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Abstract
The idea to grow diamond from the gas phase was born in the 1950s but it took about 30 years until first diamond layers 
directly grown from the gas phase on substrates were shown in Japan by Matsumoto and co-workers. During the first years 
of research the function of atomic hydrogen, various growth methods and process parameters were investigated. Research 
was primarily focused on applications for wear-resistant tools. For this topic the interactions of substrates like hardmetals 
and ceramics, with diamond deposition gas atmosphere, were investigated. Beside its superior hardness, diamond exhibits 
the highest heat conductivity, high transparency, high chemical inertness and suitable semiconducting properties. The various 
requirements for the areas of application of diamond required a division of diamond research into corresponding sub-areas. 
The hot-filament method is used mainly for wear applications, because it is highly suited to coat complex geometries, but 
the diamond contains some impurities. Another method is the microwave plasma system which allows the growth of pure 
diamond used for optical windows and applications requiring high thermal conductivity. Other research areas investigated 
include doped diamond for microelectronic or electrochemical applications (e.g. waste water treatment); ballas (polycrystal-
line, spherical diamond), NCD (nanocrystalline diamond) and UNCD (ultra-nanocrystalline diamond) for wear applications.
It should be noted that CVD (chemical vapour deposition) diamond synthesis has reached the stage of industrial produc-
tion and several companies are selling different diamond products. This work is intended to convey to the reader that CVD 
diamond is an industrially manufactured product that can be used in many ways. With correspondingly low costs for this 
diamond, new innovative applications appear possible.

Keywords Diamond · CVD

History

Diamond synthesis was a miracle of nature for hundreds of 
years until scientists at GE (General Electric Company) suc-
ceeded in high-temperature high-pressure (HPHT) synthesis 
of diamond in 1954 [1]. This synthesis follows the rules 
of thermodynamics, and process parameters of diamond 
growth are located in the region of diamond stability.

However the research on diamond synthesis within the 
region of its thermodynamic metastability started nearly 
simultaneously, with patent applications in Russia and 
the USA [2, 3]. In Russia, Deryagin and Spitsyn [4, 5] 

investigated the growth of diamond from the gas phase on 
diamond seed crystals. With this method it was possible 
to increase the size of diamonds up to the onset of graph-
ite growth, but it was necessary to use a cyclic process to 
remove graphite and non-diamond carbon. For the etching 
step, oxidising acids or hydrogen were used at increased 
pressure and temperature. At this time, Angus and co-work-
ers investigated the use of atomic hydrogen (at.H) for etching 
graphite [6].

In principle the requirements for low-pressure diamond 
growth were known at this time. In Russia, Deryagin, 
Spitsyn and several co-workers investigated the epitaxial 
diamond growth on diamond also with etching graphite 
by atomic hydrogen [7–14]. All of these papers describe 
the diamond growth very vaguely, possibly for reasons of 
confidentiality.

Also during the late 1970s the deposition of carbon 
coatings by PVD (physical vapour deposition) was inves-
tigated. Because some of these coatings showed high 
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hardness, Weissmantel called these coatings “diamond-
like carbon” (DLC) [15–19]. This name immediately 
became accepted for amorphous carbon coatings.

The situation changed when Japanese researchers from 
NIRIM (National Institute for Research in Inorganic 
Materials, Tsukuba) published the low-pressure diamond 
deposition, using the hot-filament method, in detail in 
1982 [20, 21]. Shortly after, papers about the characteri-
sation of the diamonds and other deposition methods were 
published [22, 23].

Since it is impossible from a thermodynamic point of 
view to produce diamond under low-pressure conditions, 
it was unbelievable for chemists at the time that such a 
process is possible. Because Prof. B. Lux (1930–2013) 
[24] from TU Wien ignored thermodynamic prejudices 
and believed in the Japanese publications in 1984, low-
pressure diamond research started in Austria. In July 
1985, the first diamond crystals were grown in Vienna 
(Fig. 1) [25–27]. Their presence was confirmed by Raman 
measurements.

In Japan many research groups in companies but also 
at universities investigated various aspects of this new 
method of diamond growth. Outside of Japan, research 
on CVD diamond started a little later.

Atomic hydrogen: the secret of low‑pressure 
diamond growth

For low-pressure diamond deposition, at.H is needed. The 
unbelievable fact was that from a thermodynamic point of 
view, it is impossible to grow diamond at low pressure. 
However in reality, atomic hydrogen is necessary for dia-
mond growth and drives non-equilibrium reactions already 
resulting in diamond.

A filament bulb was used to illustrate how easy diamond 
deposition is (Fig. 2a). During the first years, the actual 
effect and contribution of atomic hydrogen was not clear, but 
Badzian et al. [28, 29] showed a plausible concept (Fig. 2b). 
During pyrolysis of carbon, the deposition of diamond is 
thermodynamically preferred, because it is metastable. 
However, in reality, graphite is formed owing to the Ost-
wald–Vollmer law [30], because graphite has a lower density 
than diamond. The etching of the layered sp2 graphite crystal 
structure by atomic hydrogen is much faster than the etch-
ing of sp3 diamond. By combination of pyrolysis and etch-
ing with atomic hydrogen, diamond can be grown directly. 
Atomic hydrogen has to be generated and transported to a 
substrate surface without recombination (Fig. 2c) [31].

Thermodynamic equilibrium calculations can be used 
to calculate the amount of at.H achievable at selected 
conditions of gas activation, but not to describe diamond 

Fig. 1  First low-pressure diamond crystals grown by the hot-filament method at TU Wien in 1985 (modified from [25])
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growth. During gas activation of hydrogen and carbon-
containing gas mixtures, many  CxHy compounds can be 
formed theoretically [32–35]. Kinetic calculations, consid-
ering the non-equilibrium system and continuous addition 

of atomic hydrogen, show the complexity of the chemical 
reactions (Fig. 3) [36, 37]. Later computer simulations 
were used to try to explain diamond growth and the role 
of at.H [38].

Fig. 2  Explanations of CVD 
diamond growth: a simpli-
fied demonstration of atomic 
hydrogen generation by a light 
bulb (modified from [47]), b 
selective etching of graphite by 
atomic hydrogen (modified from 
[28]), c influence of temperature 
and gas pressure on atomic 
hydrogen generation [46]

Fig. 3  Kinetic calculations in 
the C/H system with additional 
at.H (modified from [36])
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Finally, diamond morphology and quality are defined by 
the amount of at.H and its relation to carbon (Fig. 4). Dia-
mond morphology changes from well-faceted octahedric 
(111) over cubic (100) to un-faceted ballas morphology with 
decreasing at.H to C ratio (Fig. 4a) [39, 40]. The term ballas 
for half-spherical and polycrystalline diamond deposits was 
first used by Bichler et al. [25, 27], but later cauliflower-like 
[41], ball-shape [42] etc. were used by some authors.

The relationships between deposition conditions, amount 
of at.H and diamond morphology are shown in Fig. 4b 
[43–47].

Methods to generate atomic hydrogen 
for diamond growth

Low-pressure diamond deposition is a CVD process, using 
hydrocarbons and at.H for diamond growth. The at.H can 
be produced by high temperatures or gas plasma (Fig. 5). 
These methods offer the possibility of growing polycrystal-
line diamond layers in large size and thickness on different 
substrate materials.

The first method described by Matsumoto et al. was the 
hot-filament method [20], also used by Bichler et al. at TU 
Wien [25]. Microwave activation was introduced by Kamo 
et al. shortly after (Fig. 5b) [23]. Several other methods fol-
lowed, e.g. plasma jets, glow discharges and the acetylene 
torch. Some schematic drawings are shown in Fig. 6.

The hot-filament method (Fig. 6a) works by thermal 
decomposition of  H2 to obtain at.H, and allows for an easy 
design and up-scaling of reactors [47, 48]. For filament 
materials, W or Ta can be used, allowing filament tempera-
tures up to 2500 °C [49–51]. Inhomogeneous diamond depo-
sitions, caused by deviation of substrate temperature and 
at.H concentrations, can be prevented by arranging several 
filaments in optimal positions (Fig. 7a) [48]. An advantage 
of the hot-filament method is that the substrate surface tem-
perature can easily be regulated by additional heating, and 
no active substrate cooling is necessary. However diamond 
deposition rates are relatively low (about 1 µm/h) compared 
with other methods. As a result of impurities in the dia-
monds caused by the filament materials, this method is pri-
marily used for diamond coatings on wear parts [52, 53]. 
Several companies sell hot-filament equipment [54–56].

The acetylene torch (Fig. 6b) also uses high temperatures 
to generate at.H and is very simple. However, as a result 

of the small size of the flame and problems with acetylene 
purity, this method has not gained high importance [57, 58].

Microwave plasma diamond deposition (Fig. 6c) with 
“ball”-shaped plasma is convenient to handle and highly 
pure diamond can be deposited. Enlarging the deposition 
areas is difficult, and as a result of the ball-shaped plasma, 
the diamond quality is inhomogeneous between centre and 
border of the discharge (Fig. 7b) [43, 44, 59]. An advan-
tage of this method is that microwave power can easily be 
increased resulting in higher diamond growth rates (greater 
than 10 µm/h). The possibility to deposit diamond with high 
purity is the main advantage of this method [60]. Today, 
several companies sell microwave equipment for diamond 
deposition [61, 62].

Balzers (now Oerlikon) introduced a high density/low 
voltage arc discharge reactor as an industrial process for 
coating tool materials [63, 64]. This method produces high 
concentrations of at.H and therefore allows the coating of 
a large number of inserts under quite controlled conditions 
[65].

DC- and arc-plasma jets permit high speed diamond 
growth on relatively large surfaces, comparable with micro-
wave and hot-filament methods. As the substrates are typi-
cally located near the arc, controlled cooling is needed to 
regulate the substrate surface temperature, which can be a 
serious problem for mass production applications [66–69].

The DC-glow discharge method (Fig.  6c) allows far 
higher diamond growth rates, but there are some prob-
lems like scale-up, substrate geometry and reproducibility 
[70–72].

The advantages and disadvantages of the primary pro-
cesses for hydrogen activation are summarized in the Table 1 
[73].

Process parameters and substrate 
interactions for diamond growth

As already described, the diamond quality is largely influ-
enced by the ratio of at.H to carbon as well as the substrate 
surface temperature. Furthermore, there is a large overlap 
of influences on diamond growth caused by other process 
parameters such as doping elements and substrate materials. 
These aspects will be presented separately.

Diamond deposition parameters

The main parameter which has to be optimized to grow dia-
mond is the correct gas phase composition in terms of the 
C/H/O ratio compared to the at.H produced [74] (Fig. 8).

Diamond nucleation and growth are the key parameters 
for diamond deposition, and there are always interactions 
between the diamond layer, the substrate, and the gas phase.

Fig. 4  Relationship between the ratio of at.H and carbon on the 
resulting diamond morphologies observed (a) (modified from [40]), b 
schematic representation of the effect of at.H and carbon on diamond 
morphology (modified from [43–45]) (c) schematic representation of 
the defects distribution in deposited diamond in relation to the surface 
morphology

◂



 ChemTexts (2021) 7:10

1 3

10 Page 6 of 23

The diamond layer formation can be subdivided into three 
steps: (1) diamond nucleation, (2) growth of individual dia-
mond aggregates which grow together and (3) diamond layer 
growth (Fig. 9) [27, 75].

If the growth conditions for diamond growth are fulfilled, 
the final diamond quality is linked to the amount of at.H and 
the diamond growth rate. High-quality diamond with low 

defect density requires low diamond nucleation rates and 
low growth rates. By increasing the growth rate, the defect 
density in the diamond crystals increases [40]. The defects 
are mainly micro twins which are preferably formed in (111) 
growth sectors. If the defect density becomes too high, the 
diamond surface is not faceted anymore and is then called 
ballas diamond [76] (Fig. 4).

Fig. 5  Examples for diamond deposition methods: a hot-filament equipment at TU Wien, b microwave equipment, first prototype at NIRIM, 
Tsukuba, Japan, c CD glow-discharge at TU Wien

Fig. 6  Schemata of diamond deposition methods: a hot-filament, b combustion flame, c microwave, d DC-glow discharge
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Different diamond facets can be grown by changing the 
growth conditions, resulting in different layer morphologies 
[77]. The layer morphology is additionally influenced by 
texture formation during layer growth [78] (Fig. 10).

By reducing the amount of at.H compared to C, diamond 
nucleation is increased and fine-grained diamond coatings 
are formed. In the case of extreme changes in process param-
eters, nanocrystalline diamond (NCD) [79, 80] and ultra-
nanocrystalline diamond (UNCD) [81, 82] films are formed. 
In these coatings the diamond crystals are in the nanometre 
range and are surrounded by amorphous carbon-containing 
grain boundaries. As a result of the high number of grain 
boundaries, the content of the diamond phase is reduced and 
it is hard to distinguish between diamond (crystalline) and 
amorphous carbon [83]. As a result of the higher amount of 
sp2 carbon and increased etching by at.H, the layer growth 
rates are low.

Finally, all process parameters interact and lead to dif-
ferent diamond coatings. An example for the interactions of 
temperature and gas pressure on diamond growth is shown 
in Fig. 11 [84]. The gas pressure should be low enough to 
form high amounts of at.H but also high enough to achieve 
reasonable diamond growth rates [31, 46]. The substrate 
surface temperature should be below 1000 °C to prevent 
a transformation of already grown diamond into graphite. 
However, below 600 °C, the diamond deposition becomes 
extremely slow [85].

Following the general concept of Bachmann [74], oxy-
gen has no negative influence on diamond growth. This was 
confirmed by the use of acetone as precursor [86] (Fig. 12) 
and CO addition to the gas source [87].

Fig. 7  Geometrical arrangement substrate/plasma and corresponding diamond morphologies: a hot-filament, b microwave plasma

Table 1  Advantages and 
disadvantages of low-pressure 
diamond synthesis methods 
(modified from [73])

Method Advantages Disadvantages

Hot-filament Low equipment costs
Easy up-scaling

Contamination by the filament material
Low growth rates (about 1 μm/h)

Microwave
plasma

High diamond quality
Easy temperature regulation

“Ball”-shaped plasmas
Non-uniform thickness
Difficult for 3D substrates

Plasma jets High growth rates Forced substrate cooling
Glow discharge High growth rates Substrate temperature control

Small deposition areas; planar substrates
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Impurities and diamond doping

A challenge in this research area is the production of p-type 

and n-type semiconducting diamond. In the past, boron 
[88–90], nitrogen [78, 91–93], phosphorus [94–96], lithium 
[97, 98] and also sulfur [99–101] additions to the diamond 
deposition process were investigated (Fig. 13a).

Boron addition during low-pressure diamond deposi-
tion has been used for quite a long time [90, 102, 103], 
as small boron concentrations increase diamond growth 
rates and improve crystallinity. Later on boron-doped 
diamond became interesting for semiconducting technol-
ogy (p-type) [104] and for electrodes in electrochemistry 
[105]. The deposition methods usually attain gas activa-
tion by microwave plasma or a hot filament. In case of the 
hot-filament method, the reactions of the metallic filament 
materials with boron (formation of borides) have to be 
taken into account [106].

For boron concentrations in the gas phase below 
500 ppm B/C, independent of the boron source and the 
deposition method used, an improved diamond quality is 
commonly found [107, 108]. Slightly increased diamond 
crystal sizes are observed and the crystal habitus becomes 
better pronounced.

B concentrations between 1000 and 5000 ppm B/C 
decrease the diamond growth rates to values comparable 
to undoped layers. Diamond morphology remains fairly 

Fig. 8  C/H/O mixing diagram visualizing the region of diamond 
growth if enough at.H is present (modified from [74])

Fig. 9  Diamond layer formation is influenced by the diamond nucleation rate. a Diagram illustrating the influence of diamond nucleation on the 
diamond deposition rate, b individual diamond crystals, c coalescence of diamond crystals, d diamond layer
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Fig. 10  Correlation between visible diamond crystal size and layer thickness

Fig. 11  Example for the influence of the process parameters temperature and pressure on the diamond deposition with otherwise constant depo-
sition parameters (modified from [57, 84])
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constant with steadily decreasing crystal size. Optical 
microscopy and scanning electron microscopy (SEM) [88] 
of polished diamond samples visualise the inhomogenities 
in boron distribution. Boron is incorporated up to 3 at.% in 
the (111) and less than 0.3 at.% in the (100) grown sectors 
(Fig. 14) [109, 110].

The n-type doping of diamond received great interest, 
and addition of traces of P, N, S and Li was investigated. 
Any addition of impurities to the diamond deposition pro-
cess influences diamond growth rate, morphology, as well 
as quality and properties of the deposited diamond [111].

Considering only steric and energetic factors, an intro-
duction of phosphorus into the diamond lattice seems 
unlikely since the covalent radius of phosphorus is larger 
than that of carbon [112]. Even small amounts of phospho-
rus in the gas phase inhibit well-faceted diamond growth 
[94]. Nevertheless, some reports on the formation of 
n-type CVD diamond films using phosphorus-containing 
doping sources are found in the literature [95, 96, 113].

The influence of nitrogen was studied early, due to leak-
ages or residues in the reaction gases (commonly found in 
 H2 and  CH4). Small contaminations of nitrogen influence 
the diamond growth and crystal orientation drastically [93, 
114, 115]. The outstanding electrical [91, 116] and ther-
mal [117] properties of diamond layers are changed by 
small and medium nitrogen additions.

Research of sulfur-doped diamond [118, 119] was 
driven by the hunt for an n-type semiconducting diamond 
[120, 121], but in the end the results were not promising.

An interesting result was obtained when B and N were 
added simultaneously (Fig. 15) [122]. In this case diamond 
and graphite were deposited side by side, which contra-
dicts the principle of low-pressure diamond growth that 
at.H etches away all the sp2 carbon.

Influence of substrate materials on diamond growth

The interactions between substrates and diamond deposition 
are rather complex because diamond nucleation and growth 
can be influenced (Fig. 16).

Most important are reactions between the substrate and 
the carbon and atomic hydrogen in the gas phase. A subdi-
vision into inert substrates, substrates forming carbides or 
showing carbon solubility, and substrates being attacked by 
atomic hydrogen can be made.

• Inert substrates: diamond [123], c-BN [124], SiAlON 
[27, 44], Cu, Au [125]

• Carbide-forming substrates: refractory metals (e.g. Mo, 
W, Ta [126–128]), but also Si [129, 130]

• Metals with carbon solubility: ferrous metals (Fe, Co, Ni 
[131, 132],  Ni3Ge [133]) and precious metals (e.g. Pt, Pd 
[125, 134])

Fig. 12  Comparison of acetone and methane as precursors for diamond deposition (modified from [86])
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• Samples attacked by at.H: h-BN,  Al2O3 [135], graphite 
[136, 137]

Some examples for diamond growth on various substrates 
are shown in Fig. 17.

One field of interest was the diamond deposition on 
silicon because carbide formation is negligible and there 
is the possibility for epitaxial diamond nucleation to grow 
large area single crystalline diamonds [138, 139]. Epitaxy 
on Si is not perfect and many investigations with epitaxial 

intermediate layers were necessary to reach the goal. In 2017 
Schreck [140] reported a single crystalline diamond plate 
with a diameter of about 92 mm.

Another important substrate material is hardmetal 
(WC–Co) [141], which is used for tool applications. When 
using WC–Co, problems are mainly caused by the Co binder 
[142], as the Co interacts during the diamond deposition 
in different ways [143, 144]. Cobalt catalyses the deposi-
tion of sp2-non-diamond carbon, and it also has a relative 
high vapour pressure influencing the gas phase above the 

Fig. 13  Influence of P, N and B compounds in the gas phase during diamond deposition: a typically developed diamond morphology for the 
individual additives and associated Raman spectra, b influence of the substrate temperature on the diamond growth rate (modified from [111])
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substrate [145]. The sp2-carbon (graphitic) has a negative 
influence on the adhesion of the diamond coatings.

The effects of Co during diamond deposition can be 
described as follows (Fig. 18):

Fig. 14  Example of the inhomogeneous incorporation of boron in different crystal faces. In SEM images, crystal surfaces containing boron 
appear darker because the electrons from SEM are diverted and there is no charging (modified from [88, 109])

Fig. 15  Simultaneous addition of boron and nitrogen during diamond deposition, resulting in mixtures of diamond and graphite (modified from 
[122])
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• Co migration takes place at the substrate surface, and Co 
droplets are formed [143, 146, 147].

• During the deposition process, carbon and parts of 
already deposited diamond diffuse into the hardmetal, 
because the Co binder phase has solubility for carbon 
[148]. For the diamond coating to adhere well to hard-
metal tools, it is necessary to saturate the cobalt binder 
with carbon before the diamond is deposited [148].

• With increasing contents of Co and carbides like TiC in 
the hardmetal alloy, the thermal expansion coefficient 
increases, and as a result of the lower thermal expan-
sion coefficient of diamond, compressive stress occurs 
in the diamond coating during cooling from deposition 
temperature. This is one reason for the reduced coating 
adhesion on the substrate [135].

To overcome the problems concerning Co it is neces-
sary to reduce its surface mobility or surface concentration 
(Fig. 19).

⇒ Etching of Co by various acids.
Selective etching of the Co binder phase with various 

acids offers a wide range of different pre-treatment meth-
ods. The thickness of the etched zone is important because 
remaining porosity in the hardmetal results in reduced layer 
adhesion [149, 150].

⇒ Etching of WC and Co.
Etching of WC/Co composites can be achieved by a well-

tailored two-step etching treatment, where a Murakami solu-
tion  (K3[Fe(CN)6] in KOH) is used to attack the WC first, 
and in a second step the remaining Co sponge is dissolved by 
Caro’s acid  (H2SO4 with  H2O2) [151, 152]. Diamond nuclea-
tion is favoured by the rough, etched surface resulting in a 
good layer adhesion.

⇒ Thick intermediate layers.
Intermediate layers should cover the substrate and encap-

sulate the Co. The material selection for such interlayers 
is difficult, because they must be stable during diamond 

deposition and diamond nucleation should be fast enough 
for rapid layer formation. Additionally, the interlayers should 
have a low thermal expansion coefficient to reduce stress at 
the interface [153, 154]. Various CVD and PVD coatings 
were tested as intermediate layers, but these experiments 
were not successful because of insufficient diamond nuclea-
tion on the intermediate layers and poor diamond adhesion.

⇒ Thin layers formed by surface reactions with Co.
Different methods were used to form stable Co com-

pounds at the hardmetal surface. A simple heat treatment 
with B or Si was very effective, as can be seen in Fig. 19. 
SEM pictures show well-faceted diamond, Raman confirmed 
higher quality of the deposited diamond, and no Co droplets 
on the coating surface are visible [144].

To find more simple methods for the surface treatments 
various other procedures were investigated [155–158].

Nowadays variations of Murakami/Caro etching are the 
most frequently used pre-treatment for hardmetal tools.

Carbon substrates need tricky deposition conditions 
in order to coat them with diamond, because graphite is 
attacked by at.H [159, 160]. Carbon substrates can be used 
for electrode materials owing to their electrical conductivity 
and better corrosion resistivity compared with metals.

Steel substrates are also of interest for diamond deposi-
tion, because high speed steels (HSS) are widely used in 
tool industry. As a result of the high carbon solubility in 
iron at the typical diamond deposition temperatures (greater 
than 750 °C), direct deposition on steel is not possible [153, 
161, 162]. Additionally, the thermal expansion coefficient of 
steel is high, causing problems with compressive stress in 
coatings after cooling down from deposition temperatures. 
Nevertheless, several PVD coatings were tested as interme-
diate layers for diamond deposition [161]. These experi-
ments were not successful and no commercial products of 
diamond-coated steel tools are currently available.

Finally, the chemical properties of the substrate influ-
ence the diamond growth as do the surface roughness and 

Fig. 16  Illustration of the influ-
ence of substrate properties on 
the diamond nucleation
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Fig. 17  Diamond deposition on various substrates
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remaining particles from surface preparation (Fig. 20). On 
a rough surface, there are more active spots allowing the 
nucleation of diamond. Very often diamond is used for 
grinding the substrates, but also seeding with nano-diamond 
is often used. In this case it is not diamond nucleation but 
diamond growth on the seed crystals. Changes in diamond 
nucleation rates or seeding results in different diamond 
growth rates as can be seen in Fig. 9 [45, 127].

Analytical characterisation of diamond

When CVD diamond research started, Raman measure-
ments were necessary for a clear identification of diamond 
[26]. The Raman peak at 1332  cm−1 is characteristic for 
the diamond crystal lattice. The better the crystallinity of 
the diamond crystal, the higher this peak is. In case of 
crystal defects or impurities, the peak intensity decreases 
[40]. Additionally, different types of sp2 carbon can be 
detected.

The availability of new Raman equipment with differ-
ent laser wavelengths makes the situation more complicated 
because the wavelength of the laser influences the posi-
tion and intensity of the different peaks (Fig. 21a, b) [40, 
163–165].

CVD diamond coatings have been investigated by almost 
all available analytical methods [76, 88, 109, 166–170], the 
discussion and interpretation of which are impossible in this 
paper.

Only one example for cathodoluminescence is shown in 
Fig. 21c, and different coloured diamond aggregates can 
be seen side by side [171].

Fig. 18  Interactions of the Co binder phase in the hardmetal during diamond deposition. a Schematic representation (modified from [142]), b Co 
droplets on the diamond surface (modified from [145]), c diffusion of C into a substoichiometric hardmetal substrate (modified from [145])

Fig. 19  Hardmetal surface treatments prior to diamond deposition: a comparison of etching, intermediate layer and surface treatment (modified 
from [142]), b surface treatment with B and Si c diamond morphologies after the surface treatments (modified from [144])
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Applications for diamond, focusing on CVD 
diamond

The excellent properties of diamond, including its extreme 
hardness, wear resistance, thermal conductivity and trans-
parency predestine low-pressure diamond to become the 
ideal material for coatings on wear parts, heat-spreaders, 
and optical windows. The electrical conductivity of boron-
doped diamond allows for electrochemical applications 
Fig. 22.

The dream of diamond-based microelectronics has unfor-
tunately not come true, because of difficulties with p-doping 
of diamond [172].

Superconductivity [173, 174] and quantum dots light 
sources [175] have also been observed as special properties 
of diamond.

Diamond coatings for wear parts

The high hardness and wear resistance qualify diamond 
coatings for tool applications, which were developed quickly. 
Diamond-coated hardmetal tools have similar properties to 
PCD (poly-crystalline diamond sintered at high pressure), 
but the production costs of CVD diamond are significantly 
lower [53, 176]. For CVD diamond applications, two differ-
ent application paths are possible [177–180]:

(a) Applications for free-standing diamond layers.
Free-standing diamond layers are binder-free (100% dia-

mond), and their wear resistance can be higher than that of 

PCD. Several production steps are necessary from the dia-
mond deposition to the final part. At first, a thick diamond 
layer is deposited on dummy substrates (e.g. Si, Mo etc.) 
before the layer is removed from the substrate and laser-cut 
to the final shape. Finally, the diamond sheets are bonded to 
the wear parts and finished by grinding.

(b) In situ diamond coatings on tools.
For most wear applications the diamond is depos-

ited directly on the substrate. A very intensively investi-
gated application is the diamond deposition on hardmetal 
(WC–Co) substrates (Fig. 22a) [177].

A comparison between commercially produced CVD 
diamond-coated tools and uncoated ones for the process-
ing of various materials has been reported by several com-
panies (e.g. Oerlikon Balzers [65, 181], Boehlerit [182], 
CemeCon [183]).

In this context, there were also extensive studies on the 
friction and wear of diamond layers [184, 185].

Diamond coatings with high heat conductivity

Diamond’s highest thermal conductivity (at room tempera-
ture) and good electrical insulation make it a desirable 
packaging material for semiconductors.

High-quality diamond layers are achieved by carefully 
selecting the diamond deposition parameters. Defects and 
impurities dramatically decrease the heat conductivity. 
The processing of heat spreaders requires flat layers with 
a uniform thickness (Fig. 22b) [92, 186, 187].

Fig. 20  Influence of the substrate surface and the substrate material on diamond nucleation (modified from [127])
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Diamond coatings for electrochemical applications

Boron-doped diamond exhibits electrical conductivity 
and a large electrochemical window. A high overpoten-
tial prohibits the decomposition of water, and because of 
this other chemical reactions are possible [188–190]. A 
typical application is in industrial wastewater treatment 
[105]. It was shown that organic carbon can be completely 

converted to carbon dioxide without the formation of by-
products (Fig. 22d) [191, 192].

Optically clean and single crystalline diamond

Diamond’s unique multispectral transparency combined 
with its mechanical strength, chemical inertness and 

Fig. 21  Characterisation of diamond with Raman at different wavelength (a, b) (modified from [163, 164]), (c) cathodoluminescence (modified 
from [171])
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abrasion resistance makes it a desirable material for opti-
cal windows (Fig. 22c).

Examples for the usage of CVD diamond windows are: 
X-ray detector windows for SEM and X-ray tubes [193, 
194], mid-infrared attenuated total reflectance (ATR) spec-
troscopy [195] or optical diamond lenses [196].

Growth of single crystalline diamond requires a single 
crystalline seed crystal and growth rates are usually low 
to avoid defects and impurities in the diamonds [197]. 
CVD grown and polished gemstones up to several carats 
in weight are available and used in jewellery [198, 199].

If you consider the initial scepticism about CVD dia-
mond deposition, the economic production of diamond 
single crystals for jewellery is certainly a high point of 
diamond research.

Knowledge on CVD diamond deposition 
is disappearing

It should  not be possible for published knowledge to get 
lost, so why does this happen?

About 40 years ago scientists invented the low-pressure 
diamond deposition, and they found the most important 

deposition parameters and developed the theories for CVD 
diamond growth. These scientists are mostly retired and 
no longer working.

The large hype around diamond deposition was in 
the 1990s where many universities, research centres and 
companies were interested in new diamond applications. 
Over time, large companies took over the development 
of diamond products, start-ups were created for smaller 
areas of application and, as a result of a lack of funding, 
university research decreased. With university research, 
however, university teaching also disappeared.

Some long-established scientists can still understand the 
fascination of diamond synthesis at the time, but today this 
fascination has given way to indifference.

CVD diamond is manufactured in “black box” plants, the 
parameters are set, and it is not necessary to understand the 
chemical reactions at the plant. These are the circumstances 
in which the knowledge and secrets of CVD diamond depo-
sition are lost.

An admittedly additional difficulty is that in the 1990s, the 
scientific work was not and is not digitally available, which 
of course means an increased effort for its procurement.

There is hope that this manuscript will be a useful sum-
mary of the history of CVD diamond deposition and that the 
essential secrets of diamond deposition will not be forgotten.

Fig. 22  Areas of application for CVD diamond that have been implemented industrially for a hard coatings on tools, b diamond sheets as heat 
sinks, c transparent diamond windows, d chemically inert diamond electrodes for electrochemical applications
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