Skip to main content
Log in

Numerical Simulation of Coronary Artery Stenosis Before and After Stenting

  • Original Article
  • Published:
Journal of Medical and Biological Engineering Aims and scope Submit manuscript

Abstract

This study simulates the effect of stenting in an image-based coronary model. Three-dimensional models of the coronary artery were created from computed tomography images of a coronary artery stenosis patient before and after stent implantation, and a realistic aorto-coronary differential pressure was imposed at the inlet of the computational vessels. The results show that the stent increased the flow rate several fold compared to that for the stenosis artery model, and that the hemodynamic values returned to near normal levels in the coronary artery model fitted with a stent. The results confirm that stenting significantly improves the hemodynamics of the artery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Davies, P., Shi, C., DePaola, N., Helmke, B., & Polacek, D. (2001). Hemodynamics and the focal origin of atherosclerosis. A spatial approach to endothelial structure, gene expression, and function. Annals of the New York Academy of Sciences, 947, 7–16.

    Article  Google Scholar 

  2. Vernhet, H., Demaria, R., Oliva-Lauraire, M. C., Juan, J., Senac, J. P., & Dauzat, M. (2001). Changes in wall mechanics after endovascular stenting in rabbit aorta: comparison of three diffierent stent designs. American Journal of Roentgenology, 176, 803–807.

    Article  Google Scholar 

  3. Vernhet, H., Juan, J. M., Demaria, R., Oliva-Lauraire, M. C., Senac, J. P., & Dauzat, M. (2000). Acute changes in aortic wall mechanical properties after stent placement in rabbits. Journal of Vascular and Interventional Radiology, 11, 634–638.

    Article  Google Scholar 

  4. Rolland, P. H., Charifi, A. B., & Verrier, C. (1999). Hemodynamics and wall mechanics after stent placement in swine illiac arteries: Comparative results from six stent designs. Radiology, 213, 229–246.

    Article  Google Scholar 

  5. Torii, R., Oshima, M., Kobayashi, T., Takagi, K., & Tezduyar, T. E. (2007). Influence of wall elasticity in patient-specific hemodynamic simulations. Computers & Fluids, 36, 160–168.

    Article  MATH  Google Scholar 

  6. Takizawa, K., Schjodt, K., Puntel, A., Kostov, N., & Tezduyar, T. E. (2012). Patient-specific computer modeling of blood flow in cerebral arteries with aneurysm and stent. Computational Mechanics, 50, 675–686.

    Article  MathSciNet  MATH  Google Scholar 

  7. Fu, W., Gu, Z., Meng, X., Chu, B., & Qiao, A. (2010). Numerical simulation of hemodynamics in stented internal carotid aneurysm based on patient-specific model. Journal of Biomechanics, 43, 1337–1342.

    Article  Google Scholar 

  8. Attili, A. K., & Cascade, P. N. (2006). CT and MRI of coronary artery disease: evidence-based review. AJR. American Journal of Roentgenology, 187, S483–S499.

    Article  Google Scholar 

  9. Ene-Iordache, B., Mosconi, L., Remuzzi, G., & Remuzzi, A. (2001). Computational fluid dynamics of a vascular access case for hemodyalsis. Journal of Biomechanical Engineering, 123, 284–292.

    Article  Google Scholar 

  10. van Langenhove, G., Wentzel, J. J., Krams, R., Slager, C. J., Hamburger, J. N., & Serruys, P. W. (2000). Helical velocity patterns in a human coronary artery. A three-dimensional computational fluid dynamic reconstruction showing the relation with local wall thickness. Circulation, 102, e22–e24.

    Article  Google Scholar 

  11. Perktold, K., Hofer, M., Rappitsch, G., Loew, M., Kuban, B. D., & Friedman, M. H. (1998). Validated computation of physiologic flow in a realistic coronary artery branch. Journal of Biomechanics, 31, 217–228.

    Article  Google Scholar 

  12. Steinman, D. A. (2002). Image-based CFD modeling in realistic arterial geometries. Annals of Biomedical Engineering, 30, 483–497.

    Article  Google Scholar 

  13. Holzapfel, G., Stadler, M., & Schulze-Bauer, C. (2002). A layer-specific three-dimensional model for the simulation of balloon angioplasty using magnetic resonance imaging and mechanical testing. Annals of Biomedical Engineering, 30, 753–767.

    Article  Google Scholar 

  14. Kiousis, D., Gasser, T., & Holzapfel, G. (2007). A numerical model to study the interaction of vascular stents with human atherosclerotic lesions. Annals of Biomedical Engineering, 35, 1857–1869.

    Article  Google Scholar 

  15. Gijsen, F., Migliavacca, F., & Schievano, S. (2008). Simulation of stent deployment in a realistic human coronary artery. Biomedical Engineering Online, 7, 23.

    Article  Google Scholar 

  16. Berger, S. A., Goldsmith, W., & Lewis, E. R. (1996). Introduction to bioengineering. New York: Oxford University Press.

    Google Scholar 

  17. Gould, K. L. (1978). Pressure-flow characteristics of coronary stenoses in unsedated dogs at rest and during coronary vasodilation. Circulation Research, 43, 242–253.

    Article  Google Scholar 

  18. Gould, K. L., Lipscomb, K., & Hamilton, G. W. (1974). Physiologic basis for assessing critical coronary stenosis. Instantaneous flow response and regional distribution during coronary hyperemia as measures of coronary flow reserve. American Journal of Cardiology, 33, 87–94.

    Article  Google Scholar 

  19. Piek, J. J., Boersma, E., & di Mario, C. (2000). Angiographical and Doppler flow-derived parameters for assessment of coronary lesion severity and its relation to the result of exercise electrocardiography. DEBATE study group. Doppler Endpoints Balloon Angioplasty Trial Europe. European Heart Journal, 21, 466–474.

    Article  Google Scholar 

  20. Ku, D. N., Giddens, D. P., Zarins, C. K., & Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis, 5, 293–302.

    Article  Google Scholar 

  21. Botnar, R., Rappitsch, G., Scheidegger, M. B., Liepsch, D., Perktold, K., & Boesiger, P. (2000). Hemodynamics in the carotid artery bifurcation: a comparison between numerical simulations and in vitro MRI measurements. Journal of Biomechanics, 33, 137–144.

    Article  Google Scholar 

  22. Ethier, C. R., Steinman, D. A., Zhang, X., Karpik, S. R., & Ojha, M. (1998). Flow waveform effects on end-to-side anastomotic flow patterns. Journal of Biomechanics, 31, 609–617.

    Article  Google Scholar 

  23. Hughes, P. E., & How, T. V. (1995). Flow structures at the proximal side-to-end anastomosis. Influence of geometry and flow division. Journal of Biomechanical Engineering, 117, 224–236.

    Article  Google Scholar 

  24. Hyun, S., Kleinstreuer, C., & Archie, J. P. (2000). Hemodynamics analyses of arterial expansions with implications to thrombosis and restenosis. Medical Engineering & Physics, 22, 13–27.

    Article  Google Scholar 

  25. Zhao, S. Z., Xu, X. Y., Hughes, A. D., Thom, S. A., Stanton, A. V., Ariff, B., & Long, Q. (2000). Blood flow and vessel mechanics in a physiologically realistic model of a human carotid arterial bifurcation. Journal of Biomechanics, 33, 975–984.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Hu, R. & Gao, F. Numerical Simulation of Coronary Artery Stenosis Before and After Stenting. J. Med. Biol. Eng. 35, 528–534 (2015). https://doi.org/10.1007/s40846-015-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40846-015-0058-z

Keywords

Navigation