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ABSTRACT Despite demonstrating remarkable power con-
version efficiencies (PCEs), perovskite solar cells (PSCs) have
not yet achieved their full potential. In particular, the inter-
faces between the perovskite and charge transport layers ac-
count for the vast majority of the recombination losses.
Interfacial contact and band alignment between the low-
temperature-processed TiO2 electron transport layer (ETL)
and the perovskite are essential to minimize nonradiative re-
combination losses. In this study, a CeOx interlayer is em-
ployed to modify the perovskite/TiO2 interface, and the charge
transport properties of the devices are investigated. The bi-
layer-structured TiO2/CeOx ETL leads to the modification of
the interface energetics, resulting in improved electron ex-
traction and reduced nonradiative recombination in the PSCs.
Devices based on TiO2/CeOx ETL exhibit a high open-circuit
voltage (Voc) of 1.13 V and an enhanced PCE of more than 20%
as compared with Voc of 1.08 V and a PCE of approximately
18% for TiO2-based devices. Moreover, PSCs based on TiO2/
CeOx ETL maintain over 88% of their initial PCEs after light
illumination for 300 min, whereas PSCs based on TiO2 ETL
almost failed. This study provides an efficient strategy to en-
hance the PCE and stability of PSCs based on a low-
temperature-processed TiO2 ETL.

Keywords: perovskite solar cell, interface passivation, re-
combination, light stability, CeOx

INTRODUCTION
In the past decade, huge efforts have been devoted
worldwide to understanding and improving the perfor-
mance of perovskite solar cells (PSCs), which already
outperform other conventional thin-film photovoltaic

technologies [1–5]. Recently, the highest certified power
conversion efficiency (PCE) of PSCs has reached 25.5%
[6]. It is well established that further improvements in the
performance of PSCs will require suppression of non-
radiative charge recombination (trap-assisted charge re-
combination) losses to unlock the full thermodynamic
potential of PSCs [7–9]. Charge transport layers (CTLs)
are key components of high-performance PSCs; however,
interface defects and energy level misalignments can in-
duce additional nonradiative recombination pathways,
which limit the open-circuit voltage (Voc) and fill factor
(FF) of PSCs. CTLs/perovskite interfaces dominate the
nonradiative recombination in efficient PSCs [9]. There-
fore, to realize the full thermodynamic potential of the
perovskite absorber, the formation of a good contact for
the CTLs/perovskite interface is essential.

The addition of interlayers between the CTLs and
perovskite absorber has proven to be an efficient method
to mitigate interfacial recombination losses [10–12]. For
the interface between the electron transport layer (ETL)
and perovskite, a broad range of interlayer materials,
including metal oxides, conjugated polymers, small mo-
lecules, and fullerenes, has been reported [13–15]. Among
these, metal-oxide interlayers are frequently used in PSCs
owing to their good chemical stability, which endows the
interlayers with robust (solvent-resistant) properties [16–
20]. TiO2 films annealed under high temperature are
widely employed as the ETL, with the aim of achieving
high-performance PSCs. However, low-temperature-
processed TiO2-based planar PSCs exhibit low efficiencies
due to intrinsic problems such as the unsuitable con-
duction band energy and low electron extraction ability of
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TiO2. Several attempts have been made at modifying the
TiO2 ETL in planar PSCs using metal-oxide interlayers to
reduce the interface recombination losses. For instance,
the insertion of a ZnO interlayer between the TiO2 layer
and perovskite reduces interfacial recombination due to
the proper energy alignment [21,22]. Thermal instability
has been observed in ZnO-based PSCs and is attributed to
the deprotonation of the organic cation caused by the
basic nature of the ZnO surface [23]. Moreover, an en-
hanced charge extraction ability and suppressed carrier
recombination at the TiO2/perovskite interface were also
achieved using SnO2 as the interlayer [24,25]. In addition
to interfacial charge recombination, another issue asso-
ciated with TiO2-based PSCs is the photo-induced device
degradation [26]. These problems stimulate further re-
search toward exploring efficient ETLs with favored in-
terface contact and good light stability.

Here, we propose an ETL comprising an amorphous
CeOx interlayer on top of a TiO2 compact layer fabricated
via a low-temperature solution process. Furthermore, we
perform a comprehensive study on planar PSCs based on
the TiO2/CeOx double layer. It is shown that the band
alignment, electron extraction, PCE, hysteresis, and sta-
bility of PSCs can be significantly improved using the
bilayer-structured TiO2/CeOx ETL compared with the
pure TiO2 ETL. Owing to the reduced interfacial charge
recombination, solar cells based on the TiO2/CeOx ETL
demonstrate a maximum Voc of 1.13 V with 300 mV
potential loss compared with the TiO2-based cell (1.08 V
and 520 mV, respectively). The enhancement of Voc, to-
gether with the increase in FF (from ~74% to ~76%),
enables a PCE improvement from ~18% to more than
20%. Moreover, thanks to the presence of the CeOx in-
terlayer, the PSCs exhibit a significantly improved light
stability.

EXPERIMENTAL SECTION

Materials
Fluorine-doped tin-oxide (FTO) glasses (≤15 Ω sq−1)
were purchased from South China Science & Technology
Company Limited. Titanium(IV) chloride (TiCl4) and
titanium diisopropoxide bis(acetylacetonate) were ob-
tained from Sigma-Aldrich. Cerium(III) acetylacetonate
hydrate was purchased from 9 Ding Chemistry. Methyl-
ammonium iodide (MAI) and lead(II) iodide (PbI2) were
purchased from TCI. 2,2′,7,7′-Tetrakis-(N,N-di-p-meth-
oxyphenylamine)9,9′-spirobifluorene (Spiro-OMeTAD),
4-tert-butylpyridine (tBP), lithium bis(tri-
fluoromethanesulfonyl)imide (Li-TFSI), and tris(2-(1H-

pyrazol-1-yl)-4-tert-butylpyridine)-cobalt(III) tris(bis(tri-
fluoromethylsulfonyl)imide) (FK209) were purchased
from Xi’an Polymer Light Technology Corp. Anhydrous
solvents, such as dimethylformamide (DMF), dimethyl
sulfoxide (DMSO), chlorobenzene, ethanol, benzyl alco-
hol, diethyl ether, isopropanol, and acetonitrile were ob-
tained from Alfa Aesar. All the chemicals were used as
received without further purification.

Device fabrication
The pre-patterned FTO substrates were sequentially
cleaned with saturated sodium hydroxide ethanol solu-
tion, deionized water, and ethanol and then exposed to
UV–ozone for 15 min. For the TiO2 ETL, 100 µL of the
colloidal TiO2 nanocrystal solution was spin-coated onto
the FTO substrate and annealed on a hot plate at 150°C
for 30 min in ambient air. For the CeOx interlayer, 100 µL
of the precursor solution was spin-coated onto the TiO2
substrate and annealed at 150°C for 30 min. All ETLs
were exposed to UV–ozone for 15 min prior to the de-
position of the active layer. The perovskite layer was
prepared from a precursor solution containing
1.4 mol L−1 of MAPbI3 in a mixed solvent of DMF and
DMSO, with the volume ratio of DMF to DMSO being
1:4. The perovskite precursor solution was spin-coated
onto different substrates via a consecutive two-step spin-
coating process, at 1200 and 4200 rpm for 10 and 30 s,
respectively. During the second step, 120 µL of chlor-
obenzene was poured onto the spinning substrate 10 s
prior to the end of the spinning process. The films were
then annealed on a hotplate at 100°C for 15 min. Once
being cooled to room temperature, Spiro-OMeTAD was
deposited on top of the perovskite layer via spin-coating
at 4000 rpm for 30 s. The Spiro-OMeTAD solution was
prepared by dissolving 73.53 mg (60 mmol L−1) of Spiro-
OMeTAD in 1 mL of chlorobenzene, with the addition of
29.30 µL (200 mmol L−1) of tBP and 17.23 µL
(30 mmol L−1) of Li-TFSI solution (500 mg Li-TFSI in
1 mL acetonitrile). Next, 6.78 µL (1.8 mmol L−1) of FK209
solution (400 mg FK209 in 1 mL acetonitrile) was added
to the Spiro-OMeTAD solution; the molar ratio for
FK209 and Spiro-OMeTAD was 0.03. Finally, an 80-nm
gold layer was thermally evaporated on top of the device.

Characterizations
The morphology and crystal structure of the perovskite
films were characterized via scanning electron micro-
scopy (SEM, SU8010, Hitachi) and X-ray diffraction
(XRD, Smartlab SE, Rigaku), respectively. The absorption
spectra of the perovskite films were measured using a
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UV–Vis spectrometer (UV-3600Plus, Shimadzu). X-ray
photoelectron spectroscopy (XPS) and ultraviolet photo-
electron spectroscopy (UPS) were performed using a
multifunctional photoelectron spectrometer (ESCALAB
250Xi, Thermo Scientific). Steady-state photo-
luminescence (PL) was performed using a home-built
system. Current density–voltage (J–V) curves were re-
corded using a Keithley 2400 source meter under simu-
lated sunlight from a Newport AAA solar simulator.

RESULTS AND DISCUSSION
Preparation of the low-temperature solution-processed
TiO2 and TiO2/CeOx ETLs is shown schematically in
Fig. 1a. The TiO2 nanocrystals were synthesized following
a modified nonhydrolytic sol–gel method [27], whereas
the CeOx precursor solution was obtained by dissolving
cerium(III) acetylacetonate hydrate in ethanol. All ex-
perimental details are provided in the experimental sec-
tion. The surface and cross-sectional morphologies of the
TiO2 and TiO2/CeOx ETLs are shown in Fig. 1b–e. As can
be seen from Fig. 1b, c, negligible difference can be ob-
served between the surface topographies of the TiO2 and
TiO2/CeOx ETLs, indicating the presence of an ultra-thin

CeOx interlayer. To confirm this, the SEM image of the
FTO/CeOx film is shown in Fig. S1. The morphology of
the FTO polycrystalline layer can be clearly distinguished
after being covered with a thin CeOx layer, in agreement
with previous study [28]. XRD patterns show negligible
difference between the TiO2 and TiO2/CeOx films
(Fig. S2), indicating that the low-temperature solution-
processed CeOx interlayer is amorphous. From the cross-
sectional view (Fig. 1d, e), it can be seen that the surface
roughness of the FTO/TiO2 film reduced after the in-
troduction of the CeOx interlayer. Atomic force micro-
scopy measurements were performed to understand the
influence of the CeOx interlayer on the surface roughness.
As shown in Fig. S3, the TiO2/CeOx film exhibits a re-
duced root-mean-square (RMS) surface roughness (RMS
= 19.2 nm) compared with that of the TiO2 film (RMS =
16.1 nm), which is in good agreement with the SEM re-
sults.

To investigate the influence of the CeOx interlayer on
the morphology and crystallinity properties of perovskite
films, SEM and XRD were conducted on the perovskite
films deposited onto TiO2 and TiO2/CeOx ETLs. As
shown in Fig. 2a–d, the grain sizes and film thicknesses of

Figure 1 (a) Preparation of the low-temperature solution-processed TiO2 and TiO2/CeOx films. (b, c) Surface SEM images of the TiO2 and TiO2/
CeOx films. The insets show the corresponding high-magnification SEM images. (d, e) Cross-sectional SEM images of the TiO2 and TiO2/CeOx films.
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the perovskite films deposited onto TiO2 and TiO2/CeOx
ETLs are similar. The perovskite film based on TiO2/CeOx
ETL exhibits a slightly enhanced absorption compared
with the perovskite film based on the TiO2 ETL (Fig. 2e).
Fig. 2f shows the XRD patterns of the perovskite films
deposited onto the TiO2 and TiO2/CeOx ETLs. The main
peaks located at 14.1° and 28.5° correspond to the (110)
and (220) crystal planes of the cubic perovskite phase,
respectively [29]. The perovskite (110) peak intensity does
not show any discernible difference between the two
films. Analogously, the full-width-at-half-maximum va-
lues of this perovskite (110) peak are similar for the two
films (0.12 for the TiO2-based film and 0.11 for the TiO2/
CeOx-based film). In addition, the ratio of the perovskite
(110) peak intensity to the perovskite (220) peak intensity
is 1.91 and 1.93 for the films deposited onto the TiO2 and
TiO2/CeOx ETLs, respectively. These results suggest that
the introduction of the CeOx interlayer has no significant
effect on the morphologies and crystalline properties of
the perovskite films.

XPS measurements were performed to confirm the
presence of CeOx interlayer and investigate its chemical
composition. Fig. 3a shows the XPS survey for the TiO2
and TiO2/CeOx films, whereas Fig. 3b illustrates the high-
resolution Ce 3d core level spectra. An evident Ce 3d
peak can be observed in the TiO2/CeOx film, whereas
such a peak is absent in the spectra of the TiO2 film.
Fig. S4 shows the deconvolution of the Ce 3d core level
XPS spectra for the TiO2/CeOx film. Both Ce3+ and Ce4+

emissions are present in the obtained CeOx film. Re-
garding the spectrum of the fully oxidized CeO2 film, six
peaks can be identified, which correspond to three pairs
of spin-orbit split doublets [30]. These peaks are labeled
using conventional notations (U, U′′, U′′′, V, V′′, and
V′′′). U and V refer to the 3d3/2 and 3d5/2 levels, respec-
tively. The peaks labeled as U/V, U′′/V′′, and U′′′/V′′′ are
assigned to a mixture of Ce 3d94f2 O 2p4, Ce 3d94f1 O 2p5,
and Ce 3d94f0 O 2p6, respectively. For the reduced ceria
films, the spectra show two more pairs of doublets (in-
dicated as U0, U′, V0, and V′), which originated from
different Ce 4f configurations in the initial and final states
associated with the Ce3+ ions. The peaks labeled as U0/V0
and U′/V′ are assigned to a mixture of Ce 3d94f2 O 2p5

and Ce 3d94f1 O 2p6, respectively. Therefore, the Ce 3d
XPS region contains 10 peaks originating from different
Ce oxidation states (Ce3+ and Ce4+) and their 4f config-
urations. The component labeled U′′′/V′′′ is indicative of
the Ce 3d94f0 O 2p6 final state, which is associated with
the presence of Ce4+ ions. The Ce3+ concentration in the
Ce 3d spectrum is determined to be 0.46; therefore, the
value of x in the as-prepared CeOx is 1.77, which is in
good agreement with previous studies [28,31]. It is worth
noting that the presence of the TiO2 support contributes
to the increase in the Ce3+ concentration via interface
stabilization [32–34]. Energy-dispersive spectroscopy
mapping confirmed the uniform coverage of CeOx on top
of the TiO2 film (Fig. S5). Due to the presence of the
oxygen-deficient CeOx layer, it can be inferred that charge

Figure 2 (a, b) Top-view SEM images of the perovskite films deposited onto the TiO2 and TiO2/CeOx ETLs. (c, d) Cross-sectional view of the PSCs
based on the TiO2 and TiO2/CeOx ETLs. (e) UV–Vis absorption spectra of the perovskite films deposited onto the TiO2 and TiO2/CeOx ETLs. (f) XRD
patterns of the perovskite films deposited onto the TiO2 and TiO2/CeOx ETLs.
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recombination may occur at the CeOx/perovskite inter-
face. With this in mind, UV–ozone treatment was applied
to remove surface oxygen vacancies and thus alleviate
interface recombination [35,36].

Energy level matching between the perovskite layer and
ETLs is critical for achieving high-performance PSCs.
UPS measurements were performed to determine the
energy level positions of the TiO2 and CeOx films. Fig. 3c,
d show the valence band spectra and secondary electron
cut-off for the TiO2 and CeOx films. According to the
valence band spectra, the energy difference between the
valence band maximum (VBM) and Fermi level was
found to be ~3.33 and ~3.50 eV for the TiO2 and CeOx
films, respectively. Additionally, the secondary electron
cut-off is ~16.32 eV for both TiO2 and CeOx films, cor-
responding to a work function of 4.88 eV. Therefore, the
VBMs for the TiO2 and CeOx films were estimated to be
−8.21 and −8.38 eV, respectively. By combining VBM
positions with optical bandgaps [27,31], the conduction
band minimums (CBMs) were determined to be −4.81
and −4.68 eV for the TiO2 and CeOx films, respectively.
Based on these values and reported band edges of
MAPbI3 and Spiro-OMeTAD [37], the energy band dia-
grams for the PSCs employing TiO2 and TiO2/CeOx as
ETLs were derived, as illustrated in Fig. 3e, f. Because the
CBM of CeOx lies between those of MAPbI3 and TiO2,
photogenerated electrons in the conduction band of

MAPbI3 can cascade into TiO2 via CeOx. This optimally
positioned band alignment facilitates the extraction of
electrons from the perovskite and their subsequent in-
jection into TiO2. Additionally, CeOx functions as a hole-
blocking layer to suppress the electrons’ back transfer
from TiO2 to the perovskite. The energy barrier at the
TiO2/CeOx interface can effectively block charge re-
combination, which should essentially increase the quasi-
Fermi level for electrons and raise the Voc value.

To assess the influence of the CeOx interlayer on the
photovoltaic performance of PSCs, devices with the
structure of FTO/ETLs/MAPbI3/Spiro-OMeTAD/Au
were assembled, as schematically illustrated in Fig. 4a.
Fig. 4b shows the J–V curves (under reverse scan) for the
PSCs based on the TiO2 and TiO2/CeOx ETLs with the
photovoltaic parameters summarized in Table 1. The
TiO2-based device exhibits a PCE of 18.61%, with a short-
circuit current density (Jsc) of 23.18 mA cm−2, Voc of
1.08 V, and FF of 74.64%. Upon introducing the CeOx
interlayer, no obvious change is observed in the Jsc value
(23.14 mA cm−2); however, Voc and FF increase to 1.13 V
and 76.39%, respectively, yielding a promising PCE of
more than 20%. Fig. 4c presents a statistical comparison
of the averaged PCE from 36 individual devices with the
TiO2 and TiO2/CeOx ETLs. Compared with the TiO2-
based devices (17.27% ± 0.65%), the TiO2/CeOx devices
exhibit an improvement in the averaged PCE (19.17% ±

Figure 3 (a) XPS survey of the TiO2 and TiO2/CeOx films. (b) Ce 3d core level spectra of the TiO2 and TiO2/CeOx films. (c, d) Valence band spectra
and secondary electron cut-off for the TiO2 and CeOx films. (e, f) Schematics of band alignment for the PSCs based on the TiO2 and TiO2/CeOx ETLs.
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0.50%) with a narrower PCE distribution. This further
confirms the enhanced photovoltaic performance and
reproducibility that can be obtained with the introduction
of the CeOx interlayer.

Fig. 4d, e show the J–V curves measured under both
reverse and forward scans. The corresponding photo-
voltaic parameters are listed in Table 1. It was found that
the TiO2/CeOx-based device shows negligible hysteresis,
whereas the pure TiO2-based device exhibits large hys-
teresis. To quantify the variation in the hysteresis beha-
vior, the hysteresis index (HI) was calculated [37]. The HI
decreased from 9.0% (TiO2-based device) to 0.6% (TiO2/
CeOx-based device), which can be ascribed to the im-
proved electron extraction. Steady-state power output
under continuous illumination can provide a more ac-
curate and reliable photovoltaic performance for the de-
vices under working conditions. Fig. 4f shows the steady-

state PCE and current density measured at maximum
power point. The PCEs for the PSCs based on TiO2 and
TiO2/CeOx ETLs stabilize at 17.5% and 19.9% with pho-
tocurrent densities of 20.4 and 21.6 mA cm−2, respec-
tively. It should be noted that these values are very close
to those obtained from the J–V measurements.

Compared with the PSCs using TiO2 as the ETL, a
higher Voc value is obtained when TiO2/CeOx is used as
the ETL. When a solar cell is under illumination, the Voc
is related to the splitting of quasi-Fermi levels for elec-
trons and holes. These quasi-Fermi level positions are set
by the free-carrier concentration, which in turn is de-
termined by the equilibrium between carrier generation
and recombination rates [38,39]. For PSCs based on
different ETLs, the carrier generation process is identical,
and the enhanced Voc observed in the TiO2/CeOx-based
devices indicates a suppressed recombination of carriers
either in the perovskite bulk or at the ETLs/perovskite
interface. Considering the similar qualities of the per-
ovskite films deposited onto TiO2 and TiO2/CeOx ETLs
(see Fig. 2), the enhancement of Voc can be ascribed to the
suppressed interfacial carrier recombination obtained due
to the addition of the CeOx interlayer. To understand the
carrier recombination process in the PSCs, the J–V
characteristics were analyzed based on the equivalent
circuit model. Generally, the J–V characteristics of a
semiconductor junction can be described as follows

Figure 4 (a) Device configuration. (b) J–V curves of the PSCs based on the TiO2 and TiO2/CeOx ETLs. (c) PCE distributions of the PSCs based on
the TiO2 and TiO2/CeOx ETLs. (d) J–V curves of the PSC based on the TiO2 ETL under both reverse- and forward-scan directions. (e) J–V curves of
the PSC based on the TiO2/CeOx ETL under both reverse- and forward-scan directions. (f) Steady-state power output of the PSCs based on the TiO2

and TiO2/CeOx ETLs.

Table 1 Photovoltaic parameters of the PSCs based on the TiO2 and
TiO2/CeOx ETLs

Devices Scan direc-
tion

Jsc
(mA cm−2)

Voc
(V)

FF
(%)

PCE
(%)

HI
(%)

TiO2
Reverse 23.18 1.08 74.64 18.61

9.0
Forward 23.08 1.04 70.91 17.07

TiO2/CeOx
Reverse 23.14 1.13 76.39 20.05

0.6
Forward 23.15 1.13 76.09 19.94
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[37,40]:
V
J

mk T
q J J Rd

d = ( ) + ,B
sc

1
s

where m is the ideality factor, kB is the Boltzmann con-
stant, T is the temperature, q is the electron charge, Jsc is
the photo-induced current density, and Rs is the series
resistance. The value of m can be obtained by fitting the
linear part of the −dV/dJ vs. (Jsc − J)−1 curves, as shown in
Fig. 5a. The TiO2/CeOx-based device exhibits a decreased
m value (2.23) compared with the TiO2-based device
(2.62). Generally, lower m value indicates a smaller
probability for charge carrier recombination in PSCs [41].
Therefore, the reduced m value suggests a suppressed
nonradiative carrier recombination in the TiO2/CeOx-
based PSCs.

To further elucidate the improved optoelectronic
quality and understand the carrier recombination process
in PSCs with different ETLs, light intensity (φ)-dependent
Voc characteristics were measured, as shown in Fig. 5b [3].
The relationship between Voc and φ can be described as
Voc = α(kBT/q)ln φ, where α is a constant [42]. Assuming
a homogeneous carrier profile in the PSCs, for a trap-free
bimolecular recombination, α should be close to 1. On the
contrary, if trap-assisted monomolecular recombination
(mainly Shockley–Read–Hall recombination) dominates,
α approaches 2. Thus, the deviation of α from 1 indicates

the occurrence of nonradiative trap-assisted carrier re-
combination in the PSCs. The control device without the
CeOx interlayer exhibited a slope of 1.71kBT/q, suggesting
a severe nonradiative loss due to trap-assisted re-
combination. A slope of 1.46kBT/q was achieved when the
TiO2/perovskite interface was modified with the addition
of CeOx. This proves the role of CeOx in reducing the
interfacial nonradiative recombination in PSCs. Voc decay
measurements were conducted to investigate the transient
process of carrier recombination in PSCs. Fig. 5c illus-
trates the Voc decay curves of the PSCs with or without
the CeOx interlayer. It can be seen that the PSCs with the
CeOx interlayer exhibited a slower decay rate and longer
decay time than the cells without the CeOx interlayer. The
Voc decay time constant for the TiO2/CeOx-based device
(2.16 ms) was estimated to be twice as large as that for the
TiO2-based device (1.03 ms). This result suggests that the
PSCs that use the CeOx interlayer possess a much longer
carrier lifetime and lower interface recombination rate
than the cells without the CeOx interlayer; this is in
consistent with the observed high Voc and FF values of the
devices with CeOx. The electron lifetime (τn) can be de-
rived from Fig. 5c on the basis of the following equation
[43]:

k T
q

V
t= d

d .n
B oc

1

Figure 5 (a) Plots of −dV/dJ vs. (Jsc − J)−1 for the PSCs based on the TiO2 and TiO2/CeOx ETLs and corresponding linear fittings. (b) Voc vs. light
intensity for the PSCs based on the TiO2 and TiO2/CeOx ETLs and corresponding linear fittings. (c) Voc decay curves for the PSCs based on the TiO2

and TiO2/CeOx ETLs. (d) Calculated electron lifetimes for the PSCs based on the TiO2 and TiO2/CeOx ETLs. (e, f) Steady-state PL spectra and TRPL
decays of the perovskite films depositied onto quartz, TiO2, and TiO2/CeOx substrates.
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The dependence of τn on Voc is shown in Fig. 5d; it can be
seen that the TiO2/CeOx-based device exhibits longer τn
than the TiO2-based cell.

Steady-state PL measurements were conducted to study
the charge transfer process between the perovskite and
ETLs. Fig. 5e shows the PL spectra of perovskite films
deposited onto different ETLs. A more strongly quenched
PL was observed for the perovskite films based on the
TiO2/CeOx ETL. This result suggests that electron ex-
traction from the perovskite is more efficient for the
TiO2/CeOx ETL; this is consistent with the improved
energy level matching between the perovskite and the
TiO2/CeOx ETL. Time-resolved PL (TRPL) measure-
ments were performed to explore the dynamic re-
combination behavior of perovskite films prepared on
different ETLs, as shown in Fig. 5f and Table S1. The
TRPL decay curves were fitted using the biexponential
equation, I(t) = I0 + A1exp(−t/τ1) + A2exp(−t/τ2), where τ1
and τ2 represent the fast and slow decay time constants,
respectively. In general, τ1 and τ2 are associated with the
quenching of charge carriers by electron extraction from
the perovskite to ETLs and nonradiative recombination
in the perovskite bulk, respectively [37]. The TiO2 ETL-
loaded perovskite exhibited a PL decay time of τ1 =
15.1 ns and τ2 = 139.9 ns, which are obviously slower than
that of pure perovskite (Table S1). For the TiO2/CeOx
ETL-loaded perovskite, both τ1 and τ2 decreased to 6.1
and 39.7 ns, respectively, suggesting an enhanced electron
extraction between the perovskite and the TiO2/CeOx
ETL. This is also confirmed by the reduced average life-
time from 107.8 to 31.0 ns. The enhanced electron ex-
traction might originate from the improved band
alignment and suppressed interfacial recombination ob-
tained with the CeOx layer insertion.

As previously reported, PSCs based on TiO2 ETLs
suffer light-induced degradation due to the photocatalytic
activity of TiO2 [26,44]. Fig. 6 shows the normalized PCE
decay of PSCs based on the TiO2 and TiO2/CeOx ETLs as
a function of storage time under 1 sun illumination. The
PSCs based on the TiO2/CeOx ETL exhibited an out-
standing light stability, maintaining over 88% initial PCE
value after being aged for 300 min. By contrast, the PSCs
based on the TiO2 ETL almost failed after being aged for
the same duration [28]. We speculate that the enhanced
light stability is a result of two aspects. On the one hand,
the presence of the CeOx interlayer prevents the TiO2
layer from directly contacting the perovskite layer, re-
ducing the problem of photodegradation. On the other
hand, the weakening of the device interface recombina-
tion contributes to the improvement of stability. It is

important to note that a defective (oxygen-deficient) TiO2
ETL was reported to improve the PCE and stability of
PSCs owing to an unexpectedly large photoconductive
gain and reduced ultraviolet photocatalytic activity [45].
Therefore, the effect of oxygen vacancy on device stability
cannot be ruled out.

CONCLUSIONS
In summary, we demonstrated that the interfacial re-
combination losses of PSCs based on low-temperature-
processed TiO2 can be significantly reduced with in-
troduction of a CeOx interlayer. The introduction of CeOx
creates a cascade pathway for electron transport so that
photogenerated electrons in the conduction band of
MAPbI3 can cascade into TiO2 via CeOx. This optimally
positioned band alignment facilitates the extraction of
electrons from the perovskite and their subsequent in-
jection into TiO2. Moreover, CeOx suppresses the elec-
trons’ back transfer from TiO2 to the perovskite due to
the energy barrier at the TiO2/CeOx interface. This can
effectively block interfacial charge recombination, leading
to an increase in the quasi-Fermi level for electrons and
an enhancement of the Voc. As a result, the TiO2/CeOx-
based device exhibits a maximum Voc of 1.13 V with 300-
mV potential loss compared with the TiO2-based control
device (1.08 V and 520 mV). The enhancement of Voc,
together with the increase in FF (from ~74% to ~76%),
enables a PCE improvement from ~18% to more than
20%. These results suggest that designing an adequate
band alignment is an effective way to reduce interfacial
charge recombination and further improve the device

Figure 6 Normalized PCE decay of the unencapsulated PSCs based on
the TiO2 and TiO2/CeOx ETLs as a function of the storage time under
100 mW cm−2 irradiation (ambient air).
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performance of PSCs.
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基于CeOx修饰层降低界面复合损耗的光稳定钙钛
矿太阳电池
时小强1,陶冶1,李卓芯1,彭会荣1,蔡墨朗1,2*,刘雪朋1,张中艳1,
戴松元1,2*

摘要 尽管已经获得了很高的能量转换效率, 但由于非辐射复合损
失, 钙钛矿太阳电池的潜力仍未完全释放. 钙钛矿层和电荷传输层
之间的界面是发生复合损耗最多的地方. 对于低温制备的TiO2电
子传输层, 其与钙钛矿层之间的界面接触和能带对准对于非辐射
复合损耗的减少来说至关重要. 在这项研究中, 我们利用CeOx中间
层修饰钙钛矿/TiO2界面, 并研究了器件的电荷传输性能. 双层结构
的TiO2/CeOx电子传输层改善了界面接触和能级匹配, 提高了电子
转移, 抑制了界面复合. 基于TiO2/CeOx电子传输层的器件表现出
1.13 V的高开路电压和超过20%的光电转换效率, 而基于TiO2电子
传输层器件的开路电压仅为1.08 V, 转换效率约为18%. 此外, 基于
TiO2/CeOx电子传输层的钙钛矿器件在300 min光照后仍能保持初
始效率的88%, 而基于TiO2电子传输层的器件几乎失效. 这项研究
为基于低温TiO2电子传输层的钙钛矿太阳电池提供了一种增强转
换效率和光稳定性的有效策略.
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