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Abstract
The paper is focused on comparing the forecasting performance of two relatively 
new types of Vector Error Correction - Multiplicative Stochastic Factor (VEC-MSF) 
specifications: VEC-MSF with constant conditional correlations, and VEC-MSF-
SBEKK with time-varying conditional correlations. For the sake of comparison, 
random walks, vector autoregressions (VAR) with constant conditional covariance 
matrix, and VAR-SBEKK models are also considered. Based on daily quotations 
on three exchange rates: PLN/EUR, PLN/USD, and EUR/USD, where the cointe-
grating vector may be assumed to be known a priori, we show that in econometric 
models it can be more important to allow for cointegration relationships than for 
time-varying conditional covariance matrix.

Keywords Multivariate time series · Cointegration · Stochastic volatility · Predictive 
Bayes factor · Exchange rate

JEL Classification C11 · C53

1 Introduction

Widely-used models for financial time series are based on conditional hetero-
scedasticity processes. The most popular ones are the Generalized Autoregres-
sive Conditional Heteroskedastic (GARCH) and the Stochastic Volatility (SV) 
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processes. The latter are less often used, though (for a review see, e.g., Silven-
noinen & Teräsvirta, 2009; Asai et al., 2006; Shephard & Andersen, 2009; Chib 
et al., 2009; Eratalay, 2016). However, some research has shown that apart from 
the fact that the variability of financial time series (measured, for example, by 
the conditional covariance matrix) varies over time, on financial markets there 
can also exist long-term relationships. Therefore, it appears essential to construct 
such models in which the possible presence of long-run relationships and time-
variable volatility are simultaneously taken into account. As the vector autore-
gression (VAR) models underlie the cointegration analysis, the efforts have been 
focused on suitably tailoring the vector error correction (VEC) representation of 
VAR so as to accommodate for time-varying conditional covariances, see, e.g., 
Seo (2007), Herwartz and Lütkepohl (2011), Koop et al. (2011), Osiewalski and 
Osiewalski (2013), Osiewalski and Osiewalski (2016), Cavaliere et  al. (2015), 
Pajor and Wróblewska (2017), Cavaliere et al. (2018).

Although there exists a growing number of publications discussing the fore-
cast accuracy of Bayesian VAR models with time-varying parameters or with the 
time-varying covariance structure (see, e.g., Clark, 2011; D’Agostino et al., 2013; 
Rossi & Skhposyan, 2014; Clark & Ravazzolo, 2015; Berg, 2017; Abbate & Mar-
cellino, 2018; Chan & Eisenstat, 2018; Vardar et  al., 2018; Huber et  al., 2020; 
Kastner & Huber, 2021), one can find rather few publications in which different 
vector error correction models are compared in respect to their forecasting poten-
tial (see, e.g., Anderson et al., 2002; Swanson, 2002; Kuo, 2016; Huber & Zörner, 
2019). The main conclusion of the papers mentioned above is that VAR mod-
els with time-varying parameters and with time-varying covariance structure are 
often found to have better forecasting performance than their constant coefficient 
variants. On the other hand, Kuo (2016) showed that VEC models outperform 
VAR models in forecasting stock prices on Taiwan markets.

Our research is focused on Bayesian Vector Error Correction - Multiplica-
tive Stochastic Factor (VEC-MSF) models, proposed by Pajor and Wróblewska 
(2017). These models integrate the VEC representation of a VAR structure with 
stochastic volatility. In consequence, the VEC-MSF models enable us to capture 
long-run relationships among processes. Also, they make it possible to formally 
examine the presence of time-variation in the conditional covariances. In the 
VEC-MSF models proposed by Pajor and Wróblewska (2017), conditional heter-
oskedasticity is taken into account by the Multiplicative Stochastic Factor (MSF) 
process, or, alternatively, by one of its generalizations, namely, by the hybrid 
Multiplicative Stochastic Factor - Scalar BEKK (MSF-SBEKK) specification. It 
is worth mentioning that, in the VEC-GMSF-SBEKK models proposed by Osi-
ewalski and Osiewalski (2016), the authors consider only two cases of reduced 
rank long-run multiplier matrix, � . In their paper only three partial and one 
global relationships are analyzed. In our paper, by contrast, all possible cases of 
the long-run multiplier matrix � are considered.

The main purpose of this paper is to discuss properties of Bayesian VEC-MSF 
models in the context of modeling financial time series. Another purpose is to com-
pare the forecasting performance of three types of model specifications: the VEC-
MSF model with constant conditional correlations, the VEC-MSF-SBEKK and 
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VEC-SBEKK models with varying conditional correlations, and the VEC model 
with constant conditional covariance matrix.

Based on daily quotations on three exchange rates: PLN/EUR, PLN/USD and 
EUR/USD, the predictive capacity of the models under consideration is com-
pared. By modeling the exchange rates (where, as arbitrage opportunities are lack-
ing, the cointegrating vector may be assumed to be known a priori, see Osiewalski 
and Pipień, 2016), it will be possible to show how important for prediction it is to 
incorporate a long-run relationship in financial data. It is important to stress that our 
attention is focused on pure time-series specifications for daily data, without apply-
ing any extra variables suggested by economic or financial theory. The fundamentals 
of exchange rate modeling are explained in Kębłowski et al. (2020), where the clas-
sical VEC model with constant conditional covariance matrix is used for monthly 
data spanning a period from January 2000 to June 2017.

The main criterion used in this study for drawing this comparison is the predic-
tive Bayes factor. The Probability Integral Transform (PIT) of Rosenblatt (1952) is 
also applied. As it is pointed out by Geweke and Amisano (2010, p. 229) “the two 
approaches can be complementary, each identifying strengths and weaknesses in the 
models”. A popular measure of forecasting performance is the so-called continuous 
ranked probability score (CRPS). The definition of CRPS and its generalization to 
energy score can be found in Gneiting and Raftery (2007). As the analysis conducted 
here is mainly Bayesian, the predictive Bayes factor will be used as the main crite-
rion applied for evaluating the forecast performance of models under consideration.

The paper is organized as follows. In Sect. 2 Bayesian VEC-MSF models are pre-
sented. Sections 3 and 4 are devoted to the predictive Bayes factor and to the PIT 
in the context of predictive performance of models. Section  5 contains empirical 
results, and Sect. 6 concludes the paper.

2  Bayesian VEC models with stochastic volatility

Let us start with a linear n-variate and kth-order vector autoregressive (VAR) 
process:

where �t is an n × 1 random vector, {�t} is a vector white noise process with the 
covariance matrix � (i.e. {�t} ∼ WN(0,�)) , �i is an n × n matrix of real coef-
ficients ( i = 1, 2, ..., k ), matrix �t is comprised of deterministic variables, � is a 
parameter matrix, T is the number of observations, h is the forecasting horizon, and 
�1−k, �2−k,… , �0 are the initial conditions. The {�t} process takes on the following 
VEC representation:

(1)�t = �1�t−1 + �2�t−2 + ... + �k�t−k +��t + �t, t = 1, 2, ..., T + h,

(2)Δ�t = �̃�t−1 +

k−1∑

i=1

�iΔ�t−i +��t + �t,
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where Δ�t = �t − �t−1 , �̃ =
∑k

i=1
�i − �, �i = −

∑k

j=i+1
�j . Moreover, �̃ = ��̃

� , 
with � and �̃′ being some (n × r) - sized matrices, and r < n is the number of cointe-
gration relationships (if they exist).

The definition of {�t} provided in (2), has been generalized in Pajor and 
Wróblewska (2017) by introducing random-variability into elements of �:

where �t−1 denotes the past of the process {�t} up to time t − 1 , qt is a latent variable, 
� is a vector of parameters, and �t = �(qt,�t−1,�t,�).

In order to investigate the influence of assumptions (pertaining to the conditional 
covariance matrix) on the predictive abilities of the models we consider four struc-
tures for matrix �t : constant, Multiplicative Stochastic Factor (MSF), SBEKK, and 
hybrid MSF-SBEKK [type I; see, e.g., Osiewalski (2009); Osiewalski and Pajor 
(2009); Pajor and Wróblewska (2017)].

The Multiplicative Stochastic Factor structure for matrix �t is as follows:

where ln qt = � ln qt−1 + �q�t , |𝜑| < 1 , {�t} ∼ iiN(0, 1), and �t⊥𝜂s , for 
t, s ∈ {1, 2,… , T + h}.

Although the VEC-MSF process features non-zero time-variable conditional 
covariances, conditional correlations remain constant in time. Such a result is attrib-
utable to the fact that the very same qt factor drives the dynamics of each element of 
�t . The process has been employed in, e.g., Osiewalski and Pajor (2009) and Pajor 
and Osiewalski (2012).

The type I hybrid MSF-SBEKK structure for matrix �t proposed by Osiewalski 
(2009) and Osiewalski and Pajor (2009) is the following:

with ln qt = � ln qt−1 + �q�t , |𝜑| < 1 , {�t} ∼ iiN(0, 1), and �t⊥𝜂s , for 
t, s ∈ {1, 2,… , T + h}, a, b ∈ [0, 1], a + b < 1.

As regards the initial conditions for �̃t , we assume �0 = � , �̃0 = s0,��n , where 
s0,� > 0 , and �n denotes identity matrix of size n. The presence of the scalar 
BEKK(1,1) structure in the conditional covariance matrix allows to model time-var-
ying conditional correlations without introducing more latent processes. The hybrid 
model defined by (3, 4) and (6, 7) nests two simple basic structures. For b = 0 and 
a = 0 we obtain the VEC-MSF model. In the limiting case when �q → 0 and � = 0 , 
the VEC-MSF-SBEKK model becomes the VEC-SBEKK one.

Equation (3) can be decomposed and expressed as follows:

(3)Δ�t = ��̃
�
�t−1 +

k−1∑

i=1

�iΔ�t−i +��t + �t, t = 1, 2, ..., T + h,

(4)�t|�t−1,�t, qt,� ∼ N(�,�t),

(5)�t = qt�,

(6)�t = qt�̃t,

(7)�̃t = (1 − a − b)� + b
(
�t−1�

�
t−1

)
+ a�̃t−1,
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where �� = [�̃
�
,��

1
] , �1,t = [��

t−1
,�

(1)
t ]� , �2,t = (Δ��

t−1
,Δ��

t−2
,… ,Δ��

t−k+1
)� , 

�3,t = �
(2)
t  , � = [�1,�2,… ,�k−1]

� , �s = ��
2
 , and � ��

1
�

(1)
t +�2�

(2)
t = ��t.

The conditional distribution of �t (given the past of the process, �t−1 , the deter-
ministic variables, �t , the parameters and the latent variable, qt) is n-variate Normal 
with the mean �t = �t−1 +��1,t + ���2,t + ��

s
�3,t and the covariance matrix �t:

where � = ���,�� and q0,� are the vectors of the stochastic volatility parameters: 
in the VEC-MSF model �� = (�, �2

q
)� and q0,� = ln q0 , in the VEC-MSF-SBEKK 

model we have �� = (�, �2
q
, a, b)� and �0,� = (ln q0, s0,�)

� , whereas in the VEC-
SBEKK specification �� = (a, b)� and �0,� = s0,�.

2.1  Predictive distribution

Let us adopt the following symbols:
� = (vec ��, vec ��, vec ��, vec ��

s
, vech ��,��

�
, q0,�)

� – the parameter vector,
�t, t = 1, 2,… , T  – the observable random vectors,
�.T = [�1�2 … �T ] – the matrix of observables,
�f = [�T+1�T+2 … �T+h] – the matrix of future observables,
�.T = (q1, q2,… , qT )

� – the vector of latent variables for the first T observations,
�f = (qT+1, qT+2,… , qT+h)

� – the vector of future latent variables,
� = [�1�2 …�T+h] – the matrix of deterministic variables.
Inference on all unknown and unobserved quantities (parameters, latent variables 

and future observables) can be based on the joint posterior – predictive density func-
tion. The joint density function of the observed data, h forecasted values of the data 
and forecasted latent variables (given the parameters and latent variables up to time 
T) is as follows:

This density depends on some initial values, which are not shown in our notation. 
The out-of-sample predictive density of h future values of observations and of latent 
variables is obtained through averaging the sampling predictive densities over the 
parameters and latent variables space, with the use of the posterior density as a 
weight function:

(8)
Δ�t = �[�̃

�
,��

1
]

[
�t−1
�

(1)
t

]
+

k−1∑

i=1

�iΔ�t−i +�2�
(2)
t + �t

= ����1,t + ���2,t + ��
s
�3,t + �t,

(9)p(�t|�t−1,�t,�, �,�,�s, qt,�,��, q0,�) = fN,n(�t|�t,�t),

(10)

p(�.T , �f , �f |�,�, �.T )

=

T+h∏

t=1

fN,n(�t|�t,�t)

T+h∏

t=1

q−1
t
fN,1(ln qt|� ln qt−1, �

2
q
).

(11)p(�f , �f |�o.T ,�) = ∫ p(�f , �f |�o.T ,�,�.T ,�)p(�.T ,�|�
o
.T
,�) d�.Td�,
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where

�o
.T
= [�o

1
...�o

T
] denotes the ex post, observed, value of �.T.

The main advantage of the Bayesian approach is that it provides a probability dis-
tribution for future observables (or any function of them). If we are interested only 
in prediction of future observables, we can use the following Bayesian predictive 
distribution:

which takes into account uncertainty regarding parameters and latent variables, 
given the data, sampling model and a prior distribution.

2.2  Prior distribution and sampling scheme

It remains to formulate the prior distribution of the parameter vector � . We assume 
independence among certain blocks of parameters, and we use the same prior distri-
butions as in Pajor and Wróblewska (2017):

where I[0,1](.) denotes the indicator function of the interval [0, 1], and � is the vector 
of eigenvalues of the companion matrix, connected with the VAR form.

For matrix � we use the parameterization which has been proposed by Koop 
et al. (2010):

where �Π is an r × r symmetric positive-definite matrix, and � and � are unre-
stricted matrices. It can be shown that � = �(���)

1

2 , � = �(���)−
1

2 . The prior dis-
tributions for matrices � and � imply the prior distributions for � and � . They are 
assumed to be as follows:

– for matrix � the matrix normal distribution is used: p(�|r) = fmN(�|�, �r, �n), 
which leads to the matrix angular central Gaussian (MACG) distribution for � : 
p(�) = fMACG(�|�n) . By imposing MACG distribution with identity matrix we set 
uniform prior for � , (see, e.g., Chikuse, 2002).

– on matrix � we also impose the matrix normal distribution: 
p(�|�, r) = fmN(�|�, ��r, �n), where parameter � has the inverse-gamma distribu-
tion: p(v) = fIG(�|2, 3).

The priors for the remaining parameters are as follows:

(12)

p(�f , �f |�o.T ,�,�,�)

=

T+h∏

t=T+1

fN,n(�t|�t,�t)

T+h∏

t=T+1

q−1
t
fN,1(ln qt|� ln qt−1, �

2
q
),

(13)p(�f |�o.T ,�) = ∫ p(�f , �f |�o.T ,�,�.T ,�)p(�.T ,�|�
o
.T
,�) d�.T d� d�f ,

(14)p(�) = p(�|�)p(�)p(�)p(�s)p(�)p(��)p(�0,�)I[0,1](|�|max),

��� = (��Π)(��
−1
Π
)� ≡ ���,
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– p(�|h) = fmN(�|�, �n, h�l), where l = n(k − 1),
– p(�s|hs) = fmN(�s|�, �n, hs�ls), where ls is the number of deterministic terms in 

�t , moreover, p(h) = fIG(h|2, 3) and p(hs) = fIG(hs|2, 3);
– p(�) ∝ fN,1(� ∣ 0, 100)I(−1,1)(�) , – the normal density with mean zero and var-

iance 100, truncated by the restriction ∣ 𝜑 ∣< 1;
– p(�2

q
) = fIG(�

2
q
∣ 1, 0.005) – the density of the inverted gamma distribution, it 

is assumed that E(�−2
q
) = 200,Var(�−2

q
) = 2002 (see Jacquier et al., 2004);

– p(�) = fIW (� ∣ �n, n + 2, n) – the inverted Wishart distribution with mean In;
– p(a, b) ∝ I(0,1)(a + b) – the uniform distribution over the unit simplex;
– p(lnq0) = fN,1(lnq0 ∣ 0, 100);
– p(s0,�) = fExp(s0,� ∣ 1) – the exponential distribution with mean 1.

In order to estimate our VAR-MSF models, which contain as many latent varia-
bles as the number of observations, we resort to MCMC methods which allow for 
generating a pseudorandom sample from the posterior distribution. The MCMC 
methods adapted to our models are presented in Pajor and Wróblewska (2017). 
Simulation from the predictive distribution is performed by generating pseudor-
andom values from posterior distribution of parameters and latent variables, and 
by inserting them into the sampling distributions of future observables and latent 
variables. In other words, at each step of Gibbs algorithm (for each simulated 
vector of parameters and latent variables) �f  and �f  are drawn from the sampling 
predictive distributions. The resulting sequence of future observables and latent 
variables is a simulation from the predictive distribution (expressed in 11). The 
sampling scheme is the following: 

 Step 1. Set i = 0 and get starting values for the vector of parameters �(i) and for the 
vector of latent variables �(i)

.T
;

 Step 2. Generate �(i+1)

1
= (a, b, s0,�, vec(�)

�)�(i+1) from the full conditional posterior 
distribution of the parameter, using the sequential Metropolis-Hastings algo-
rithm. The proposal distribution used to simulate �(i+1)

1
 is a truncated Student t 

distribution with 3 degrees of freedom, centered at previous values of the chain. 
The covariance matrix of the Student t distribution is determined by initial draws 
of the algorithm;

 Step 3. Draw �(i+1) from a truncated normal distribution;
 Step 4. Draw (�2

q
)(i+1) from an inverted gamma distribution;

 Step 5. Draw ln q(i+1)
0

 from a normal distribution;
 Step 6. Generate �(i+1)

2
= (vec(�)�, vec(�)�, vec(�)�, vec(�s)

�, h, hs, v)
�(i+1) from the 

full conditional posterior distribution of the vector of parameters, using the 
sequential Metropolis-Hastings algorithm. The proposal distribution used to 
simulate �(i+1)

2
 is a truncated normal distribution;

 Step 7. For t = 1,… , T generate q(i+1)t  from the full conditional posterior distribution 
of this latent variable, using the independence Metropolis - Hastings algorithm. 
The proposal distribution used to simulate qt is an inverted gamma distribution;

 Step 8. For j = 1,… , h draw q(i+1)
T+j

 from the sampling predictive distribution whose 
density is a product of log-normal densities;
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 Step 9. For j = 1,… , h draw �(i+1)
T+j

 from the conditional (given q(i+1)
T+j

 ) sampling pre-
dictive distribution whose density is a product of multivariate normal densities;

 Step 10. Set i = i + 1 and return to Step 2 until convergence is achieved.

Details on the full conditionals of parameters and the latent variables, as well as pro-
posals distributions can be found in Pajor and Wróblewska (2017).

3  Predictive Bayes factor

Comparing and evaluating the predictive performance of models requires the use of 
inference methods for predictive accuracy. The Bayesian approach delivers the con-
cept related to the marginal likelihood and predictive likelihood, which are relevant 
for the context of the comparison of models. Because “there is no distinction between 
a model’s adequacy and its out of sample prediction record.” (see Geweke, 2005, p. 
23), we can start with the model comparison. Let us assume that M1,… ,Mm are mutu-
ally exclusive (non-nested) and jointly exhaustive models. The posterior probability of 
model Mi is

where p(Mi) and p(�o
.T
|Mi) denote a prior probability of model Mi and the marginal 

likelihood, respectively. The marginal likelihood is defined as a value of the mar-
ginal probability density function for �.T in observed data, �o

.T
 , and thus it is a real 

number (see Geweke, 2005). The marginal probability density function for �.T is

where �i and �.Ti denote the vector of parameters and the vector of latent variables, 
respectively, in the model Mi . As it is pointed out by Geweke (2005, p. 23), the mar-
ginal density “is a prediction of what the data will be, before they are observed”.

To compare two econometric models, their ratio of posterior probabilities (called 
the posterior odds ratio) can be used. For any pair of competing models, Mi and Mj , the 
posterior odds ratio in favor of the model Mi is given by the following:

where p(Mi)∕p(Mj) is the prior odds ratio, and p(�o
.T
|Mi)∕p(�

o
.T
|Mj) is the ratio of the 

marginal data density, called the Bayes factor. Thus the posterior odds ratio relating 
to models Mi and Mj is the product of the Bayes factor pertaining to models Mi and 
Mj and of the prior odds ratio. In turn, the marginal probability density function for 
�.T in model Mi can be expressed as the product of conditional distributions:

(15)
p(Mi��o.T ) =

p(�o
.T
�Mi)p(Mi)

m∑
j=1

p(�o
.T
�Mi)p(Mi)

, i = 1, 2, ...,m,

(16)p(�.T |Mi) = ∫ p(�.T |�i, �.Ti,Mi)p(�i, �.Ti|Mi) d�i d�.Ti,

(17)
p(Mi|�o.T )
p(Mj|�o.T )

=
p(�o

.T
|Mi)

p(�o
.T
|Mj)

×
p(Mi)

p(Mj)
,
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Thus the Bayes factor in favor of the model Mi versus model Mj can be expressed as 
follows (Geweke and Amisano, 2010, p. 229):

where PLMi
(t) = p(�o

t
|�o

.t−1
,Mi) denotes the one-step-ahead predictive likelihood in 

model Mi , �o.t−1 = [�o
1
,… , �o

t−1
] . The one-step-ahead predictive likelihood, which is 

a real number, can be calculated as follows:

where �.ti = (q1i,… , qti)
� . The approximation of PLMi

(t) is:

where {�(d)

i
, �

(d)

.ti
}M
d=1

 are drawn from p(�i, �.ti|�o.t−1,Mi) , see also Pajor (2021). 
PLMi

(t) constitutes a measure of how well model Mi predicts the observation �o
t
 con-

ditional on �o
.t−1

 . To compare how well alternative models predict the same set of 
observations, the predictive Bayes factor can be applied. The predictive Bayes factor 
in favor of Mi over Mj for observation t is defined as a ratio of the predictive likeli-
hoods: PLMi

(t)∕PLMj
(t) . From equation (19) it can be seen that the Bayes factor can 

be expressed in terms of predictive Bayes factors.
Let us assume that T < S . Then, the predictive likelihood, 

p(�o,T+1
.S

��o
.T
,Mi) =

S∏
t=T+1

PLMi
(t) , is a measure of how well the model Mi predicts the 

data �o,T+1
.S

= [�o
T+1

,… , �o
S
] conditional on �o

.T
 . For two models we obtain the 

following:

and consequently the cumulative log predictive Bayes factor for period T + 1 through 
S can be calculated as follows:

(18)p(�.T |Mi) =

T∏

t=1

p(�t|�.t−1,Mi).

(19)
p(�o

.T
�Mi)

p(�o
.T
�Mj)

=

T∏
t=1

p(�o
t
��o

.t−1
,Mi)

T∏
t=1

p(�ot ��o.t−1,Mj)

=

T�

t=1

PLMi
(t)

PLMj
(t)

,

(20)PLMi
(t) = ∫ p(�o

t
|�o

.t−1
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The formula (22) shows that the predictive Bayes factor is a multiplicative updat-
ing factor applied to the predictive likelihood, after the individual observation that 
produces the new predictive likelihood. Each individual observation contributes to 
the evidence of superiority of one model over another. In equations (22) and (23) 
the accumulation of this evidence starts at t = T + 1 , and thus, if we were to regard 
p(�i, �.Si|�o.T ,Mi) as the prior distribution for �i, �.Si (that is, if �o

.T
 were to be treated 

as a training sample), then the ratio (22) would have the same interpretation as the 
Bayes factor. In other words, the first T observations are used to update the prior 
distribution, whereas the remaining ones are used to compare the models. Further 
details can be found in Geweke (2005) and Geweke and Amisano (2010).

It is worth mentioning that the use of the logarithm of the Bayes factor is equiva-
lent to the use of the so-called ignorance or logarithmic score (see Gneiting & Raf-
tery, 2007). The logarithm of the Bayes factor is the difference of the logarithmic 
scores for corresponding two models. Thus, the predictive Bayes factor is equivalent 
to the difference in the logarithmic score.

4  Forecast evaluation with probability integral transformations

The predictive Bayes factor measures the relative predictive performances of mod-
els. It depends only on the predictive probability densities evaluated at the observed 
values of the future data. An alternative, but non-Bayesian, assessment of the pre-
dictive performance of a model is provided by the probability integral transforma-
tion (PIT) of Rosenblatt (1952). The idea based on the PIT derives from the fact 
that, if a random variable z has the cumulative distribution function F, then F(z) has 
the uniform distribution over the interval [0, 1]. Let 

{
xo
j;t−1+h

}T+N

t=T+1
 be the realized 

values of xj;t−1+h at time t = T + 1,… , T + N , and let p̂j(u|�o.t−1,Mi) be the assess-
ment of the conditional predictive density for the j-th component of vector �t−1+h in 
the model Mi . The PIT corresponding to model Mi as well as to the sequence {
xo
j;t−1+h

}T+N

t=T+1
 is a sequence of values of the cumulative density function:

Under some regularity conditions (see Diebold et al., 1998) and if the realized val-
ues 

{
xo
j;t−1+h

}T+N

t=T+1
 are generated by the predictive distribution pj(u|�o.t−1,Mi) , then 

F̂j(x
o
j;t−1+h

|�o
.t−1

,Mi) has a uniform distribution over the interval [0, 1]. Moreover, if 
h = 1 , then the sequence 

{
zj;t−1+h

}T+N

t=T+1
 is distributed i.i.d. uniform [0,  1] ex ante 

(see Geweke & Amisano, 2010). The uniformity of the PIT can be tested, e.g., using 
the Kolmogorov-Smirnov or Anderson–Darling tests (see Rossi & Skhposyan, 
2014). The test statistics are as follows:

(24)
zj;t−1+h =

xo
j;t−1+h

�
−∞

p̂j(u|�o.t−1,Mi) du

≡ F̂j(x
o
j;t−1+h

|�o
.t−1

,Mi), j = 1,… , n.
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– Kolmogorov-Smirnov test (KS, Kolmogorov, 1933; Smirnov, 1948): 

– Anderson-Darling test (AD, Anderson & Darling, 1952, 1954): 

where 
{
z∗
j;t−1+h

}T+N

t=T+1
 denotes the values of 

{
zj;t−1+h

}T+N

t=T+1
 in ascending order.

5  Empirical results

In this part of the paper we analyze financial data of daily quotations on two major 
Polish exchange rates, PLN/EUR and PLN/USD, and on EUR/USD (see Fig. 1). We 
consider the exchange rates, where the cointegrating vector may be assumed to be 
known a priori, in order to compare the forecast performance of our models in the 
presence of the long-run relationship and time-varying volatility.

Following Pajor and Wróblewska (2017), we consider two average daily Polish 
official exchange rates downloaded from the website of the National Bank of Poland: 
the zloty (PLN) values of the euro (EUR/PLN, y2,t ), and the zloty values of the US 
dollar (USD/PLN, y3,t ), over the period from January 2, 2013 to February 3, 2017. 
Due to the fact that the Polish official exchange rates are linked to the exchange 
rates quoted on Forex, we introduce the euro value of the US dollar, downloaded 
from http://stooq.com: EUR/USD ( y1,t ). The dataset of hundreds of logarithms of 

KSj =
√
N max

t=1,2,…,N
max

����z
∗
j,t
− t∕N

���,
���z

∗
j,t
− (t − 1)∕N

���
�

ADj = −N −
1

N

N∑

t=1

(2t − 1) ln
(
z∗
j,t

(
1 − z∗

j,N+1−t

))

Fig. 1  The Polish official exchange rates (left axis) and the euro value of the US dollar (right axis), 
expressed in logarithms (in hundreds). Source of the data: https:// www. nbp. pl/ home. aspx? f=/ kursy/ 
arch_a. html in the case of the Polish official exchange rates; https:// stooq. com/ in the case of the EUR/
USD exchange rate

https://www.nbp.pl/home.aspx?f=/kursy/arch_a.html
https://www.nbp.pl/home.aspx?f=/kursy/arch_a.html
https://stooq.com/
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exchange rates consists of 1032 observations (for each series). The first five observa-
tions are treated as an initial condition, thus T = 1027 . We consider one-step-ahead 
predictions during the period beginning on February 3, 2017 and ending on August 
8, 2017, thus S = T + N = 1027 + 130 = 1157 . We calculate predictive distribu-
tions of �t based on the whole dataset available at time T + i for each i = 0, 1,… ,N 
(up to T + N = 1162 ). Thus, we obtained 130 predictive distributions for a 1-day 
forecast horizon. The computations are based on the 30000 Markov chain Monte 
Carlo posterior samples (after having burnt 30000 cycles) in each model. Due to 
the typical properties of daily growth rates of exchange rates and the relationship: 
(EUR/PLN)/(USD/PLN) ≈ EUR/USD, we consider VEC-MSF, VEC-SBEKK, and 
VEC-MSF-SBEKK models with one and two cointegrating vectors ( r = 1, 2 ), con-
taining an unrestricted vector of constants ( d = 3 ), and the number of lags equal 
to 2 ( k = 2 ). The above approximate relation among exchange rates (in logarith-
mic terms) yields the cointegrating vector (1,−1, 1) and the long-run relationship: 
100 ln y1,t = 100 ln y2,t − 100 ln y3,t , i.e., x1,t = x2,t − x3,t . For the sake of comparison, 
we also consider random walk with drift processes ( k = 1, r = 0 ), VEC models with 
constant conditional covariance matrix, VAR-SBEKK, and the VAR-MSF-SBEKK 
model for the levels of these processes ( r = 3 ). The latter model is inadequate for 
the type of the data considered, but we use it to check the relative forecasting perfor-
mance of the ”wrong” model.

5.1  A comparison of models with the predictive Bayes factor

The overall ranking of the compared models Mi as well as log(p(�f |�.T ,M)) , and also 
the decimal logarithms of the predictive Bayes factors in favor of the VEC-MSF-
SBEKK specification ( log(B1,i) ) are shown in Table 1.

Table 1 provides the log predictive likelihoods and the log predictive Bayes fac-
tors in favor of the VEC-MSF-SBEKK model over thirteen selected specifications 
of the VEC model. As expected, the highest log predictive likelihood is in VEC-
MSF-SBEKK with two cointegrating vectors ( r = 2 ). The random walk model with 
drift and with constant conditional covariance matrix has the lowest predictive like-
lihood, rounding out the ranking. Models with time-varying condition covariance 
matrix and with one or two cointegrating vectors occupy four of the top positions. 
Using the VEC process together with the MSF-SBEKK covariance structure seems 
to be a powerful modeling strategy. Models with one or two cointegrating vectors 
have more explanatory power than models with r = 0 . Even the VEC specification 
with constant conditional covariance matrix, but with one cointegrating vector, pre-
vails over the VEC-SBEKK, the VEC-MSF and over the VEC-MSF-SBEKK struc-
tures without any cointegration relationship in terms of the predictive data density 
value (a natural Bayesian measure of fit). Capturing the long-run relationship (if 
one exists) turned out to be more important from a predictive point of view than 
allowing the conditional covariance matrix to be time-variable (stochastic). In other 
words, if the long-run relationships exist, allowing for the cointegration relationships 
in econometric models is more important than allowing conditional covariances to 
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vary over time. It is worth mentioning that in the case of the Polish macroeconomic 
data the most important feature for the predictive ability of the vector autoregression 
models is allowing for changing covariance matrices, while the number of long-run 
relationships is of lesser importance, see Wróblewska and Pajor (2019).

It is no surprise that the VEC-SBEKK models fit the data much worse (in terms 
of the predictive Bayes factors) than their alternative variants with multiplicative 
stochastic factors, but still better than the VEC specifications with constant con-
ditional covariance matrix. The VEC-MSF specification uses one latent process 
common to all conditional variances and covariances. This assumption of common 
dynamics leads to constant conditional correlations. Nevertheless, the VEC-SBEKK 
models, which do not use any latent processes and therefore are less flexible in deal-
ing with outliers, appear still worse in term of the predictive Bayes factor.

The plots of cumulative log predictive Bayes factors for t = T + 1,… , T + S 
are presented in Fig.  2. The sequence of cumulative log predictive Bayes factors 
in favor of the VEC-MSF-SBEKK structure with k = 2 , d = 3 , r = 1 (called MSF-
SBEKK231) over the one with k = 2 , d = 3 , r = 0 (called MSF-SBEKK230) tends 
to increase with the rise of the number of predictions. The log predictive Bayes fac-
tors in favor of the MSF-SBEKK231 specification over the MSF-SBEKK232 one 
are less than 1 each. According to the scale presented by Kass and Raftery (1995), 
it is a negligible strength of evidence against the MSF-SBEKK232 model. Further-
more, the cumulative log predictive Bayes factors in favor of the MSF-SBEKK231 
model over the VAR-MSF with k = 2 , d = 3 , r = 1 (MSF231) indicate strong but not 

Table 1  Decimal logs of predictive Bayes factors in favor of VEC-MSF-SBEKK (d = 3, N = 130)

d = 3 denotes an unrestricted constant, as in Pajor and Wróblewska (2017); log(p�f ) = log(p(�f |�.T ,M)) ; 
scale for the strength of evidence against Mi (see Kass & Raftery, 1995): 0 < log(B1i) ≤ 1∕2 – negligible, 
1∕2 < log(B1i) ≤ 1 – mild, 1 < log(B1i) ≤ 2 – strong, 2 < log(B1i) – very strong

VAR order (k) Cointegration rank (r) Model log(pxf ) log(B1i)

2 2 VEC-MSF-SBEKK − 35.191 0.000
2 1 VEC-MSF-SBEKK − 35.712 0.521
2 2 VEC-MSF − 36.264 1.073
2 1 VEC-MSF − 36.820 1.629
2 1 known a priori VEC-MSF-SBEKK − 38.498 3.307
2 1 VEC-SBEKK − 40.525 5.334
2 2 VEC-SBEKK − 42.410 7.216
2 1 VEC − 43.958 8.767
2 0 VEC-MSF − 54.211 19.020
2 0 VEC-MSF-SBEKK − 54.726 19.535
2 0 VEC-SBEKK − 58.642 23.451
2 0 VEC − 59.916 24.725
1 0 VEC-MSF-SBEKK − 75.114 39.922
1 0 VEC-MSF − 75.893 40.702
1 0 VEC − 80.977 45.785
2 3 VAR-MSF-SBEKK − 119.363 84.172
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very strong (decisive) evidence against the latter. The right panels of Fig. 2 depict 
quantiles of predictive distributions obtained in the VEC-MSF-SBEKK model with 
r = 1 (very similar results were obtained for r = 2 ). Black points represent the real 
returns. As can be seen, the realized returns (out-of-sample data) lie in areas of high 
values of predictive densities. As expected, a very small value of each predictive 
Bayes factor in favor of VAR-MSF-SBEKK for the levels of the exchange rates 

Fig. 2  Cumulative log predictive Bayes factors in favor of the VEC-MSF-SBEKK model over selected 
ones, and quantiles of predictive distributions
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(with r = 3 ) indicates poor predictive potential of the model. As can be seen from 
the Fig. 3, the predictive distributions obtained in VEC-MSF-SBEKK model with 
r = 3 are more diffused than those obtained in the same specification of the model, 
but with r = 1 . This unsuitable specification leads to more diffuse predictive dis-
tributions and large predictive Bayes factors in favor of the VEC-MSF models. It 
is worth noting that, for the median of the 1-day ahead predictive distribution as a 
point predictor the root mean square forecast errors (RMSFE) obtained in both mod-
els are almost the same. As a by-product, our results show that the RMSFE is not a 
good indicator of predictive performance of models.

5.2  Forecast evaluation with PITs

An alternative, but non-Bayesian, assessment of the predictive performance of a 
model is provided by the probability integral transformation (PIT). The PIT is the 
inverse of the sequence of ex ante predictive cumulative distribution functions eval-
uated on the sequence of “realized” observation (ex post). Figures 4, 5, 6 provide a 
further comparison of the predictive performances of the VEC-MSF-SBEKK, VEC-
MSF, and VEC models with the use of PIT values. Histograms of PIT values allow 
for an informal assessment of their uniformity.

In all models (excluding the VAR-MSF-SBEKK one with r = 3 ), the histograms 
of the PITs for the EUR/USD exchange rates show that more realizations fall in the 
right tail of the predictive distribution than would be expected if the PITs were uni-
formly distributed. Overall, there is a lack of uniformity for density forecasts of the 
EUR/USD exchange rates. The correct specification of the predictive distributions 
of the EUR/USD exchange rates is rejected in all cases. The figures also provide 
a visual presentation of the misspecification in the PITs: future realizations of the 
EUR/USD exchange rates are under-predicts. The evident inadequacy of the pre-
dictive densities for EUR/USD in the right tail can be explained by the unexpected 
depreciation of the US dollar to the euro in the forecasting period. In Kębłowski 

Fig. 3  Quantiles of predictive distributions and “future” observations
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et al. (2020) it has been shown that in the long-run the exchange rates of the EUR/
USD and EUR/PLN are driven by crude oil prices, by the European Central Bank’s 
monetary policy and by the monetary policy decisions of the Federal Reserve Sys-
tem (see also Ghalayini, 2017).

The histograms of the PITs in the VAR-MSF-SBEKK (with r = 3 ) show that 
more ”future” observations/realizations fall in the middle of the distribution than 
would be expected if the PITs had the uniform distributions.

Fig. 4  PIT for selected VEC-MSF-SBEKK models with r = 1 and r = 2 . The histograms depict the 
empirical distributions of the PITs. Solid lines represent the numbers of draws that are expected to fall 
into each bin under an U(0, 1) distribution
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To test the correctness of the specification of the predictive densities (more 
specifically: whether the PIT is uniform) the Kolmogorov-Smirnov and Ander-
son-Darling tests are used. Figures  4, 5, 6 provide results for the Kolmogorov-
Smirnov (labelled ”KS”) and Anderson-Darling (labeld ”AD”) tests of uniformity 
of the distribution of the PITs. In all models, the uniformity of PITs for the EUR/

Fig. 5  PIT for selected VEC-MSF and VEC models. Meaning of symbols used the same as in Fig. 4
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USD exchange rates is rejected. Both the Kolmogorov-Smirnov and Anderson-
Darling tests manifest empirical evidence against the correct specification of the 
VAR-MSF-SBEKK (with r = 3).

Fig. 6  PIT for selected VEC-MSF-SBEKK models with r = 0 and r = 3 . Meaning of symbols used the 
same as in Fig. 4
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Regarding the independence of the PITs, the Ljung–Box test of no autocorrela-
tion in the PITs and in the squares of the PITs has been used. Table 2 reports the 
p-values of the LB tests for serial correlation of PITs as well as of their squares. 
No such autocorrelation has been detected.

6  Conclusion

This paper evaluates the predictive performance of VEC-SV models in the con-
text of modeling financial time series and in the presence of long-run relationships. 
Financial data of daily quotations on three exchange rates: PLN/EUR, PLN/USD, 
and EUR/USD was analyzed. As there exists at least one long-run relationship 
among the exchange rates (which is known a priori), we could check whether these 
models which account for long-run relationships perform better than those without 
the relationships. The empirical findings indicate that, overall, the VAR models with 
one or two cointegration relationships perform better than those without cointegra-
tion relationship. The VAR models with constant conditional covariance matrix 
are dominated by those with time-varying conditional covariances. However, if the 
long-run relationships exist, allowing for the cointegration relationships in econo-
metric models is more important than allowing for conditional covariance matrix to 
vary over time. The analysis of PITs also shows that the predictive distributions are 
not perfectly fitted. In all models, the uniformity of PITs for the EUR/USD exchange 
rates is rejected. More ”realized” observations fall in the right tail of the predictive 
distribution than would be expected if the PITs were uniformly distributed. The lack 
of uniformity of the distribution of the PIT suggests that the VEC-SV models con-
sidered should be modified by allowing for asymmetries of conditional distributions. 
This can be achieved by using, e.g., copulas or skew normal distributions.

Funding Research supported by a grant from the National Science Center in Poland under decision no. 
UMO-2018/31/B/HS4/00730.

Table 2  p -value for 
autocorrelation test of PIT and 
PIT

2 for selected models (lags: 
10, k = 2, d = 3)

Model EUR/USD EUR/PLN USD/PLN

PIT PIT2 PIT PIT2 PIT PIT2

r = 1

 VEC-MSF-SBEKK 0.97 0.94 0.26 0.29 0.84 0.85
 VEC-MSF 0.98 0.96 0.18 0.28 0.73 0.73
 VEC 0.96 0.93 0.34 0.39 0.73 0.70
r = 2

 VEC-MSF-SBEKK 0.97 0.93 0.22 0.28 0.69 0.64
 VEC-MSF 0.98 0.93 0.46 0.48 0.66 0.76
r = 0

 VEC-MSF-SBEKK 0.95 0.92 0.45 0.55 0.79 0.73



446 Eurasian Economic Review (2022) 12:427–448

1 3

Declarations 

Conflict of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
ses/ by/4. 0/.

References

Abbate, A., & Marcellino, M. (2018). Point, interval and density forecast of exchange rates with time 
varying parameter models. Journal of the Royal Statistical Society, 181(1), 155–179.

Anderson, T. W., & Darling, D. A. (1952). Asymptotic theory of certain goodness-of-fit criteria based 
on stochastic processes. Annals of Mathematical Statistics, 23(2), 193–212.

Anderson, T. W., & Darling, D. A. (1954). A test of goodness-of-fit. Journal of the American Statisti-
cal Association, 49(268), 765–769.

Anderson, R. G., Hoffman, D. L., & Rasche, R. H. (2002). A vector error-correction forecasting 
model of the U.S. Economy. Journal of Macroeconomics, 24(4), 569–598.

Asai, M., McAleer, M., & Yu, J. (2006). Multivariate stochastic volatility: A review. Econometric 
Reviews, 25, 145–175.

Berg, T. O. (2017). Forecast accuracy of a BVAR under alternative specifications of the zero lower 
bound. Studies in Nonlinear Dynamics and Econometrics, 21(2), 1–29.

Cavaliere, G., Angelis, L. D., Rahbek, A., & Taylor, A. M. R. (2015). A comparison of sequential and 
information-based methods for determining the co-integration rank in heteroskedastic VAR mod-
els. Oxford Bulletin of Economics and Statistics, 77, 106–128.

Cavaliere, G., Angelis, L. D., Rahbek, A., & Taylor, A. M. R. (2018). Determining the cointegration 
rank in heteroskedastic VAR models of unknown order. Econometric Theory, 34(2), 349–82.

Chan, J. C. C., & Eisenstat, E. (2018). Bayesian model comparison for time-varying parameter VARs 
with stochastic volatility. Journal of Applied Econometrics, 33(4), 509–532.

Chib, S., Omori, Y., & Asai, M. (2009). Multivariate stochastic volatility. In T. G. Andersen, R. A. 
Davis, J.-P. Kreiss, & T. Mikosch (Eds.), Handbook of financial time series (pp. 365–400). 
Springer-Verlag.

Chikuse, Y. (2002). Statistics on special manifolds. Lecture notes in statistics (Vol. 174). Springer-Verlag.
Clark, T. E. (2011). Real-time density forecasts from Bayesian vector autoregressions with stochastic vol-

atility. Journal of Business and Economic Statistics, 29(3), 327–341.
Clark, T. E., & Ravazzolo, F. (2015). Macroeconomic forecasting performance under alternative specifi-

cations of time-varying volatility. Journal of Applied Econometrics, 30(4), 551–575.
D’Agostino, A., Gambetti, L., & Giannone, D. (2013). Macroeconomic forecasting and structural change. 

Journal of Applied Econometrics, 28, 82–101.
Diebold, F. X., Gunther, T. A., & Tay, A. S. (1998). Evaluating density forecasts with applications to 

financial risk management. International Economic Review, 39(4), 863–883.
Eratalay, M. (2016). Estimation of multivariate stochastic volatility models: A comparative monte Carlo 

study. International Econometric Review, 8(2), 19–52.
Geweke, J. (2005). Contemporary Bayesian econometrics and statistics. Wiley series in probability and 

statistics. Wiley-Interscience [John Wiley and Sons].
Geweke, J., & Amisano, G. (2010). Comparing and evaluating Bayesian predictive distributions of asset 

returns. International Journal of Forecasting, 26(2), 216–230.
Ghalayini, L. (2017). Modeling and forecasting spot oil price. Eurasian Business Review, 7, 355–373.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


447

1 3

Eurasian Economic Review (2022) 12:427–448 

Gneiting, T., & Raftery, A. E. (2007). Strictly proper scoring rules, prediction and estimation. Journal 
American Statistical Association, 102, 359–378.

Herwartz, H., & Lütkepohl, H. (2011). Generalized least squares estimation for cointegration parameters 
under conditional heteroskedasticity. Journal of Time Series Analysis, 32(3), 281–291.

Huber, F., Koop, G., & Pfarrhofer, M. (2020). Bayesian inference in high-dimensional time-varying 
parameter models using integrated rotated gaussian approximations. Available at: https://arxiv.org/
abs/2002.10274 (Accessed on: 11 November, 2021)

Huber, F., & Zörner, T. O. (2019). Threshold cointegration in international exchange rates: A Bayesian 
approach. International Journal of Forecasting, 35(2), 458–473.

Jacquier, E., Polson, N., & Rossi, P. (2004). Bayesian analysis of stochastic volatility models with fat-tails 
and correlated errors. Journal of Econometrics, 122, 185–212.

Kass, R. E., & Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 
90(430), 773–795.

Kastner, G., & Huber, F. (2021). Sparse Bayesian vector autoregressions in huge dimensions. Journal of 
Forecasting, 39(7), 1142–1165.

Kębłowski, P., Leszkiewicz-Kędzior, K., & Welfe, A. (2020). Real exchange rates. Oil Price Spillover 
Effects, and Tripolarity, Eastern European Economics, 58(5), 415–435.

Kolmogorov, A. N. (1933). Sulla determinazione empirica di una leggedi distribuzione. Giornale 
dell’Istituto Italiano Degli Attuari, 4, 83–91.

Koop, G., León-González, R., & Strachan, R. W. (2010). Efficient posterior simulation for cointegrated 
models with priors on the cointegration space. Econometric Reviews, 29, 224–242.

Koop, G., León-González, R., & Strachan, R. W. (2011). Bayesian inference in the time varying cointe-
gration model. Journal of Econometrics, 165, 210–220.

Kuo, C. Y. (2016). Does the vector error correction model perform better than others in forecasting stock 
price? An application of residual income valuation theory. Economic Modelling, 52(B), 772–789.

Osiewalski, J. (2009). New hybrid models of multivariate volatility (a Bayesian perspective). Przeglad 
Statystyczny (Statistical Review), 56(1), 15–22.

Osiewalski, K., & Osiewalski, J. (2013). A long-run relationship between daily prices on two markets: 
The Bayesian VAR(2)-MSF-SBEKK model. Central European Journal of Economic Modelling and 
Econometrics, 5(1), 65–83.

Osiewalski, J., & Osiewalski, K. (2016). Hybrid MSV-MGARCH models general remarks and the 
GMSF-SBEKK specification. Central European Journal of Economic Modelling and Econometrics, 
8(4), 241–271.

Osiewalski, J., & Pajor, A. (2009). Bayesian analysis for hybrid MSF-SBEKK models of multivariate 
volatility. Central European Journal of Economic Modelling and Econometrics, 1(2), 179–202.

Osiewalski, J., & Pipień, M. (2016). Bayesian comparison of bivariate GARCH processes. The role of the 
conditional mean specification. In A. Welfe (Ed.), New directions in macromodelling (pp. 173–196). 
Elsevier.

Pajor, A. (2021). New estimators of the Bayes factor for models with high-dimensional parameter and/or 
latent variable spaces. Entropy, 23(4), 399.

Pajor, A., & Osiewalski, J. (2012). Bayesian value-at-risk and expected shortfall for a large portfolio 
(multi- and univariate approaches). Acta Physica Polonica A, 121(2–B), B-101-B-109.

Pajor, A., & Wróblewska, J. (2017). VEC-MSF models in Bayesian analysis of short- and long-run rela-
tionships. Studies in Nonlinear Dynamics and Econometrics, 21(3), 1–22.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 
23(3), 470–472.

Rossi, B., & Skhposyan, T. (2014). Evaluating predictive densities of us output growth and infation in a 
large macroeconomic data set. International Journal of Forecasting, 30, 662–682.

Seo, B. (2007). Asymptotic distribution of the cointegrating vector estimator in error correction models 
with conditional heteroskedasticity. Journal of Econometrics, 137, 68–111.

Shephard, N., & Andersen, T. G. (2009). Stochastic volatility: Origins and overview. In T. G. Andersen, 
R. A. Davis, J.-P. Kreiss, & T. Mikosch (Eds.), Handbook of financial time series (pp. 233–254). 
Springer.

Silvennoinen, A., & Teräsvirta, T. (2009). Multivariate GARCH models. In T. G. Andersen, R. A. Davis, 
J.-P. Kreiss, & T. Mikosch (Eds.), Handbook of financial time series (pp. 201–229). Springer.

Smirnov, N. V. (1948). Tables for estimating the goodness of fit of empirical distributions. The Annals of 
Mathematical Statistics, 19(2), 279–281.



448 Eurasian Economic Review (2022) 12:427–448

1 3

Swanson, N. R. (2002). Comments on ‘A vector error-correction forecasting model of the US economy’. 
Journal of Macroeconomics, 24(4), 599–606.

Vardar, G., & Coskun, Y. (2018). Shock transmission and volatility spillover in stock and commodity 
markets: Evidence from advanced and emerging markets. Eurasian Economic Review, 8, 231–288.

Wróblewska, J., & Pajor, A. (2019). One-period joint forecasts of polish inflation, unemployment and 
interest rate using Bayesian VEC-MSF models. Central European Journal of Economic Modelling 
and Econometrics, 11(1), 23–45.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.


	Forecasting performance of Bayesian VEC-MSF models for financial data in the presence of long-run relationships
	Abstract
	1 Introduction
	2 Bayesian VEC models with stochastic volatility
	2.1 Predictive distribution
	2.2 Prior distribution and sampling scheme

	3 Predictive Bayes factor
	4 Forecast evaluation with probability integral transformations
	5 Empirical results
	5.1 A comparison of models with the predictive Bayes factor
	5.2 Forecast evaluation with PITs

	6 Conclusion
	Funding 
	References




