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HIGHLIGHTS

• TiO2@Ni3S2 core/branch arrays are constructed via a low-temperature sulfurization.

• Highly active { ̄210 } high-index facet of  Ni3S2 is exposed for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).

• Remarkable bifunctional electrocatalytic activity is observed for both HER and OER.

ABSTRACT For efficient electrolysis of water for hydrogen generation or other value-
added chemicals, it is highly relevant to develop low-temperature synthesis of low-cost 
and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct 
a new core–branch array and binder-free electrode by growing  Ni3S2 nanoflake branches 
on an atomic-layer-deposited (ALD)  TiO2 skeleton. Through induced growth on the 
ALD-TiO2 backbone, cross-linked  Ni3S2 nanoflake branches with exposed { ̄210} high-
index facets are uniformly anchored to the preformed  TiO2 core forming an integrated 
electrocatalyst. Such a core–branch array structure possesses large active surface area, 
uniform porous structure, and rich active sites of the exposed { ̄210 } high-index facet in 
the  Ni3S2 nanoflake. Accordingly, the  TiO2@Ni3S2 core/branch arrays exhibit remark-
able electrocatalytic activities in an alkaline medium, with lower overpotentials for both 
oxygen evolution reaction (220 mV at 10 mA cm−2) and hydrogen evolution reaction 
(112 mV at 10 mA cm−2), which are better than those of other  Ni3S2 counterparts. Sta-
ble overall water splitting based on this bifunctional electrolyzer is also demonstrated.

KEYWORDS Nickel sulfide; Core/branch arrays; Porous film; Bifunctional electrocatalysts; Electrochemical water splitting; Oxygen 
evolution reaction (OER); Hydrogen evolution reaction (HER)
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1 Introduction

Production of hydrogen/oxygen fuels through electrochemi-
cal water splitting is considered one of the most efficient 
green technologies, although large-scale synthesis of cost-
effective electrocatalysts used in this process still remains 
a huge challenge [1–5]. Platinum (Pt)/Pt-based alloys and 
iridium/ruthenium oxides  (IrO2/RuO2) are regarded as the 
most efficient electrocatalysts for electrochemical hydro-
gen evolution reaction (HER) and oxygen evolution reac-
tion (OER), respectively [6–10]. However, their high cost 
and compromised stability as well as the low earth abun-
dance of these metals impede their widespread application 
[11–15]. Therefore, it is highly desirable to fabricate alterna-
tive noble-metal-free and durable electrocatalysts for both 
OER and HER systems. Although transition metal oxides and 
hydroxides (NiO, CoO, Ni(OH)2, etc.) [16] are being widely 
investigated, they mostly have intrinsically low electrical con-
ductivity and their composites with carbon additives should 
be prepared to improve the electrical conductivity. Metal 
sulfides, such as nickel sulfide  (Ni3S2), are more attractive 
candidates for electrochemical water splitting, owing to their 
intrinsic high conductivity, rich catalytic activity, and supe-
rior electrochemical stability when applied in HER/OER [17, 
18]. Currently, a wide range of nanostructured  Ni3S2 (such 
as Fe-doped  Ni3S2 [19] and nanorods [20]) and composites 
(e.g.,  Ni3S2 nanosheets/Ni [21],  Ni3S2 nanotube/Ni [18]) 
has been prepared by different methods. They demonstrate 
improved performance in HER or OER owing to increased 
exposure of the active sites and boosted ion/electron transfer. 
Despite these efforts, the overall water-splitting activity of 
the same  Ni3S2-based catalysts for both HER and OER has 
been rarely reported. In addition, the aforementioned  Ni3S2 
electrocatalysts are usually synthesized via chemical vapor 
deposition (CVD) and hydrothermal methods. However, 
these methods require high-temperature treatment or the use 
of polluted thiourea or trithiocyanuric acid. Moreover, the 
high-temperature treatment may cause the coverage or loss 
of the active sites of  Ni3S2 [22–25]. In this context, a facile 
and green low-temperature synthesis method for  Ni3S2 elec-
trocatalysts is highly desirable.

Low-temperature (< 100 °C) sulfurization using a  Na2S 
solution is a green way for the large-scale synthesis of nano-
structured metal sulfides owing to easy processing, high 
efficiency, and cost-effectiveness. Moreover, this method is 

particularly suitable for the direct synthesis of metal sulfides 
arrays with tailored nanostructures. Meanwhile, it has been 
demonstrated that a high-index-faceted  Ni3S2 nanosheet 
could have superior HER activity owing to possible syn-
ergistic catalytic effects arising from the nanosheet array 
and the exposed { ̄210 } high-index facets [26]. Inspired by 
these encouraging results, we set out to employ a low-tem-
perature synthesis route to produce  Ni3S2 nanoarrays with 
preferentially exposed { ̄210 } high-index facets as a binder-
free electrocatalyst. In addition, in order to further increase 
the areal load of the active material, we aimed to grow the 
 Ni3S2 arrays as branches on a conductive scaffold to form a 
core–branch array structure, instead of directly depositing 
them on carbon cloth.

Herein, we report a facile low-temperature (< 100 °C) 
sulfurization strategy to synthesize large-scale  TiO2@
Ni3S2 core/branch arrays as a binder-free electrode for 
a water-splitting electrolyzer in an alkaline solution. An 
induced growth process for growing  Ni3S2 nanobranch on 
a  TiO2 core obtained by atomic layer deposition (ALD) 
is proposed, which leads to the in situ growth of { ̄210 } 
high-index facets of  Ni3S2. The as-prepared  TiO2@Ni3S2 
core/branch arrays possess large active areas, uniform 
porous structures, and rich active sites of the exposed 
{ ̄210 } high-index facet. These features lead to substan-
tial enhancements in HER and OER activities compared 
to those of most of the reported  Ni3S2-based catalysts. 
Low overpotentials and fast kinetics as well as superior 
long-term durability of  TiO2@Ni3S2 core/branch arrays are 
demonstrated. A low-water-splitting voltage of 1.58 V at 
10 mA cm−2 is obtained upon using the  TiO2@Ni3S2 array 
electrode as both a cathode and an anode. Our new elec-
trode design strategy paves a green way for the construc-
tion of large-scale nickel sulfides with high electrocatalytic 
efficiency for electrochemical energy storage and conver-
sion applications.

2  Experimental

2.1  Material Synthesis

In the first step,  Ni2(OH)2CO3 nanosheet arrays were 
obtained by a one-step hydrothermal method using commer-
cial nickel foam as the substrate. For this, Ni(NO3)2 (0.9 g), 
 NH4F (0.23 g), and urea (0.9 g) were dissolved in 75 mL of 
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deionized (DI) water to form a reaction solution. Then, the 
solution was transferred to a Teflon-lined steel autoclave, and 
the autoclave was placed in an oven at 120 °C for 8 h. After 
natural cooling, the sample was rinsed thoroughly with DI 
water.

In order to synthesize  TiO2@Ni2(OH)2CO3 nanoflake 
arrays, the prepared  Ni2(OH)2CO3 nanosheet arrays were 
placed in an ALD reactor (ALD PICOSUN P-300F) along 
with  TiCl4 and  H2O as the Ti and O source, respectively. 
Then,  TiO2 was deposited at 120 °C for 140 cycles. Argon was 
used as the carrier gas. The final step was the sulfurization 
process. Typically, the obtained  TiO2@Ni2(OH)2CO3 nano-
flake array samples were transferred to a 0.1 M  Na2S solution 
and heated at 90 °C for 9 h. After natural cooling and rins-
ing with DI water, the  TiO2@Ni3S2 core/branch arrays were 
obtained. For comparison,  Ni3S2 nanoflake arrays were also 
synthesized by the direct sulfurization of the  Ni2(OH)2CO3 
nanosheet arrays on nickel foam (without the ALD  TiO2 step) 
using the same sulfurization conditions mentioned above.

2.2  Material Characterization

Morphologies and microstructures of all samples were inves-
tigated using a field-emission scanning electron microscope 
(FESEM, Hitachi SU8010) and a transmission electron micro-
scope (TEM, JEOL 2100F). The crystal structure was char-
acterized by X-ray diffraction (XRD) with Cu Kα radiation 
(RigakuD/Max-2550). Raman spectra were collected using a 
Renishaw-inVia Raman microscope with 514-nm laser excita-
tion. X-Ray photoelectron spectroscopy was performed on an 
ESCALAB_250Xi X-Ray photoelectron spectrometer with 
an Al Kα source. Specific surface area distributions were 
obtained using a porosity instrument (BET, JW-BK112).

2.3  Electrochemical Measurements

HER and OER experiments were conducted using an elec-
trochemical workstation (CH Instrument 660D) with a 
standard three-electrode setup at room temperature; the as-
prepared samples, carbon rod (D = 8 mm), and saturated cal-
omel electrode were used as the working electrode, counter 
electrode, and reference electrode, respectively. A 1 M KOH 
solution was used as the electrolyte for both HER and OER 
tests. All potentials in this work are referred to the reversible 
hydrogen electrode. All measurements were first carried out 

following a cyclic voltammetry (CV) test at 100 mV s−1 to 
stabilize the current. Linear sweep voltammetry (LSV) tests 
were performed at a scan rate of 5 mV s−1. The Tafel plots 
of the samples were obtained from the LSV curves acquired 
with a scan rate of 1 mV s−1. Electrochemical impedance 
spectroscopy (EIS) was performed at the polarization volt-
age being indexed to the current density of 10 mA cm−2, 
in the frequency range of 100 kHz to 50 mHz with an AC 
amplitude of 10 mV. The stability test was carried out after 
10,000 CV cycles. These results were obtained by iR com-
pensation. The overall water splitting was performed in a 
two-electrode catalyzer, where two pieces of  TiO2@Ni3S3 
samples with a geometric area of 1 cm2 were used as the 
electrodes for HER and OER.

3  Results and Discussion

3.1  Physicochemical Properties of  TiO2@Ni3S2 Core/
Branch Arrays

The core/branch structure of the  TiO2@Ni3S2 arrays is 
schematically illustrated in Fig. 1a.  Ni2(OH)2CO3 nanoflake 
arrays were synthesized on commercial nickel foam via a 
standard hydrothermal process (see details in Sect. 2.1). A 
 TiO2 layer with 10 nm thickness was deposited on the sur-
face of the  Ni2(OH)2CO3 nanoflakes using a simple ALD 
method. The obtained  TiO2@Ni2(OH)2CO3 arrays were 
converted to  TiO2@Ni3S2 core/branch arrays by immers-
ing them into a  Na2S solution and heated. We applied this 
unique-structured material as electrocatalyst and propose the 
following advantages in enhancing the HER and OER:

1. Branched  Ni3S2 nanoflakes possess a high surface area 
and higher porosity than those of the pure  Ni3S2 nano-
flakes grown directly on Ni foam. Further, the open 
structure of the interconnected nanoflakes will facilitate 
ion diffusion and  H2/O2 detachment during the HER/
OER processes. This is particularly beneficial for large-
current electrocatalysis.

2. The ALD-TiO2 skeleton not only serves a mechani-
cal support for the  Ni3S2 branch, but also induces the 
nucleation for the directional growth of  Ni3S2. Without 
the ALD-TiO2 skeleton, no  Ni3S2-branch can be formed. 
The  TiO2 and  Ni3S2 act synergistically to provide better 
mechanical stability and enhanced specific surface area 
and larger porosity [27, 28].
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3. One important feature of this unique branched  Ni3S2 
nanoflakes is the exposure of their highly active { ̄210 } 
high-index facets, which can further improve the HER/
OER activities leading to a lower overpotential and Tafel 
slope.

The morphological evolution of the samples at different 
stages of the synthesis is revealed by the SEM images (see 
Fig. S1). The hydrothermally synthesized  Ni2(OH)2CO3 
nanoflakes with thicknesses between 40 and 60  nm are 
found aligned vertically on the nickel foam surface, forming 
an architecture with a porous network (Fig. S1a, b). After 
the ALD of  TiO2, the twisted nanoflakes of  Ni2(OH)2CO3 
smoothened to form  TiO2@Ni2(OH)2CO3 core/shell arrays. 
Further, the thickness of the  TiO2@Ni2(OH)2CO3 core/shell 
arrays increased to 50–70 nm. However, the 3D porous struc-
ture is still preserved, which is not surprising since the ALD 
generally results in a uniform and conformal deposition of 
a smooth thin film of amorphous  TiO2 (Fig. S1c, d). How-
ever, after the final sulfurization in  Na2S solution at 90 °C, 
the morphology changed radically; the previous core/shell 
structure of  TiO2@Ni2(OH)2CO3 transformed into a new type 
of branched structure of  TiO2@Ni3S2. It is observed that the 
 TiO2@Ni3S2 sample is black and the display area is ~ 45 cm2. 
This process can be easily adapted for large-scale production 

(Fig. 1b). Meanwhile, the internal  TiO2 core is homogene-
ously coated by the cross-linked  Ni3S2 nanoflake shell with 
10–15 nm thickness (Fig. 1c, f). Furthermore, the porous mor-
phology remained well preserved in the  TiO2@Ni3S2 core/
branch arrays. These unique porous structural features provide 
a number of tunnels to boost electron/ion transfer. As shown 
in Fig. 1g, the  TiO2@Ni3S2 core/branch arrays grew quasi-
vertically with respect to the substrate with a height of ~ 1 μm.

The branched microstructure of the  TiO2@Ni3S2 arrays 
was also explored by TEM observation. The  Ni2(OH)2CO3 
nanoflake presents a thin and smooth appearance (Fig. 
S2a). The measured interplanar d-spacing of  Ni2(OH)2CO3 
is about 0.26 nm, which corresponds well with that of the 
(−201) plane of  Ni2(OH)2CO3 (JCPDS 35-0501) (Fig. S2b) 
[29]. After the ALD of  TiO2, the  Ni2(OH)2CO3 is com-
pletely coated with a thin layer of  TiO2 with ~ 10 nm thick-
ness (Fig. S2c, d), forming a  TiO2@Ni2(OH)2CO3 core/shell 
structure. Additionally, the thin  TiO2 is amorphous in nature 
and the interplanar d-spacing of 0.26 nm is still noticed for 
 Ni2(OH)2CO3. As for the  TiO2@Ni3S2 sample, the pristine 
 TiO2@Ni2(OH)2CO3 core/shell structure changed to core/
branch array, in which the  TiO2 core is homogeneously 
covered by cross-linked  Ni3S2 nanoflakes (Fig. 2a). A clear 
interplanar d-spacing of ~ 0.71 nm is observed, which may 

(c)(a)
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(e)

(g)

(f)
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Fig. 1  a Schematic illustration of the core/branch structure of the  TiO2@Ni3S2 arrays. b Optical photograph of the sample. c–g SEM images of 
the  TiO2@Ni3S2 core/branch arrays
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be due to the expansion of the c axis of  Ni3S2. In addition, 
the selected area electron diffraction (SAED) pattern shows 
polycrystalline diffraction rings of the  TiO2@Ni3S2 sample 
(Fig. 2b), which is in good agreement with the (001), (101), 
(110), and (021) planes of  Ni3S2.

HRTEM investigation was performed along the [100] 
zone axis of  Ni3S2, and interestingly, the interplanar 
d-spacing of 0.24 and 0.23 nm matched well with the (003) 
and (021) planes of the hexagonal  Ni3S2 phase (JCPDS 
44-1418). Further, the angle between the (003) and (021) 
facets is approximately 70°, which corresponds to the 

theoretical value of 70.8° (Fig. 2c, d). This implies that the 
exposed facets of the  Ni3S2 nanoflakes are { ̄210 } high-index 
facets. According to a previous report by Fang et al. [26], 
this facet shows superior catalytic performance. Energy-dis-
persive X-ray spectroscopy (EDS) maps (Fig. 2e) confirm 
the presence and uniform distribution of O, S, Ni, and Ti in 
the  TiO2@Ni3S2 arrays.

In our experiment, the ALD-TiO2 skeleton serves as a 
nucleation core for the directional growth of  Ni3S2 nanosheets. 
Without the ALD-TiO2 skin, no  Ni3S2 branch can be formed. 
Comparatively, only common  Ni3S2 nanoflake arrays are 

(a) (b)
(101) (001)

50 nm

(c) (d)

d=0.24 nm
(003)

d=0.23 nm
(021)

70°
70 °C

5 nm

(e)

200 nm

S Ni

O Ti

2 nm

10 nm (110) (021)500 nm

200 nm

0.71 nm

Fig. 2  a–d TEM-HRTEM images and SAED pattern of  TiO2@Ni3S2 core/branch arrays. e EDS elemental maps of O, S, Ni, and Ti in  TiO2@
Ni3S2 core/branch arrays
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formed in the absence of the  TiO2 layer support (Fig. S3a, b). 
Interestingly, exposed { ̄210 } facets are also found in common 
 Ni3S2 nanosheet arrays, indicating that the low-temperature 
sulfurization method is favorable for the growth of the high-
index { ̄210 } facet, which is also confirmed by TEM and XRD 
(Fig. S3c, d). During the sulfurization process, the Ni ions 
would diffuse outward and combine with sulfur-containing 
groups  (S2−,  HS−, etc.) along the outer surface of ALD-TiO2 
to form  Ni3S2 nanocrystal nuclei. This outward diffusion pro-
cess might be related to the Ostwald ripening effect, in which 
the energy of the interior is higher than that on outer surface. 
 Ni3S2 species are spontaneously attached to the ALD-TiO2 
surface, which induces the growth of active nucleation cent-
ers and decreases the interfacial energy barrier for the self-
assembly of the  Ni3S2 nanoflake branches.

To further demonstrate the benefits of the core/branch 
arrays, the specific surface area was determined by BET 
(Fig. S4). The common  Ni3S2 arrays and  TiO2@Ni3S2 
branch nanosheet arrays show specific surface areas of 1.594 
and 4.623 m2 g−1, respectively, implying that branching 
leads to significantly increased surface area. Furthermore, 
the branched nanoflakes are beneficial in that they provide 
increased exposed active area/sites, leading to increased uti-
lization of the active  Ni3S2 catalyst.

In order to identify the phase and composition of the final 
product, XRD, Raman spectroscopy, and XPS were carried 

out. Figures S5 and 3a show the typical XRD patterns of 
 Ni2(OH)2CO3,  TiO2@Ni2(OH)2CO3, and  TiO2@Ni3S2. 
Except for the diffraction peaks of Ni foam, other diffraction 
peaks in the XRD pattern of  Ni2(OH)2CO3 correspond well 
with those of the monoclinic  Ni2(OH)2CO3 phase (JCPDS 
35-0501), suggesting the high crystallinity of  Ni2(OH)2CO3. 
For the  TiO2/Ni2(OH)2CO3 arrays, the diffraction peaks of 
 Ni2(OH)2CO3 can be still detected, but the strength of them 
decreases. No peaks of the  TiO2 are noticed, indicating the 
amorphous nature of the  TiO2 skeleton (Fig. S5). After 
the low-temperature sulfurization using the  Na2S solution, 
the diffraction peaks of  Ni2(OH)2CO3 disappear, and other 
diffraction peaks that can be indexed well with the  Ni3S2 
phase (JCPDS 44-1418) are observed apart from the peaks 
of metallic Ni foam substrate, demonstrating that the as-
obtained  TiO2@Ni3S2 sample is of high purity [30]. It is 
worth noting that the strong diffraction peaks of (021) and 
(003) plane can be observed clearly (Fig. 3a). Meanwhile, 
the Raman analysis further confirms the formation of the 
 TiO2@Ni3S2 phase. The  TiO2@Ni3S2 arrays show five char-
acteristic peaks at ~ 203, 223, 305, and 348 cm−1, which 
match well with those of the  Ni3S2 phase. The characteristic 
peak at ~ 150 cm−1 could be indexed well with that of amor-
phous  TiO2 (Fig. 3b) [1], further manifesting the successful 
preparation of  TiO2@Ni3S2 core/branch arrays. This conclu-
sion is also supported by XPS results. Figure 3c shows the 

(a) (b) (c)

(d) (e) (f)

Fig. 3  a XRD patterns, b Raman spectrum, c core-level Ni 2p XPS spectra, d core-level S 2p XPS spectra, e O 1s XPS spectra, and f Ti 2p XPS 
spectra of  TiO2@Ni3S2 core/branch arrays
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high-resolution Ni 2p spectra of the  TiO2@Ni3S2 sample. 
Two main core levels (Ni 2p3/2 and Ni 2p1/2) that are char-
acteristic of the Ni state in  Ni3S2 are located at 873.28 and 
855.78 eV, respectively [31]. As for the S 2p spectra, two 
characteristic peaks are detected at 163.28 eV (S 2p1/2) and 
161.28 eV (S 2p3/2) corresponding to  S2− (Fig. 3d) [32]. 
Moreover, the presence of  TiO2 in the  TiO2@Ni3S2 core/
branch arrays is also confirmed by Ti 2p and O 1s spectra 
(Fig. 3e, f). Two core-level peaks are located at 529.8 and 
531.1 eV in the O 1s spectra, which could be indexed well 
with Ti–O and O–H bonds, respectively [33, 34]. Ti 2p1/2 
(463.8 5 eV) and Ti 2p3/2 (458.0 eV), the characteristic 
peaks of  TiO2 are observed in the Ti 2p spectra. The pres-
ence of O–H bond may be due to surface oxidation of  Ni3S2 
[35–37]. All these results mutually confirm the successful 
fabrication of  TiO2@Ni3S2 core/branch arrays via our pow-
erful low-temperature sulfurization strategy.

3.2  Electrocatalytic Properties of  TiO2@Ni3S2 Core/
Branch Arrays

The electrocatalytic activity of the three samples 
 (Ni2(OH)2CO3,  Ni3S2, and  TiO2@Ni3S2 electrodes) was 
studied using a three-electrode system in a 1 M KOH solu-
tion [38–41]. As presented in Fig. 4a, significantly, the 
 TiO2@Ni3S2 electrode displays the best HER activity with 
the smallest overpotential (112 mV at the current density of 
10 mA cm−2), better than that of the  Ni2(OH)2CO3 nanoflake 
arrays (154 mV) and  Ni3S2 (149 mV) nanoflake arrays at 
the current density of 10 mA cm−2. Meanwhile, the  TiO2@
Ni3S2 core/branch arrays also show a large current density 
with the lowest overpotential (177 mV at the current density 
of 100 mA cm−2), superior to those of the  Ni2(OH)2CO3 
(259 mV) and  Ni3S2 (213 mV) counterparts. Additionally, 
the enhanced HER performance is further confirmed by 
the Tafel slopes (Fig. 4b) derived from the previous LSV 
curves. Obviously, the  Ni2(OH)2CO3 and  Ni3S2 electrodes 
show large Tafel slopes (105 and 77 mV/decade), while the 
 TiO2@Ni3S2 electrode exhibits a substantially lower Tafel 
slope of 69 mV per decade. It is well accepted that a lower 
Tafel slope implies a faster HER rate. As a result, the  TiO2@
Ni3S2 electrode leads to the fastest HER process.

Furthermore, the HER performance of our designed high-
index faceted  Ni3S2 nanoflake arrays is also excellent. It is 
well known that HER involves three principal steps including 

Tafel (30 mV per decade) reactions, Heyrovsky (40 mV per 
decade), and Volmer (120 mV per decade) mechanisms [42]. 
Hence, it can be inferred that the HER with  Ni3S2 and  TiO2@
Ni3S2 electrodes in the alkaline water splitting is based on 
the Volmer mechanism. Simultaneously, the long-cycle dura-
bility of electrocatalysts plays an important role in practical 
application. The electrochemical stability test of the  TiO2@
Ni3S2 arrays was carried out continuously at the scan rate 
of 50 mV s−1 for 10,000 CV cycles. The LSV curves of the 
 TiO2@Ni3S2 electrode before and after 10,000 CV cycles of 
electrolysis nearly overlap with each other, suggesting the 
excellent stability of  TiO2@Ni3S2 electrode (Fig. S6a).

In order to further understand the origin of the superior 
HER activity of the  TiO2@Ni3S2 core/branch nanoflake 
arrays, the effective electrochemical active surface area 
(ECSA) of the three samples was calculated by determining 
the double-layer capacitance (Cdl) based on the CV results 
at different scan rates (Fig. S6b–d). The obtained current 
density is plotted as a function of scan rates in Fig. 4c. 
The ECSA value is considered to be linearly proportional 
to the Cdl value, equaling half the slope value. Notably, 
the  TiO2@Ni3S2 electrode possesses a high capacitance, 
up to 42 mF cm−2, which is much higher than those of 
 Ni2(OH)2CO3 (24 mF cm−2) and  Ni3S2 (29 mF cm−2) elec-
trodes. The above results indicate that the  TiO2@Ni3S2 elec-
trode has more exposed active sites. EIS tests were performed 
to further probe the electrochemical behavior during the HER 
process. Figure 4d exhibits the Nyquist plots of all electrodes. 
The semicircle represents the charge transfer resistance (Rct) 
of the hydrogen evolution reaction. Remarkably, the  TiO2@
Ni3S2 electrode shows the smallest Rct value among the 
three electrodes, which suggests that it facilitates the fastest 
dynamics during HER. Moreover, the solution resistance (Rs) 
values of  Ni2(OH)2CO3,  Ni3S2, and  TiO2@Ni3S2 electrodes 
are 1.49, 1.46, and 1.45 Ω, respectively. These findings fur-
ther verify that  TiO2@Ni3S2 still possesses high electronic 
conductivity and charge transfer ability during the entire 
hydrogen evolution reaction. In addition, the  TiO2@Ni3S2 
electrode also shows long-term durability with no decay after 
10 h at a large current density of 100 mA cm−2 (Fig. 4e).

As shown in Fig. 5a, the electrolysis cell of the two-elec-
trode system consists of the  TiO2@Ni3S2 electrocatalyst as both 
anode and cathode in 1 M KOH solution (denoted as  TiO2@
Ni3S2 ||  TiO2@Ni3S2). Apart from the outstanding HER activ-
ity, the as-prepared  TiO2@Ni3S2 electrode also delivers excel-
lent OER catalytic performance in the alkaline solution.
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As shown in Fig. 5b, the  TiO2@Ni3S2 electrode exhib-
its a remarkably low OER overpotential of 220 mV at 
10 mA cm−2 and 300 mV at 100 mA cm−2, superior to 
those of the  Ni2(OH)2CO3 (330 mV, 390 mV) and  Ni3S2 
(280 mV, 360 mV) electrodes. Owing to its excellent cata-
lytic activities in both OER and HER, the  TiO2@Ni3S2 
electrode could be utilized as an attractive bifunctional 
electrocatalyst for water splitting in an alkaline medium. 
Impressively, a noticeably low cell voltage of 1.58 V is 
gained at the current density of 10 mA cm−2 (Fig. 5c), 
better than those of the other reported bifunctional 

electrocatalysts (Fig. 5d) [1, 9, 26, 43–47]. In order to 
investigate the change in the chemical composition of 
 TiO2@Ni3S2, high-resolution Ni 2p spectra were acquired 
after HER and OER tests (Fig. S7). After HER tests, 
the Ni 2p spectrum remained almost the same as before 
with a slight redshift owing to the cathodic  H2 reduc-
tion. However, after the OER test, the peak at 853.08 eV 
disappeared and the intensity of the satellite peak  (2p3/2) 
decreased because of the formation of hydrated nickel 
oxide. Furthermore, the  TiO2@Ni3S2 ||  TiO2@Ni3S2 cata-
lyzer cell shows long-term durability with no decay after 
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10 h (Fig. 5c, e). All the above results demonstrate that 
the  TiO2@Ni3S2 core/branch arrays possess superior elec-
trochemical activity in both HER and OER, suggesting 
that the designed  TiO2@Ni3S2 core/branch arrays would 
be promising electrocatalysts for practical application in 
alkaline water splitting.

4  Conclusion

We developed a facile and high-efficiency low-temperature 
sulfurization method for the large-scale synthesis of novel 
binder-free  TiO2@Ni3S2 core/branch arrays. Impressively, 
the as-obtained  Ni3S2 nanoflake branches exposed the highly 
active { ̄210 } high-index facet. Strong support and induced 
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directional growth of  Ni3S2 nanoflakes are realized with 
the aid of the ALD-TiO2 skeleton. Owing to large surface 
area of the core/branch arrays, large porosity, and binder-
free adhesion as well as richer active sites of the exposed 
{ ̄210 } high-indexed facets of  Ni3S2 nanoflakes, the designed 
 TiO2@Ni3S2 core/branch arrays deliver low overpotentials 
and Tafel slopes for both OER and HER as well as cycling 
stability in an alkaline medium superior to those of the other 
 Ni3S2 counterparts. Our work offers a facile low-temperature 
strategy to construct advanced metal sulfide catalysts for 
electrochemical energy conversion and storage.
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