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Monolayer MoS2 decorated Cu7S4-Au nanocatalysts
for sensitive and selective detection of mercury(II)
Jiabin Cui, Suying Xu and Leyu Wang*

ABSTRACT  Sensitive and selective detection of Hg(II)
contamination is of great importance with concern of pub-
lic health. Herein, we successfully fabricated monolayer
MoS2 (S-MoS2) decorated Cu7S4-Au (Cu7S4-Au@S-MoS2)
nanocomposite modified electrode for the sensitive and se-
lective detection of Hg(II) via anodic stripping voltammetric
technique. Due to the excellent electrocatalytic reduction
performance arisen from the abundant active edge sites of
small monolayer MoS2 and good affinity of Au toward Hg, the
current method displayed high sensitivity (LOD = 190 nmol
L−1) and enhanced selectivity. As control, nanostructures
including Cu7S4-Au, Cu7S4@S-MoS2 and Cu7S4-Au@M-MoS2

(M: multilayer) were also investigated, but showed low re-
sponse to Hg(II), suggesting that both Au domains and active
edge sites of monolayer MoS2 have crucial synergistic effects
on the high-performance for recognition of Hg(II). More-
over, the developed method displays satisfied performance
for the detection of Hg(II) in real samples, which indicates
its potentials in practical applications.

Keywords:  Cu7S4-Au nanocatalysts, MoS2, square wave anodic
stripping voltammetry, mercury(II)

INTRODUCTION
Heavy metal ion contamination in water and soil, espe-
cially mercury, has been considered as one of the most
severe threats to public health [1–7]. It is known that
mercury is non-degradable and could be further accu-
mulated along the food chain [8]. Even exposure to low
level of mercury would cause severe damage to human
organs such as kidney and nervous system [9]. Thus, it
has a caused worldwide concerns for careful control of the
mercury release and close monitoring of mercury level in
environment and food process chains. To date, many kinds
of sensing platform have been developed for detection
of trace Hg(II) including conventional strategies like in-

ductively coupled plasma mass spectrometry [10], atomic
absorption spectrometry [11], colorimetry [12–14] and
fluorometry [9,15–26]. Still, there is a growing demand
for exploration of reliable, efficient but also cost-effective
and portable methods. The electrochemical method is
characterized by facile preparation, low-cost, miniaturiza-
tion and portability [27,28]. In addition, there are many
different electrochemical strategies that could increase
the sensitivity as well as the selectivity. With regard to
the detection of heavy metals, the stripping voltammetry
method is particularly intriguing for trace amount of
analyte given the unique properties of preconcentration of
analytes [29]. Hence, great efforts were devoted to elec-
trochemical sensor for Hg(II) [30–32]. For example, Fan’s
group constructed a sensitive electrochemical biosensor
for detection of Hg(II) by using a thymine-rich, mer-
cury-specific oligonucleotide modified gold nanoparticle
probe [33]. The oligonucleotide could effectively capture
free Hg(II) and the Au nanoparticles (NPs) were utilized
to increase the loading density as well as reduce the steric
hindrance of oligonucleotide, which then significantly
enhance the responses. Zhao et al. [34] developed a pho-
toelectrochemical biosensor for Hg(II) detection based
on the exciton energy transfer between CdS quantum
dots and Au NPs coupled with sensitization of rhodamine
123. The introduction of biomolecular recognition has
achieved satisfied performance toward Hg(II) detection,
however, in another aspect, it would induce stability is-
sue. Alternatively, nanomaterial modified electrodes have
demonstrated their great potentials for analyte sensing
on account of the prevailing merits of the nanomaterials
[32,35–43]. For instance, nanomaterial modified elec-
trodes tend to own superb electroconductivity, increased
mass transport, high surface absorption capability as well
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as sensitive signal responses originated from the unique
properties of nanomaterials. In this regard, Gong et al.
[44] constructed a Hg(II) on basis of a bimetallic Au-Pt
nanoparticle/organic nanofibers. They reasoned that the
three-dimensional nanofibers offer large effective surface
area and the Au-Pt nanoparticles act as microelectrodes.
Still, to construct a platform for sensitive detection of
Hg(II) without compromise of the selectivity is always
challenging.

Here in this work, we prepared a small monolayer MoS2

decorated Cu7S4-Au nanocomposite (Cu7S4-Au@S-MoS2,
S-MoS2 means single layered MoS2) and employed it to
modify glassy carbon electrode (GCE) for the sensitive and
selective detection of Hg(II) via the square wave anodic
stripping voltammetry (SWASV). The MoS2 has been
widely used as an alternative to platinum (Pt) for active
hydrogen evolution from water due to its excellent catalytic
performance and earth abundant reserves. The edges of
layered MoS2 structures have been experimentally [45–48]
and theoretically [49,50] identified to be the active sites for
catalysis. To increase the active edge sites and therefore
enhance the electrocatalytic performance, the prepara-
tion of ultrasmall monolayer MoS2 is highly desirable
but greatly challenging. By utilizing Cu7S4 nanoparticles
(NPs) [51–55] as templates, the ultrasmall Cu7S4@MoS2

nanoframes and Cu7S4-Au@S-MoS2 nanocomposites with
abundant active MoS2 edge sites have been successfully fab-
ricated for efficient hydrogen evolution reaction [56,57],
where the monolayer MoS2 can reduce the proton into
hydrogen. As shown in Fig. 1a, by taking advantage of the
excellent reductive property of this MoS2, Hg(II) could be
reduced to Hg(0) and enriched through anodic stripping
voltammetry, which, in a significant way, improves the
sensitivity of this method. The results also indicate that
the Au domains play a synergistic effect on the sensitive
recognition of Hg(II) due to the good affinity of Au toward
Hg(II). Furthermore, this method has demonstrated its
wide adaptability for recognition of Hg(II) in real samples.

MATERIALS AND METHODS

Materials
Nafion (5%), 1-octadecene (ODE), MoCl5, oleylamine
(OAm), and commercial 20 wt.% Pt/C were all pur-
chased from Alfa. Ethanol, hexane, chloroform, acetic
acid (AA), isopropanol, HAuCl4·4H2O, H2SO4 (98%),
HgCl2, NaH2PO4·2H2O, Na2HPO4, NaCl, CdCl2·2.5H2O,
Pb(NO3)2, CuSO4·5H2O and NH4Cl were obtained from

Beijing Chemical Reagent Company. Ketjen carbon
(EC-300J) was purchased from River’s Electric Co. Ltd.
Sulfur was purchased from Xilong Chemical Co. Ltd. N,
N′-dibutyldithiocarbamic acid (HS2CNBut2) was obtained
from Pacific Ocean United Petro-Chemical Company,
Ltd. All the reagents were of analytical grade and used as
received without further purification.

Characterization
The characterization of the as-prepared nanomaterials was
carried out on a JEM-1200EX (JEOL) transmission electron
microscope (TEM) at 100 kV and a JEM-2100F high resolu-
tion TEM (HRTEM) at 200 kV. All the electrochemical tests
were performed on an electrochemical workstation (CHI
660E, CH Instrument, Inc.).

Synthesis of Cu7S4 NPs
The Cu7S4 NPs were synthesized with a solvothermal strat-
egy. Prior to the synthesis of Cu7S4 NPs, the Cu(DT)2 pre-
cursor solution was prepared by mixing HS2CNBut2 (rep-
resented by DT, 30 mg) and Cu(NO3)2∙3H2O (0.1 mmol) in
ethanol (1.0 mL). Then the as-preparedCu(DT)2was added
to a 50-mL three-necked flask containing the mixture of
ODE (6.0 mL) and OAm (4.0 mL) at 205°C with nitrogen
atmosphere and vigorous magnetic stirring. The tempera-
ture was kept at 190°C for 15 min before the solution was
cooled naturally to room temperature and the Cu7S4 NPs
were collected via centrifugation and stored in 1.0 mL of
chloroform for later use.

Synthesis of Cu7S4@S-MoS2NPs
In brief, 4.0 mL of OAm, 6.0 mL of ODE and 1.0 mL of
the as-synthesized Cu7S4 colloids were mixed in a 50-mL
three-necked flask. After the temperature of the solution
was raised to 310°C, 1 mL of OAm containing 0.008 mmol
MoCl5 and 0.016 mmol S was injected. Ten minutes later,
the resultant solution was naturally cooled to room tem-
perature and the as-prepared Cu7S4@S-MoS2 NPs were col-
lected.

Synthesis of Cu7S4-Au@S-MoS2 NPs
For the fabrication of Cu7S4-Au@S-MoS2, the temperature
of the as-prepared Cu7S4@S-MoS2 colloidal solution was
cooled from 310°C to 190°C, and then the HAuCl4·4H2O
(10 mg) in ethanol (1.0 mL) was injected. The tempera-
ture was kept at 160°C for 10 min, then the solution was
cooled to room temperature naturally. The final products
of Cu7S4-Au@S-MoS2 NPs were then collected via centrifu-
gation after washing with ethanol.
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Synthesis of Cu7S4-Au@M-MoS2 NPs
Similarly, the Cu7S4-Au@M-MoS2 NPs (M: multilager)
were prepared with the Cu7S4@M-MoS2 NPs as seeds.
These Cu7S4@M-MoS2 NPs were synthesized via the sim-
ilar protocol for Cu7S4@S-MoS2 NPs but with different
dosage of Mo (0.075 mmol) and S (0.125 mmol). Then,
the solution of HAuCl4·4H2O (10 mg) in ethanol (1.0 mL)
was injected into the flask containing the Cu7S4@M-MoS2

colloids, and the temperature was maintained at 160°C for
10 min before the solution was naturally cooled to room
temperature. Finally, the Cu7S4-Au@M-MoS2 NPs were
collected via centrifugation after washing with ethanol.

Synthesis of Cu7S4@Au heterostructures:
In brief, 4.0 mL of OAm, 6.0 mL of ODE and 1.0 mL
of Cu7S4 colloids were mixed in a 50-mL three-necked
flask. Thereafter, the temperature of the solution was
rapidly raised to 180°C before the HAuCl4·4H2O (10 mg)
in ethanol (1.0 mL) was injected. The temperature was
dropped to and kept at 160°C for 10 min. Thereafter the
resultant solution was finally cooled to 60°C. The addition
of ethanol (30 mL) to the reaction mixture afforded a black
product by centrifugation. The precipitations were then
washed twice with hexane and precipitated with ethanol.
Finally, the as-prepared Cu7S4@Au heterostructures were
dispersed in 2 mL of chloroform and stored for later use.

Fabrication of electrodes
Prior to electrochemical detection, the working electrodes
were modified with the nanocatalyst ink. The catalyst ink
was prepared as follows. In brief, the as-prepared nanocata-
lysts were dispersed in 2.0 mL of hexane, and then 3.0 mL of
hexane containing 2.0 mg of Ketjen carbon (EC-300J) was
added. Thereafter, the mixture was sonicated for at least
1 h to make them thoroughly mixed before excess ethanol
(10.0 mL) was added. Then the solid was collected by cen-
trifugation (10,000 rpm for 10 min). The collected prod-
ucts were washed for further two times. The powder was
then suspended in 40.0 mL of AA and treated at 70°C for
15 h to remove the surfactants on the nanocatalysts. The
AA-treated nanocatalysts were collected with centrifuga-
tion (10,000 rpm for 10 min) and washed with water. Fi-
nally, the clean nanocatalysts were re-suspended in a mix-
ture consisting of isopropanol (500 μL), water (500 μL), and
Nafion (5%, 30 μL) to form a homogeneous nanocatalyst
ink. This nanocatalyst ink was stored at 4°C for later elec-
trochemical tests.

Electrochemical detection of mercury
For different nanocomposites, the electrochemical mea-

surement setup was similar. In a typical case, the
Cu7S4-Au@S-MoS2 modified GCE was used as the work-
ing electrode with SWASV technique under optimized
conditions with saturated calomel electrode (SCE) and
carbon rod as the reference and counter electrode, re-
spectively. For mercury deposition, the as-prepared
Cu7S4-Au@S-MoS2/GCE was dipped in 0.1 mol L−1 phos-
phate buffer solution (PBS, pH 5.0) containing a certain
amount of Hg(II) and kept at −0.4 V for 200 s. The anodic
stripping was performed from −0.6 to 0.6 V with the fol-
lowing parameters: frequency, 15 Hz; amplitude, 25 mV;
increment potential, 4 mV. After each measurement, the
as-prepared electrode was regenerated in a freshly stirred
supporting electrolyte by desorption at 0.2 V for 60 s to
remove the previous residual mercury from the electrode
surface.

RESULTS AND DISCUSSION

Synthesis and characterization of nanocomposites
Fig. 1a shows the scheme for the electrochemical reduction
of Hg(II) on the surface of Cu7S4-Au@S-MoS2 nanocom-
posites. The TEM (Fig. 1b) and HRTEM (Fig. 1c) images
clearly indicate the existence of Cu7S4 nanoplate, mono-
layer MoS2 and Au domains. The lattice spacings of Cu7S4

and Au in the HRTEM image were determined to be 0.193
and 0.236 nm, corresponding well with (0160) plane of
Cu7S4 (14.5 ± 1.1 nm, Fig. S1a) and (111) plane of Au (5.7
± 1.6 nm, Fig. S1b), respectively. The monolayer-MoS2

nanosheet on the surface of Cu7S4 is also clearly shown in
the HRTEM image. For better comparison, the Cu7S4-Au,

Figure 1   Schematic illustration for the mercury detection (a), TEM (b)
and HRTEM (c) images of Cu7S4-Au@S-MoS2 NPs.
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Cu7S4@S-MoS2 and Cu7S4-Au@M-MoS2 (Fig. S2) nanos-
tructures were also synthesized accordingly and character-
ized with TEM and HRTEM (Fig. S3). Initially, the cyclic
voltammetry (CV) experiments were carried out to eval-
uate the electrochemical responses of the nanocomposite
modified electrode. For bare GCE, there is no peak in the
presence of 3 μmol L−1 Hg(II) (Fig. 2). While there is an ox-
idation peak at 0.06 V for Cu7S4-Au@S-MoS2 nanocompos-
ites modified GCE in the presence of Hg(II), which could
be ascribed to the oxidation of Hg(0) to Hg(II).

Mercury detection
It is known that stripping voltammetric technique holds
great advantages, particularly for electrochemical detection
of trace metals. Here, the SWASV mode was selected for
the detection of Hg(II). Prior to investigating its capabil-
ity for the determination of Hg(II), a series of experimental
parameters were optimized. Initially, we found the types
of buffer solution have a great impact on the stripping sig-
nals. As indicated in Fig. 3a, the phosphate buffer gives
the best signals as compared to the NH4Cl-NH3·H2O and
NaOAc-HOAc systems when fixing all the pH value of the
buffer solutions at around 5.0. With respect to the pH ef-
fect, the maximal peak current appears at pH 5.0 (Fig. 3b).
We assumed that too acidic pH condition may result in
competitive reduction of protons, whereas too alkali condi-

Figure 2   CV scans of Cu7S4-Au@S-MoS2/GCE in the absence (red line)
and presence of 3 μmol L−1 Hg(II) (black line).

tion would lead to the formation of metal hydroxides. Ad-
ditionally, the deposition potential as well as the deposition
time was also optimized and a deposition potential of −0.4
V with a duration time of 200 s gave the best performance
for the Hg stripping responses (Fig. 3c, d).

Under the optimized condition, Cu7S4-Au@S-MoS2/GCE
was utilized for the determination of Hg(II). Specifically,
the Hg(II) was firstly reduced to Hg(0) and deposited at the
working electrode under optimized −0.4 V for 200 s and
then anodic stripping  from −0.6  to  0.6 V was performed,

Figure 3   Effects of buffer solutions (a), pH conditions (b), deposition potentials (c) and deposition duration (d) on the stripping signals of Hg(II). The
concentration of Hg(II) is 1.0 μmol L−1.

 April 2017 | Vol.60 No.4 355 
© Science China Press and Springer-Verlag Berlin Heidelberg 2017

SCIENCE CHINA Materials ARTICLES



where the anodic stripping signal was proportional to the
concentration of Hg(II) in solution and accordingly used to
monitor its concentration. Thus, a series of solutions with
different concentrations of Hg(II) were applied. A well-de-
fined stripping peak at the potential of ~0.06 V vs. SCE ap-
peared and increased step by step as shown in Fig. 4a. In
addition, a good linear fitting of peak current difference (∆I
= I – I0) vs. Hg(II) concentration was also obtained (inset
in Fig. 4a) with a limit of detection (LOD) of 190 nmol L−1

(LOD = 3σ/K). This method is comparable to or even more
sensitive than some of the reported methods for Hg(II) de-
tection (Table S1). Herein I and I0 represent the current in
the presence and absence of Hg(II), respectively. The σ is
the standard deviation of the blank measurement (n = 6),
and K is the slope of the linear fitting curve. For compar-
ison, its counterparts including Cu7S4-Au, Cu7S4@S-MoS2,
and Cu7S4-Au@M-MoS2 nanocomposites were also investi-
gated for their responses toward Hg(II). Under the iden-
tical conditions, it was found that much less SWASV re-
sponses were observed for Cu7S4-Au@M-MoS2/GCE (Fig.
S4) with an LOD of 628 nmol L−1. These results unam-
biguously indicate that the monolayer MoS2 is more sen-
sitive to Hg(II) than the multilayer MoS2, which can be at-
tributed to the increased active sites of monolayer MoS2. As
aforementioned, the layer edges of MoS2 have been experi-
mentally and theoretically identified to be the electrochem-
ical active sites [45,46]. As a result, the electrochemical
response of monolayer MoS2 was more sensitive than that
of multilayer MoS2. Meanwhile, for nanocomposites ei-
ther in the absence of Au (Cu7S4@S-MoS2) or MoS2 compo-
nent (Cu7S4-Au), almost negligible response toward Hg(II)
was obtained (Fig. S5). To compare their sensitivity di-
rectly, their electrochemical responses under the same con-
centration (3.68 μmol L−1) of Hg(II) are shown in Fig. 4b.

Clearly, the type of the nanocomposites plays a crucial role
in the recognition of Hg(II). It is found that both MoS2

and Au components have synergistic effects on the sen-
sitive sensing of Hg(II). To further investigate the syner-
gistic effects, the Cu7S4@S-MoS2 and Cu7S4-Au were phys-
ically mixed and then pasted onto the GCE. As shown in
Fig. S6, the as-prepared GCE shows a very weak response
to Hg(II) even though the concentration of Hg(II) is up to
3.68 μmol L−1. These results suggest that the Au and MoS2

should directly or indirectly contact by means of Cu7S4 via
forming a heterostructure [58–60]. Otherwise, the syn-
ergistic effects cannot be obtained. In a word, the high-
performance for Hg(II) recognition can be attributed to
the synergistic effects of Au domains and monolayer MoS2.
Moreover, the number of MoS2 layers also affects sensi-
tivity towards Hg(II). As discussed in previous work, the
MoS2 active sites display significant enhancement of cat-
alytic ability toward electrochemical hydrogen evolution
reaction [54]. Thus, we assume that the reductive proper-
ties of monolayer MoS2 as well as high affinity of Au toward
mercury account for the high sensitivity of Cu7S4-Au@S-
MoS2 nanocomposites.

Furthermore, to evaluate the selectivity of the
developed method, the SWASV responses of the
Cu7S4-Au@S-MoS2/GCE toward Hg(II) in the coexistence
of different cations were performed, since different metal
ions often present together in real samples. Here, the
possible interferences such as Cd(II), Pb(II), Cu(II) were
examined. The SWASV responses of mercury in the
presence of 10-fold concentration (10 μmol L−1) of the
interfering metal ions with respect to Hg(II) (1.0 μmol
L−1) are displayed in Fig. 5. Though at the experimental
conditions, the interfering metal ion could be co-deposited
and stripped off, the stripping potentials were different and

Figure 4    (a) Typical SWASV responses for the Cu7S4-Au@S-MoS2/GCE in the presence of Hg(II) under different concentrations. Inset of (a) is the
corresponding linear fitting curve; (b) comparison of sensitivities of GCE (1), Cu7S4-Au/GCE (2), Cu7S4@S-MoS2/GCE (3), Cu7S4-Au@M-MoS2/GCE
(4), and Cu7S4-Au@S-MoS2 /GCE (5) for SWASV detection of mercury (3.68 μmol L−1). ∆I = I – I0, I and I0 represent the current in the presence and
absence of Hg(II), respectively.
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Figure 5   Stripping voltammograms in the presence of potential interferences: Cd2++ Hg(II) (a); Pb2++ Hg(II) (b); Cu2++ Hg(II) (c) and
Cd2++ Pb2++ Cu2++ Hg(II) (d) in PBS (0.02 mol L−1, pH 5). Concentration of Hg(II) is 1.0 μmol L−1 and that of other cation is 10 μmol L−1.

Table 1 Effects of different metal ions on the electrochemical stripping signals of Hg(II) with Cu7S4-Au@S-MoS2/GCE

Metal ionsa) Signals at 0.04 V (μA) Contribution (%)b)

Hg(II) 4.789 0

Hg(II), Cd(II) 4.824 +0.73

Hg(II), Pb(II) 4.801 +0.25

Hg(II), Cu(II) 4.816 +0.56

Hg(II), Cd(II), Pb(II),Cu(II) 4.806 +0.35

a) 1.0 μmol L−1 of Hg(II) and 10 μmol L−1 of Cd(II), Pb(II) and Cu(II). b) Contribution refers to the effect of the interfering cations on the signals of
Hg(II). 

could be well-recognized from each  other.  These  results
indicate that the proposed method can differentiate multi-
ple metal ions in one time. Moreover, when carefully com-
paring the electrochemical stripping signals of mercury in
the absence and presence of interferences, one can easily
find that the stripping peak current of 1.0 μmol L−1 Hg(II)
varies slightly (Table 1) in comparison with that in the pres-
ence of only Hg(II) (Fig. S7), implying that these metal
ions have negligible effects on the detection of Hg(II). We
assume that such good selectivity is ascribed to the excel-
lence electrochemical properties of the Cu7S4-Au@S-MoS2

nanocomposites.

Practical applications
In another aspect, the proposed method was also employed
for the recognition of Hg(II) in real water samples to fur-
ther demonstrate its practicality. Three different lake wa-
ter samples were collected from Beijing, Tianjin and Shiji-
azhuang, respectively and treated with a standard 0.45 μm
filter. All the water samples were spiked with 2.0 μmol
L−1 Hg(II) and then analysed with the developed proto-
cols. The results, summarized in Table 2, demonstrate that
the proposed method achieved satisfied performance with
high accuracy and good reproducibility, implying its great
promising in practical applications.
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Table 2 Analytical results for the detection of Hg(II) in real water samples

Concentration (μmol L−1)

Taken Found
Sample

(Mean, n = 6) a)
Recovery (%)

Water 1 2.0 2.01 ± 0.13 100.5 ± 5.5

Water 2 2.0 2.03 ± 0.07 102.0 ± 3.4

Water 3 2.0 1.96 ± 0.15 98.0 ± 7.6

a) n is the number of repetitive measurements. 

CONCLUSION
Here, a facile platform for sensitive and selective analysis of
Hg(II) was constructed. The Cu7S4-Au@S-MoS2 nanocom-
posites were prepared and utilized for the modification
of electrode. Both Au domains and single-layered MoS2

have crucial synergistic effects on its high-performance for
recognition of Hg(II). The results imply that the proposed
method can not only measure Hg(II) in a highly sensitive
way, but also recognize multiple coexisting metal ions in
one time. Additionally, this method displays satisfied per-
formance for the detection of Hg(II) in real samples, which
indicates its great potentials in practical applications.
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单层MoS2修饰Cu7S4-Au纳米结构用于汞的灵敏选择性检测
崔家斌, 许苏英, 汪乐余*

摘要   汞的灵敏选择性检测对于人类的公共安全至关重要. 本文成功制备了单层二硫化钼修饰的Cu7S4-Au纳米结构(Cu7S4-Au@S-MoS2),通
过阳极溶出伏安法实现了对汞的灵敏选择性分析检测. 基于超小(<10 nm)单层MoS2丰富的活性位点及金对汞的良好亲和性,该方法灵敏
度高(检出限为190 nmol L−1)、选择性好(常见Cd2+、Pb2+、Cu2+等均无干扰), 并成功用于实际样品中汞的灵敏分析. 研究发现Cu7S4-Au与
Cu7S4@S-MoS2对Hg(II) (1.0 μmol L−1)无响应,而多层MoS2修饰的Cu7S4-Au(Cu7S4-Au@M-MoS2)对Hg(II) (1.0 μmol L−1)有弱响应,结果表明超小
单层MoS2丰富的活性位点及金对汞的良好亲和性对分析检测起到了协同催化作用.
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