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Bio-inspired hydrogel-based bandage with robust adhesive and
antibacterial abilities for skin closure
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ABSTRACT Although conventional suturing techniques are
commonly used in assisting wound closure, they do pose
limited conduciveness and may lead to secondary injury to
wound tissues. Inspired by marine organism mussels, we de-
signed and manufactured a bio-inspired hydrogel-based ban-
dage with tough wet tissue adhesion to substitute traditional
surgical suture, accelerate wound healing and avoid infection.
Poly(γ-glutamic acid) was modified with 3,4-dihydroxy-
phenylalanine and glycidyl methacylate, then introduced into
the acrylic acid-co-acrylamide hydrogel matrix with robust
mechanical properties. The hydrogel bandage showed strong
chemical linkage adhesion (70 ± 2.1 kPa), which is 2.8 times
that of commercial tissue adhesive fibrin glue (25 ± 2.2 kPa).
The hydrogel bandage can not only maintain the self-stability,
but is also capable of self-tuning adhesive strength in the range
of 14–70 kPa to achieve different adhesion effects by tuning
constituent ratio. The bandage has desirable compression
properties (0.7 ± 0.11MPa) and tensile elongation (about 25
times), which ensures its resistance to damages, especially in
joint spaces. Secondly, the bandage was endowed with anti-
oxidant and endogenous broad-spectrum antibacterial prop-
erties with its catechol structure. Results also demonstrated
excellent cell compatibility and blood compatibility, certifying
its eligible biological safety profile. In a rat full-thickness cu-
taneous deficiency model, we can clearly observe that the
bandage possesses the ability to promote wound healing (only
need 6 days). Above all, this research provides a new strategy
for the emergency treatment of liver hemostasis and myo-
cardial repair during disaster rescue.

Keywords: hydrogel-based bandage, adhesion, antibacterial,
antioxidant, skin closure

INTRODUCTION
Skin is the very first barrier of the human body; once damaged,
skin and its underlying soft tissue will initiate various types of
inflammatory responses to ward off bacterial infection [1], and
induce granulation tissue formation [2]. However, granulation
tissue has low tensile strength, which can lead to wound tear
under stress [1]. At present, the gold standard for wound closure

is achieved by primary intention such as suturing and stapling
[1,3]. Although the above wound closure strategy can effectively
achieve skin wound closure and skin incision sealing, there are
many problems with the traditional surgical suture strategy,
including the need for anesthesia [3], secondary wound injury,
wound infection [4], longer healing time [5], and significant scar
formation [2], which is not conducive during disaster scenarios,
emergency rescue, and post-traumatic recoveries [1,6,7]. There
is an urgent need to develop a new type of tissue adhesive for
first aid, with the goals of reducing bacterial infection, free
radical production and wound healing time [8].

With the recent breakthrough in the development of biome-
dical materials, a number of tissue adhesives have been used in
auxiliary wound closure therapy, replacing the need for surgical
sutures [1]. The latest clinical biological adhesives mainly
include fibrin glue [9], cyanoacrylate glue [10,11], and serum
albumin/glutaraldehyde [12]. Although they all can assist in
tissue closure, their adhesion abilities are limited due to failure
to maintain dry wound surfaces. Research has also shown that
these adhesives often lead to longer wound healing span and
higher infection rates due to poor mechanical properties, sig-
nificantly limiting their clinical application [13,14]. In response
to the above problems, a variety of hydrogel tissue adhesives
(polyethylene glycol [15], alginate [16], acrylic acid (Aa) and
other composite hydrogel tissue adhesives) have been researched
and developed [17–20], which effectively enhanced the adhesion
of the tissue interface and reduced the phase transformation
time of the hydrogel. However, due to the complex preparation
system and mechanical deformation caused by limb movement,
it is difficult to ensure a stable connection between the adhesives
and the skin interface [5,9]. Therefore, tissue adhesives with
superior performance are needed to effectively achieve tissue
adhesions and avoid interference of mechanical activities.

In nature, marine organisms such as mussels can firmly
adhere to the surface of various organic and inorganic sub-
stances through the secretion of byssus in the body even in
humid, dynamic, and saline-alkaline marine environments
[21–23]. Studies have shown that the excellent adhesion prop-
erties of mussels come from the mussel adhesive protein of foot
silk [21]. At present, six kinds of adhesion proteins have been
identified from mussel foot silk, and each of them contains dopa
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amino acids [24–26]. As their functional group, catechol can
interact with various surfaces through multiple molecular
interactions [27], including non-covalent interaction (hydrogen
bond, π-hydrogen bond stacking, quinone hydrogen charge
transfer complexation, etc.) and covalent anchoring interaction
(Michael addition, aromatic copolymerization, etc.) to achieve
broad-spectrum and high-strength interface bonding
[22,23,28,29], which provides a new idea for designing tissue-
integrated hydrogels with excellent performance. However, the
problem of microbial invasion caused by the weak integration
between the hydrogel and wound, and the wound infection
caused by the bacterial incubated in moist wound environment
urgently need to be addressed [13,22,30]. In recent years, most
solutions are based on hydrogel as the carrier to deliver anti-
bacterial or silver nanoparticles [31–33]. However, inadequate
stewardship of antibiotics can lead to antibiotics resistance, and
the safety of silver ions is not clear [4,34]. Therefore, there is an
urgent need to develop a hydrogel with high efficiency and
endogenous antibacterial properties, good biocompatibility, tis-
sue integration and mechanical properties.

Herein, based on the bionic strategy of mussels, poly(γ-glu-
tamic acid) (γ-PGA) was functionally modified with 3,4-di-
hydroxyphenylalanine (DA) and glycidyl methacrylate (GMA)
to prepare and develop poly(amino acid) hydrogel-based ban-
dage with tough mechanical properties and eligible biocompat-
ibility. It has the capacities to assist in tissue integration while
reducing infection and oxidative damages. It can also be used as
a skin regeneration scaffold to recruit autologous cells (especially
stem cells) and achieve rapid skin healing [4]. γ-PGA is a type of
natural polymer material with commendable biocompatibility
[35,36]. In previous work, we have proved that γ-PGA has the
potential to promote wound healing, cellular adhesion, migra-
tion and differentiation. Optimization to wet tissue adhesion of
hydrogel-based bandage is the main goal of this study, since the
adhesion of wet tissue is a hot spot but difficult task of current
research. In this study, GMA was introduced to improve the
cohesion of the hydrogel-based bandage, and balance its adhe-
sion strength and structural stability on the micro scale. We also
explored the biological properties of liquid bandage by evalu-
ating its biological safety, antibacterial properties, antioxidant
properties and skin healing properties. Our findings provide a
new solution and strategy for stat control of liver hemostasis and
myocardial repair in emergent scenarios.

RESULTS AND DISCUSSION

Preparation and characterization of γ-PGA-DA-GMA
Inspired by the mussel, various functionalized hydrogel adhe-
sives based on the catechol group have been developed to cope
with the combination of tissue interfaces under wet conditions.
In view of this, we designed and prepared a broad-spectrum
antimicrobial hydrogel-based bandage for wet tissue adhesion.
For the sake of the integration of the interface, we introduced
DA into the γ-PGA chains with creditable biocompatibility in
the presence of 1-ethyl-3-(3-dimethylaminopropyl-carbo-
diimide) hydrochloride (EDC)/N-hydroxysuccinimide (NHS), to
provide a stable and tough wet tissue adhesion for the hydrogel.
The synthesis route is shown in Fig. S1. The 1H nuclear magnetic
resonance (NMR) spectrum (Fig. 1c) shows the catechol
absorption peak of γ-PGA-DA at 6.5–7.2 ppm, which indicates
the binding of DA to the main chain of γ-PGA. Compared with

unmodified γ-PGA, both γ-PGA-DA and DA have obvious
absorption peaks at 280 nm in the ultraviolet-visible (UV-Vis)
wavelength scanning (Fig. 1d), which further confirms the suc-
cessful modification with DA [22,23,37]. At the same time, we
continued to introduce double-bond groups into the polymer
chain, to enhance the cohesive force of the network and rein-
force the adhesive strength and stability of the liquid bandage
through the covalent bonding with GMA. The 1H NMR spec-
trum of γ-PGA-DA-GMA shows the characteristic absorption
peak of the double bond at 5.5–6.2 ppm, which verifies the
successful modification with GMA [29,38].

Preparation and characterization of hydrogels
Different concentrations of γ-PGA-DA-GMA were copolymer-
ized with Aa and acrylamide (Am) monomers to construct
hydrogels (γ-PDM). Schematic diagrams of hydrogel formation
are shown in Fig. 1a, e. In order to achieve the intelligent
response of hydrogel-based bandages, photoinitiators were used
to realize the conversion of solution to gel of the polymer under
UV irradiation (Fig. 1b). Gelation time is the linchpin to the
production process and clinical application, which should be
short enough to ensure the convenience [18,39–42]. The vial
inversion method was adopted to evaluate the effect of Am and
γ-PGA biopolymer with a series of contents on the gelation time
(Fig. 2a). The results showed that all samples could be cross-
linked under UV irradiation of 365 nm (2–30min), and the
gelation time could be shortened from 15 ± 0.60 to 2 ± 0.19min
(Am = 10%) with the increasing concentration of Am. However,
with the addition of γ-PGA-DA, the gelation time was extended
to 30 ± 1.3min. This is mainly because the catechol group has
certain antioxidant capacity. Therefore, with the introduction of
DA, the double-bond free radicals produced by UV light will be
quenched partly. On the other hand, because γ-PGA is a flexible
chain, it will hinder the polymerization of small molecules of Aa
and Am, thus prolonging the gelation time of hydrogels. In
order to reduce this adverse effect, γ-PGA-DA-GMA was pre-
pared. With the increase of γ-PGA concentration, the gelation
time was shortened to 2 (± 0.66)–5.6 (± 0.67)min, which pre-
ferably meets the goal. The differences were possibly attributed
to the introduction of double bonds which could build a
“bridge” for the polymerization of small molecules and accel-
erate the gelation process, weakening the free radical quenching
caused by the existence of γ-PGA-DA, which manifests its
potential as a candidate for tissue adhesive.

Evaluation of the mechanical properties of hydrogels
Hydrogel-based bandages are usually exposed to the risk of
being damaged. In this study, the mechanical properties of
hydrogels were evaluated by testing their compression and
tensile strengths. The experimental results demonstrated that the
increase of the Am concentration increased the compression
modulus (Fig. 2e and Fig. S2a) to 1.66 ± 0.15 MPa, but the
addition of γ-PGA-DA decreased the compression modulus to
0.2 ± 0.14 MPa (Fig. 2f). The possible reason for this behavior is
as follows: with the introduction of the γ-PGA-DA polymer, the
double-bond free radicals generated by UV irradiation were
consumed, and the polymerization of the small molecules of Aa
and Am was blocked, thus reducing the modulus of compres-
sion, which is consistent with the prolongation of the gelation
time. Similarly, double bonds were chosen to solve this problem.
The results showed that this modification could effectively avert
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Figure 1 Design, preparation, and characterization of the adhesive hydrogels. (a) Schematic diagram of the chemical modification of γ-PGA. (b) Schematic
diagram of the UV curing of adhesive hydrogels. (c) 1H NMR and (d) UV-Vis of the as-synthesized polymers. (e) Schematic diagram of the UV curing
principle of the adhesive hydrogels.
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the drawback of low crosslinking density compared with the
system without double bonds, and the compression modulus
increased significantly to 0.7 ± 0.11 MPa. Likewise, the
decreasing trend of the compression modulus attributed to the
restriction of polymer chains clearly slowed down. The tensile
property test also presented the same tendency (Fig. 2g–i and
Fig. S2b). The significant improvement in the mechanical
properties is considered to be a result of the cohesive force
enhancement of the hydrogel system. Besides, the catechol and
carboxyl groups of the modified γ-PGA chain can also form
intermolecular interactions, such as high-density intermolecular
hydrogen bonds and π–π stacking interaction, which improve
the internal stability of the γ-PDM hydrogels [16,28,40]. Finally,
to have some insight into the influence of intermolecular and
intramolecular interactions on cohesion, rheological tests were
further performed. As shown in Fig. 2j, k, the storage modulus of

γ-PDM hydrogels notably increased compared with that of γ-
PDA hydrogels. The cyclic strain time sweep (Fig. 2l and
Fig. S2c) reveals that all the samples exhibited a certain degree of
recovery under the shear stress of 10%–500%, which provided
convenience for later practical applications [5,28,43]. Further-
more, the experiments have shown that the concentration of γ-
PGA biopolymer can be regulated to respond to various stresses;
moreover, it shows rapid and complete structural recovery when
the stress is removed (Movie S1). This can be explained by the
presence of Aa and Am copolymerization in acrylate hydrogel so
that the system has strong compression and tensile properties.
Even in the presence of the γ-PGA-DA polymer chain, the
mechanical properties of the entire system are not impacted
significantly when double bonds are introduced in the γ-PGA-
DA polymer chain. The aim is to avoid the damage of the
mechanical modulus of acrylate by the γ-PGA polymer chain

Figure 2 Characterization of the mechanical properties of the γ-PGA hydrogels. (a) Transition from the sol state of γ-PGA hydrogels to the gel state. UV
curing times of (b) simple acrylic ester hydrogels and (c) γ-PGA hydrogels. (d) Schematic diagram of the compression experiment and compressive modulus
of (e) simple acrylic ester hydrogels and (f) the γ-PGA hydrogels. (g) Schematic diagram of the tensile experiment and tensile properties of (h) simple acrylic
ester hydrogels and (i) the γ-PGA hydrogels. Rheological properties of the γ-PGA hydrogels, (j) stress sweep, (k) frequency sweep, and (l) cyclic strain time
sweep. γ-PDA hydrogels is the abbreviation of hydrogels prepared by combining γ-PGA-DA, Aa, and Am.
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through the improvement in the system cohesion. The results all
confirmed that the γ-PDM hydrogel has the advantage of
mechanical performance.

Characterization of the adhesion ability of hydrogels
The tissue adhesive properties of γ-PDM hydrogels were further
investigated. First, it was confirmed that γ-PDM hydrogels have
a similar adhesion pattern to mussel foot byssus (Fig. 3a), pro-
viding a certain adhesive strength for the integration of the wet
tissue interface. In practical application, the joint is not easy to
adhere to and easily falls off. Therefore, there is high demand for
improving the wound bandage’s adhesion ability. Thus, the
liquid bandage was pasted on the joints of the fingers, adhering
firmly to the skin even if the fingers repeatably bend and extend,
which demonstrates its good adaptability and adhesion (Fig. 3b
and Movie S2). The present study indicates that Aa can be
bridged to the tissue interface through multiple hydrogen bonds.
At the same time, catechol components can form stable chemical

covalent bonds with various groups such as amino and thiol
(Fig. 3c). Additionally, the benzene ring components can con-
tribute to the tough adhesion through π-π stacking and cation-π
physical interactions, eventually realizing the close combination
of soft tissues [16,18,19,44]. Subsequently, the adhesion prop-
erties of porcine skin were evaluated. As can be seen from
Fig. 3d–f, with the increase of γ-PGA-DA content, the adhesion
performance increased firstly but then dropped. The 2% γ-PDA
hydrogels showed the best adhesion strength, reaching
64 ± 2.3 kPa. All groups showed an improved strength to the
mere acrylic ester hydrogels (14 ± 1.1 kPa). Therefore, the
relationship between adhesion strength and cohesion of hydro-
gels was investigated by introducing double bonds [28,36,45].
The results showed that γ-PDM hydrogels exhibited a higher
adhesion than fibrin glue (25 ± 2.1 kPa). γ-PDA hydrogels also
showed good adhesion but had no significant advantage com-
pared with γ-PDM hydrogels (70 ± 2.1 kPa). The adhesion
strength of γ-PDM hydrogels could also be approximately

Figure 3 Evaluation of the in vitro adhesive performance of the γ-PGA hydrogels. (a) Adhesion behavior of the γ-PGA hydrogels. (b) Demonstration of the
excellent tissue adhesion ability of the γ-PGA hydrogels. (c) Adhesion mechanism of the adhesive γ-PGA hydrogels. (d) Schematic diagram of the adhesion
test of the γ-PGA hydrogels. Comparison of the adhesion strengths of (e) γ-PGA hydrogels with different γ-PDA concentrations and (f) adhesion strengths of
different hydrogels. (g)Photographs of the adhesive hydrogels adhered to different tissues (e.g., heart, lung, spleen, liver, and kidney from rat).
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2.8 times that of commercial fibrin glue, confirming that the
introduction of double bonds not only has no limit to the
adhesion of γ-PDM hydrogels but also slightly improved it. This
is the synergistic effect of cohesion and adhesion of the hydrogel
system. Finally, the adhesion ability of various soft tissues was
evaluated, revealing that γ-PDM hydrogels have good adhesion
to the soft tissues of the heart, liver, spleen, lung, and kidney in
mice (Fig. 3g). Simultaneously, a new type of tissue adhesive
apparatus was prepared using a γ-PDM hydrogel-assisted chain
apparatus (Fig. 5b and Movie S3) and demonstrated better
adhesion behavior. In a word, the enhancement of the internal
cohesion was observed; hydrogels not only improved adhesion
but also improved the mechanical properties, allowing more
suitable clinical applications.

Characterization of the antioxidant ability of hydrogels
In the period of wound healing, the production of a great
number of free radicals seriously hinders the speed of wound
healing. Therefore, the evaluation of the hydrogel dressing’s
ability to scavenge free radicals is crucial for reducing oxidative
damages in the 3D microenvironment of skin tissue [24,46,47].
The antioxidant capacity of hydrogels was further evaluated by
testing the 1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-
(2,4,6-trinitrophenyl)hydrazyl (DPPH) scavenging capability. As
showed in Fig. S3, by decreasing the γ-PGA-DA content, the

scavenging rate of DPPH was up to 89.65% ± 4.98%. This is
mainly because DA is a type of polyphenol compound; its
phenolic hydroxyl can directly act on free radical-related
enzymes to achieve the purpose of scavenging free radicals.
Furthermore, through the synergistic effect with PGA, it can
achieve a good antioxidant effect, suggesting that hydrogels can
accelerate wound healing by inhibiting the production of free
radicals in wound tissue, which indicates great potential in the
application for skin dressing and other aspects.

Assessment of the biological safety ability of hydrogels
Excellent biocompatibility is also a prerequisite for the efficient
use of tissue adhesives. Therefore, the 3-(4,5-dimethyl-2-thia-
zolyl)-2,5-diphenyl tetrazolium bromide (MTT) test (Fig. 4a)
and live/dead stain evaluation (Fig. 4b) were used to evaluate the
in vitro cytotoxicity of hydrogels. The cell viability of all groups
was higher than 80% after incubation in γ-PDM hydrogels-
conditioned medium for 1, 2, and 3 days, respectively. We
speculate the decline in cell viability is due to the presence of Aa
residues in the system on the one hand, and the presence of
catechol groups on the cell membrane on the other hand, which
leads to apoptosis of some cells. However, the system poly-
glutamic acid with excellent biocompatibility can improve the
cell function and increase the cell viability, so the cell viability
was maintained above 80%. It can be seen from the staining

Figure 4 Evaluation of the in vitro biological performance of the adhesive γ-PGA hydrogels. (a) MTT test. (b) Live/dead stain evaluation of L929 cell.
(I, II) DMEM; (III, IV) γ-PDM hydrogels. (c) Antibacterial rate for E. coli and S. aureus. (d) Inhibition zone method to evaluate the inhibition rate for E. coli
and S. aureus. (I, II) Acrylic ester hydrogels; (III, IV) γ-PDM hydrogels. Live/dead stain evaluation of E. coli and S. aureus. (e) (I, II) Acrylic ester hydrogels;
(III, IV) γ-PDM hydrogels. SEM evaluation of the micromorphology of E. coli and S. aureus. (f) (I, II) Acrylic ester hydrogels; (III, IV) γ-PDM hydrogels.
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pictures that the cells thrived and have the morphology of living
cells (green). Meanwhile, compared with the culture medium of
Dulbecco’s modified eagle medium (DMEM), there was no
significant difference in cell growth (Fig. 4b). This also indicated
the superior cytocompatibility of γ-PDM hydrogels [48]. We
continued to evaluate the blood compatibility of hydrogels. The
results showed that (Fig. S4), compared with acrylic ester
hydrogels, γ-PDA and γ-PDM showed better blood compat-
ibility with hemolytic rates <5% [1,17,49]. All these results
confirmed that γ-PDM hydrogels have higher biosecurity and
clinical potentials for tissue repair and wide market prospects.

Evaluation of the antibacterial properties of hydrogels
The bacterial infection leads to the accumulation of exudate and
the delay of the healing process. Desirable wound dressing
should have excellent endogenous antibacterial activity, which
can effectively avoid not only bacterial resistance but also anti-
biotics misuse. In this study, the antibacterial activity of
hydrogels on E. coli and S. aureus was evaluated by the in vitro
antibacterial activity test. The experimental results revealed that
the γ-PDM hydrogels had commendable activity against E. coli
(88.6% ± 4.25%) and S. aureus (70.98% ± 4.25%), exhibiting
stronger bacteriostatic ability against E. coli (Fig. 4c). The
experimental results of the inhibition zone (Fig. 4d) also con-
firmed that the bacteriostasis of γ-PDM hydrogels increased
significantly compared with that of acrylic ester hydrogels. The
inhibition radius of E. coli and S. aureus increased from 1.82 ±
0.22 and 1.53 ± 0.41 cm to 2.65 ± 0.28 and 2.11 ± 0.62 cm
(Table S1), respectively. The live/dead staining experiment of
bacteria directly showed the effect of γ-PDM hydrogels on these
two bacteria (Fig. 4e). For the scanning electron microscopy
(SEM) image (Fig. 4f), it can be clearly seen that after applying

γ-PDM hydrogels, the bacterial surfaces changed from smooth
and full to wrinkle or even dry to shrunken. The excellent
antibacterial ability of the hydrogel is mainly due to the presence
of the catechol functional group in the system, which can
effectively act on the bacterial cell membrane, causing the bac-
terial cell membrane rupture and cytoplasm outflow, thereby
achieving the sterilization effect. Moreover, the phenolic
hydroxyl group of the catechol can also change the cell meta-
bolism of microorganisms and easily bind to the active part of
the enzyme, achieving the purpose of sterilization. Moreover,
this endogenous antibacterial effect can ensure that there is no
need to introduce other antibacterial reagents into the system to
achieve antibacterial performance, which can effectively prevent
the abuse of antibiotics and avoid the production of resistant
bacteria [50,51].

Skin healing experiment in vivo
To further evaluate the healing performance of the hydrogel-
based bandage on skin incision (Fig. 5a), a minimally invasive
medical device was prepared and used to evaluate the healing
efficiency of the skin incision model (Fig. 5b). Compared with
the control group (Fig. 5c), the wound healing rate of the skin
incision in the non-contact auxiliary healing instrument was
significantly faster (6 days). Histological examination (Fig. 5d)
was used to evaluate the quality of the new tissue in the
experimental group applied with γ-PDM hydrogels. The results
of hematoxylin-eosin (H&E) and Masson staining showed that
the granulation and epithelial tissues were formed on the sixth
day of the experiment group, and no obvious difference between
the new skin tissue and the original skin tissue was observed.
However, the control group clearly did not heal completely,
exhibiting limited granulation and immature epithelial tissues.

Figure 5 Evaluation of the in vivo adhesion performance of the adhesive γ-PGA hydrogels. (a) Schematic diagram of adhesion in vivo. (b) Schematic
diagram of the adhesion behavior of the γ-PGA hydrogels. (c) Evaluation of the skin repair performance of the γ-PGA hydrogels at (I, II) 0 and (III, IV) 6
days. (d) H&E and Masson staining images of the wound healing sites on the 6th day after the treatment.
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In short, γ-PDM hydrogels can effectively promote wound
healing and induce the regeneration of tissue [52,53].

CONCLUSION
In conclusion, a new type of skin non-invasion healing device
based on γ-PGA was designed and prepared, which achieved
robust adhesion properties and inherent antibacterial and anti-
oxidant properties. The adhesive was also endowed with the
function of effectively and rapidly promoting skin wound
healing. First, γ-PGA-DA-GMA was incorporated into the
acrylic Aa-co-Am hydrogel matrix to bridge the γ-PGA polymer
chains with the monomers of Aa and Am through the bonding
of double bonds. This process enhanced the cohesive force of γ-
PDM hydrogels. These improvements proved to be effective in
improving its adhesion on the skin surface and tissue interface.
Additionally, γ-PDM hydrogels were used to repair skin inci-
sions in vivo to replace conventional surgical sutures. The results
proved that the γ-PDM hydrogels could firmly adhere to the
skin tissue. Cooperating with the zipper system, it could achieve
wound closure without trauma, accelerating the process of
wound healing (6 days). Given this, we reckon that the hydrogel
bandage adequately showed the broad spectrum of adhesion
properties in the evaluation of wet soft tissue adhesion test and
can be widely used in the fields of liver hemostasis, heart repair,
plugging of blood vessels, organs, etc. It paves a new path and
provides a new strategy for the current clinical operation pro-
blems, which has far-reaching significance during a surgical
emergency.
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基于生物仿生策略的高性能皮肤拉链的制备及其抗
菌性能研究
王鹏辉1†, 蒲雅婕1†, 任延瀚4, 刘帅3, 杨荣1, 谭小燕1,2, 张文杰1,
史天琪1, 李霜1, 迟波1,2*

摘要 传统的缝合技术易导致伤口组织继发性损伤, 不利于皮肤伤口
愈合. 受海洋生物贻贝的启发, 我们设计并构筑了一种具有湿组织黏附
性能的仿生水凝胶绷带, 以替代传统的外科缝线, 加速伤口愈合, 防止
感染. 首先, 将3,4-二羟基苯丙氨酸和甲基丙烯酸缩水甘油酯改性的γ-
聚谷氨酸引入到力学性能良好的丙烯酸酯水凝胶基质中, 构建具有优
异压缩性能(0.7 ± 0.11 MPa)和拉伸强度(约25倍)的水凝胶绷带, 以规
避其在肢体运动过程中(尤其是关节部位)受到损坏. 此外, 水凝胶绷带
显示出良好的组织黏合性能(70 ± 2.1 kPa), 是市售组织黏合剂纤维蛋白
胶的2.8倍(25 ± 2.2 kPa), 而且还可以通过调整水凝胶成分的组成, 使其
黏附性能在14–70 kPa的范围内可调. 其次, 由于体系中邻苯二酚基团的
存在, 使水凝胶绷带兼具优异的抗氧化和内源广谱抗菌性能. 结果还显
示水凝胶具有良好的生物安全性, 以及优异的促伤口愈合能力(仅6天),
有望为灾后救援工作中的创伤紧急止血提供新的治疗策略.
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