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Micro-scale 2D quasi-nanosheets formed by 0D
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ABSTRACT Self-assembly of colloidal nanocrystals (NCs)
into large-scale superlattices with complex and controllable
structures has attracted extensive attention due to their col-
lective properties and promising device applications. Plas-
monic NCs are very popular for long-range ordered
superstructures by virtue of their collective nanogaps for
electromagnetic field enhancement, in particular bulk-scale
single-layer assembly. Large-area two-dimensional (2D) quasi-
nanosheets (QNSs) composed of mono-component Au NCs or
multi-component Au@ZnS core-shell hetero-nanocrystals
(HNCs) were successfully prepared, via careful solvent eva-
poration-induced interfacial self-assembly. The entire self-
assembly process was carried out on the liquid-air surface and
mediated simply by tuning the operating temperatures and
concentrations of the NCs. Specifically, monolayer and dou-
ble-layer 2D QNSs in tens of micrometers scale with different
stacking models were fabricated by precisely controlling the
solvent evaporation rate and colloidal concentration.

Keywords: nanocrystals, self-assembly, plasmonic super-
structures, 2D nanosheets

INTRODUCTION
Superstructures with complex compositions and tailored
functions can be conveniently produced by the assembly
of nanoparticles [1–3]. Colloidal nanocrystals (NCs) have
attracted extensive attention because of their unique
properties and applications induced by high mono-
dispersity [4–9]. Hence, the self-assembly of these 0-di-
mensional (0D) building blocks into complex and multi-
dimensional superstructures is the key step to their ver-
satile applications [10]. The 1D, 2D and 3D super-
structures self-assembly come out successively, and

especially the 2D superstructures with programmable
design into micrometer nanosheets formation have been
widely investigated but far from applications [11–14], in
particular the self-assembly plane endowing monolayer
NCs building blocks. These kinds of 2D nanosheets are
eagerly expected for good performances because of their
large surface-to-volume ratio [15,16]. Moreover, the
flexible assembly of new structured building blocks into
2D nanosheets is still critical for extensive exploration of
nanotechnology.
It is well explored that monodisperse NCs can be

spontaneously assembled into ordered structures by the
self-volatilization of solvents. Drop casting, spin coating,
dip coating, spray coating and blade coating are common
self-assembly methods based on solvent evaporation
[17,18], which are hindered by isolation from substrates.
Solvent evaporation-induced self-assembly proceeding on
an immiscible liquid surface can overcome the substrate
restrictions. Besides, the self-assembly at the mixed sol-
vent interface is applicable to NCs with a variety of sizes,
shapes, structures and components, offering a facile and
generalized route for fabricating film-scale 2D nanosheets
[19,20]. The stacking modes would be affected by the
characters of NCs, such as size, shape and component,
interactions including van der Waals force, coulombic
force and entropic force, in addition to external en-
vironmental factors including temperature, humidity and
pressure [21–28].
The self-assembly of plasmonic NCs into large-area 2D

stacking modes is very important due to their collective
electromagnetic field enhancements enabled by their na-
nogaps [29–31]. On account of the localized surface
plasmon resonance (LSPR) of Au NCs, their large-scale
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assemblies have been applied in plasmonic imaging and
catalysis [32–34]. Among these Au NCs, Au@semi-
conductor core-shell hetero-nanocrystals (HNCs) with
plasmon-exciton coupling and optimal dielectric en-
vironment are greatly expected for applications [21,35].
We have synthesized plasmonic metal@semiconductor
HNCs via a reverse cation exchange-enabled nonepitaxial
growth strategy [36]. By this way, the as-formed plas-
monic HNCs have been found with excellent plasmon
enhancement and photocatalysis applications [37,38].
In this work, we chose both plasmonic Au NCs and

Au@ZnS core-shell HNCs as building blocks to explore
their large-scale 2D self-assemblies. With the solvent
evaporation-induced interfacial self-assembly we formed
2D quasi-nanosheets (QNSs) on liquid-air surface which
could be easily transferred onto different substrates. Mi-
croscale single-layer and double-layer QNSs were formed
controllably. These film-like 2D QNSs are uniform and
can be easily transferred to other substrates without being
destroyed. Besides, the flexible stacking mode could be
regulated by adjusting the evaporation temperature.

EXPERIMENTAL SECTION

Chemicals
Tetrachloroauric(III) acid hydrate (HAuCl4·4H2O), silver
nitrate (AgNO3, ≥99%, analytical reagent), zinc nitrate
hexahydrate [Zn(NO3)2·6H2O, 99.99%], sublimed sulfur
(99.5%), oleylamine (OAm, approximate C18 content of
80%–90%), oleic acid (OA, technical grade, 90%), and
tributylphosphine (TBP, 95%) were obtained from
Aladdin Reagent. Methanol (anhydrous, 99.8%), ethanol
(anhydrous, ≥99.5%), ethylene glycol (EG) and toluene
(anhydrous, 99.8%) were purchased from Sinopharm
Chemical Reagent. Ultra-pure water was obtained from
PURELAB Ultra (resistivity of 18 MΩ cm). All chemicals
were used as-received without further processing.

Synthesis of monodisperse plasmonic Au NCs
Au seeds with a diameter of 5–6 nm were synthesized
according to the previous report [39]. The obtained Au
NCs were washed and re-dispersed in 30 mL of toluene,
and the Au NCs colloidal suspension in toluene was
uniformly dispersed by ultrasound. At the same time, a
toluene solution of tetrachloroauric acid hydrate was
prepared at a concentration of 4 mg mL−1. 2 mL of this
solution and 10 mL of colloidal Au NCs were mixed
uniformly and put into a sealed glass bottle with a ca-
pacity of 20 mL. Au NCs with a diameter of 10–12 nm
were achieved after reacting in an oven at 80°C for 5 h.

Synthesis of the plasmonic Au@ZnS core-shell HNCs
The preparation of Au@Ag and Au@Ag2S core-shell na-
noparticles were according to the previous publications
[40,41]. The as-prepared Au@Ag2S nanoparticles were
separated from the solution by centrifugation and re-
dispersed in 10 mL of toluene. 0.2 mL of OA, 0.1 mL of
OAm and 0.8 mL of Zn(NO3)2 dissolved in methanol
were added into 10 mL of the Au@Ag2S colloidal solution
in toluene. 0.05 mL of TBP was added to the above-
mentioned mixture after stirring for 5 min, and the entire
solution was stirred vigorously for 2 h at 60°C in oil bath.
The resulting Au@ZnS HNCs were collected by cen-
trifugation at 5000 r min−1 for 10 min, and re-dispersed in
toluene.

Self-assembly of the as-prepared monodisperse NCs
The monodispersity of the as-prepared Au and Au@ZnS
NCs were further improved by gradient centrifugation. A
series of Au or Au@ZnS NCs with different sizes were
achieved by adding 3 or 2 mL of ethanol as the gradient
amount, and the final precipitates were re-dispersed in
toluene for further self-assembly. Our approach was
based on a drying-driven dynamic self-assembly process
occurring on the air-liquid surface. EG was used as the
supporting substrate on which 30 μL of the as-prepared
NCs colloidal solution was dropped gently and uniformly.
The entire system was placed in a sealed environment
(oven) to prevent external interferences. As toluene eva-
porated in air, the NCs self-assembled into 2D QNSs. By
adjusting the concentration of the colloidal NCs, large-
scale single-layer and double-layer 2D nanosheets can be
obtained. When the concentration was 0.1 mg mL−1, Au
NCs assembled into monolayer QNSs, and the double-
layer QNS were achieved as the concentration increased
to 0.3 mg mL−1. Similarly, single-layer and double-layer
structures of Au@ZnS HNCs were obtained at the con-
centration of 0.2 and 0.5 mg mL−1, respectively. The self-
assembly temperature of Au NCs and Au@ZnS HNCs
was maintained at 30°C in a vacuum oven. Especially, in
the self-assembly process of Au@ZnS HNCs, by precisely
changing the operating temperature (30 or 40°C), the
chainlike structure and ring structure were formed. The
resulting products could be transferred from the liquid
surface to other substrates for further observation.

Characterizations of structure and morphology
Low-resolution transmission electron microscopy
(LRTEM) performed on a JEOL JEM-1200EX instrument
at 80 kV and high-resolution transmission electron mi-
croscopy (HRTEM) performed on an FEI TecaiG2 F20 S-
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Twin instrument at 200 kV were utilized to characterize
the details of morphology and interfacial lattice of the
prepared nanoparticles as well as their self-assemblies.
Besides, microscopy images were obtained using a LEXT
OLS5000 3D laser confocal scanning electron microscope
(SEM).

RESULTS AND DISCUSSION

Micrometer QNSs formed by monodisperse Au NCs
The TEM image of Au seeds was shown in Fig. S1. As
illustrated by LRTEM in Fig. S2, the as-prepared Au NCs
showed a tendency to self-assemble. The monodispersity
of Au NCs was further optimized by gradient cen-
trifugation (Fig. S3). In order to achieve the expected
results, Au NCs (about 10 nm) obtained by gradient
centrifugation when 12 mL of ethanol was added were
chosen to self-assemble due to their uniform sizes and
shapes. The NCs retain the morphology in the colloidal
solution with excellent stability for at least half a year,
which are reactive enough to self-assemble into 2D su-
perstructures. The solvent evaporation-induced inter-
facial self-assembly is a facile and versatile method to
fabricate large-scale 2D superstructures [42,43]. The self-
assembly process was observed upon dropwise adding
30 μL of NC suspension in toluene on the surface of EG
confined in a glass container (π×12×2 cm3), as depicted in
Fig. 1. As toluene gradually evaporated in air, the
monodispersed Au NCs deposited on the surface of EG
and arranged into ordered arrays. Thus, the micro-scale

2D “nanosheets” (Fig. 2a) were formed on the liquid
surface, confirmed by the TEM image (Fig. 2b). The en-
larged TEM images further confirmed that the film was
composed of regularly and densely packed Au NCs
(Fig. 2c). This novel 2D superstructure was denoted as 2D
QNSs. These well-defined 2D QNS with lateral sizes up to
several micrometers even tens of micrometers perform an
excellent stability on substrates, which can keep their
morphology and properties the same for one year.
Several factors, such as temperature, humidity and in-

terface types, have great influences on the process of
solvent evaporation-induced interfacial self-assembly
[44–46]. By precisely controlling the solvent evaporation
rate and the concentration of colloidal NCs, monolayer
and double-layer 2D QNSs were successfully fabricated
on the air-liquid interface (Fig. 2c, d) and their stacking
patterns were shown in Fig. 2e, f. In the 2D monolayer
QNS, Au NCs were spontaneously arranged into the
close-packed mode by virtue of their excellent mono-
dispersity. A local position of QNS manufactured by self-
assembly of colloidal Au NCs observed by TEM (the in-
serted picture in Fig. 2c) showed a typical 2D structure in
which the Au NCs adopted a pseudohexagonal close-
packed arrangement. In the same plane, each Au NC was
uniformly and closely surrounded by the other six Au
NCs, and a gap was formed among every three adjacent
Au NCs. A characteristic feature of the pseudohexagonal
array was that the Au NCs were not in direct contact with
each other; they were separated by a region that did not
exhibit any diffraction contrast, typically about 2.2 nm,

Figure 1 Schematic illustration of the solvent evaporation-induced interfacial self-assembly.
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consistent with the length of the C18 organic surface
capping ligands [47]. The double-layer 2D QNS were
fabricated by increasing the concentration of colloidal
NCs. From the double-layer superlattice films of Au NCs
displayed in Fig. 2d, the feature of individual Au NC
could be clearly identified. As it was shown in the TEM
picture, each Au NC in the upper layer occupied the large
gap formed by every three adjacent Au NCs in the lower
layer, exactly showing how this structure formed. These
2D QNSs formed from Au NCs, including monolayer and
double-layer films, had membrane areas of up to the
micron scale but the thickness was only several nan-
ometers.

Microscale QNS formed by monodisperse Au@ZnS HNCs
Multi-component HNCs are considered to have collective
properties of individual components and are anticipated
to provide a designable way to obtain novel materials
[48]. Moreover, a previous study of our group about self-
assembly of HNCs proved that long-range ordered

packing of Au@semiconductor HNCs was propitious for
enhancing plasmon-exciton coupling, which in turn
could improve their photoelectrically related properties
[21]. In the past decades, the self-assembly of simple
structure NCs has been investigated widely and detailedly
[10,49,50], but few achievements have been made on 2D
nanosheets formed by the self-assembly of core-shell
HNCs because of their complex components and unique
structures. As a result, their applications are limited by
the fact that the formation and manipulation of large-
scale 2D QNSs remain a major challenge. Herein, with
the similar strategy described above, we achieved large-
scale 2D QNSs of monodisperse Au@ZnS HNCs. TEM
images and UV-vis spectra of the Au@ZnS HNCs (core
10 nm, shell 3 nm) prepared by non-epitaxial growth
strategy and ion exchange method were shown in Fig. S4,
in which the HNCs with well-defined structures showed
an obvious tendency to self-assemble. The energy-dis-
persive X-ray spectroscopy (EDS) elemental mapping
results manifested the core-shell structure of Au@ZnS
HNCs (Fig. S5). Through accurate regulation of the op-
erating temperature (here 30°C) of toluene and the con-
centration of colloidal Au@ZnS HNCs solution,
monolayer and double-layer flexible membranes were
formed on the liquid substrate which can be easily
transferred to the carbon-coated TEM grids for further
characterization, with the size up to tens of micrometers,
and could be easily observed under an optical micro-

Figure 2 2D QNS formed by the self-assembly of Au NCs. (a, b) Mi-
croscopy image and TEM image of the as-prepared 2D Au NC QNS.
(c–f) TEM images of monolayer and double-layer QNS and their
stacking models.

Figure 3 2D QNS formed by the self-assembly of Au@ZnS HNCs. (a, b)
Microscope image and TEM image. (c, d) TEM images of monolayer
QNS and its stacking model.
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scope. Fig. 3a, b showed the whole film and its folds. The
film was continuous and uniform in thickness, as shown
in Fig. 3c. For the monolayer nanosheets, Au@ZnS HNCs
closely arranged into hexagonal close packing pattern
(Fig. 3d), in the same way with that Au NCs accumulated.
Each individual Au@ZnS HNC was surrounded by six
other HNCs in the same plane, with well-defined struc-
tures of core and shell.
The double-layer QNSs of Au@ZnS HNCs were formed

for the colloidal NCs with high concentration. The op-
erating temperature is a convenient and important tool to
direct self-assembly of NCs toward desired structures
because of its ability to tailor relative weights of the in-
terparticle interactions and free volume entropy during
the formation of superstructure. In those double-layer
QNSs, by precisely controlling the operating temperature
(40, 30°C) , two different types of non-close-packed (ncp)
complex structures were successfully formed on the li-
quid-air interface, as shown in Fig. 4a (chainlike struc-
ture) and Fig. 4c (ring structure). The chainlike structure
was achieved at a temperature of 40°C. In Fig. 4a,
Au@ZnS HNCs were arranged in chains with three dif-
ferent directions as straight lines in projection. Interest-
ingly, these three directions rotated by 60° with respect to
each other exactly corresponded to the three different 2-
fold saddle sites (labeled A, B and C) shown in Fig. 4b.
This unique structure was a consequence of occupancies
of the 2-fold saddle sites between two HNCs in the under
layer rather than the 3-fold hollow sites formed by the
adjacent three HNCs. In order to understand this phe-
nomenon, Fink et al. [51] proposed that a strong short-
range electrostatic dipolar led to the favorite of 2-fold
saddle sites due to the reduced number of surface dipoles
in the 2-fold sites on the surfaces of the nearest neighbor
clusters.
The ring structure shown in Fig. 4c often observed in

bilayer superstructures was obtained at 30°C. In our
study, the diameter of each single ring was about 52 nm.
Fig. 4d shows that the rings were simply closed chains
and each layer of the 2D QNS still kept the ordered
pattern. Thus, we can get a conclusion that this ring
structure is a result of occupancies of 3-fold saddle sites.
Occasionally, the chainlike structure and ring structure

can be observed simultaneously in bilayer QNS (Fig. S6).
Murray’s group [44] suggested that this was presumably
caused by the local variations of colloidal NC con-
centration during the growth of QNSs. Unlike most do-
mains which were usually spatially separated, there was a
smooth transition between these two different domains.
These ncp structures defied traditional expectations of

face-centred-cubic or hexagonal-close-packed arrange-
ments, and showed a possibility of multifarious self-as-
sembly. According to a previous study [52], these long-
range-ordered complex phases were stabilized by en-
tropic, steric, dipolar forces and strong local van der
Waals interactions between the Au@ZnS HNCs.

CONCLUSIONS
In summary, we successfully achieved micro-scale 2D
QNSs with controllable and long-range ordered super-
structures via solvent evaporation-induced liquid-air in-
terfacial self-assembly of single-component Au NCs or
multi-component Au@ZnS core-shell HNCs. The
monolayer and double-layer QNS films were prepared by
regulating the concentrations of the building blocks.
These 2D QNS films could be transferred easily. Stacking
diversities realized in the double-layer QNS by further
regulation of the assembly temperature. These large-scale
and long-range ordered plasmonic QNSs are potential for
their plasmonic applications.
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零维纳米晶体自组装形成微米级二维准纳米片:
从单组分到多组分组装单元
常瑜, 徐萌, 黄柳, 潘容容, 刘佳佳, 刘佳, 戎宏盼, 陈文星,
张加涛*

摘要 胶体纳米晶(NCs)具有优良的性能和广阔的应用前景, 将其
自下而上自组装形成结构复杂且可控的大面积超晶格是一个重要
的研究方向. 等离子体纳米晶之间可控的间隙有益于电场增强, 因
此常常被用作组装单元来构建长程有序的大面积超结构, 尤其是
单层纳米晶的大规模组装. 本文采用溶剂挥发诱导气-液界面自组
装工艺, 成功得到了由单组分Au纳米晶和多组分Au@ZnS核壳异
质纳米晶(HNCs)自组装形成的大面积二维准纳米片(QNS). 整个
自组装过程在气-液界面上进行, 通过改变环境温度和胶体纳米晶
溶液的浓度来对自组装过程进行调控, 即通过精确控制溶剂的挥
发速率和胶体纳米晶浓度, 可以获得不同层数、不同堆积模式的
大面积二维准纳米片.
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