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is less than 18�2.
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Total Thue colourings of graphs 187

1 Introduction

A finite sequence R = r1r2 . . . r2n of symbols is called a repetition if ri = rn+i for
all i ∈ {1, 2, . . . , n}. A sequence S is called repetitive if it contains a subsequence of
consecutive terms that is a repetition. Otherwise S is called nonrepetitive. Nonrepetitive
sequences were first studied by Axel Thue in the beginning of the last century as a
part of the investigation of word structures. In his famous paper from 1906 [16] he
showed the existence of arbitrarily long nonrepetitive sequences consisting only of
three different symbols. Later these sequences found widespread applications not
only in mathematics, but also in informatics, data security management and others.
Their first appearance in graph theory was in 1987 (see Currie [6]) but the investigation
of nonrepetitive graph colourings began with the seminal paper of Alon et al. from
2002 [1].

Let ϕ be a colouring of the vertices of a graph G. We say that ϕ is a nonrepetitive
vertex-colouring of G if for any simple path on vertices v1, v2, . . . , v2n in G the
associated sequence of colours ϕ(v1)ϕ(v2) . . . ϕ(v2n) is not a repetition. The minimum
number of colours in a nonrepetitive vertex-colouring of G is called the Thue chromatic
number π(G). Analogously, nonrepetitive edge-colourings and the Thue chromatic
index π ′(G) are defined. The original paper [1] introduced both variants of colouring,
however, it focused on the edge variant. It was proved there that for an arbitrary graph
G it holds π ′(G) ≤ (2 · e16 +1)�2, where � is the maximum degree of G. Unhappily,
the Thue chromatic index of G was in [1] called the Thue number of G and it was
denoted by π(G). This was the cause of a lot of misunderstanding and misprints in
several subsequent papers that gave more attention to the vertex-colouring variant
for which the upper bound of the same form, C · �2, is known. The constant C was
improved several times and the best known bound today is due to Dujmović et al. [9]
who showed that for large graphs C tends to 1. This bound is almost the best possible
because it is known that there are infinitely many graphs with Thue chromatic number
at least c ·�2/ log �. There are some classes of graphs, where the Thue chromatic
number is known exactly. In particular, the Thue chromatic number for paths was
established by Thue himself [16], Currie in [7] showed that for every cycle of length
n ∈ {5, 7, 9, 10, 14, 17}, π(Cn) = 4 and for other lengths of cycles on at least three
vertices π(Cn) = 3. In [11] various questions concerning nonrepetitive colourings
of graphs have been formulated and as a result a lot of their variations appeared in
the literature (see e.g. Barát and Czap [3], Czerwiński and Grytczuk [8], Grytczuk et
al. [12,13] or Schreyer and Škrabul’áková [15]).

The purpose of this paper is a first look at nonrepetitive total colourings of a graph.
A (proper) total colouring of a graph is a colouring of its vertices and edges, where no
two adjacent vertices or edges have the same colour and, moreover, no edge has the
same colour as its incident vertices. We apply the concept of nonrepetitive colourings
to total graph colourings in two different ways. If a colouring ϕ of vertices and edges
of G has the property that the colour sequence of consecutive vertex- and edge-colours
of every path in G is nonrepetitive, we call ϕ a weak total Thue colouring. If moreover,
both the induced vertex- and edge colourings are nonrepetitive as well, we call ϕ a
(strong) total Thue colouring of G. The minimum number of colours appearing in
such a colouring is called weak total Thue chromatic number πTw(G) for the first
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188 J. Schreyer, E. Škrabul’áková

case and total Thue chromatic number πT(G) for the latter case. Note that while every
total Thue colouring is a proper total colouring, this does not need to be the case for
weak total Thue colourings, because two adjacent vertices or edges may have the same
colour.

In this paper we show that the total Thue chromatic number is less than 15 �2,
where � ≥ 3 is the maximum degree of the graph. The bound is extended to 18 �2

for the list version of the problem. For the weak total Thue chromatic number of G
we show πTw(G) ≤ |E(G)| − |V (G)| + 5, what for planar graphs with k faces gives
πTw(G) ≤ 3 + k. We also give some upper and lower bounds for these parameters
considering special classes of graphs.

2 Basic observations and preliminary lemmas

Let A be some set. For a sequence of symbols S = a1a2 . . . an, ai ∈ A, 1 ≤ k ≤ l ≤
n, the block akak+1 . . . al is denoted by Sk,l .

Lemma 2.1 ([14]) Let A = a1a2 . . . am be a nonrepetitive sequence with ai ∈ A, i ∈
{1, 2, . . . , m}. Let Bi = bi

1bi
2 . . . bi

mi
, 0 ≤ i ≤ r + 1, be nonrepetitive sequences with

bi
j ∈ B, i ∈ {0, 1, . . . , r + 1} and j ∈ {1, 2, . . . , mi }. If A ∩ B = ∅, then

S = B0 A1,n1 B1 An1+1,n2 . . . Br Anr +1,m Br+1

is a nonrepetitive sequence.

A sequence of length k consisting of k different symbols is called a rainbow sequence.
A rainbow sequence is trivially nonrepetitive and if each sequence Bi 0 ≤ i ≤ r + 1,
from Lemma 2.1 consists of only one element bi , then it is also trivially nonrepetitive.

Corollary 2.2 Let A = a1a2 . . . am be a rainbow sequence with ai ∈ A, i ∈
{1, 2, . . . , m}. For i ∈ {0, 1, . . . , r + 1} let bi /∈ A. Then

S = b0 A1,n1 b1 An1+1,n2 . . . br Anr +1,mbr+1

is a nonrepetitive sequence.

Moreover, it is easy to see that every nonrepetitive vertex-colouring of G with π(G)

colours together with one additional colour (not used for the colouring of the vertices of
G) used to colour all the edges of G gives a weak total Thue colouring of G according
to Corollary 2.2. A similar argument holds for nonrepetitive edge-colourings of G.
Hence, πTw(G) ≤ π(G) + 1 and πTw(G) ≤ π ′(G) + 1. Therefore, we have

Observation 2.3 πTw(G) ≤ min {π(G), π ′(G)} + 1.
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Total Thue colourings of graphs 189

Moreover, the upper bound in Observation 2.3 is tight. To see this, it is enough to
consider an arbitrary star K1,n and its nonrepetitive colouring. Obviously, π(K1,n) = 2
and π ′(K1,n) = n. For n ≥ 2 we have

πTw(K1,n) = min
{
π(K1,n), π ′(K1,n)

} + 1 = 3

(as there exists no nonrepetitive sequence of length 4 over a two symbol alphabet) and
πTw(K1,1) = 2 = min

{
π(K1,1), π

′(K1,1)
} + 1.

As every total Thue colouring is also a weak total Thue colouring and in a total
Thue colouring both, the edge-colouring and the vertex-colouring of the graph have
to be nonrepetitive, we have

Observation 2.4 πTw(G) ≤ πT(G), π(G) ≤ πT(G) and π ′(G) ≤ πT(G).

On the other hand, if we colour all vertices of the graph G nonrepetitively with π(G)

colours and use another π ′(G) colours to colour all edges of G nonrepetitively, by
Lemma 2.1 we obtain a total Thue colouring of G. Hence, the following is true

Observation 2.5 max {π ′(G), π(G)} ≤ πT(G) ≤ π(G) + π ′(G).

For n ≥ 2 we have πTw(K1,n) = 3, but max {π ′(G), π(G)} = n ≤ πT(K1,n), which
gives the next observation.

Observation 2.6 The difference between πTw(G) and πT(G) can be arbitrarily large.

Weak total Thue colourings are closely related to nonrepetitive vertex-colourings of
subdivided graphs as there is an easy 1–1 correspondence between weak total Thue
colourings of a graph G and nonrepetitive vertex-colourings of the graph G̃ which is
obtained from G by subdividing every edge. Hence, we have

Observation 2.7 If G̃ is the graph obtained from G by subdividing every edge by one
vertex then πTw(G) = π(G̃).

Together with Currie’s result on nonrepetitive colourings of cycles this immediately
implies the following

Corollary 2.8 For the cycle Cn on n vertices it holds πTw(Cn) = 4 if n = 5 or 7.
Otherwise πTw(Cn) = 3.

Observation 2.9 There exists a graph G with πT(G) = πTw(G) = π(G) = π ′(G).

From the above considerations it already follows that π(C5) = π ′(C5) = πTw(C5) =
4. Fig. 1 shows, that four colours are also enough for a total Thue colouring of the
cycle C5.

Fig. 1 Strong total Thue
colouring of C5
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190 J. Schreyer, E. Škrabul’áková

Fig. 2 A weak total Thue
colouring of a diamond graph

3 Some general results

Theorem 3.1 Let G = G(V, E) be a graph with |V (G)| = n and |E(G)| = m. Then
πTw(G) ≤ m − n + 5.

Proof Consider a spanning tree T of G. Clearly, T̃ remains a tree and, therefore, has a
Thue chromatic number less or equal to 4 (see [5]). Hence (by Observation 2.7), there
is a weak total Thue colouring of T using four colours. If the remaining m − n + 1
edges of G are coloured by different colours, all paths obviously remain nonrepetitive.
Hence, πTw(G) ≤ m − n + 5. �	
Corollary 3.2 Let G = G(V, E, F) be a plane graph with |F(G)| = k. Then
πTw(G) ≤ 3 + k.

Proof By the Euler formula for every plane graph G = G(V, E, F) with |V (G)| = n,

|E(G)| = m, and |F(G)| = k it holds n + k = m + 2. Then from Theorem 3.1 it
follows that πTw(G) ≤ 3 + k. �	
Theorem 3.3 Let G be an outerplanar graph on n vertices. Then for n ∈ {1, 2, 3},
πTw(G) = n; for n = 4, πTw(G) = n −1; and for n > 4, πTw(G) ≤ min {13, n +1}.
Proof Let G be an outerplanar graph on n ∈ {1, 2, 3} vertices. Obviously, π(K1) =
πTw(K1) = 1. As π(P3) = 2 and π(C6) = 3 (Currie’s theorem [7]) according to
Observation 2.7 this gives πTw(G) = n for n ∈ {1, 2, 3}.

If G is an outerplanar graph on four vertices, then G is a spanning subgraph of a
diamond graph depicted on Fig. 2 together with its weak total Thue colouring using
three colours. Hence πTw(G) ≤ 3. On the other hand, every spanning tree of the
diamond graph contains as a subgraph a path on two edges. Subdividing each edge
of it by one vertex one can obtain a path P4, π(P4) = 3, and from Observation 2.7 it
follows that the weak total Thue number of an outerplanar graph G on four vertices
is at least 3. Hence πTw(G) = n − 1 for n = 4.

The general result πTw(G) ≤ min{13, n + 1} follows from Corollary 2.2, Obser-
vation 2.3 and the fact, that every outerplanar graph admits a nonrepetitive vertex-
colouring with 12 colours (Barát and Varjú [4]). �	
Theorem 3.4 Let G be a graph containing b bridges e1, e2, . . . , eb the removal of
which separates G into b + 1 two-edge-connected components B1, B2, . . . , Bb+1.
Then πTw(G) ≤ 4 �(T ) − 4 + max

i

{
πTw(Bi )

}
.
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Total Thue colourings of graphs 191

Proof For the given bound we shall define a suitable colouring algorithm.

Colouring algorithm:

1. Denote by T the tree obtained from G by contracting the components B1, . . . , Bb+1
into single vertices.

2. Colour the edges of T (i.e. e1, . . . , eb) nonrepetitively. According to the theorem
proved in [1] at most 4 �(T ) − 4 colours are needed.

3. To obtain the weak total Thue colouring of G find a weak total Thue colouring
of each component Bi (with colours different from the colours used to colour the
edges of T ).

As there is no repetitive path in each block Bi , by Lemma 2.1 the colouring obtained
by the algorithm described above gives a weak total Thue colouring of G with the
claimed number of colours. �	

From Thue’s theorem and Observation 2.7 it is obvious that the weak total Thue
chromatic number of paths on at least three vertices is 3. From Lemma 2.1 it can be
seen, that a total Thue colouring of every path with six colours can be constructed
by combining a nonrepetitive vertex-colouring on three colours and a nonrepetitive
edge-colouring on another three colours. The following theorem improves this bound.

Theorem 3.5 For every path P on at least four vertices it holds 4 ≤ πT(P) ≤ 5.

Proof To see the lower bound, assume there is a total Thue colouring of P using only
three colours 1, 2, 3. Consider the colour sequence of the first three vertices and edges.
As such a colouring is also a proper total colouring, every colour in the sequence must
differ from the two preceding colours. Then up to renaming of the colours the sequence
has to be 123123 which is repetitive, a contradiction.

For the upper bound we construct a colouring using five colours. Let P =
v0, e1, v1, . . . , en, vn be a path of length n ≥ 4. W.l.o.g. we can suppose that n is
divisible by 4, as every other path is subgraph of such a path.

Colouring algorithm:

1. For all m divisible by 4, colour the vertex vm with colour 4.
2. Let s0, s1, s2, . . . , sn−1 be a nonrepetitive sequence on {1, 2, 3}. Then for each

0 ≤ i < n colour the vertex v4i+si with colour 5. That means between any two
vertices of colour 4 there is a vertex of colour 5 and the sequence of distances
between the colour 5 vertices to the preceding colour 4 vertices is nonrepetitive.

3. Whenever there are two uncoloured vertices between a vertex of colour 4 and 5,
colour the edge connecting them with colour 5.

4. Colour all uncoloured edges using a nonrepetitive sequence on {1, 2, 3}.
5. For every vertex that is adjacent to a vertex of colour 4 and to a vertex of colour 5

use a colour from {1, 2, 3} different from the colours of the neighbouring edges.
6. For two adjacent uncoloured vertices in between two vertices of colour 4 consider

the edge-colours that appear between the colour 4 vertices. If one colour from
{1, 2, 3} is missing, colour the middle vertex with this colour and the other one
with a colour from {1, 2, 3} that is different from this one and the colour of the
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192 J. Schreyer, E. Škrabul’áková

neighboring edge of colour 1, 2 or 3. If all colours of edges appear, the sequence of
vertex- and edge-colours between the two vertices of colour 4 has to be a5bx5yc,
where a, b, c are different edge-colours from {1, 2, 3} and x and y are the vertex-
colours to be chosen. Choose x = c and y = a.

From Lemma 2.1 it immediately follows, that there is no repetitive sequence of
edge-colours.

Assume there is a repetitive sequence of vertex-colours and it contains at least one
vertex of colour 4. Then it contains an even number of vertices of colour 4 and exactly
as many vertices of colour 5. If the first vertex of colour 4 or 5 has colour 4, then the
sequence of distances from the vertices of colour 5 to the preceding vertex of colour 4
is repetitive, a contradiction. In case the first vertex of colour 4 or 5 has colour 5, then
the sequence of distances of the vertices of colour 5 to the next vertex of colour 4 must
be repetitive. This is a contradiction because if the sequence {si }n−1

i=0 is nonrepetitive
then the sequence {4 − si }n−1

i=0 is nonrepetitive as well. Hence, no repetitive sequence
of vertex-colours can contain a vertex of colour 4. That means, a repetition of vertex-
colours can contain only two elements and adjacent vertices are coloured differently
by construction.

Now assume that there is a colour sequence of consecutive vertex- and edge-colours.
If it contains colour 4, then this is a vertex-colour that can only be repeated by another
vertex-colour. If this is the case, vertex-colours are repeated by vertex-colours and
edge-colours by edge-colours. Hence, the subsequences of vertex- and edge-colours
must be repetitive themselves. This is not possible as every sequence of consecu-
tive edge-colours is nonrepetitive. Therefore, a repetition can contain at most three
vertex-colours. All vertices are coloured differently from their edge neighbours, and
the repetition cannot consist of two vertex- and two edge-colours because otherwise
two adjacent edges would have the same colour. The only remaining possibility is
a sequence of three consecutive edge- and three consecutive vertex-colours, none of
which is colour 4. Now it is easy to see, that these repetitions are excluded by construc-
tion steps 5. and 6. Consequently, no repetition of any kind occurs and the constructed
colouring is a total Thue colouring. �	

In general we conjecture the following

Conjecture 3.6 There is an integer n such that for every path P on at least n vertices
πT(P) = 5.

An immediate consequence for cycles is the following

Corollary 3.7 For every cycle C on at least four vertices it holds 4 ≤ πT(C) ≤ 6.

This can be achieved by choosing one edge of a unique colour and colour the remaining
path as before. But in many cases, at least if the number of vertices is large enough
and divisible by 4, the colouring strategy from the previous theorem can be applied
directly to generate a colouring with five colours.

The following theorem gives the exact values of the total Thue numbers of stars.
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Theorem 3.8 Let Sn = K1,n be a star on n + 1 ≥ 4 vertices. Then πT(Sn) = n + 1.

Proof All edges of Sn are adjacent to each other, and, therefore, they have to be
coloured with different colours in every strong total Thue colouring ϕ of Sn . They are
incident with the central vertex v of the star as well, therefore, v has to be coloured with
a new colour under ϕ. Hence, πT(Sn) ≥ n + 1. In order to obtain a strong total Thue
colouring of the star Sn colour the uncoloured vertices w1, w2, . . . , wn as follows: let
ϕ(wn) = ϕ(w1v) and for i ∈ {1, 2, . . . , n − 1} let ϕ(wi ) = ϕ(wi+1v).

All vertices of Sn are coloured with different colours and all paths on vertices and
edges of Sn are coloured with a colour sequence of the form abcdb or abcde, therefore,
ϕ is a strong total Thue colouring using n + 1 colours. �	

4 Bounds depending on the maximum degree

Theorem 4.1 Let G be a graph with maximum degree � ≥ 3. Then πT(G) < 15 �2.

Proof Let G be a graph of maximum degree � ≥ 3. Dujmović et al. [9] proved that
π(G) < 3 �2. By considering the line graph H of G (which has the maximum degree
less than 2 �) this implies for the edge version of the problemπ ′(G) ≤ π(H) < 12 �2.
So, by Observation 2.5, πT(G) < 15 �2. �	

Note, that the upper bound 3 �2 on the Thue chromatic number used in the proof can
be improved for larger �. The actual bound given in [9] is �2 + o(�2), which with
the same arguments as above implies πT(G) < 5 �2 + o(�2).

Our last result is an extension of the above result to list colourings. The graph G
is nonrepetitively total l-choosable if for every list assignment L : (V ∪ E) → 2N

with minimum list size at least l there exists a total Thue colouring ϕL with colours
from the associated lists. The total Thue choice number of G is the minimum number
l such that G is nonrepetitively total l-choosable. (One can similarly define the weak
total Thue choice number of a graph). A bound on this parameter cannot be proved by
considering vertex- and edge-colourings separately because it cannot be guaranteed
that the used colour sets of both colourings will be distinct.

We will use a probabilistic approach to prove our result. In probability theory, if a
large number of events are mutually independent and each has probability less than 1,
then there is a positive probability that none of the events will occur. The Lovász Local
lemma (see Erdős and Lovász [10]) allows one to relax the independence condition
slightly: As long as the events are “mostly” independent from one another and are not
individually too likely, then there is a positive probability that none of them occurs.
There are several different versions of this lemma, see Alon and Spencer [2]. We will
use the asymmetric one formulated below.

Lemma 4.2 Let A = {A1, A2, . . . , An} be a finite set of events in the probabil-
ity space �. For A ∈ A let �(A) denote a subset of A such that A is inde-
pendent from the collection of events A \ ({A} ∪ �(A)). If there exists an assign-
ment of reals x : A → (0; 1) to the events such that for all A ∈ A it holds
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Pr (A) ≤ x(A)
∏

B∈�(A)(1 − x(B)) then the probability of avoiding all events in

A is positive, in particular, Pr (A1, A2, . . . , An) ≥ ∏
A∈A(1 − x(A)).

Theorem 4.3 For every graph with maximum degree at most �, � ≥ 3, the total
Thue choice number is at most 17.9856 �2.

Proof Let G be a graph with maximum degree at most �, where every vertex and
edge is endowed with a list of at least 17.9856 �2 colours. To fulfill the conditions
of Lovász Local lemma we suppose that the colour of each vertex and edge is chosen
randomly, independently and equiprobably out of its list. We consider the following
types of bad events that may happen when this procedure is applied:

• For every path Pt on 2t vertices let APt denote the event that the colour sequence
of the first t vertices is the same as the colour sequence of the last t vertices. For
the probability of the event we have Pr (APt ) ≤ (1/17.9856 �2)t . We assign the
number xPt = 1/(1 + at ) to the event APt , where a = 7.5 �2.

• For every path Qt on 2t edges let BQt denote the event that the colour sequence
of the first t edges is the same as the colour sequence of the last t edges. For
the probability of the event we have Pr (BQt ) ≤ (1/17.9856 �2)t . We assign the
number yPt = 1/(1 + bt ) to the event BQt , where b = 7.5 �2.

• For every path Rt = (v1, e1, v2, e2, . . . , vt , et ) on t vertices together with the
internal t − 1 edges and one edge incident with the final vertex vt let CRt denote
the event that the colour sequence of the first t elements (vertices and edges) of Rt

is the same as the colour sequence of the last half. For the probability of the event
we have Pr (CRt ) ≤ (1/17.9856 �2)t .We assign the number zPt = 1/(1 + ct ) to
the event CRt , where c = 10 �2.

For an arbitrary event APt let As denote the set of paths on 2s vertices sharing at
least one vertex with Pt and Cs the set of paths Rs on s vertices and s edges sharing at
least one vertex with Pt . It it easy to see, that |As | ≤ 2�2s and |Cs | ≤ 2�s ≤ 2�2s/3,
as � ≥ 3. We will show that

Pr(APt ) ≤ xPt ·
∞∏

s=1

∏

Ps∈As\{Pt }
(1 − xPs )

∏

Rs∈Cs

(1 − zRt ). (1)

Consider the right hand side RHS1 of inequality (1):

RHS1 = 1

1 + at
· 1 + at

at

∞∏

s=1

∏

Ps∈As

(
1 − 1

1 + as

) ∏

Rs∈Cs

(
1 − 1

1 + cs

)

≥ 1

at

∞∏

s=1

(
as

1 + as

)2ts �2s(
cs

1 + cs

)2ts �2s/3

≥ 1

at

∞∏

s=1

(
e−1/as )2ts �2s(

e−1/cs )2ts �2s/3
,
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Total Thue colourings of graphs 195

since for all positive x it holds that x/(1 + x) > e−1/x . Moreover,

1

at

∞∏

s=1

(
e−1/as )2ts �2s(

e−1/cs )2ts �2s/3 = 1

at
·
(

e
−2

∞∑
s=1

s·( �2/a)s−(2/3)
∞∑

s=1
s·( �2/c)s )t

= 1

(7.5 �2)t
·
(

e
−2

∞∑
s=1

s·(1/7.5)s−(2/3)
∞∑

s=1
s·(1/10)s )t

= 1

(7.5 �2)t
· (

e−4490/10266.75)t
,

as
∞∑

s=1
s · xs = x/(x − 1)2. Hence,

RHS1 ≥
(

0.6457

7.5 �2

)t

>

(
1

17.9856 �2

)t

,

what proves inequality (1).
For an arbitrary event BQt let Bs denote the set of paths on 2s edges sharing at least

one edge with Qt and Cs the set of paths Rs on s vertices and s edges sharing at least
one edge with Qt . It is easy to see that |Bs | ≤ 4ts�2s and |Cs | ≤ 4ts�s ≤ 4ts�2s/3.
Similarly as in the previous case we will show that

Pr (BQt ) ≤ yQt ·
∞∏

s=1

∏

Qs∈Bs\{Qt }
(1 − yQs )

∏

Rs∈Cs

(1 − zRt ). (2)

Consider the right hand side RHS2 of inequality (2):

RHS2 = 1

1 + bt
· 1 + bt

bt

∞∏

s=1

∏

Qs∈Bs

(
1 − 1

1 + bs

) ∏

Rs∈Cs

(
1 − 1

1 + cs

)

≥ 1

bt

∞∏

s=1

(
bs

1 + bs

)4ts �2s(
cs

1 + cs

)4ts �2s/3

≥ 1

bt

∞∏

s=1

(
e−1/bs )4ts �2s (

e−1/cs )4ts �2s/3

= 1

bt
·
(

e
−4

∞∑
s=1

s·( �2/b)s−(4/3)
∞∑

s=1
s·( �2/c)s )t

= 1

(7.5 �2)t
·
(

e
−4

∞∑
s=1

s·(1/7.5)s−(4/3)
∞∑

s=1
s·(1/10)s )t

= 1

(7.5 �2)t
· (

e−8980/10266.75)t
.

123



196 J. Schreyer, E. Škrabul’áková

Hence,

RHS2 ≥
(

0.4170003

7.5 �2

)t

>

(
1

17.9856 �2

)t

,

what proves inequality (2).
For an arbitrary event CRt let As denote the set of paths on 2s vertices sharing

at least one vertex with Rt , Bs denote the set of paths on 2s edges sharing at least
one edge with Rt and Cs the set of paths Rs on s vertices and s edges sharing at
least one vertex with Rt . It is easy to see that |As | ≤ ts �2s, |Bs | ≤ 2 ts �2s and
|Cs | ≤ ts �s ≤ ts �2s/3. We will show that

Pr (CRt ) ≤ zRt ·
∞∏

s=1

∏

Ps∈As

(1 − xPs )
∏

Qs∈Bs

(1 − yQs )
∏

Rs∈Cs\{Rt }
(1 − zRt ). (3)

Consider the right hand side RHS3 of inequality (3):

RHS3 = 1

1+ct
· 1+ct

ct

∞∏

s=1

∏

Ps∈As

(
1− 1

1+as

) ∏

Qs∈Bs

(
1− 1

1+bs

) ∏

Rs∈Cs

(
1− 1

1+cs

)

≥ 1

ct

∞∏

s=1

(
as

1 + as

)ts �2s(
bs

1 + bs

)2ts �2s(
cs

1 + cs

)ts �2s/3

≥ 1

ct

∞∏

s=1

(
e−1/as )ts �2s(

e−1/bs )2ts �2s(
e−1/cs )ts �2s/3

= 1

ct
·
(

e
−

∞∑
s=1

s·( �2/a)s−2
∞∑

s=1
s·( �2/b)s−(1/3)

∞∑
s=1

s·( �2/c)s )t

= 1

(10 �2)t
·
(

e
−3

∞∑
s=1

s·(1/7.5)s−(1/3)
∞∑

s=1
s·(1/10)s )t

= 1

(10 �2)t
· (e−8980/10266.75)t.

Hence,

RHS3 ≥
(

0.5634

10 �2

)t

>

(
1

17.9856 �2

)t

,

what proves inequality (3).
Since inequalities (1), (2) and (3) are valid, by the Lovász Local lemma with positive

probability none of the bad events happens. Hence, there is a total Thue colouring of
the graph G from lists of size 17.9856 �2. �	
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