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Abstract The aim of a study of the presented paper is the differential subordination
involving harmonic means of the expressions p(z), p(z) + zp′(z), and p(z) + zp′(z)

p(z)
when p is an analytic function in the unit disk, such that p(0) = 1, p(z) �≡ 1. Several
applications in the geometric functions theory are given.
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1 Introduction

The harmonic mean, known also as the subcontrary mean, is one of several kinds
of average, and is the special case power mean. It is used for the situations when
the average of rates is desired and has several applications in geometry, trigonome-
try, probabilistics and statistics, algebra, physics, finance, computer science, etc. The
harmonic mean is one of the Pythagorean means, along with the arithmetic and the
geometric mean, and is no greater than either of them. The harmonic mean H of
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“Babeş-Bolyai” University, 1 Kogălniceanu Street, 400084 Cluj-Napoca, Romania
e-mail: tudor_andreea_elena@yahoo.com

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-014-0078-9&domain=pdf


1244 S. Kanas, A.-E. Tudor

the positive real numbers x1, x2, . . . , xn is defined to be the reciprocal of the arith-
metic mean of the reciprocals of x1, x2, . . . , xn

H =
(
1

n

n∑
k=1

1

xk

)−1

. (1.1)

For the special case of just two numbers x1 and x2, the harmonic mean can be written

H = 2x1x2
x1 + x2

.

In this special case, the harmonic mean is related to the arithmetic mean

A = x1 + x2
2

, and the geometric mean G = √
x1x2,

by H = G2

A , or G = √
AH meaning the two numbers’ geometric mean equals the

geometric mean of their arithmetic and harmonic means.
Several concepts of the classes involving arithmetic and geometric means were

appeared in the literature (see e.g. [1–9,11–14,16,17], for the extensive studies, we
refer to the Miller and Mocanu monograph [10]).

The purpose of this paper is to study the harmonic mean, as a supplementary to
the well-known arithmetics and geometric Pythagorean means. In addition, a new
mean brings along a wide range of new possibilities for exploiting harmonic ideas in
connection of several quantities or functionals in the geometric function theory.

In order to prove our main results, we introduce some fundamental notions and
notations.

Let A be the class of all analytic functions f in the open unit disk D =
{z ∈ C : |z| < 1}, of the form:

f (z) = z +
∞∑
k=2

akz
k . (1.2)

If f and g are two functions analytic inD, we say that f is subordinate to g, written
as f ≺ g or f (z) ≺ g(z), if there exists a Schwarz function ω (i.e., analytic inD, with
ω(0) = 0 and |ω(z)| < 1, for all D) such that f (z) = g(ω(z)), z ∈ D. Furthermore,
if g is univalent in D, then we have the following equivalence:

f (z) ≺ g(z) ⇔ f (0) = g(0) and f (D) ⊂ g(D).

Definition 1.1 [10, p. 21] Denote by Q the set of functions q that are analytic and
injective on D̄ \ E(q), where

E(q) =
{
ζ ∈ ∂D : lim

z→ζ
q(z) = ∞

}
,

123



Differential Subordinations and Harmonic Means 1245

such that q ′(ζ ) �= 0 for ζ ∈ ∂D \ E(q).

If q ∈ Q then � = q(D) is a simply connected domain.
In order to prove our main results, we will need the following lemma:

Lemma 1.1 [10, p. 24] Let q ∈ Q, with q(0) = a, and let p(z) = a + anzn + · · ·
be analytic in D with p(z) �≡ a and n ≥ 1. If p is not subordinate to q, then there
exist points z0 = r0eiθ0 ∈ D and ζ0 ∈ ∂D \ E(q) and an m ≥ n ≥ 1 for which
p(Dr0) ⊂ q(D),

(1) p(z0) = q(ζ0),
(2) z0 p′(z0) = mζ0q ′(ζ0),

(3)  z0 p′′(z0)
p′(z0)

+ 1 ≥ m
[
ζ0q ′′(ζ0)
q ′(ζ0)

+ 1

]
.

2 Harmonic Mean

Let p(z) = 1+a1z+· · · be analytic inDwith p(z) �≡ 1. Then p(z)+ zp′(z), p(z)+
zp′(z)
p(z) has the same normalization and play an important role in the theory of differential

subordination. Let f ∈ A and set p(z) = f (z)
z . Then p(z) + zp′(z) = f ′(z), and if

p(z) = z f ′(z)
f (z) , then p(z)+ zp′(z)

p(z) = 1+ z f ′′(z)
f ′(z) . Extremal properties of such expressions,

as well as several relations, were frequently considered in the theory of univalent
functions. In this section, we study the differential subordination involving harmonic
means of such expressions, and present some applications in the geometric functions
theory.

Theorem 2.1 Let p(z) = 1 + a1z + · · · be analytic in D with p(z) �≡ 1. Then


{
2p(z)

[
p(z) + zp′(z)

]
2p(z) + zp′(z)

}
> 0 ⇒ p(z) > 0. (2.1)

Proof Let

q(z) = 1 + z

1 − z
= 1 + q1z + · · · , (2.2)

with � = q(D) = {w : w > 0} , q(0) = 1, E(q) = {1} and q ∈ Q. Then, we can
rewrite the condition (2.1) as


{
2p(z)

[
p(z) + zp′(z)

]
2p(z) + zp′(z)

}
> 0 ⇒ p(z) ≺ q(z).

Suppose that p(z) �≺ q(z).Then, from Lemma 1.1, there exist a point z0 ∈ D and a
point ζ0 ∈ ∂D \ {1} such that p(z0) = q(ζ0) and p(z) > 0 for all z ∈ D|z0|. This
implies that p(z0) = 0, therefore we can choose p(z0) of the form p(z0) := i x ,

123



1246 S. Kanas, A.-E. Tudor

where x is a real number. Due to symmetry, it is sufficient to consider only the case
where x > 0. We have

ζ0 = q−1(p(z0)) = p(z0) − 1

p(z0) + 1
,

then z0 p′(z0) = mζ0q ′(ζ0) = −m(x2 + 1)/2 := y, where y < 0.
Thus, we obtain:


{
2p(z0)

[
p(z0) + z0 p′(z0)

]
2p(z0) + z0 p′(z0)

}
= 

[
2i x(i x + y)

2i x + y

]
= 2x2y

4x2 + y2
< 0.

This contradicts the hypothesis of the theorem, therefore p ≺ q and the proof of
Theorem 2.1 is complete. ��
Remark 1 We only note that the expression of the left hand side of (2.1) is of the
harmonic form of two elements x1 = p(z) and x2 = p(z) + zp′(z) (z ∈ D).

Setting p(z) = f (z)

z
in the previous theorem, we obtain the following corollary:

Corollary 2.1 Let f (z) = z + a2z2 + · · · be analytic in D. Then

 2 f (z) f ′(z)
f (z) + z f ′(z)

> 0 ⇒  f (z)

z
> 0.

Theorem 2.2 Let p(z) = 1 + a1z + · · · be analytic in D with p(z) �≡ 1. Then


[

2p(z) + 2zp′(z)
1 + p2(z) + zp(z)p′(z)

]
> 0 ⇒ p(z) > 0.

Proof Following the same steps as in the proof of Theorem 2.1, setting p(z0) =
i x, x > 0 and z0 p′(z0) = y, y < 0, we obtain:


[

2p(z0) + 2z0 p′(z0)
1 + p2(z0) + z0 p(z0)p′(z0)

]
= 

[
2i x + 2y

1 − x2 + i xy

]
= 2y

(1 − x2)2 + x2y2
< 0,

which completes the proof. ��

Setting p(z) = f (z)

z
we obtain

Corollary 2.2 Let f (z) = z + a2z2 + · · · be analytic in D. Then


⎡
⎢⎣ 2

z

f (z)
f ′(z)

z

f (z)
+ f ′(z)

⎤
⎥⎦ > 0 ⇒  f (z)

z
> 0.
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Theorem 2.3 Let p(z) = 1 + a1z + · · · be analytic in D with p(z) �≡ 1. Then



⎧⎪⎪⎨
⎪⎪⎩
2

[
p(z) + zp′(z)

p(z)

]

2 + zp′(z)
p2(z)

⎫⎪⎪⎬
⎪⎪⎭ > 0 ⇒ p(z) > 0.

Proof We only need to show that p ≺ q, where q is given by (2.2). As in the proof
of Theorem 2.1, there exist a point z0 ∈ D such that p(z0) = i x, x > 0 and
z0 p′(z0) = y, y < 0. Therefore, we have



⎧⎪⎪⎨
⎪⎪⎩
2

[
p(z0) + z0 p′(z0)

p(z0)

]

2 + z0 p′(z0)
p2(z0)

⎫⎪⎪⎬
⎪⎪⎭ = 

⎡
⎢⎣2

(
i x + y

i x

)
2 − y

x

⎤
⎥⎦ = 0 < 0.

and the proof of Theorem 2.3 is completed. ��

Setting p(z) = z f ′(z)
f (z)

we obtain

Corollary 2.3 Let f (z) = z + a2z2 + · · · be analytic in D. Then



⎧⎪⎪⎨
⎪⎪⎩
2
z f ′(z)
f (z)

[
1 + z f ′′(z)

f ′(z)

]

1 + z f ′(z)
f (z)

+ z f ′′(z)
f ′(z)

⎫⎪⎪⎬
⎪⎪⎭ > 0 ⇒  z f ′(z)

f (z)
> 0.

Theorem 2.4 Let p(z) = 1 + a1z + · · · be analytic in D with p(z) �≡ 1. Then



⎧⎪⎪⎨
⎪⎪⎩
2

[
p(z) + zp′(z)

p(z)

]
1 + p2(z) + zp′(z)

⎫⎪⎪⎬
⎪⎪⎭ > 0 ⇒ p(z) > 0.

Proof As in the proof of Theorem 2.1, there exist a point z0 in D such that p(z0) =
i x, x > 0 and z0 p′(z0) = y, y < 0. We have:



⎧⎪⎪⎨
⎪⎪⎩
2

[
p(z0) + z0 p′(z0)

p(z0)

]
1 + p2(z0) + z0 p′(z0)

⎫⎪⎪⎬
⎪⎪⎭ = 

2
(
i x + y

i x

)
1 − x2 + y

= 0,

which completes the proof. ��

Setting p(z) = z f ′(z)
f (z)

we obtain
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Corollary 2.4 Let f (z) = z + a2z2 + · · · be analytic in D. Then



⎧⎪⎪⎨
⎪⎪⎩
2

f (z)

z f ′(z)

[
1 + z f ′′(z)

f ′(z)

]

1 + f (z)

z f ′(z)
+ z f ′′(z)

f ′(z)

⎫⎪⎪⎬
⎪⎪⎭ > 0 ⇒  z f ′(z)

f (z)
> 0.

Theorem 2.5 Let p(z) = 1 + a1z + a2z2 + · · · be analytic in D with p(z) �≡ 1, and
let 0 < M < 1

3 . Then∣∣∣∣∣2p(z)
[
p(z) + zp′(z)

]
2p(z) + zp′(z)

− 1

∣∣∣∣∣ < M ⇒ |p(z) − 1| < M. (2.3)

Proof Let

q(z) = 1 + Mz, (2.4)

with � = q(D) = {w : |w − 1| < M} , q(0) = 1, E(q) = ∅ and q ∈ Q. Then, the
condition (2.3) can be rewritten as∣∣∣∣∣2p(z)

[
p(z) + zp′(z)

]
2p(z) + zp′(z)

− 1

∣∣∣∣∣ < M ⇒ p(z) ≺ q(z).

Suppose that p(z) �≺ q(z).Then, from Lemma 1.1, there exist z0 ∈ D, ζ0 ∈ ∂D and
m ≥ 1 such that p(z0) = q(ζ0) and |p(z0) − 1| < M for all z ∈ D|z0|. This implies
that |p(z0) − 1| = |q(ζ0) − 1| = M , therefore we can choose p(z0) of the form
p(z0) := 1 + Meiθ , where θ is a real number. We have

ζ0 = q−1(p(z0)) = [p(z0) − 1] /M,

then

z0 p
′(z0) = mζ0q

′(ζ0) = mMeiθ , m ≥ 1.

We can write:∣∣∣∣∣2p(z0)
[
p(z0)+z0 p′(z0)

]
2p(z0)+z0 p′(z0)

−1

∣∣∣∣∣ =
∣∣∣∣2p2(z0) + 2p(z0)z0 p′(z0) − 2p(z0) − z0 p′(z0)

2p(z0) + z0 p′(z0)

∣∣∣∣
=

∣∣∣∣2Meiθ + 2M2e2iθ + mMeiθ + 2mM2e2iθ

2 + (2 + m)Meiθ

∣∣∣∣
= |Meiθ | ·

∣∣∣∣1 + m(1 + Meiθ )

2 + (2 + m)Meiθ

∣∣∣∣
= M

∣∣∣∣1 + m(1 + Meiθ )

2 + (2 + m)Meiθ

∣∣∣∣ .
123
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In order to obtain the contradiction it suffices to show that the last expression is greater
or equal to M that is equivalent to the fact

∣∣∣∣1 + m(1 + Meiθ )

2 + (2 + m)Meiθ

∣∣∣∣ ≥ 1

or

∣∣∣2 + m + 2(m + 1)Meiθ
∣∣∣2 ≥

∣∣∣2 + (2 + m)Meiθ
∣∣∣2 .

The last inequality holds by virtue of the inequality

M2(3m+4)+4(2+m)M cos θ + m + 4 ≥ M2(3m + 4) − 4(2 + m)M + m + 4 ≥ 0

or

(3m + 4)(M − 1)

(
M − 4 + m

4 + 3m

)
≥ 0.

Since M does not exceed 1
3 the above expression is positive for every m ≥ 1. This

contradicts the hypothesis of the theorem, therefore p ≺ q and the proof of Theorem
2.5 is complete. ��

Let p(z) = f (z)

z
. Then the previous theorem reduce to the following corollary:

Corollary 2.5 Let f (z) = z+a2z2 +· · · be analytic inD, and let 0 < M < 1. Then

∣∣∣∣∣∣∣∣
2 f ′(z)

2 + z f ′(z)
f (z)

− 1

∣∣∣∣∣∣∣∣
< M ⇒

∣∣∣∣ f (z)z
− 1

∣∣∣∣ < M.

For the case, when p(z) = f ′(z), the Theorem 2.5 gives

Corollary 2.6 Let f (z) = z+a2z2 +· · · be analytic inD, and let 0 < M < 1. Then

∣∣∣∣∣∣∣∣
2( f ′(z) + z f ′′(z))

2 + z f ′′(z)
f ′(z)

− 1

∣∣∣∣∣∣∣∣
< M ⇒ ∣∣ f ′(z) − 1

∣∣ < M.

Also, letting p(z) = z f ′(z)
f (z) in Theorem 2.5, we conclude:
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Corollary 2.7 Let f (z) = z+a2z2 +· · · be analytic inD, and let 0 < M < 1. Then

∣∣∣∣∣∣∣∣∣∣
2
z f ′(z)
f (z)

(
2 + z f ′′(z)

f ′(z)
− z f ′(z)

f (z)

)

3 + z f ′′(z)
f ′(z)

− z f ′(z)
f (z)

− 1

∣∣∣∣∣∣∣∣∣∣
< M ⇒

∣∣∣∣ z f ′(z)
f (z)

− 1

∣∣∣∣ < M.

Theorem 2.6 Let p(z) = 1 + a1z + · · · be analytic in D with p(z) �≡ 1 and let
γ ∈ (0, 1]. Then

∣∣∣∣∣arg 2p(z)
[
p(z) + zp′(z)

]
2p(z) + zp′(z)

∣∣∣∣∣ < γ
π

2
⇒ |arg p(z)| < γ

π

2
. (2.5)

Proof Let

q(z) =
(
1 + z

1 − z

)γ

= 1 + q1z + · · · , (2.6)

with � = q(D) = {
w : |argw| < γ π

2

}
, q(0) = 1, E(q) = {1}, and q ∈ Q. Then,

the condition (2.5) can be rewritten as

∣∣∣∣∣arg 2p(z)
[
p(z) + zp′(z)

]
2p(z) + zp′(z)

∣∣∣∣∣ < γ
π

2
⇒ p(z) ≺ q(z).

Suppose that p(z) �≺ q(z).Then, from Lemma 1.1, there exist z0 ∈ D, ζ0 ∈ ∂D \ {1}
and m ≥ 1 such that p(z0) = q(ζ0) and z0 p′(z0) = mζ0q ′(ζ0). This implies that

p(z0) = q(ζ0) := (i x)γ = xγ eγ π
2 i , (2.7)

where x is a real number. Due to symmetry, it is sufficient to consider only the case
where x > 0. We have

ζ0 = q−1(p(z0)) = p(z0)
1
γ − 1

p(z0)
1
γ + 1

,

and therefore we obtain

z0 p
′(z0) = mζ0q

′(ζ0) = mγ xγ

(
x2 + 1

2x

)
e

π
2 (γ+1)i . (2.8)
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Differential Subordinations and Harmonic Means 1251

Taking into consideration (2.7) and (2.8),we have

∣∣∣∣∣arg 2p(z0)
[
p(z0) + z0 p′(z0)

]
2p(z0) + z0 p′(z0)

∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
arg

2p(z0)

[
1 + z0 p′(z0)

p(z0)

]

2 + z0 p′(z0)
p(z0)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
arg p(z0) + arg

1 + z0 p′(z0)
p(z0)

2 + z0 p′(z0)
p(z0)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣γ π

2
+ arg

1 + ui

2 + ui

∣∣∣∣
=

∣∣∣∣γ π

2
+ arctan

u

2 + u2

∣∣∣∣
≥ γ

π

2
,

where

u = mγ

(
x2 + 1

2x

)
> 0.

This contradicts the hypothesis of the theorem, therefore p ≺ q and the proof of
Theorem 2.1 is complete. ��

Setting p(z) = f (z)

z
we obtain the following corollary:

Corollary 2.8 Let f (z) = z + a2z2 + · · · be analytic in D. Then
∣∣∣∣arg 2 f (z) f ′(z)

f (z) + z f ′(z)

∣∣∣∣ < γ
π

2
⇒

∣∣∣∣arg f (z)

z

∣∣∣∣ < γ
π

2
.

Theorem 2.7 Let p(z) = 1 + a1z + · · · be analytic in D with p(z) �≡ 1 and let
γ ∈ (0, 1]. Then

∣∣∣∣∣∣∣∣∣∣
arg

2

[
p(z) + zp′(z)

p(z)

]

2 + zp′(z)
p2(z)

∣∣∣∣∣∣∣∣∣∣
< γ

π

2
⇒ |arg p(z)| < γ

π

2
.

Proof We only need to show that p ≺ q, where q is given by (2.6). As in the proof of
Theorem 2.6, there exist a point z0 ∈ D such that the equalities (2.7) and (2.8) holds.
We have
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1252 S. Kanas, A.-E. Tudor

∣∣∣∣∣∣∣∣∣∣
arg

2

[
p(z0) + z0 p′(z0)

p(z0)

]

2 + z0 p′(z0)
p2(z0)

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
arg p(z0) + arg

1 + z0 p′(z0)
p2(z0)

2 + z0 p′(z0)
p2(z0)

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣arg(xi)γ + arg

[
2x2γ + u2 + 3uxγ sin γ π

2

4x2γ cos2 γ π
2 + (u + 2xγ sin γ π

2 )

+i
uxγ cos γ π

2

4x2γ cos2 γ π
2 + (u + 2xγ sin γ π

2 )

] ∣∣∣∣∣ ,

where u = mγ

(
x2 + 1

2x

)
> 0.

We notice that for γ ∈ (0, 1] the trigonometric functions sin and cos are located in
the first quadrant of trigonometric circle and, therefore, have positive values.
It follows that∣∣∣∣∣∣∣∣∣
arg

2

[
p(z0) + z0 p′(z0)

p(z0)

]

2 + z0 p′(z0)
p2(z0)

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣γ π

2
+ arctan

u cos γ π
2

2xγ + u2x−γ + 3u sin γ π
2

∣∣∣∣ ≥ γ
π

2
,

and this is contradiction with the hypothesis of the theorem. Thus, the proof is com-
plete. ��

Setting p(z) = z f ′(z)
f (z)

we obtain

Corollary 2.9 Let f (z) = z + a2z2 + · · · be analytic in D. Then
∣∣∣∣∣∣∣∣∣
arg

2
z f ′(z)
f (z)

[
1 + z f ′′(z)

f ′(z)

]

1 + z f ′(z)
f (z)

+ z f ′′(z)
f ′(z)

∣∣∣∣∣∣∣∣∣
< γ

π

2
⇒

∣∣∣∣arg z f ′(z)
f (z)

∣∣∣∣ < γ
π

2
.
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