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Abstract
Load serving entity (LSE) maximizes profit by maximizing the difference between revenue earned from supplying its
consumer demand and procurement cost incurred in the wholesale electricity markets. Procuring energy for varying
consumer demand at varying pool prices is a challenge for LSE, as their concurrent variations significantly affect its
expected profit. Hence, modeling uncertainties of consumer demand and pool prices for LSE’s profit maximization can
offer significant opportunities. The paper capitalizes on this opportunity, by developing a novel framework to consider the
uncertainties and correlation between LSE’s consumer demand and wholesale market prices. The two uncertainties and their
correlation are explicitly modeled in a single framework using the information gap decision theory (IGDT) based ellipsoid
bound uncertainty model, for an LSE holding a large share of market demand. The proposed framework maximizes profit and
addresses the risk-averse and risk-seeking behavior of LSE through robustness and opportuneness functions. Simultaneous
consideration of demand and pool price uncertainties increases tolerance of decisions to handle these uncertainties while
improving profit targets.

Keywords Consumers · Demand uncertainty · Decision-making · Information gap decision theory · Load serving entity ·
Pool price uncertainty · Procurement · Profit

List of symbols
A. Sets and Indices
G, g Set and index for self-generating units.
I, i Set and index for bilateral contracts.
T , t Set and index of time.
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B. Constants and Parameters
a, b, c Cost coefficients of self-generating units.
Csu

g , Csd
g Constant start-up/ shut down cost of gth unit

[$].
P̃t Predicted consumer demand at hour t [MWh].
P min

i , P max
i Min./ max. purchase limit of ith bilateral
contract [MWh].

P min
g , P max

g Min./ max. capacity of gthunit [MW].
Ru

g, Rd
g Ramp up and down limit of gthunit [MW/h].

T U
g , T D

g Min. up/ down time of gthunit [h].
xt A vector representing uncertain pool price and

demand.
�xt Error.
W Variance-covariance matrix.
λB

i.t Price of ith bilateral contract at hour t [$ /MWh].
λmin

t , λmax
t Min. and max. limits on sale price at hour t [
$/MWh].

λ̃S
t Predicted pool price at hour t [$ /MWh].

λavg Average sale price [$/MWh].
μ Lagrange multiplier.
πc Critical profit target for robustness function [$].
πw Anticipated windfall gain for opportunity

function [$].
C. Functions
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CB
t Total cost of bilateral contracts at hour t .

Cg,t Generation cost of P SG
g,t energy from gth

generating unit at hour t .
CS

t Procurement cost from pool at hour t .
CSG

t Total cost of energy generation through
self-generating units
at hour t .

Cost total
t Total procurement cost from bilateral contracts,

self-generation and pool at hour t .
Revenuet Revenue at hour t [$].
α̂(πc) Robustness function.
β̂(πw) Opportunity function.

D. Variables
csd
g,t Shut down cost of gth unit at hour t [$].

csu
g,t Start-up cost of gthunit at hour t [$].

P B
i,t Energy procured from ith bilateral contract at

hour t [MWh].
P SG

g,t Energy generated from gthself-generation unit at
hour t [MWh].

P S
t Energy procured from pool at hour t[MWh].

P SG
t Total energy generated from G self-generation

units at hour t [MWh].
XON

g,t , XOFF
g,t Variable representing ON/OFF time of
gthself-generating unit at hour t .

α Uncertainty horizon.
λsale

t Sale prices to consumer at hour t [$ /MWh].

E. Binary Variables
ug,t ON/OFF (0/1) status of gthunit at hour t .
δi,t Variable (0,1), 1 represents that ith bilateral

contract at hour t is exercised, otherwise zero.

Introduction

Load serving entity (LSE) acts as a mediator between
consumers and wholesale electricity market (WEM), to
fulfill consumer demand by purchasing from WEM.
LSE intends to maximize its profit through decisions
on electricity procurement and offered sale prices. These
decisions are taken well in advance to maximize the
difference between revenue from electricity sale and
procurement cost from WEM. Making prudent decisions
for profit maximization is challenged by various factors
associated at retail and wholesale levels of electricity
markets. LSE’s market share would vary in competitive
retail electricity markets as it depends on offered sale price
[1]. However, retail competition is weak and characterized
by low consumer switching rate in several markets. Only
consumers with high price elasticity change their demand in
response to offered retail prices [2]. Price elasticity is low
in certain markets, indicating consumer’s rigidity to change
their energy consumption [2]. Low elasticity restricts

sufficient demand response. However, due to various known
and unknown factors, demand varies continuously and is
uncertain. At real-time, LSE may face different market
conditions from those estimated some time ahead; hence
its medium-term decisions are influenced by demand and
pool price uncertainties [1, 3]. Modeling of demand and
pool price uncertainty improves LSE’s decisions to reduce
their impact on targeted profit. However, co-variation
of consumer demand and prices associated with these
uncertainties can create severe situations, and LSE may face
significant financial losses. Such extreme risks needs to be
considered and modeled for prudent decision-making.

Demand and pool prices are correlated due to their inher-
ent dependence [4, 5]. Strength of this correlation depends
upon LSE size. This correlation is weak for an LSE with
low demand, in particular small retailers [6, 7]. How-
ever, for a large sized LSE, strong correlation is observed
between demand and pool prices [6]. This correlation high-
lights possibility of extreme situations, which may cause
substantial financial losses to LSE. Consideration of cor-
related variations of demand and pool prices can help to
secure LSE’s position in the electricity market and improve
it’s profit margin [3]. This correlation modeling is how-
ever challenging. Correlation between demand and pool
prices can be modeled by scenario tree approach under
a stochastic framework for LSE’s decision-making [7, 8].
However, scenario tree cannot consider severe uncertainty,
and extreme situations (spikes) pronounced in higher fre-
quency at hourly level, and may lead to imprudent decisions.
Further, this method suffers when strong correlation exists
between modeled variables [7]. Such issues with exist-
ing frameworks necessitate a novel framework to model
demand and pool price uncertainties, along with their
correlation.

LSE may emphasize on certain aspects of markets to max-
imize its profit. Such aspect could diversify the nature
of LSE’s problem. The consideration may neglect other
required aspect to highlight. For example, LSE may metic-
ulously utilize short-term contracts and flexible demand to
manage its strategy in electricity markets [9]. To modulate
demand side response for increasing its profit [10] When
flexible demand is available to LSE, a price-maker LSE’s
bidding and sale price decisions require strategic modi-
fications to secure profit [11, 12]. LSE’s participation in
renewable energy markets necessitates development of its
profit strategies considering renewable factors [13]. This
implies that though other factors could affect LSE’s profit
maximization decision making, consideration of price and
demand uncertainty cannot be neglected. Most decision-
making approaches for LSE characterize uncertainties by
probabilistic or possibilistic approaches utilizing probabil-
ity density function (PDF) or membership function (MF)
[14, 15]. A large number of generated scenarios need to be
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reduced to a smaller number to keep the problem tractable
[13]. Function modeling requires significant information
about uncertain input parameters [16]. However, with a lack
of information about PDF and MF, opted assumptions may
lead to imprudent decisions [17, 18]. Moreover, a risk mea-
sure is required to assess the risk posed by the uncertainties
[19, 20]. Downside risk constraints method utilizes prob-
abilistic framework to assess the risk [21]. This method
scarcely improves the decisions under lack of information
about uncertain parameters. Information Gap Decision The-
ory (IGDT) is an effective and widely accepted approach
to model severe uncertainties under lack of information
[22, 23]. LSE’s power purchasing portfolio is devised using
IGDT [24]. IGDT has been applied with integral modeling
of demand and pool price uncertainties for LSE. Fractional
error bound info-gap model can model these uncertain-
ties to obtain robust strategies. In particular, demand and
pool price uncertainties are considered by multi-objective
Pareto optimal solutions [25, 26]. However, these research
do not model demand and pool price uncertainties in a sin-
gle framework, hence cannot consider co-variations exist-
ing between them. This makes LSE’s profit maximization
decision-making modeling incomplete.

Wider research on LSE’s profit maximization considers
various aspects which could possibly impacts its strategies
for profit making in electricity markets [13, 15]. Substantial
focus is given to uncertainty modeling of one or more
uncertain parameters [21, 27]. However, modeling of
correlation between price and demand uncertainty is
not addressed adequately by the current literature, while
decision-making for LSE’s profit maximization. This work
proposes a novel integrated framework to model LSE’s
decision-making using IGDT to maximize its profit under
uncertainty of consumer demand and pool prices. Proposed
model is suitable for evolving market conditions where
LSEs are large, and consumer switching is low. Available
information of varying consumer demand and pool prices,
along with their correlation, is used in ellipsoid-bound info-
gap uncertainty model. Adverse and favorable conditions
arising due to varying consumer demand and pool prices are
modeled to make robust and opportunistic decisions. This
way, IGDT addresses risk-averse and risk-seeking behavior
of LSE. Impact of multiple severe uncertainties has been
highlighted for LSE’s electricity procurement and sale price,
separately for weekdays and weekends. Results indicate
that capturing demand and price uncertainties together helps
LSE to make prudent decisions. Thus, this work contributes
by

• Modeling correlated demand and pool prices in
an integrated framework considering their severe

uncertainty using ellipsoid bound info-gap uncertainty
model

• Modeling and analysis of robustness and opportunistic
decisions in single framework of correlated demand and
pool price

LSE’S Decision-making Problem

LSE’s primary role is to procure electricity on behalf
of consumers from wholesale markets and supply them
at contracted/ predefined sale prices under various tariff
schemes. Traditionally, energy services were provided by
distribution companies (DisCos) and currently by retailers.
DisCos are responsible for network operation whereas
retailers deal with electricity trading. Therefore, these
entities are termed as LSE.

LSE’s sale prices and procurement strategies decision-
making model requires knowledge of consumer’s elastic
behavior and level of retail competition1. In evolving retail
electricity markets, significant market share is served by
incumbent LSE. Consumers are reluctant to switch to a
new entrant LSE for the risk of an unexpected rise in
electricity bill. Consumers observe switching as complex
process invloving time and money for which the benefit
is not guaranteed [28]. This results in low switching rate,
indicating weak competition. Therefore, LSE’s market share
is hardly impacted in such markets, but due to large share
of demand, impact of correlation becomes significant on its
decisions.

This work intends to determine decisions of a large
LSE considering integrated modeling of correlated demand
and prices. LSE fulfill its requirement through procurement
from WEM via pool and bilateral contracts, and from self-
generation facility. Market liquidity is assumed sufficient.
Bilateral contract prices are fixed, and cost of self-
generation is known at the time of decision-making. This
advance planning problem of LSE is considered in the
medium-term to determine optimal energy procurement
strategy and sale prices. A framework is proposed to
model both pool prices and demand uncertainties with
their correlated variations using ellipsoid-bound model of
uncertainty under IGDT. LSE’s decision-making model in
IGDT framework is shown in Fig. 1. Risk-averse and risk-
seeking behavior of LSE is addressed by modeling its profit
maximization problem using robustness and opportunity
functions, respectively. The joint impact of pool price
and demand uncertainty is addressed by single uncertainty
horizon in the framework. This helps to analyze the
correlation impact for weekdays and weekends.

In this paper, term ”LSE” represents retailer’s or DisCo’s
market operation (trading) only, i.e., network operation is
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Fig. 1 LSE’s decision-making
model

neglected to highlight their market strategies required for
profit maximization. This work considers that LSE does
not control consumers’ demand directly, but it is result
of offered sale prices. Therefore, considering the focus
of the proposed work, consumers’ active participation and
its comfort modeling in LSE’s decision-making is not
desirable.

Mathematical Formulation of LSE’s Profit
Maximization

LSE’s profit maximization problem is mathematically
formulated, and the two components of profit: procurement
cost and revenue, are described as follows.

Procurement Cost

LSE’s procurement cost at hour t is the sum of cost of
energy procured from bilateral contracts, self-generation,
and pool represented in Eq. 1. The proposed problem
intends to optimize procurement decisions, hence costs
relevant to staff, billing system, advertising, etc. are
neglected.

Cost total
t = CB

t + CSG
t + CS

t (1)

Bilateral Contract Cost

LSE signs bilateral contracts with generating companies at
a mutually agreed fixed price λB

i,t for a specified time t [3].
Let total number of available bilateral contracts be I . The
energy procurement cost from all bilateral contracts CB

t at
hour t is given by Eq. 2. Minimum and maximum limits
on procurement from bilateral contracts are considered by
constraint (3).

CB
t =

∑

i∈I

P B
i,tλ

B
i,t (2)

Pmin
i .δi,t ≤ P B

i,t ≤ Pmax
i .δi,t (3)

Self-generation Cost

LSE uses self-generation to procure a portion of its demand.
All units are considered as thermal units only. At time t ,
total energy procured fromG self-generating units would be
equal to

P SG
t =

∑

g∈G

P SG
g,t (4)

Generation cost Cg,t of P SG
g,t energy from gth generating

unit in hour t is given by Eq. 5, subject to constraints (6) to
(14) [3].

Cg,t = c.ug,t + b.P SG
g,t + a.(P SG

g,t )
2 + csu

g,t + csd
g,t (5)

csu
g,t ≥ Csu

g (ug,t − ug,t−1) ∀g, ∀t (6)

csd
g,t ≥ Csd

g (ug,t−1 − ug,t ) ∀g, ∀t (7)

P SG
g,t − P SG

g,t−1 ≤ Ru
g .ug,t ∀g, ∀t (8)

P SG
g,t−1 − P SG

g,t ≤ Rd
g .ug,t−1 ∀g, ∀t (9)

[XON
g,t−1 − T U

g ].[ug,t − ug,t−1] ≥ 0 ∀g, ∀t (10)

[XOFF
g,t−1 − T D

g ].[ug,t−1 − ug,t ] ≥ 0 ∀g, ∀t (11)

P min
g .ug,t ≤ P SG

g,t ≤ P max
g .ug,t ∀g, ∀t (12)

csu
g,t , c

sd
g,t ≥ 0 ∀g, ∀t (13)

ug,t ∈ [0, 1] ∀g, ∀t (14)

Constraints (6) and (7) decide start up and shut down
cost of self-generating units. Constraints (8) and (9) decide
ramp up and ramp down limits. Minimum up and down time
of generating units is given by constraints (10) and (11).
Minimum and maximum generation limits are decided by
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constraint (12). Equation 13 is a non-negativity constraint.
Equation 14 is variable declaration constraint. The total
generation cost from self-generating units is given by

CSG
t =

∑

g∈G

Cg,t (15)

Pool Cost

LSE uses pool as one of the procurement options. As
pool prices are uncertain, its forecasted/expected values are
considered. Expected energy procurement cost from pool
for each period t is

CS
t = P S

t λS
t (16)

As this work addresses medium-term decision-making of
LSE, constraint (17) is considered to restrict energy sale
in pool at hour t . However, energy selling in the pool is
required to settle residual energy imbalances. This decision
is made nearer to real-time, and comes under short-term
decision-making. Energy balance constraint (18) restricts
energy procured from various sources to match consumer
demand Pt at hour t .

P S
t ≥ 0 (17)

P S
t +

∑

i∈I

P B
i,t + P SG

t = Pt (18)

Revenue

LSE generates revenue by selling energy to its group of
consumers at offered sale prices λsale

t . Revenue for each
time slot is [8]

Revenuet = Ptλ
sale
t (19)

Constraint (20) restricts LSE’s sale prices within the
minimum and maximum bounds. Maximum bound is
required to restrict LSE from increasing sale prices beyond
a justified limit. Inequality constraint (21) is used as a bound
on the average sale prices to ensure sufficient number of
low price periods. Otherwise, LSE would always charge
maximum possible from consumers [29].

λmin
t ≤ λsale

t ≤ λmax
t (20)

∑
t

Ptλ
sale
t

∑
t

Pt

≤ λavg (21)

Profit Function

LSE’s expected profit is calculated by subtracting pro-
curement cost (1) from revenue generated from electricity

sale (19), as shown in Eq. 22. Equation 23 is obtained by
substituting values of revenue and cost terms in Eq. 22.

Prof = π(P, λ) =
∑

t

Revenuet −
∑

t

Cost total
t (22)

Prof = π(P, λ) =
∑

t

Ptλ
sale
t

−
(

∑

t

P S
t λS

t +
∑

t

∑

i∈I

P B
i,tλ

B
i,t +

∑

t

CSG
t

)
(23)

It is to be noted in Eq. 23 that Pt and λS
t are uncertain

parameters that need to be handled. Due to their correlated
nature, uncertainties are modeled in IGDT framework.

LSE’S Decision-making: IGDT Framework

IGDT quantifies uncertainty to help decision-maker eval-
uate decisions in an uncertain environment by utilizing
available information about uncertain parameters. IGDT
does not require a membership or probability functions
to model uncertain parameters. IGDT models uncertainty
as a variation interval between what is known and what
could be known [17]. IGDT assesses performance require-
ments for decisions based on targeted/anticipated outcomes
by robustness and opportuneness functions addressing risk-
averse or risk-seeking behavior of a decision-maker. As
IGDT is performance satisfying rather than performance
maximizing approach [17], decision variables obtained from
this approach are not comparable with conventional uncer-
tainty and risk handling approaches. Also, it is worth to
note that performance satisfying and input parameters to
optimization, differ atleast IGDT from robust optimiza-
tion (RO) [30]. RO is a performance maximizing approach,
which handles only worst condition arising due to uncer-
tain parameters [31]. Sometimes, IGDT is compared with
interval analysis method of uncertainty modeling. However,
interval analysis characterizes uncertain parameters based
on a known interval, which differentiates it from IGDT.

System model, performance requirements, and uncer-
tainty model are three components of IGDT that can
describe decision problems. System model expresses the
input and output relationship of the system considering deci-
sion variables, uncertainty parameter, and uncertain param-
eter. Requirement of performance describes the require-
ments or expected outcomes from the system. It is usually
expressed in terms of cost or relevant functions. Robust-
ness and opportunity functions are evaluated to describe
these requirements. These functions are explained in subse-
quent sections. Various uncertainty models are available to
adequately model the uncertain parameters. These models
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utilize available information about uncertain input param-
eters Uncertainty model expresses the gap between known
and unknown values as function of some known parame-
ters. The known parameters could be predicted or forecasted
value of uncertain parameter, variance-covariance matrix or
standard deviation etc. [17].

In this work, IGDT models demand and pool price
uncertainties and their co-variability. Modeling of uncertain
demand and pool prices in a single framework is
proposed by considering a single uncertainty horizon
under ellipsoid-bound info-gap uncertainty model. This
info-gap uncertainty model is considered as it models
correlation between uncertain parameters in the form of
variance and co-variance matrix. This is discussed in
Section “Uncertainty Model”. Immunity from unfavorable
movements and opportunity of windfall gain for favorable
movements of demand and pool prices are determined
by formulating robustness and opportuneness formulations,
respectively. The mathematical model based on IGDT
approach is presented in following sub-sections.

Decision Variables

As per (23), sale price λsale
t and the quantum of energy

to be procured from various resources (pool P S
t , bilateral

contracts P B
i,t , and self-generation P SG

t ) are decision
variables of the problem, and are represented as Qt =[
λsale

t , P S
t , P B

i,t , P SG
t

]
.

Uncertainty Model

Uncertainty of total demand Pt to be procured and pool
prices λS

t , at hour t is modeled through ellipsoid bound
info-gap uncertainty model. These uncertain parameters
are represented by a vector xt in Eq. 24. At real-time,
actual values of uncertain parameters may vary from their
estimates x̃t in either direction (positive or negative) by an
error �xt (25).

xt = [Pt , λ
S
t ] (24)

xt = x̃t + �xt (25)

i.e.,

[Pt , λ
S
t ] = [P̃t + �Pt, λ̃S

t + �λS
t ] (26)

�xt = [�Pt, �λS
t ] (27)

Ellipsoid-bound info-gap model considers uncertainty by an
unbounded family of nested sets, nested around expected
value of the parameter of interest. Each set represents
a particular degree of knowledge deficiency, depending
upon the level of nesting [17]. Ellipsoid is an envelop

of uncertainty, and that is centered around best estimate
vector x̃t , with a distance represented by uncertainty horizon
α. This ellipsoid quantifies the uncertainty by measuring
distance between best estimate and reality (actual value), as
shown in Fig. 2. Larger the distance, larger is the uncertainty
α (Fig. 2). The shape of ellipsoid describes the relative
degree of variability of demand and pool prices and their
correlated behavior [17]. A variance-covariance matrix W

defines this information. Here, in case of two uncertain
parameters, Pt and λS

t , W is a 2 × 2 matrix for each time
interval t . Its elements, w11 and w22 are variances of Pt

and λs
t respectively, and w12 = w21 are co-variances

between them. This information is statistically obtained
from historical data. Mathematically ellipsoid bound info-
gap model is given as [17]

U(α, xt ) = {xt : �xtW
−1�xt

′ ≤ α2}, α ≥ 0 (28)

Here ′ represents transpose.

Performance Functions

Performance requirements are the minimum requirements
expected or anticipated from the system, evaluated based
on robustness and opportuneness functions. Robustness
function immunes the decision-maker from adverse face
of the uncertainty, whereas opportuneness function offers
opportunity to decision-maker from favorable situations.

Robustness function calculates the highest level of
uncertainty that can be tolerated by a decision for which
minimum requirements are always satisfied. Robustness
guarantees that the profit would always be greater than
targeted critical profit πc so that certain level of uncertainty
can be tolerated. Hence, this represents risk-averse behavior

Fig. 2 Pictorial presentation of Ellipsoid bound-info gap model
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of decision-maker. Mathematically, robustness α̂(πc) can be
expressed as [17, 26]

α̂(πc) = max
α

{α : min π(Q, x) ≥ πc} (29)

Opportuneness function evaluates the possibility of achiev-
ing higher profit resulting from favorable face of uncer-
tainty and provides windfall benefits. It addresses risk-
seeking attitude of a decision-maker. The opportuneness
function expresses the least required level of uncertainty
(i.e., uncertainty horizon α) for which windfall profit πw can
always be achieved. Mathematically, opportuneness β̂(πw)

is expressed as [17, 26]

β̂(πw) = min
α

{α : max π(Q, x) ≥ πw} (30)

Robustness Function

As per the robustness function defined in Eq. 29, minimum
profit should at least be equal to πc [13]. Minimum profit is
determined by substituting (26) and (28) in (23). This yields
(31).

min
�xt

P rof =
∑

t

(P̃t + �Pt)λ
sale
t −

(
∑

t

P S
t (λ̃S

t + �λS
t )

+
∑

t

∑

i∈I

P B
i,tλ

B
i,t +

∑

t

CSG
t

)
(31)

s.t.

�xtW
−1�xt

′ ≤ α2 (32)

Equations 31 and 32 can be simplified and given by Eq. 33.

min
�xt

P rof =
∑

t

P̃t λ
sale
t −

(
∑

t

P S
t λ̃S

t +
∑

t

∑

i∈I

P B
i,tλ

B
i,t

+
∑

t

CSG
t

)
+ min

�xt

{
∑

t

�Ptλ
sale
t

−
∑

t

P S
t �λS

t : �xtW
−1�xt

′ ≤ α2

}
(33)

Substituting yt = [λsale
t − P S

t ] will give (34).

min
�xt

P rof =
∑

t

P̃t λ
sale
t −

(
∑

t

P S
t λ̃S

t +
∑

t

∑

i∈I

P B
i,t λ

B
i,t

+
∑

t

CSG
t

)
+min

�xt

{
∑

t

�xt yt
′ : �xtW

−1�xt
′ ≤ α2

}
(34)

Using Lagrangian relaxation method for the convex
optimization problem, first-order optimality condition is
obtained as

∇�xt ,μ

{
�xtyt

′ + μ(α2 − �xtW
−1�xt

′)
}

= 0 (35)

where μ is Lagrange multiplier. Derivatives of Eq. 35 result
in

yt
′ − 2μW−1

t �xt
′ = 0 (36)

α2 − �xtW
−1
t �xt

′ = 0 (37)

Simplification of Eqs. 36 and 37 would result in

�xt
′ = 1

2μ
Wtyt

′ and α2 = �xtW
−1
t �xt

′ (38)

Simplifying (38) would result in

α2 = 1

2μ
WtytW

−1
t

1

2μ
Wtyt

′ = 1

4μ2
ytWtyt

′ (39)

Simplifying (39) would result in

1

2μ
= ± α

√
ytWtyt

′ (40)

Equations 38 and 40 can be rewritten as

�xt = ±α
ytWt√
ytWtyt

′ (41)

Equations 39 and 40 can be rewritten as

�xtyt
′ = ±α

√
ytWtyt

′ (42)

Considering negative value from Eq. 42, to evaluate
minimum profit in Eq. 34 as shown in Eq. 43.

min
�xt

P rof =
∑

t

P̃t λ
sale
t −

(
∑

t

P S
t λ̃S

t +
∑

t

∑

i∈B

P B
i,tλ

B
i,t

+
∑

t

CSG
t

)
−

{
α

∑

t

√
ytWtyt

′
}

(43)

Hence, Eq. 43 can be rewritten as shown in Eq. 44.

∑

t

P̃t λ
sale
t −

(
∑

t

P S
t λ̃S

t +
∑

t

∑

i∈I

P B
i,tλ

B
i,t +

∑

t

CSG
t

)

−
{

α
∑

t

√
ytWtyt

′
}

= πc (44)
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Hence, the value of uncertainty α at πc can be defined by
Eq. 45.

α(πc) =

{∑
t

P̃t λ
sale
t −

(∑
t

P S
t λS

t + ∑
t

∑
i∈I

P B
i,t λ

B
i,t + ∑

t

CSG
t

)}
− πc

∑
t

√
ytWtyt

′

(45)

So the maximum value of uncertainty which can be
tolerated to achieve minimum profit πc is given by Eq. 46.

α̂(πc) = max
Qt

{∑
t

P̃t λ
sale
t −

(∑
t

P S
t λ̃S

t + ∑
t

∑
i∈B

P B
i,t λ

B
i,t + ∑

t

CSG
t

)}
− πc

∑
t

√
ytWtyt

′

(46)

Opportunity Function

Opportunity function evaluates the least level of uncertainty
so that profit can be as large as πw [17]. Steps present in
Section “Robustness Function” can be followed to derive
opportunity function. As per Eq. 30, opportunity function
(47) can be derived by positive value of �xtyt

′ and equating

it to πw.

∑

t

P̃t λ
sale
t −

(
∑

t

P S
t λ̃S

t +
∑

t

∑

i∈I

P B
i,tλ

B
i,t +

∑

t

CSG
t

)

+
{

α
∑

t

√
ytWtyt

′
}

= πw (47)

Value of uncertainty horizon α at anticipated windfall
profit πw is defined by Eq. 48.

β(πw) =
πw −

{∑
t

P̃t λ
sale
t −

(∑
t

P S
t λ̃S

t + ∑
t

∑
i∈I

P B
i,t λ

B
i,t+

∑
t

CSG
t

)}

∑
t

√
ytWtyt

′ (48)

Opportuneness is the minimum uncertainty required to
obtain profit as large as πw,which can be defined by Eq. 49.

β̂(πw)=min
Qt

πw−
{∑

t

P̃t λ
sale
t −

(∑
t

P S
t λ̃S

t +∑
t

∑
i∈B

P B
i,t λ

B
i,t+

∑
t

CSG
t

)}

∑
t

√
ytWtyt

′ (49)

Derived robustness function (46) has to be maximized,
whereas opportuneness function (49) has to be minimized
subject to the same set of constraints represented in Eqs. 1 to
21. The values of πc and πw are determined by risk neutral
profit maximization problem posed by Eq. 23, subject to
constraints (1) to (21). The procedure discussed above is
summarized in Fig. 3. Here, ’s’ is step size for which ’n’
values of πc and πw are determined.

Fig. 3 Flowchart describing procedure
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Case Study

The proposed model for a large LSE is illustrated via a case
study. Demand and pool prices for weekend and weekdays
are considered in two sub-cases to analyze LSE’s decision-
making. For medium-term planning period and considering
each hour of a day as a sale price time block, robust and
opportunity strategies are determined and presented.

Data

Historical demand and pool price data from Nord Pool of
West Denmark area are considered for this study [32]. This
data is used to produce predicted values of demand and
pool prices for weekend and weekday (Fig. 4). Bilateral
contracts at fixed price of 31.5 $/MWh and 39 $/MWh,
with maximum trading limits of 1300 MW and 1550 MW
are considered for weekend and weekday, respectively. A
minimum procurement of 10 MW from bilateral contract is
considered for both cases. LSE also has a self-generation
facility of capacity 130 MW. Average sale prices of 40.5$
and 34.5$ for weekday and weekend are considered.

Statistical Calculations

Variance-covariance matrix W is calculated from historical
demand and pool price data for each day of a week
over a season for each t . Positive correlation is observed
between demand and pool price for weekdays, whereas
varying positive and negative correlations are observed for
weekends. Negative correlation indicates that demand and
pool prices vary in opposite direction. Based on these
observations, Monday from weekday and Sunday from the
weekend, are selected for case study to analyze impact of
correlation on LSE’s decision-making. A representation of
covariances in terms of correlation between pool price and
demand is shown in Fig. 5 for weekend and weekdays.

Fig. 5 Correlation between pool price and demand for weekday
(Mon.) and weekend (Sun.)

Simulations

The profit maximization problem is simulated for (23),
subject to constraints (1)–(21), for the considered data.
Based on the predicted value of pool price λ̃S

t and demand
P̃t , optimization provides the maximum possible value
of profit π̃(P̃ , λ̃S). This case shows evaluated decisions
without considering demand and pool price uncertainties,
implying risk-neutral behavior of LSE. Considering this
maximum profit π̃(P̃ , λ̃S), critical profit targets πc and
anticipated windfall gains πw are assumed in small steps.
For robustness function, critical profit targets are considered
less than π̃(P̃ , λ̃S). For opportunity function, anticipated
windfall profits are considered higher than π̃(P̃ , λ̃S).

For each value of critical profit πc and windfall gain
πw, decision variable Qt is obtained by optimizing (46)
and (49), subject to constraints (1)–(21). All the analysis
and simulations are performed separately for weekdays and
weekends.

The three optimization problems are MINLP in nature
and solved using SBB/CONOPT solver under GAMS26.
SBB uses the standard branch and bound algorithm
for node selections. The NLP solver CONOPT utilizes
solution obtained from SBB to optimize NLP problem
[33]. The proposed model for LSE has 265 real and 48

Fig. 4 Demand and pool price
curve for weekday (Mon.) and
weekend (Sun.)
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discrete variables. Simulations are carried out in an Intel®
Core™ i7, 2 GHz processor and 8 GB of RAM system.
Average execution and computation time to solve robust
optimization problems for robustness are 0.253s & 10.31s
and opportuneness are 0.3622s and 10.067s, respectively.

Results

The risk-neutral maximum value of profit π̃(P̃ , λ̃S)

for weekday and weekend obtained by simulations are
304679.45$ and 263705.97$, respectively. These are the
maximum profits that can optimally be attained by LSE. The
relevant quantum of energy procured from the pool, bilateral
contracts, and self-generation are shown in Table 1. Hourly
sale prices obtained are depicted in Fig. 6. The sale prices
follow the trend of pool prices.

For case study, values of πc varying from 304679.45
to 225462.79$ and from 263705.97 to 195142.42$ for
weekdays and weekends, respectively, are considered.
Values of πw that vary from 304679.45 to 457019.19$ and
from 263705.97 to 421929.55$ for weekday and weekends,
respectively, are considered. The results obtained from
simulations for each value of πc and πw for robustness and
opportunity functions are shown collectively in Figs. 7, 8,
9 and 10. Curve on left-hand side of the marker indicates
outcomes related to robustness, and the right ones are
related to opportuneness.

Robust Strategy

Results show that as the value of critical profit target πc

reduces (when it shifts left from the market), obtained
decisions can tolerate higher uncertainties of pool price and
demand (Fig. 7). Hence, robustness of a decision increases
with reduced profit targets. LSE avoids uncertainty by
increasing energy procurement from bilateral contracts and
self-generation, while decreasing procurement from pool to
make a decision robust (left side of Fig. 8). This enhances
expected energy procurement cost, thus reducing expected
profit. Increase in expected cost is due to increase in
involvement of costly procurement options. The variation
between expected cost and targeted profit for different
values of robustness for weekdays and weekends is shown in
Fig. 9. The figure shows that decrease in values of expected
profit reflects the cost to attain robustness. The difference

Table 1 Energy procurement from various sources

Day Bilateral Contracts Pool Self-generation

(MW) (MW) (MW)

Weekday 10850 51047.9 796.08

Weekend 7800 42522 0

Fig. 6 Sale prices for risk-neutral LSE

in slope of robust strategies for weekday and weekend
highlights impact of correlation (Fig. 7). This is due to
positive correlation for weekday and positive and negative
for weekend.

Opportunistic Strategy

Right side of marker in Fig. 7 depicts the opportuneness
curve. Y-axis defines the lowest required level of uncertainty
α at which windfall gain πw (x-axis) is possible. The figure
reflects that value of uncertainty increases with anticipated
profit target. Energy procurement from the pool, bilateral
contracts, and self-generation for weekday and weekend are
depicted in Fig. 8. With increasing anticipated profit πw

energy procurement from pool increases while procurement
from bilateral contracts and self-generation decreases (Right
side of Fig. 8). This happens because high variability is
desired to achieve anticipated profit πw. As pool trading has
high price variations, it possesses high windfall possibility.
Highest uncertainty is obtained when procurement from
bilateral contracts and self generation is minimal (πw=
45 × 104). Figure 8 indicates that procurement from self-
generation and bilateral contracts becomes zero to attain
maximal windfall gain. Figure 9 gives expected cost and
Fig. 10 depicts expected value of profit for weekday and
weekend. This indicates the cost of uncertainty, which
represents that if anticipated deviation does not happen,
expected profit will be less and cost would be higher than its

Fig. 7 Robustness and opportuneness curves for critical and antici-
pated targets
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Fig. 8 Energy procurement
from different sources for (a)
weekday and (b) weekend

(a)

(b)

maximum/minimum values. Highest cost is achieved when
highest robustness is required (extreme left of Fig. 9) or
when high opportunity is required (Extreme right of Fig. 9).
Corresponding profits for these instances can be seen in
Fig. 10. The difference in slope of opportunistic strategies
for weekday and weekend highlights impact of correlation
(Fig. 7). This is due to positive correlation for weekday and
positive and negative for weekend.

For robustness and opportuneness, the dynamics of sale
prices offered to the consumers is indicated in Fig. 11a.
For robustness, high sale prices are offered during peak

Fig. 9 Expected cost for weekend and weekday

hours to cope with increased cost experienced due to
increased procurement from fixed cost sources (bilateral
contracts and self-generation). However, low sale prices
are offered for opportunistic case during peak hours, as
procurement from pool increases to exploit opportunity due
to uncertainty. Low volatility in pool prices is experienced
during hours 10 to 16; hence high and low sale prices
are offered for opportuneness and robustness, respectively.
This observation indicates that contrasting sale prices

Fig. 10 Expected profit for different targeted profit for critical and
anticipated targets
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(a)

(b)

Fig. 11 Hourly sale price for (a) weekdays and (b) weekends

are a consequence of LSE’s risk-averse and risk-seeking
behavior. It is worth to note here that consumer demand is
considered inelastic.

The dynamics of sale prices offered for robustness (or
opportuneness) case over weekend (Fig. 11b) differs from
that offered for weekdays (Fig. 11a). Correlation between
pool price and demand characteristics impacts sale prices
obtained for robustness and opportuneness. Correlation is
positive for weekdays over 24 hours while for weekend it
is negative at certain hours (Fig. 5). For the hours when
correlation is negative (Hour 11 to 17 and 19 to 23),
both uncertainties compensate each other’s impact; hence
overall impact would be less as compared to situations when
correlation is positive. Therefore, sale prices are adjusted in
a way to exploit maximum robustness and opportuneness.

Impact of Demand Uncertainty

Figure 12 indicates robustness and opportuneness curves
considering (i) pool price uncertainty alone and (ii) pool
and demand uncertainties together. Dotted line represents
robustness and opportuneness curves considering both
uncertainties. Solid line represents these curves when
only pool price uncertainty is considered. The dotted
curve lies above solid line curve, representing that for
considered profit targets, tolerance for uncertainty is more
when both the uncertainties are considered, than without
considering demand uncertainty. Hence consideration of
demand uncertainty helps to increase decision robustness.
However, in case of opportuneness, for certain anticipated

Fig. 12 Impact of demand uncertainty on robustness and opportune-
ness curves

profit, higher uncertainty is required to achieve the same.
This is because uncertain variations in demand and pool
prices compensate each other’s impacts. Hence, demand
uncertainty consideration is inevitable to achieve prudent
decision-making for LSE. It is worth to note here that results
are reflective of specific data set and their nature would vary
depending upon market conditions.

Conclusions

The paper proposes a novel framework for LSE’s profit
maximization, considering demand and pool price uncer-
tainties. The novelty of the work lies in modeling the
correlation of demand and pool prices with their uncertain-
ties, using ellipsoid-bound info-gap model. Risk-averse and
risk-seeking behavior of LSE is modeled by robustness and
opportuneness functions to achieve targeted profit. The pro-
posed model is illustrated via a case study conducted for
weekdays and weekends. The important results obtained
from the proposed work are (1) Decisions for a risk-averse
LSE, its decision become robust with lower profit targets,
as tolerance for uncertainty increases. (2) High windfall
profits are attained when large uncertainties are there in
the uncertain parameters. (3) When correlation is positive
and negative during certain periods of a day, it compen-
sate for each other’s impact. (4) Impact of correlation on
decisions is less when it is varying between positive and
negative than when it is positive for each period of a day.
(5) Tolerance of uncertainty increase when both price and
demand uncertainties are considered (6) Consideration of
the two uncertainties in a single framework helps to improve
robustness of LSE’s decisions.

This work is helpful for LSE with a large demand.
However, decisions of LSE with comparatively small
demand would minimally benefit from the proposed
work. This work can be extended to analyze the impact
of renewable energy sources and energy storage on
LSE’s decisions for profit maximization. Techno-economic
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aspects of a distribution company can be analyzed.
Moreover, various consumer classes’ demand could be
considered to determine strategies targeting that class.
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