of homomorphisms

A =
(

A1(ξ) A2(ξ)

−A2(ξ)∨ A3(ξ)

)

, (12)

where

A1(ξ) ∈ Sn, A2(ξ) ∈ �n,r = Hom
(
Hn, H∨

n−r+1

)⊗∧2V ∨, A3(ξ) ∈ Sn−r+1.

With this notation, decomposition (11) induces an isomorphism

ξ̃ : S2n−r+1
∼−−→ Sn ⊕�n,r ⊕Sn−r+1, A �→ (A1(ξ), A2(ξ), A3(ξ)). (13)

Let Isomn,r be the set of all isomorphisms ξ in (11). According to Definition 2.4, there
exists ξ ∈ Isomn,r such that the set

MI ∗
2n−r+1,r (ξ)

= {
A ∈ MI2n−r+1,r : A satisfies property (∗) for the monomorphism

iξ : Hn ↪→ H2n−r+1 determined by ξ
}

is a dense open subset of MI ∗
2n−r+1,r . Now take A ∈ MI ∗

2n−r+1,r (ξ) and consider
A as a matrix of homomorphisms as in (12). By definition, the submatrix A1(ξ) is
invertible. By a suitable elementary transformation we reduce the matrix A to an
equivalent matrix Ã of the form

Ã =
(

idHn⊗V A1(ξ)−1◦ A2(ξ)

0 A2(ξ)∨◦ A1(ξ)−1◦ A2(ξ) + A3(ξ)

)

.
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Since rk Ã = rk A = 2(2n − r + 1) + 2r = 4n + 2, we obtain the following relation
between the matrices A1(ξ), A2(ξ) and A3(ξ):

rk
(

A2(ξ)∨◦ A1(ξ)−1◦ A2(ξ) + A3(ξ)
) = 2. (14)

Consider the embedding of the Grassmannian

G = Gr
(
2, H∨

n−r+1⊗V ∨)
↪→ P

(∧2(H∨
n−r+1⊗V ∨))

,

and let K G ⊂ ∧2(H∨
n−r+1⊗V ∨) be the affine cone over G. Set K G∗ = K G \{0}.

We can now rewrite (14) as

A2(ξ)∨◦ A1(ξ)−1◦ A2(ξ) + A3(ξ) ∈ K G∗, (15)

where

A2(ξ)∨◦ A1(ξ)−1◦ A2(ξ) ∈ ∧2(H∨
n−r+1⊗V ∨)

, A3(ξ) ∈ Sn−r+1. (16)

Now consider the set

X̃n,r = {
(B, C, D) ∈ S0

n ×�n,r × K G∗ : D − C∨◦ B−1◦C ∈ Sn−r+1
}
. (17)

Since for an arbitrary point y = (B, C, D) ∈ X̃n the point ξ̃ −1(B, C, D −
C∨◦ B−1◦C) lies in S2n−r+1, it may be considered as a homomorphism Ay : H2n−r+1
⊗V → H∨

2n−r+1⊗V ∨ of rank 4n + 2, and we have a well-defined (4n+2)-
dimensional vector space W4n+2(y) = H2n−r+1⊗V/ker Ay together with a canonical
epimorphism cy : H2n−r+1⊗V � W4n+2(y) and an induced skew-symmetric isomor-
phism qy : W4n+2(y) ∼−−→ W4n+2(y)∨ such that Ay = c∨

y ◦qy ◦cy . Now, similarly to
the morphism aA : H2n−r+1⊗OP3(−1) → W4n+2⊗OP3 (see Sect. 2.1), a morphism
of sheaves

ay = cy ◦u : H2n−r+1⊗OP3(−1) → W4n+2(y)⊗OP3

is defined, together with its transpose tay = a∨
y ◦qy : W4n+2(y)⊗OP3 → H∨

2n−r+1⊗
OP3(1). We now introduce the following open subset Xn,r of the set X̃n,r :

Xn,r =
{

y ∈ X̃n,r : (i) tay is epimorphic,
(ii) [ker tay/im ay] ∈ I ∗

2n−r+1,r

}

. (18)

Since conditions (i) and (ii) on a point y ∈ X̃n,r in (18) are open, from (15) and (16)
we obtain the following result.

Proposition 3.1 There exist a decomposition ξ ∈ Isomn,r , a dense open subset
MI ∗

2n−r+1,r (ξ) of MI ∗
2n−r+1,r and an isomorphism of reduced schemes

fn,r : MI ∗
2n−r+1,r (ξ) ∼−−→ Xn,r , A �→ (A1(ξ), A2(ξ), A3(ξ)).
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The inverse isomorphism is given by the formula

f −1
n,r : Xn,r

∼−−→ MI ∗
2n−r+1,r (ξ), (B, C, D) �→ ξ̃ −1(B, C, D − C∨◦ B−1◦C

)
,

where ξ̃ is defined in (13).

The following theorem will be proved in Sect. 3.2.

Theorem 3.2 The set Xn,r is irreducible of dimension (2n − r + 1)2 + 4(2n − r +
1)(r + 1) − r(2r + 1).

Proposition 3.1 and Theorem 3.2 imply that MI ∗
2n−r+1,r is irreducible of dimension

(2n − r + 1)2 + 4(2n − r + 1)(r + 1) − r(2r + 1) for any n � 2 and 2 � r � n.
Thus, for these values of n and r , the space I ∗

2n−r+1,r is irreducible and has dimension
4(2n − r + 1)(r + 1) − r(2r + 1). Substituting 2n − r + 1 �→ n, we obtain the main
result of this paper.

Theorem 3.3 For any integer r � 2 and for any integer n � r + 1 such that n ≡
r + 1 (mod 2), the moduli space I ∗

n,r of tame symplectic instantons is an open subset
of an irreducible component of In,r of dimension 4n(r + 1) − r(2r + 1).

3.2 Proof of irreducibility of Xn,r

We prove now Theorem 3.2. Consider the set X̃n,r defined in (17). Since Xn,r is an
open subset of X̃n,r , it is enough to prove the irreducibility of X̃n,r . In view of the
isomorphism S0

n
∼−−→ (S∨

n )0 : B �→ B−1, we rewrite X̃n,r as

X̃n,r = {
(B, C, D) ∈ (S∨

n )0×�n,r × K G∗ : D − C∨◦ B ◦C ∈ Sn−r+1
}
.

If a direct sum decomposition

Hn
∼−−→ Hn−r+1⊕ Hr−1

has been fixed, any linear map

C ∈ �n,r = Hom
(
Hn−r+1, H∨

n ⊗∧2V ∨)
, C : Hn−r+1⊗V → H∨

n ⊗V ∨,

can be represented as a homomorphism

C : Hn−r+1⊗V → H∨
n−r+1⊗V ∨⊕ H∨

r−1⊗V ∨,

and also as a block matrix

C =
(

φ

ψ

)

, (19)
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with

φ ∈ Hom
(
Hn−r+1, H∨

n−r+1

)⊗∧2V ∨ = �n−r+1,

ψ ∈ �n,r = Hom
(
Hn−r+1, H∨

r−1

)⊗∧2V ∨.

In the same way, any B ∈ (S∨
n )0 ⊂ S∨

n = S2 Hn⊗∧2V ⊂ Hom
(
H∨

n ⊗V ∨, Hn ⊗V
)

can be represented as

B =
(

B1 λ

−λ∨ μ

)

, (20)

with

B1 ∈ S∨
n−r+1 ⊂ Hom

(
H∨

n−r+1⊗V ∨, Hn−r+1⊗V
)
,

λ ∈ Ln,r = Hom
(
H∨

r , Hn−r+1
)⊗∧2V, μ ∈ Mr−1 = S2 Hr−1⊗∧2V .

(21)

By (19) and (20), the composition

C∨◦ B ◦C : Hn−r+1⊗V → H∨
n−r+1⊗V ∨, C∨◦ B ◦C ∈ ∧2(H∨

n−r+1⊗V ∨)
,

can be written in the form

C∨◦ B ◦C = φ∨◦ B1◦φ + φ∨◦λ◦ψ − ψ∨◦λ∨◦φ + ψ∨◦μ◦ψ. (22)

In view of (19)–(21), we have

S∨
n ×�n,r = S∨

n−r+1×�n−r+1×�n,r ×Ln,r ×Mr−1,

well-defined morphisms

p̃ : X̃n,r → Ln,r ×Mr × K G, (B1, φ, ψ, λ, μ, D) �→ (λ, μ, D),

and

p = p̃|Xn,r : Xn,r → Ln,r ×Mr−1× K G.

Here Xn,r is the closure of X̃n,r in (S∨
n )0×�n,r × K G. Moreover, we have

Proposition 3.4 Let n � 2. For any B ∈ (S∨
n )0 and for a general choice of the

decomposition Hn � Hn−r+1⊕ Hr−1, the block B1 of B in (20) is nondegenerate.

Proof By applying [9, Proposition 7.3], r times, one obtains a decomposition Hn
∼−−→

Hn−r+1⊕ Hr−1 such that B1 : H∨
n−r+1⊗V ∨ → Hn−r+1⊗V in (20) is nondegenerate,

that is, B1 ∈ (S∨
n−r+1)

0. ��
If X is any irreducible component of Xn,r , taken with its reduced structure, and X

is its closure in Xn,r , we pick up a point z = (B1, φ, ψ, λ, μ, D) ∈ X not lying
in the components of Xn,r different from X, and such that the decomposition Hn �
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Hn−r+1⊕ Hr−1 is general. Then, by Proposition 3.4, B1 ∈ (S∨
n−r+1)

0. Consider the
morphism

f : A
1 → X, t �→ (

B1, t2φ, tψ, tλ, t2μ, t4D
)
, f (1) = z.

This is well defined as a consequence of (22). The point f (0) = (B1, 0, 0, 0, 0, 0)

lies in the fibre p−1(0, 0, 0), so that p−1(0, 0, 0) ∩ X �= ∅. In different terms,

ρ−1(0, 0, 0) �= ∅, where ρ = p|X. (23)

By (22) and the definition of X̃n,r , one has

p̃−1(0, 0, 0) = {
(B1, φ, ψ) ∈ (S∨

n−r+1)
0×�n−r+1×�n,r :

φ∨◦ B1◦φ ∈ Sn−r+1
}
.

(24)

Now for each i � 1 consider the set Zi mentioned in the introduction. This set Zi is
defined in [9, Section 7] as

Zi = {
(B, φ) ∈ (S∨

i )0×�i : φ∨◦ B ◦φ ∈ Si
}
, (25)

and has a natural structure of closed subscheme of (S∨
i )0×�i . The key point in the

sequel is the fact that Zi is an integral scheme of dimension 4i(i +2)—see [9, The-
orem 7.2]. This statement is based on the following relation between Zi for i � 2
and the moduli space of 't Hooft instantons of charge 2i − 1. Fix a monomorphism
j : Hi−1 ↪→ Hi . For an arbitrary point z = (B, φ) ∈ Zi , let E2i be a symplectic vector
bundle of rank-2i defined as a cokernel of a morphism of sheaves B̃ : Hi ⊗OP3(−1) →
H∨

i ⊗�P3(1) naturally induced by B. Let s(z) : Hi → H0(E2i (1)) be the composi-
tion of φ understood as a homomorphism Hi → H∨

i ⊗∧2V ∨ and of the evaluation
map H∨

i ⊗∧2V ∨ → H0(E2i (1)), and let sz be the composition

sz : Hi ⊗OP3(−1)
s(z)−−→ H0(E2i (1))⊗OP3(−1)

ev−→ E2i ,

where ev is the evaluation morphism. Using the symplecticity of E2i , one obtains an
antiselfdual monad

M(z) : 0 → Hi−1⊗OP3(−1)
sz◦ j−−→ E2i

t (sz◦ j)−−−−→ H∨
i−1⊗OP3(1) → 0

with a rank-2 cohomology vector bundle E2(z) with c1 = 0 and c2 = 2i − 1. A
standard diagram chase yields a monomorphism Hi/j (Hi−1)⊗OP3(−1) → E2(z)
showing that h0(E2(z)(1)) �= 0, i.e., that E2(z) is a 't Hooft instanton vector bundle.
Thus the association z � M(z) yields a morphism of Zi to the space M tH

2i−1 of the
't Hooft monads, which is irreducible since the moduli space of 't Hooft instantons
of charge 2i − 1 is known to be irreducible. It is shown in [9, Section 9] that this
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morphism Zi → M tH
2i−1 is a composition of a dense open embedding and the structure

map of an affine bundle over M tH
2i−1. This implies the irreducibility of Zi .

Now, comparing (25) for i = n − r + 1 with (24), we obtain scheme-theoretic
inclusions

ρ−1(0, 0, 0) ⊂ p−1(0, 0, 0) ⊂ p̃−1(0, 0, 0) = Zn−r+1×�n,r . (26)

By the above, Zn−r+1 is an integral scheme of dimension 4(n − r + 1)(n − r + 3).
This together with (26) implies that

dim ρ−1(0, 0, 0) � dim p−1(0, 0, 0) � dim Zn−r+1 + dim �n,r

= 4(n − r + 1)(n − r + 3) + 6(r − 1)(n − r + 1)

= (n − r + 1)(4n + 2r + 6).

(27)

Hence, in view of (23),

dim X � dim ρ−1(0, 0, 0) + dim Ln,r + dim Mr−1 + dim K G

� (n − r + 1)(4n + 2r + 6) + 6(r − 1)(n − r + 1)

+ 3(r − 1)r + (8n − 8r + 5)

= (2n − r + 1)2 + 4(2n − r + 1)(r + 1) − r(2r + 1).

(28)

On the other hand, formula (3)—with n replaced by 2n − r + 1—and Proposition 3.1
show that, for any point x ∈ X such that A = f −1

n,r (x) ∈ MI ∗
2n−r+1,r (ξ),

(2n − r + 1)2 + 4(2n − r + 1)(r + 1) − r(2r + 1) � dimA MI ∗
2n−r+1,r (ξ)

= dim X.
(29)

Comparing (28) with (29), we see that all inequalities in (27)–(29) are equalities. In
particular,

dim ρ−1(0, 0) = dim(Zn−r+1×�n,r ) = dim X − dim(Ln,r ×Mr−1× K G). (30)

Since, by [9, Theorem 7.2], the scheme Zn−r+1 is integral and so Zn−r+1×�n,r is
integral as well, (26) and (30) yield the coincidence of the integral schemes

ρ−1(0, 0, 0) = p−1(0, 0, 0) = p̃−1(0, 0, 0) = Zn−r+1×�n,r . (31)

We need now the following easy lemma, which is a slight generalization of [9,
Lemma 7.4].

Lemma 3.5 Let f : X → Y be a morphism of reduced schemes, with Y an integral
scheme. Assume that there exists a closed point y ∈ Y such that, for any irreducible
component X ′ of X,

(a) dim f −1(y) = dim X ′ − dim Y ,
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(b) the scheme-theoretic inclusion of fibres ( f |X ′)−1(y) ⊂ f −1(y) is an isomorphism
of integral schemes.

Then

(i) there exists an open subset U of Y containing y such that the morphism
f | f −1(U ) : f −1(U ) → U is flat, and

(ii) X is integral.

By applying this lemma to X = Xn,r , X ′ = X, Y = Ln,r ×Mr−1× K G, y =
(0, 0), f = p, also in view of (30) and (31), one obtains that Xn,r is integral and is
of dimension

(2n − r + 1)2 + 4(2n − r + 1)(r + 1) − r(2r + 1).

Theorem 3.2 is thus proved.
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