Nano-Micro Letters

ARTICLE

Cite as Nano-Micro Lett. (2019) 11:12

Received: 15 December 2018 Accepted: 14 January 2019 Published online: 5 February 2019 © The Author(s) 2019

High-Index-Faceted Ni₃S₂ Branch Arrays as Bifunctional Electrocatalysts for Efficient Water Splitting

Shengjue Deng¹, Kaili Zhang¹, Dong Xie², Yan Zhang¹, Yongqi Zhang³, Yadong Wang⁴, Jianbo Wu⁵, Xiuli Wang¹, Hong Jin Fan³, Xinhui Xia^{1 \bowtie}, Jiangping Tu^{1 \bowtie}

Shengjue Deng and Kaili Zhang contributed equally to this work.

- 🖂 Xinhui Xia, helloxxh@zju.edu.cn; Jiangping Tu, tujp@zju.edu.cn
 - State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China
- Guangdong Engineering and Technology Research Center for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, People's Republic of China
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- ⁴ School of Engineering, Nanyang Polytechnic, Singapore 569830, Singapore
- ⁵ Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Taizhou 318000, People's Republic of China

HIGHLIGHTS

- TiO₂@Ni₃S₂ core/branch arrays are constructed via a low-temperature sulfurization.
- Highly active $\{\bar{2}10\}$ high-index facet of Ni₃S₂ is exposed for both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER).
- Remarkable bifunctional electrocatalytic activity is observed for both HER and OER.

ABSTRACT For efficient electrolysis of water for hydrogen generation or other valueadded chemicals, it is highly relevant to develop low-temperature synthesis of low-cost and high-efficiency metal sulfide electrocatalysts on a large scale. Herein, we construct a new core–branch array and binder-free electrode by growing Ni₃S₂ nanoflake branches on an atomic-layer-deposited (ALD) TiO₂ skeleton. Through induced growth on the ALD-TiO₂ backbone, cross-linked Ni₃S₂ nanoflake branches with exposed { $\bar{2}10$ } highindex facets are uniformly anchored to the preformed TiO₂ core forming an integrated electrocatalyst. Such a core–branch array structure possesses large active surface area, uniform porous structure, and rich active sites of the exposed { $\bar{2}10$ } high-index facet in the Ni₃S₂ nanoflake. Accordingly, the TiO₂@Ni₃S₂ core/branch arrays exhibit remarkable electrocatalytic activities in an alkaline medium, with lower overpotentials for both oxygen evolution reaction (220 mV at 10 mA cm⁻²) and hydrogen evolution reaction (112 mV at 10 mA cm⁻²), which are better than those of other Ni₃S₂ counterparts. Stable overall water splitting based on this bifunctional electrolyzer is also demonstrated.

KEYWORDS Nickel sulfide; Core/branch arrays; Porous film; Bifunctional electrocatalysts; Electrochemical water splitting; Oxygen evolution reaction (OER); Hydrogen evolution reaction (HER)

1 Introduction

Production of hydrogen/oxygen fuels through electrochemical water splitting is considered one of the most efficient green technologies, although large-scale synthesis of costeffective electrocatalysts used in this process still remains a huge challenge [1-5]. Platinum (Pt)/Pt-based alloys and iridium/ruthenium oxides (IrO₂/RuO₂) are regarded as the most efficient electrocatalysts for electrochemical hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively [6-10]. However, their high cost and compromised stability as well as the low earth abundance of these metals impede their widespread application [11–15]. Therefore, it is highly desirable to fabricate alternative noble-metal-free and durable electrocatalysts for both OER and HER systems. Although transition metal oxides and hydroxides (NiO, CoO, Ni(OH)2, etc.) [16] are being widely investigated, they mostly have intrinsically low electrical conductivity and their composites with carbon additives should be prepared to improve the electrical conductivity. Metal sulfides, such as nickel sulfide (Ni₃S₂), are more attractive candidates for electrochemical water splitting, owing to their intrinsic high conductivity, rich catalytic activity, and superior electrochemical stability when applied in HER/OER [17, 18]. Currently, a wide range of nanostructured Ni_3S_2 (such as Fe-doped Ni₃S₂ [19] and nanorods [20]) and composites (e.g., Ni₃S₂ nanosheets/Ni [21], Ni₃S₂ nanotube/Ni [18]) has been prepared by different methods. They demonstrate improved performance in HER or OER owing to increased exposure of the active sites and boosted ion/electron transfer. Despite these efforts, the overall water-splitting activity of the same Ni₃S₂-based catalysts for both HER and OER has been rarely reported. In addition, the aforementioned Ni_3S_2 electrocatalysts are usually synthesized via chemical vapor deposition (CVD) and hydrothermal methods. However, these methods require high-temperature treatment or the use of polluted thiourea or trithiocyanuric acid. Moreover, the high-temperature treatment may cause the coverage or loss of the active sites of Ni_3S_2 [22–25]. In this context, a facile and green low-temperature synthesis method for Ni₃S₂ electrocatalysts is highly desirable.

Low-temperature (<100 °C) sulfurization using a Na_2S solution is a green way for the large-scale synthesis of nanostructured metal sulfides owing to easy processing, high efficiency, and cost-effectiveness. Moreover, this method is particularly suitable for the direct synthesis of metal sulfides arrays with tailored nanostructures. Meanwhile, it has been demonstrated that a high-index-faceted Ni₃S₂ nanosheet could have superior HER activity owing to possible synergistic catalytic effects arising from the nanosheet array and the exposed { $\bar{2}10$ } high-index facets [26]. Inspired by these encouraging results, we set out to employ a low-temperature synthesis route to produce Ni₃S₂ nanoarrays with preferentially exposed { $\bar{2}10$ } high-index facets as a binderfree electrocatalyst. In addition, in order to further increase the areal load of the active material, we aimed to grow the Ni₃S₂ arrays as branches on a conductive scaffold to form a core–branch array structure, instead of directly depositing them on carbon cloth.

Herein, we report a facile low-temperature ($< 100 \ ^{\circ}C$) sulfurization strategy to synthesize large-scale TiO₂@ Ni₃S₂ core/branch arrays as a binder-free electrode for a water-splitting electrolyzer in an alkaline solution. An induced growth process for growing Ni₃S₂ nanobranch on a TiO_2 core obtained by atomic layer deposition (ALD) is proposed, which leads to the in situ growth of $\{\bar{2}10\}$ high-index facets of Ni₃S₂. The as-prepared TiO₂@Ni₃S₂ core/branch arrays possess large active areas, uniform porous structures, and rich active sites of the exposed $\{\bar{2}10\}$ high-index facet. These features lead to substantial enhancements in HER and OER activities compared to those of most of the reported Ni₃S₂-based catalysts. Low overpotentials and fast kinetics as well as superior long-term durability of TiO2@Ni3S2 core/branch arrays are demonstrated. A low-water-splitting voltage of 1.58 V at 10 mA cm⁻² is obtained upon using the TiO₂@Ni₃S₂ array electrode as both a cathode and an anode. Our new electrode design strategy paves a green way for the construction of large-scale nickel sulfides with high electrocatalytic efficiency for electrochemical energy storage and conversion applications.

2 Experimental

2.1 Material Synthesis

In the first step, $Ni_2(OH)_2CO_3$ nanosheet arrays were obtained by a one-step hydrothermal method using commercial nickel foam as the substrate. For this, $Ni(NO_3)_2$ (0.9 g), NH_4F (0.23 g), and urea (0.9 g) were dissolved in 75 mL of deionized (DI) water to form a reaction solution. Then, the solution was transferred to a Teflon-lined steel autoclave, and the autoclave was placed in an oven at 120 °C for 8 h. After natural cooling, the sample was rinsed thoroughly with DI water.

In order to synthesize $TiO_2@Ni_2(OH)_2CO_3$ nanoflake arrays, the prepared $Ni_2(OH)_2CO_3$ nanosheet arrays were placed in an ALD reactor (ALD PICOSUN P-300F) along with TiCl₄ and H₂O as the Ti and O source, respectively. Then, TiO₂ was deposited at 120 °C for 140 cycles. Argon was used as the carrier gas. The final step was the sulfurization process. Typically, the obtained TiO₂@Ni₂(OH)₂CO₃ nanoflake array samples were transferred to a 0.1 M Na₂S solution and heated at 90 °C for 9 h. After natural cooling and rinsing with DI water, the TiO₂@Ni₃S₂ core/branch arrays were obtained. For comparison, Ni₃S₂ nanoflake arrays were also synthesized by the direct sulfurization of the Ni₂(OH)₂CO₃ nanosheet arrays on nickel foam (without the ALD TiO₂ step) using the same sulfurization conditions mentioned above.

2.2 Material Characterization

Morphologies and microstructures of all samples were investigated using a field-emission scanning electron microscope (FESEM, Hitachi SU8010) and a transmission electron microscope (TEM, JEOL 2100F). The crystal structure was characterized by X-ray diffraction (XRD) with Cu K α radiation (RigakuD/Max-2550). Raman spectra were collected using a Renishaw-inVia Raman microscope with 514-nm laser excitation. X-Ray photoelectron spectroscopy was performed on an ESCALAB_250Xi X-Ray photoelectron spectrometer with an Al K α source. Specific surface area distributions were obtained using a porosity instrument (BET, JW-BK112).

2.3 Electrochemical Measurements

HER and OER experiments were conducted using an electrochemical workstation (CH Instrument 660D) with a standard three-electrode setup at room temperature; the asprepared samples, carbon rod (D = 8 mm), and saturated calomel electrode were used as the working electrode, counter electrode, and reference electrode, respectively. A 1 M KOH solution was used as the electrolyte for both HER and OER tests. All potentials in this work are referred to the reversible hydrogen electrode. All measurements were first carried out

following a cyclic voltammetry (CV) test at 100 mV s⁻¹ to stabilize the current. Linear sweep voltammetry (LSV) tests were performed at a scan rate of 5 mV s⁻¹. The Tafel plots of the samples were obtained from the LSV curves acquired with a scan rate of 1 mV s⁻¹. Electrochemical impedance spectroscopy (EIS) was performed at the polarization voltage being indexed to the current density of 10 mA cm⁻², in the frequency range of 100 kHz to 50 mHz with an AC amplitude of 10 mV. The stability test was carried out after 10,000 CV cycles. These results were obtained by iR compensation. The overall water splitting was performed in a two-electrode catalyzer, where two pieces of TiO₂@Ni₃S₃ samples with a geometric area of 1 cm² were used as the electrodes for HER and OER.

3 Results and Discussion

3.1 Physicochemical Properties of TiO₂@Ni₃S₂ Core/ Branch Arrays

The core/branch structure of the $TiO_2@Ni_3S_2$ arrays is schematically illustrated in Fig. 1a. $Ni_2(OH)_2CO_3$ nanoflake arrays were synthesized on commercial nickel foam via a standard hydrothermal process (see details in Sect. 2.1). A TiO_2 layer with 10 nm thickness was deposited on the surface of the $Ni_2(OH)_2CO_3$ nanoflakes using a simple ALD method. The obtained $TiO_2@Ni_2(OH)_2CO_3$ arrays were converted to $TiO_2@Ni_3S_2$ core/branch arrays by immersing them into a Na_2S solution and heated. We applied this unique-structured material as electrocatalyst and propose the following advantages in enhancing the HER and OER:

- 1. Branched Ni_3S_2 nanoflakes possess a high surface area and higher porosity than those of the pure Ni_3S_2 nanoflakes grown directly on Ni foam. Further, the open structure of the interconnected nanoflakes will facilitate ion diffusion and H_2/O_2 detachment during the HER/ OER processes. This is particularly beneficial for largecurrent electrocatalysis.
- 2. The ALD-TiO₂ skeleton not only serves a mechanical support for the Ni₃S₂ branch, but also induces the nucleation for the directional growth of Ni₃S₂. Without the ALD-TiO₂ skeleton, no Ni₃S₂-branch can be formed. The TiO₂ and Ni₃S₂ act synergistically to provide better mechanical stability and enhanced specific surface area and larger porosity [27, 28].

Fig. 1 a Schematic illustration of the core/branch structure of the $TiO_2@Ni_3S_2$ arrays. b Optical photograph of the sample. c-g SEM images of the $TiO_2@Ni_3S_2$ core/branch arrays

3. One important feature of this unique branched Ni_3S_2 nanoflakes is the exposure of their highly active { $\bar{2}10$ } high-index facets, which can further improve the HER/ OER activities leading to a lower overpotential and Tafel slope.

The morphological evolution of the samples at different stages of the synthesis is revealed by the SEM images (see Fig. S1). The hydrothermally synthesized Ni₂(OH)₂CO₃ nanoflakes with thicknesses between 40 and 60 nm are found aligned vertically on the nickel foam surface, forming an architecture with a porous network (Fig. S1a, b). After the ALD of TiO₂, the twisted nanoflakes of Ni₂(OH)₂CO₃ smoothened to form TiO₂@Ni₂(OH)₂CO₃ core/shell arrays. Further, the thickness of the TiO₂@Ni₂(OH)₂CO₃ core/shell arrays increased to 50-70 nm. However, the 3D porous structure is still preserved, which is not surprising since the ALD generally results in a uniform and conformal deposition of a smooth thin film of amorphous TiO₂ (Fig. S1c, d). However, after the final sulfurization in Na₂S solution at 90 °C, the morphology changed radically; the previous core/shell structure of TiO₂@Ni₂(OH)₂CO₃ transformed into a new type of branched structure of TiO2@Ni3S2. It is observed that the $TiO_2@Ni_3S_2$ sample is black and the display area is ~45 cm². This process can be easily adapted for large-scale production

(Fig. 1b). Meanwhile, the internal TiO_2 core is homogeneously coated by the cross-linked Ni₃S₂ nanoflake shell with 10–15 nm thickness (Fig. 1c, f). Furthermore, the porous morphology remained well preserved in the TiO₂@Ni₃S₂ core/ branch arrays. These unique porous structural features provide a number of tunnels to boost electron/ion transfer. As shown in Fig. 1g, the TiO₂@Ni₃S₂ core/branch arrays grew quasivertically with respect to the substrate with a height of ~ 1 µm.

The branched microstructure of the TiO₂@Ni₃S₂ arrays was also explored by TEM observation. The Ni₂(OH)₂CO₃ nanoflake presents a thin and smooth appearance (Fig. S2a). The measured interplanar d-spacing of Ni₂(OH)₂CO₃ is about 0.26 nm, which corresponds well with that of the (-201) plane of Ni₂(OH)₂CO₃ (JCPDS 35-0501) (Fig. S2b) [29]. After the ALD of TiO_2 , the $Ni_2(OH)_2CO_3$ is completely coated with a thin layer of TiO₂ with ~ 10 nm thickness (Fig. S2c, d), forming a TiO₂@Ni₂(OH)₂CO₃ core/shell structure. Additionally, the thin TiO₂ is amorphous in nature and the interplanar d-spacing of 0.26 nm is still noticed for $Ni_2(OH)_2CO_3$. As for the TiO₂@Ni₃S₂ sample, the pristine TiO₂@Ni₂(OH)₂CO₃ core/shell structure changed to core/ branch array, in which the TiO₂ core is homogeneously covered by cross-linked Ni₃S₂ nanoflakes (Fig. 2a). A clear interplanar d-spacing of ~0.71 nm is observed, which may

be due to the expansion of the *c* axis of Ni_3S_2 . In addition, the selected area electron diffraction (SAED) pattern shows polycrystalline diffraction rings of the TiO₂@Ni₃S₂ sample (Fig. 2b), which is in good agreement with the (001), (101), (110), and (021) planes of Ni₃S₂.

HRTEM investigation was performed along the [100] zone axis of Ni_3S_2 , and interestingly, the interplanar *d*-spacing of 0.24 and 0.23 nm matched well with the (003) and (021) planes of the hexagonal Ni_3S_2 phase (JCPDS 44-1418). Further, the angle between the (003) and (021) facets is approximately 70°, which corresponds to the

theoretical value of 70.8° (Fig. 2c, d). This implies that the exposed facets of the Ni₃S₂ nanoflakes are { $\bar{2}10$ } high-index facets. According to a previous report by Fang et al. [26], this facet shows superior catalytic performance. Energy-dispersive X-ray spectroscopy (EDS) maps (Fig. 2e) confirm the presence and uniform distribution of O, S, Ni, and Ti in the TiO₂@Ni₃S₂ arrays.

In our experiment, the ALD-TiO₂ skeleton serves as a nucleation core for the directional growth of Ni_3S_2 nanosheets. Without the ALD-TiO₂ skin, no Ni_3S_2 branch can be formed. Comparatively, only common Ni_3S_2 nanoflake arrays are

Fig. 2 a–d TEM-HRTEM images and SAED pattern of $TiO_2@Ni_3S_2$ core/branch arrays. e EDS elemental maps of O, S, Ni, and Ti in $TiO_2@Ni_3S_2$ core/branch arrays

formed in the absence of the TiO₂ layer support (Fig. S3a, b). Interestingly, exposed { $\bar{2}10$ } facets are also found in common Ni₃S₂ nanosheet arrays, indicating that the low-temperature sulfurization method is favorable for the growth of the high-index { $\bar{2}10$ } facet, which is also confirmed by TEM and XRD (Fig. S3c, d). During the sulfurization process, the Ni ions would diffuse outward and combine with sulfur-containing groups (S^{2–}, HS[–], etc.) along the outer surface of ALD-TiO₂ to form Ni₃S₂ nanocrystal nuclei. This outward diffusion process might be related to the Ostwald ripening effect, in which the energy of the interior is higher than that on outer surface. Ni₃S₂ species are spontaneously attached to the ALD-TiO₂ surface, which induces the growth of active nucleation centers and decreases the interfacial energy barrier for the self-assembly of the Ni₃S₂ nanoflake branches.

To further demonstrate the benefits of the core/branch arrays, the specific surface area was determined by BET (Fig. S4). The common Ni_3S_2 arrays and $TiO_2@Ni_3S_2$ branch nanosheet arrays show specific surface areas of 1.594 and 4.623 m² g⁻¹, respectively, implying that branching leads to significantly increased surface area. Furthermore, the branched nanoflakes are beneficial in that they provide increased exposed active area/sites, leading to increased utilization of the active Ni_3S_2 catalyst.

In order to identify the phase and composition of the final product, XRD, Raman spectroscopy, and XPS were carried out. Figures S5 and 3a show the typical XRD patterns of Ni₂(OH)₂CO₃, TiO₂@Ni₂(OH)₂CO₃, and TiO₂@Ni₃S₂. Except for the diffraction peaks of Ni foam, other diffraction peaks in the XRD pattern of Ni₂(OH)₂CO₃ correspond well with those of the monoclinic Ni₂(OH)₂CO₃ phase (JCPDS 35-0501), suggesting the high crystallinity of Ni₂(OH)₂CO₃. For the TiO₂/Ni₂(OH)₂CO₃ arrays, the diffraction peaks of $Ni_2(OH)_2CO_3$ can be still detected, but the strength of them decreases. No peaks of the TiO₂ are noticed, indicating the amorphous nature of the TiO₂ skeleton (Fig. S5). After the low-temperature sulfurization using the Na₂S solution, the diffraction peaks of Ni₂(OH)₂CO₃ disappear, and other diffraction peaks that can be indexed well with the Ni_3S_2 phase (JCPDS 44-1418) are observed apart from the peaks of metallic Ni foam substrate, demonstrating that the asobtained $TiO_2@Ni_3S_2$ sample is of high purity [30]. It is worth noting that the strong diffraction peaks of (021) and (003) plane can be observed clearly (Fig. 3a). Meanwhile, the Raman analysis further confirms the formation of the TiO₂@Ni₃S₂ phase. The TiO₂@Ni₃S₂ arrays show five characteristic peaks at ~203, 223, 305, and 348 cm⁻¹, which match well with those of the Ni₃S₂ phase. The characteristic peak at ~ 150 cm^{-1} could be indexed well with that of amorphous TiO₂ (Fig. 3b) [1], further manifesting the successful preparation of TiO₂@Ni₃S₂ core/branch arrays. This conclusion is also supported by XPS results. Figure 3c shows the

Fig. 3 a XRD patterns, b Raman spectrum, c core-level Ni 2p XPS spectra, d core-level S 2p XPS spectra, e O 1s XPS spectra, and f Ti 2p XPS spectra of TiO₂@Ni₃S₂ core/branch arrays

high-resolution Ni 2p spectra of the TiO₂@Ni₃S₂ sample. Two main core levels (Ni 2p3/2 and Ni 2p1/2) that are characteristic of the Ni state in Ni₃S₂ are located at 873.28 and 855.78 eV, respectively [31]. As for the S 2p spectra, two characteristic peaks are detected at 163.28 eV (S 2p1/2) and 161.28 eV (S 2p3/2) corresponding to S²⁻ (Fig. 3d) [32]. Moreover, the presence of TiO₂ in the TiO₂@Ni₃S₂ core/ branch arrays is also confirmed by Ti 2p and O 1s spectra (Fig. 3e, f). Two core-level peaks are located at 529.8 and 531.1 eV in the O 1s spectra, which could be indexed well with Ti–O and O–H bonds, respectively [33, 34]. Ti 2p1/2 (463.8 5 eV) and Ti 2p3/2 (458.0 eV), the characteristic peaks of TiO_2 are observed in the Ti 2p spectra. The presence of O–H bond may be due to surface oxidation of Ni_3S_2 [35–37]. All these results mutually confirm the successful fabrication of TiO2@Ni3S2 core/branch arrays via our powerful low-temperature sulfurization strategy.

3.2 Electrocatalytic Properties of TiO₂@Ni₃S₂ Core/ Branch Arrays

The electrocatalytic activity of the three samples (Ni₂(OH)₂CO₃, Ni₃S₂, and TiO₂@Ni₃S₂ electrodes) was studied using a three-electrode system in a 1 M KOH solution [38–41]. As presented in Fig. 4a, significantly, the TiO₂@Ni₃S₂ electrode displays the best HER activity with the smallest overpotential (112 mV at the current density of 10 mA cm⁻²), better than that of the Ni₂(OH)₂CO₃ nanoflake arrays (154 mV) and Ni₃S₂ (149 mV) nanoflake arrays at the current density of 10 mA cm⁻². Meanwhile, the TiO₂@ Ni₃S₂ core/branch arrays also show a large current density with the lowest overpotential (177 mV at the current density of 100 mA cm⁻²), superior to those of the $Ni_2(OH)_2CO_3$ (259 mV) and Ni₃S₂ (213 mV) counterparts. Additionally, the enhanced HER performance is further confirmed by the Tafel slopes (Fig. 4b) derived from the previous LSV curves. Obviously, the Ni₂(OH)₂CO₃ and Ni₃S₂ electrodes show large Tafel slopes (105 and 77 mV/decade), while the $TiO_2@Ni_3S_2$ electrode exhibits a substantially lower Tafel slope of 69 mV per decade. It is well accepted that a lower Tafel slope implies a faster HER rate. As a result, the $TiO_2@$ Ni_3S_2 electrode leads to the fastest HER process.

Furthermore, the HER performance of our designed highindex faceted Ni_3S_2 nanoflake arrays is also excellent. It is well known that HER involves three principal steps including Tafel (30 mV per decade) reactions, Heyrovsky (40 mV per decade), and Volmer (120 mV per decade) mechanisms [42]. Hence, it can be inferred that the HER with Ni₃S₂ and TiO₂@ Ni₃S₂ electrodes in the alkaline water splitting is based on the Volmer mechanism. Simultaneously, the long-cycle durability of electrocatalysts plays an important role in practical application. The electrochemical stability test of the TiO₂@ Ni₃S₂ arrays was carried out continuously at the scan rate of 50 mV s⁻¹ for 10,000 CV cycles. The LSV curves of the TiO₂@Ni₃S₂ electrode before and after 10,000 CV cycles of electrolysis nearly overlap with each other, suggesting the excellent stability of TiO₂@Ni₃S₂ electrode (Fig. S6a).

In order to further understand the origin of the superior HER activity of the TiO₂@Ni₃S₂ core/branch nanoflake arrays, the effective electrochemical active surface area (ECSA) of the three samples was calculated by determining the double-layer capacitance (C_{dl}) based on the CV results at different scan rates (Fig. S6b-d). The obtained current density is plotted as a function of scan rates in Fig. 4c. The ECSA value is considered to be linearly proportional to the C_{dl} value, equaling half the slope value. Notably, the TiO₂@Ni₃S₂ electrode possesses a high capacitance, up to 42 mF cm⁻², which is much higher than those of $Ni_2(OH)_2CO_3$ (24 mF cm⁻²) and Ni_2S_2 (29 mF cm⁻²) electrodes. The above results indicate that the TiO₂@Ni₃S₂ electrode has more exposed active sites. EIS tests were performed to further probe the electrochemical behavior during the HER process. Figure 4d exhibits the Nyquist plots of all electrodes. The semicircle represents the charge transfer resistance (R_{ct}) of the hydrogen evolution reaction. Remarkably, the TiO₂@ Ni_3S_2 electrode shows the smallest R_{ct} value among the three electrodes, which suggests that it facilitates the fastest dynamics during HER. Moreover, the solution resistance $(R_{\rm e})$ values of Ni₂(OH)₂CO₃, Ni₃S₂, and TiO₂@Ni₃S₂ electrodes are 1.49, 1.46, and 1.45 Ω , respectively. These findings further verify that TiO₂@Ni₃S₂ still possesses high electronic conductivity and charge transfer ability during the entire hydrogen evolution reaction. In addition, the $TiO_2@Ni_3S_2$ electrode also shows long-term durability with no decay after 10 h at a large current density of 100 mA cm^{-2} (Fig. 4e).

As shown in Fig. 5a, the electrolysis cell of the two-electrode system consists of the $TiO_2@Ni_3S_2$ electrocatalyst as both anode and cathode in 1 M KOH solution (denoted as $TiO_2@Ni_3S_2 \parallel TiO_2@Ni_3S_2$). Apart from the outstanding HER activity, the as-prepared $TiO_2@Ni_3S_2$ electrode also delivers excellent OER catalytic performance in the alkaline solution.

Fig. 4 Evaluation of the HER performance and comparison of $Ni_2(OH)_2CO_3$, Ni_3S_2 , and $TiO_2@Ni_3S_2$ electrodes: **a** LSV curves, **b** Tafel plots, **c** current density as a function of scan rate, and **d** Nyquist plots of the $Ni_2(OH)_2CO_3$, Ni_3S_2 , and $TiO_2@Ni_3S_2$ electrodes. **e** Electrochemical stability of the $TiO_2@Ni_3S_2$ electrode at a current density of 100 mA cm⁻²

As shown in Fig. 5b, the TiO₂@Ni₃S₂ electrode exhibits a remarkably low OER overpotential of 220 mV at 10 mA cm⁻² and 300 mV at 100 mA cm⁻², superior to those of the Ni₂(OH)₂CO₃ (330 mV, 390 mV) and Ni₃S₂ (280 mV, 360 mV) electrodes. Owing to its excellent catalytic activities in both OER and HER, the TiO₂@Ni₃S₂ electrode could be utilized as an attractive bifunctional electrocatalyst for water splitting in an alkaline medium. Impressively, a noticeably low cell voltage of 1.58 V is gained at the current density of 10 mA cm⁻² (Fig. 5c), better than those of the other reported bifunctional electrocatalysts (Fig. 5d) [1, 9, 26, 43–47]. In order to investigate the change in the chemical composition of $TiO_2@Ni_3S_2$, high-resolution Ni 2*p* spectra were acquired after HER and OER tests (Fig. S7). After HER tests, the Ni 2*p* spectrum remained almost the same as before with a slight redshift owing to the cathodic H₂ reduction. However, after the OER test, the peak at 853.08 eV disappeared and the intensity of the satellite peak (2p_{3/2}) decreased because of the formation of hydrated nickel oxide. Furthermore, the TiO₂@Ni₃S₂ || TiO₂@Ni₃S₂ catalyzer cell shows long-term durability with no decay after

Fig. 5 a Schematic illustration of the overall water-splitting process using the bifunctional electrocatalyst. **b** LSV curves at 5 mV s⁻¹ for the OER performances using the Ni₂(OH)₂CO₃, Ni₃S₂, and TiO₂@Ni₃S₂ electrodes. **c** LSV curves of the overall water-splitting performance of the TiO₂@Ni₃S₂||TiO₂@Ni₃S₂ electrolyzer. **d** Comparison of the overall water-splitting performance of our TiO₂@Ni₃S₂||TiO₂@Ni₃S₂ electrolyzer with those of other electrocatalysts in the literature, and **e** electrochemical stability at 10 mA cm⁻²

10 h (Fig. 5c, e). All the above results demonstrate that the $TiO_2@Ni_3S_2$ core/branch arrays possess superior electrochemical activity in both HER and OER, suggesting that the designed $TiO_2@Ni_3S_2$ core/branch arrays would be promising electrocatalysts for practical application in alkaline water splitting.

4 Conclusion

We developed a facile and high-efficiency low-temperature sulfurization method for the large-scale synthesis of novel binder-free $TiO_2@Ni_3S_2$ core/branch arrays. Impressively, the as-obtained Ni_3S_2 nanoflake branches exposed the highly active { $\bar{2}10$ } high-index facet. Strong support and induced

directional growth of Ni_3S_2 nanoflakes are realized with the aid of the ALD-TiO₂ skeleton. Owing to large surface area of the core/branch arrays, large porosity, and binderfree adhesion as well as richer active sites of the exposed $\{\bar{2}10\}$ high-indexed facets of Ni_3S_2 nanoflakes, the designed TiO₂@Ni₃S₂ core/branch arrays deliver low overpotentials and Tafel slopes for both OER and HER as well as cycling stability in an alkaline medium superior to those of the other Ni_3S_2 counterparts. Our work offers a facile low-temperature strategy to construct advanced metal sulfide catalysts for electrochemical energy conversion and storage.

Acknowledgements This work is supported by National Natural Science Foundation of China (Grant Nos. 51728204 and 51772272), Fundamental Research Funds for the Central Universities (Grant No. 2018QNA4011), Qianjiang Talents Plan D (QJD1602029), Startup Foundation for Hundred-Talent Program of Zhejiang University, and the Fundamental Research Funds for the Central Universities (2015XZZX010-02).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http:// creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s40820-019-0242-8) contains supplementary material, which is available to authorized users.

References

- S. Deng, Y. Zhong, Y. Zeng, Y. Wang, X. Wang, X. Lu, X. Xia, J. Tu, Hollow TiO₂@ Co₉S₈ core-branch arrays as bifunctional electrocatalysts for efficient oxygen/hydrogen production. Adv. Sci. 5, 1700772 (2017). https://doi.org/10.1002/advs.20170 0772
- S. Deng, F. Yang, Q. Zhang, Y. Zhong, Y. Zeng et al., Phase modulation of (1T-2H)-MoSe₂/TiC-C shell/core arrays via nitrogen doping for highly efficient hydrogen evolution reaction. Adv. Mater. **30**, 1802223 (2018). https://doi. org/10.1002/adma.201802223
- H. Xia, J. Zhang, Z. Yang, S. Guo, S. Guo, Q. Xu, 2D MOF nanoflake-assembled spherical microstructures for enhanced supercapacitor and electrocatalysis performances. Nano-Micro Lett. 9(4), 43 (2017). https://doi.org/10.1007/s4082 0-017-0144-6
- 4. H. Wang, Y.-X. Yu, KOH alkalized Fe₃N nanoparticles on electrocatalytic hydrogen evolution reaction. J. Inorg. Mater.

33(6), 653–658 (2018). https://doi.org/10.15541/jim20 170350

- M. Yu, Z. Wang, C. Hou, Z. Wang, C. Liang, C. Zhao, Y. Tong, X. Lu, S. Yang, Nitrogen-doped Co₃O₄ mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv. Mater. 29(15), 1602868 (2017). https://doi.org/10.1002/adma.201602868
- Q. Zhang, P. Li, D. Zhou, Z. Chang, Y. Kuang, X. Sun, Superaerophobic ultrathin Ni-Mo alloy nanosheet array from in situ topotactic reduction for hydrogen evolution reaction. Small 13(41), 1701648 (2017). https://doi.org/10.1002/ smll.201701648
- F. Feng, J. Wu, C. Wu, Y. Xie, Regulating the electrical behaviors of 2D inorganic nanomaterials for energy applications. Small 11(6), 654–666 (2015). https://doi.org/10.1002/ smll.201402346
- J. Li, W. Xu, J. Luo, D. Zhou, D. Zhang, L. Wei, P. Xu, D. Yuan, Synthesis of 3D hexagram-like cobalt-manganese sulfides nanosheets grown on nickel foam: a bifunctional electrocatalyst for overall water splitting. Nano-Micro Lett. 10(1), 6 (2018). https://doi.org/10.1007/s40820-017-0160-6
- H. Liang, L. Li, F. Meng, L. Dang, J. Zhuo, A. Forticaux, Z. Wang, S. Jin, Porous two-dimensional nanosheets converted from layered double hydroxides and their applications in electrocatalytic water splitting. Chem. Mater. 27(27), 5702– 5711 (2015). https://doi.org/10.1021/acs.chemmater.5b021 77
- M. Yu, S. Zhao, H. Feng, H. Le, X. Zhang, Y. Zeng, Y. Tong, X. Lu, Engineering thin MoS₂ nanosheets on tin nanorods: advanced electrochemical capacitor electrode and hydrogen evolution electrocatalyst. ACS Energy Lett. 2(8), 1862–1868 (2017). https://doi.org/10.1021/acsenergylett.7b00602
- L.L. Feng, M. Fan, Y. Wu, Y. Liu, G.D. Li, H. Chen, W. Chen, D. Wang, X. Zou, Metallic Co₉S₈ nanosheets grown on carbon cloth as efficient binder-free electrocatalysts for the hydrogen evolution reaction in neutral media. J. Mater. Chem. A 4(18), 6860–6867 (2016). https://doi.org/10.1039/C5TA08611F
- X. Zou, Y. Liu, G.D. Li, Y. Wu, D.P. Liu et al., Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 29(22), 1700404 (2017). https://doi.org/10.1002/adma.201700404
- X. Yang, J. Chen, Y. Chen, P. Feng, H. Lai, J. Li, X. Luo, Novel Co₃O₄ nanoparticles/nitrogen-doped carbon composites with extraordinary catalytic activity for oxygen evolution reaction (OER). Nano-Micro Lett. **10**(1), 15 (2017). https:// doi.org/10.1007/s40820-017-0170-4
- 14. S. Zheng, L. Zheng, Z. Zhu, J. Chen, J. Kang, Z. Huang, D. Yang, MoS₂ nanosheet arrays rooted on hollow rgo spheres as bifunctional hydrogen evolution catalyst and supercapacitor electrode. Nano-Micro Lett. **10**(4), 62 (2018). https://doi.org/10.1007/s40820-018-0215-3
- L. Zhu, D. Zheng, Z. Wang, X. Zheng, P. Fang, J. Zhu, M. Yu, Y. Tong, X. Lu, A confinement strategy for stabilizing ZIF-derived bifunctional catalysts as a benchmark cathode

of flexible all-solid-state zinc-air batteries. Adv. Mater. **30**, 1805268 (2018). https://doi.org/10.1002/adma.201805268

- Z. Yu, X. Xia, S. Deng, J. Zhan, R. Fang, X. Yang, X. Wang, Z. Qiang, J. Tu, Popcorn inspired porous macrocellular carbon: rapid puffing fabrication from rice and its applications in lithium–sulfur batteries. Adv. Energy Mater. 8(1), 1701110 (2018). https://doi.org/10.1002/aenm.201701110
- M. Wu, S. Wang, J. Wang, Engineering NiMo₃S₄ |Ni₃S₂ interface for excellent hydrogen evolution reaction in alkaline medium. Electrochim. Acta 258, 669–676 (2017). https://doi. org/10.1016/j.electacta.2017.11.112
- J. Lv, H. Miura, Y. Meng, T. Liang, Synthesis of Ni₃S₂ nanotube arrays on nickel foam by catalysis of thermal reduced graphene for hydrogen evolution reaction. Appl. Surf. Sci. **399**, 769-774 (2016). https://doi.org/10.1016/j.apsusc.2016.12.042
- N. Cheng, Q. Liu, A.M. Asiri, W. Xing, X. Sun, A Fe-doped Ni₃S₂ particle film as a high-efficiency robust oxygen evolution electrode with very high current density. J. Mater. Chem. A 3(46), 23207–23212 (2015). https://doi.org/10.1039/C5TA0 6788J
- C. Ouyang, X. Wang, C. Wang, X. Zhang, J. Wu, Z. Ma, S. Dou, S. Wang, Hierarchically porous Ni₃S₂ nanorod array foam as highly efficient electrocatalyst for hydrogen evolution reaction and oxygen evolution reaction. Electrochim. Acta 174, 297–301 (2015). https://doi.org/10.1016/j.elect acta.2015.05.186
- C. Tang, Z. Pu, Q. Liu, A.M. Asiri, Y. Luo, X. Sun, Ni₃S₂ nanosheets array supported on Ni foam: A novel efficient three-dimensional hydrogen-evolving electrocatalyst in both neutral and basic solutions. Int. J. Hydrogen Energy 40(14), 4727–4732 (2015). https://doi.org/10.1016/j.ijhyd ene.2015.02.038
- Y. Su, Y. Zhang, X. Zhuang, S. Li, D. Wu, F. Zhang, X. Feng, Low-temperature synthesis of nitrogen/sulfur Co-doped threedimensional graphene frameworks as efficient metal-free electrocatalyst for oxygen reduction reaction. Carbon 62(5), 296–301 (2013). https://doi.org/10.1016/j.carbon.2013.05.067
- R. Liu, D. Wu, X. Feng, K. Müllen, Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 49(14), 2565– 2569 (2010). https://doi.org/10.1002/anie.200907289
- W. Yang, T.P. Fellinger, M. Antonietti, Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 133(2), 206–209 (2011). https://doi.org/10.1021/ja108039j
- J. Wang, J. Su, H. Chen, X. Zou, G.D. Li, Oxygen vacancyrich, ru-doped In₂O₃ ultrathin nanosheets for efficient detection of xylene at low temperature. J. Mater. Chem. C 6(15), 4165 (2018). https://doi.org/10.1039/C8TC00638E
- L.L. Feng, G. Yu, Y. Wu, G.D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni₃S₂ nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137(44), 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186

- X. Xia, S. Deng, D. Xie, Y. Wang, S. Feng, J. Wu, J. Tu, Boosting sodium ion storage by anchoring MoO₂ on vertical graphene arrays. J. Mater. Chem. A 6(32), 15546–15552 (2018). https://doi.org/10.1039/C8TA06232C
- Z. Yao, X. Xia, D. Xie, Y. Wang, C. Zhou, L. Sufu, S. Deng, X. Wang, J. Tu, Enhancing ultrafast lithium ion storage of Li₄Ti₅O₁₂ by tailored TiC/C core/shell skeleton plus nitrogen doping. Adv. Funct. Mater. 28, 1802756 (2018). https://doi. org/10.1002/adfm.201802756
- 29. H. Chen, Y. Kang, F. Cai, S. Zeng, W. Li, M. Chen, Q. Li, Electrochemical conversion of Ni₂(OH)₂CO₃ into Ni(OH)₂ hierarchical nanostructures loaded on a carbon nanotube paper with high electrochemical energy storage performance. J. Mater. Chem. A 3(5), 1875–1878 (2015). https:// doi.org/10.1039/C4TA06218C
- S. Qu, J. Huang, J. Yu, G. Chen, W. Hu, M. Yin, R. Zhang, S. Chu, C. Li, Ni₃S₂ nanosheet flowers decorated with CdS quantum dots as a highly active electrocatalysis electrode for synergistic water splitting. ACS Appl. Mater. Interfaces. 9(35), 29660 (2017). https://doi.org/10.1021/acsami.7b063 77
- N. Jiang, Q. Tang, M. Sheng, B. You, D.E. Jiang, Y. Sun, Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: a case study of crystalline NiS, NiS₂, and Ni₃S₂ nanoparticles. Catal. Sci. Technol. 6(4), 1077–1084 (2015). https://doi.org/10.1039/C5CY01111F
- 32. Y. Wu, Y. Liu, G.D. Li, X. Zou, X. Lian, D. Wang, L. Sun, T. Asefa, X. Zou, Efficient electrocatalysis of overall water splitting by ultrasmall Ni_xCo_{3-x}S₄ coupled Ni₃S₂ nanosheet arrays. Nano Energy **35**, 161–170 (2017). https://doi.org/10.1016/j. nanoen.2017.03.024
- Z. Yao, X. Xia, Y. Zhang, D. Xie, C. Ai et al., Superior highrate lithium-ion storage on Ti₂Nb₁₀O₂₉ arrays via synergistic TiC/C skeleton and N-doped carbon shell. Nano Energy 54, 304–312 (2018). https://doi.org/10.1016/j.nanoen.2018.10.024
- 34. S. Shen, W. Guo, D. Xie, Y. Wang, S. Deng, Y. Zhong, X. Wang, X. Xia, J. Tu, A synergistic vertical graphene skeleton and S-C shell to construct high-performance TiNb₂O₇-based core/shell arrays. J. Mater. Chem. A 6, 20195–20204 (2018). https://doi.org/10.1039/C8TA06858E
- S. Deng, D. Chao, Y. Zhong, Y. Zeng, Z. Yao et al., Vertical graphene/Ti₂Nb₁₀O₂₉/hydrogen molybdenum bronze composite arrays for enhanced lithium ion storage. Energy Storage Mater. **12**, 137–144 (2018). https://doi.org/10.1016/j.ensm.2017.11.018
- C. Zhang, Y. Zhou, Y. Zhang, S. Zhao, J. Fang, X. Sheng, T. Zhang, H. Zhang, Double-shelled TiO₂ hollow spheres assembled with TiO₂ nanosheets. Chemistry 23(18), 4336–4343 (2017). https://doi.org/10.1002/chem.201602654
- C. Wang, Y. Zhan, Z. Wang, TiO₂, MoS₂, and TiO₂/MoS₂ heterostructures for use in organic dyes degradation. ChemistrySelect 3(6), 1713–1718 (2018). https://doi.org/10.1002/ slct.201800054
- Y. Zhang, X. Xia, X. Cao, B. Zhang, N.H. Tiep et al., Ultrafine metal nanoparticles/N-doped porous carbon hybrids coated on carbon fibers as flexible and binder-free water splitting

catalysts. Adv. Energy Mater. **7**, 1700220 (2017). https://doi. org/10.1002/aenm.201700220

- B. Liu, Y. Wang, H. Peng, R. Yang, Z. Jiang, X. Zhou et al., Feroxyhyte nanosheets: iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 30, 1803144 (2018). https://doi.org/10.1002/ adma.201803144
- B. Liu, H. Peng, Y. Zhao, J. Cheng, J. Xia, J. Shen et al., Unconventional nickel nitride enriched with nitrogen vacancies as a high-efficiency electrocatalyst for hydrogen evolution. Adv. Sci. 5, 1800406 (2018). https://doi.org/10.1002/ advs.201800406
- B. Liu, J. Cheng, H.Q. Peng, D. Chen, X. Cui et al., In situ nitridated porous nanosheet networked Co₃O₄-Co₄N heterona-nostructures supported on hydrophilic carbon cloth for highly efficient electrochemical hydrogen evolution. J. Mater. Chem. A 7, 775–782 (2019). https://doi.org/10.1039/C8TA09800J
- Y. Huang, H. Lu, H. Gu, J. Fu, S. Mo, C. Wei, Y.-E. Miao, T. Liu, A CNT@MoSe₂ hybrid catalyst for efficient and stable hydrogen evolution. Nanoscale 7(44), 18595–18602 (2015). https://doi.org/10.1039/C5NR05739F
- 43. Z. Peng, D. Jia, A.M. Al-Enizi, A.A. Elzatahry, G. Zheng, Electrocatalysts: from water oxidation to reduction: homologous Ni-Co based nanowires as complementary water

splitting electrocatalysts. Adv. Energy Mater. **5**(9), 1402031 (2015). https://doi.org/10.1002/aenm.201402031

- Y.P. Zhu, T.Y. Ma, M. Jaroniec, S.Z. Qiao, Self-templating synthesis of hollow Co₃O₄ microtube arrays for highly efficient water electrolysis. Angew. Chem. Int. Ed. 56(5), 1324–1328 (2016). https://doi.org/10.1002/anie.201610413
- J. Tian, N. Cheng, Q. Liu, W. Xing, X. Sun, Cobalt phosphide nanowires: efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light & dagger. Angew. Chem. Int. Ed. 54(18), 5493–5497 (2015). https://doi.org/10.1002/ ange.201501237
- 46. L. Feng, F. Song, X. Hu, Ni₂P as a janus catalyst for water splitting: the oxygen evolution activity of Ni₂P nanoparticles. Energy Environ. Sci. 8(8), 2347–2351 (2015). https://doi. org/10.1039/C5EE01155H
- M. Ledendecker, C.S. Krick, C. Papp, H.P. Steinrück, M. Antonietti, M. Shalom, The synthesis of nanostructured Ni₅P₄ films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 54(42), 12361–12365 (2015). https://doi.org/10.1002/anie.201502438