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Abstract Let G = (V (G), E(G)) be a connected graph. The total eccentricity index of G
is defined as ζ(G) = ∑

v∈V (G) εG(v), where εG(v) is the eccentricity of the vertex v. In
this paper, we compute the total eccentricity of generalized hierarchical product of graphs.
Moreover, we derive some explicit formulae for total eccentricity index of F-sum graph,
Cartesian product, Cluster product and Corona product of graphs and apply those results to
find the total eccentricity index of various classes of chemical graphs and nanostructures.
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Introduction

LetG be a connected graphwith vertex set V (G) and edge set E(G). As usual, the cardinality
of V (G) and E(G) are denoted by |V (G)| and |E(G)|, respectively. For any two vertices
u, v ∈ V (G), the distance between u and v is denoted by dG(u, v) and is given by the number
of edges in the shortest path connecting u and v. Also we denote the sum of distances between
v ∈ V (G) and every other vertices in G by d(x |G), i.e., d(x |G) = ∑

v∈V (G) dG(x, v). The
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eccentricity of a vertex v, denoted by εG(v), is the largest distance from v to any other
vertex u of G. Different topological indices based on vertex eccentricity are already subject
to various mathematical and chemical study. The total eccentricity index of G is defined
as ζ(G) = ∑

v∈V (G) εG(v). Fathalikhani et al. [12] have studied total eccentricity of some
graph operations. Some studies on average eccentricities are also found in literature [5,17].

If two graphs G and H are isomorphic, we write G ∼= H . Let Top(G) represents certain
topological index of G and if G ∼= H , then Top(G) = Top(H). Let L(G) denotes the line
graph of G, is the graph whose vertices are the edges of G and two vertices of L(G) are
adjacent if and only if the corresponding edges are adjacent in G.

As an extension of Cartesian product graphs, Barrière et al. [3,4] introduced the gen-
eralized hierarchical product of graphs. Many results on different topological indices of
generalized hierarchical product of graphs are reported in the literature [1,2,10,15]. Eliasi
and Taeri [9] introduced the F-sum graphs. It is evident that the Cartesian product, F-sum
product and cluster product are special cases of generalized hierarchical product and thus the
results for these products can be deduced from those of generalized hierarchical product of
graphs.

In this paper, the total eccentricity index of the generalized hierarchical product of graphs
is computed. Also we find the total eccentricity indices of Cartesian product graph, the F-
sum graph, the cluster product graph and the corona product graph as some special cases. In
addition to these, as applications, we present explicit results for total eccentricity index of
different classes of chemical graphs and nanostructurs such as C4-nanotubes, C4-nanotorus,
zig zag polyhex nanotube, the hexagonal chain and so on.

Generalized Hierarchical Product of Graphs

Definition 1 Let G and H be two connected graphs andU be a non-empty subset of V (G).
Then the hierarchical product of G and H , denoted by G(U )ΠH , is the graph with vertex
set V (G) × V (H), and any two vertices (u, v) and (u′, v′) of G(U )ΠH are adjacent if and

only if
[
u = u′ ∈ V (G) and (v, v′) ∈ E(H)

]
or

[
v = v′ ∈ V (H) and (u, u′) ∈ E(G)

]
.

A path between the vertices u, v ∈ V (G) throughU ⊆ V (G) is a uv-path inG containing
some vertex x ∈ U (vertex x could be the vertex u or v). The distance between u and v through
U is the length of the shortest path between u and v throughU and is denoted by dG(U )(u, v).
If u ∈ U , then we have,

εG(U )(u) = maxu∈V (G)dG
(
U
)(u, v) and ζ(G

(
U

)
) =

∑

ui∈V (G)

ε
G
(
U
)(ui ).

Lemma 1 [4] Let G and H be two connected graphs and U ⊆ V
(
G

)
. Then ε

G
(
U
)
ΠH

(u, v)

= ε
G
(
U
)(u) + εH (v).

Theorem 1 Let G and H be two connected graphs and U ⊆ V (G). Then

ζ(G(U )ΠH) = |V (H)|ζ(G(U )) + |V (G)|ζ(H). (1)

Proof Let V (G) = {u1, u2, ..., un} and V (H) = {v1, v2, ..., vm}. Then, using definition of
total eccentricity index and Lemma 1, we have
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ζ(G(U )ΠH) =
∑

(ui ,v j )

εG(U )ΠH (ui , v j )

=
∑

ui∈V (G)

∑

v j∈V (H)

{
εG(U )(ui ) + εH (v j )

}

= |V (H)|
∑

ui∈V (G)

εG(U )(ui ) + |V (G)|
∑

v j∈V (H)

εH (v j )

= |V (H)|ζ(G(U )) + |V (G)|ζ(H).

This completes the proof. ��
Definition 2 Let G and H be two connected graphs. The Cartesian product of G and H ,
denoted by G�H , is the graph with vertex set V (G) × V (H), and any two vertices (u p, vr )

and (uq , vs) are adjacent if and only if
[
u p = uq ∈ V (G) and (vr , vs) ∈ E(H)

]
or

[
vr = vs ∈ V (H) and (u p, uq) ∈ E(G)

]
and r, s = 1, 2, . . . , |V (H)|.

From definition of the Cartesian product graph it is clear that, the Cartesian product of
graphs is a special case of generalized hierarchical product graph, that is, ifU = V (G), then
G(U )ΠH ∼= G�H . So, from the previous theorem the following corollary follows.

Corollary 1 Let G and H be two connected graphs, then

ζ(G�H) = |V (H)|ζ(G) + |V (G)|ζ(H). (2)

Fathalikhani et al. [12] obtained the same result from direct calculation.
Using (2), now we compute total eccentricity of the C4-nanotorus, nanotube and also for

polynomial chain.
Let Pn(n ≥ 1) and Cn(n ≥ 3) be path and cycle of order n respectively, then we have

ζ(Pn) =
{ 3

4n
2 − 1

2n, when n is even

3
4n

2 − 1
2n − 1

4 , when n is odd,

and

ζ(Cn) =
{ 1

2n
2, when n is even

1
2n(n − 1), when n is odd.

Example 1 The C4-nanotorus can be viewed as the Cartesian product of Cm and Cn , i.e.,
TC4(m, n) = Cm�Cn . So, its total eccentricity is given by

ζ(TC4(m, n)) =

⎧
⎪⎪⎨

⎪⎪⎩

1
2mn(m + n), when m, n both are even,

1
2mn(m + n − 2), when m, n both are odd

1
2mn(m + n − 1), when either of m, n is odd and the other is even.

Example 2 The C4-nanotube can be viewed as the Cartesian product of Pn and Cm , i.e.,
TUC4(m, n) = Pn�Cm . So, its total eccentricity is given by

ζ(TUC4(m, n)) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
2mn

( 3
2m + n − 1

)
, when m, n both are even,

mn
( 3
4m + 1

2n − 1
) − 1

4n, when m, n both are odd,

1
2mn

( 3
2m + n − 2

)
, when m is even and n is odd,

1
2mn

( 3
2m + n − 1

) − 1
4n, when m is odd and n is even.
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Example 3 The m × n grid graph can be viewed as the Cartesian product of Pn and Pm , i.e.,
Gm,n = Pn�Pm . So, the total eccentricity of the grid graph Gm,n is given by

ζ(Gm,n) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3
4mn(m + n) − mn, when m, n both are even,

1
4mn(m + n) − mn, when m, n both are odd,

1
4mn(m + n) − mn − 1

4m, when m is even and n is odd,

3
4mn(m + n) − mn − 1

4n, when m is odd and n is even.

F-sum Graphs

The concept of F-sumgraphwas first introduced byEliasi andTaeri [9] and theWeiner indices
of the resulting graphs were studied therein. Li and Wang [14] derived explicit expression
of the PI indices of four sums of two graphs. The hyper and reverse Weiner indices of F-
sum graphs were studied by Metsidik et al. [16]. Eskender and Vumar [11] determined the
eccentric connectivity index of F-sum graphs in terms of some invariants of the factors.

The subdivision graph of a graph G, denoted by S(G), is obtained from G by replacing
each edge ofG by a path of length two. The triangle parallel graph of a graphG is denoted by
R(G) and is obtained fromG by replacing each edge ofG by a triangle. The line superposition
graph Q(G) of a graph G is obtained from G by inserting a new vertex into each edge of
G and then joining with edges each pair of new vertices on adjacent edges of G. The total
graph T (G) of a graph G has its vertices as the edges and vertices of G and adjacency in
T (G) is defined by the adjacency or incidence of the corresponding elements of G.

Definition 3 Let F be one of the subdivision operations S, Q, R or T . For two connected
graphs G and H , the F-sum, denoted by G+F H , is the graph with vertex set (V (G) ∪
E(G)) × V (H), and any two vertices (u, v) and (u′, v′) of G+F H are adjacent if and only

if
[
u = u′ ∈ V (G) and (v, v′) ∈ E(H)

]
or

[
v = v′ ∈ V (H) and (u, u′) ∈ E(F(G))

]
.

Lemma 2 [11] Let G and H be two connected graphs. If U = V (G), then we have

a. |V (S(G))| = |V (G)| + |E(G)|, |E(S(G))| = 2|E(G)|.
b. For each vertex v ∈ U, εS(G)(U )(v) = 2εG(v).
c. For each vertex v ∈ V (S(G))\U, εS(G)(U )(v) = 2εL(G)(v) + 1.

Theorem 2 Let G (n ≥ 2) and H be two connected graphs. Then,

ζ
(
G+SH

) = |V (H)|[2ζ(G) + ζ(L(G)) + |E(G)
] + [|V (G)| + |E(G)|] ζ(H). (3)

Proof If U be a non-empty subset of V (S(G)), we have by Lemma 2,

ζ(S(G)(U )) =
∑

v∈V (S(G))

εS(G)(U )(v)

=
∑

v∈U
εS(G)(U )(v) +

∑

v∈V (S(G))\U
εS(G)(U )(v)

= 2
∑

v∈U
εG(v) +

∑

v∈V (L(G))

(2εL(G)(v) + 1)

= 2ζ(G) + ζ(L(G)) + |E(G)|.
Combining this result with (1) we get the desired result. ��
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Lemma 3 [11] Let G and H be two connected graphs. If U = V (G), then we have

a. |V (R(G))| = |V (G)| + |E(G)|, |E(R(G))| = 3|E(G)|.
b. For each vertex, v ∈ U, εR(G)(U )(v) = εG(v).
c. For each vertex, v ∈ V (R(G))\U, εR(G)(U )(v) = εL(G)(v) + 1.

Theorem 3 Let G (n ≥ 2) and H be two connected graphs. Then

ζ(G+RH) = |V (H)|[ζ(G) + ζ(L(G)) + |E(G)
] + [|V (G)| + |E(G)|]ζ(H).

Proof If U be a non-empty subset of V (R(G)), we have using the Lemma 3,

ζ(R(G)(U )) =
∑

v∈V (R(G))

εR(G)(U )(v)

=
∑

v∈U
εR(G)(U )(v) +

∑

v∈V (R(G))\U
εR(G)(U )(v)

= 2
∑

v∈U
εG(v) +

∑

v∈V (L(G))

(εL(G)(v) + 1)

= ζ(G) + ζ(L(G)) + |E(G)|.
Again using (1) we get the desired result. ��

Lemma 4 [11] Let G and H be two connected graphs. If U = V (G), then we have

a. |V (Q(G))| = |V (G)| + |E(G)|, |E(Q(G))| = 2|E(G)| + |E(L(G))|.
b. For each vertex, v ∈ U, εQ(G)(U )(v) = εG(v) + 1.
c. For each vertex, v ∈ V (Q(G))\U, εQ(G)(U )(v) = εL(G)(v) + 1.

Theorem 4 Let G (n ≥ 2) and H be two connected graphs. Then

ζ(G+QH) = |V (H)|[ζ(G) + ζ(L(G)) + |V (G)| + |E(G)
] + [|V (G)| + |E(G)|]ζ(H).

Proof We have using the Lemma 4, if U be a non-empty subset of V (R(G)),

ζ(Q(G)(U )) =
∑

v∈V (Q(G))

εQ(G)(U )(v)

=
∑

v∈U
εQ(G)(U )(v) +

∑

v∈V (Q(G))\U
εQ(G)(U )(v)

= 2
∑

v∈U

(
εG(v) + 1

) +
∑

v∈V (L(G))

(εL(G)(v) + 1)

= ζ(G) + |V (G)| + ζ(L(G)) + |E(G)|.
As before, we get the desired result from (1). ��

Lemma 5 [11] Let G and H be two connected graphs. If U = V (G), then we have

a. |V (T (G))| = |V (G)| + |E(G)|, |E(T (G))| = 3|E(G)| + |E(L(G))|.
b. For each vertex, v ∈ U, εT (G)(U )(v) = εG(v).
c. For each vertex, v ∈ V (T (G))\U, εT (G)(U )(v) = εL(G)(v) + 1.

Theorem 5 Let G(n ≥ 2) and H be two connected graphs. Then

ζ(G+T H) = |V (H)| [ζ(G) + ζ(L(G)) + |E(G)] + [|V (G)| + |E(G)|] ζ(H).
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Proof We have using the last Lemma 5, if U be a non-empty subset of V (R(G)),

ζ(T (G)(U )) =
∑

v∈V (T (G))

εT (G)(U )(v)

=
∑

v∈U
εT (G)(U )(v) +

∑

v∈V (T (G))\U
εT (G)(U )(v)

=
∑

v∈U
εG(v) +

∑

v∈V (L(G))

(εL(G)(v) + 1)

= ζ(G) + ζ(L(G)) + |E(G)|.
Thus, we get the desired result from (1). ��

Let U = V (Cn), where Cn(n ≥ 3) be a cycle, then from (3), we have the following
corollary.

Corollary 2 Let H be an arbitrary connected graph, then

ζ(Cn+SH) =
{
2nζ(H) + n(2n + 1)|V (H)|, when n is even
2nζ(H) + n(2n − 1)|V (H)|, when n is odd.

(4)

Example 4 Let Ln ∼= Pn+1+S P2 be a linear hexagonal chain [8] with n ≥ 2. Then using
(3), we have ζ(Ln) = 6n2 + 8n + 2.

Example 5 Let Γ be the zigzag polyhex nanotube TUHC6[2n, 2] with n ≥ 3. Since Γ ∼=
Cn+S P2, using (3), we have

ζ(Γ ) =
{
4n2 + 6n, when n is even
4n(n − 1) + 6n, when n is odd.

(5)

Total Eccentricity Index of Cluster and Corona Product of Graphs

Definition 4 The cluster product of two graph G and H , denoted by G {H}, is obtained by
taking one copy of G and |V (G)| copies of a rooted graph H and by identifying the root of
the i-th copy of H with the i-th vertex of G for i = 1, 2, . . . , |V (G)|.

If |V (G)| = n, |E(G)| = q and |V (H)| = n′, |E(H)| = q ′, then fromdefinition of cluster
product graphs |V (G {H})| = nn′ and |E(G {H})| = (q + nq ′). Let the root vertex of H
is denoted by x . Note that, if U = {x} ⊂ V (G) then G {H} ∼= H(U )ΠG ∼= H

( {x} )
ΠG.

Then from (1), we have the following results.

Theorem 6 Let G and H be two connected graphs and x is the root vertex of H, then

ζ
(
G {H} ) = |V (G)|[|V (H)|εH (x) + d(x |H)

] + |ζ(G) (6)

Proof Since, U = {x} ⊂ V (H), so

ζ(H(U )) = ζ(H({x})) = |V (H)|εH (x) + d(x |H).

So, using equation (1) we get the desired result. ��
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For a given graph G, its t-thorny graph Gt is obtained by attaching t thorns (degree 1
vertices) to each vertex of G. This type of graph was introduced by Gutman [13] and some
eccentricity related thorny graphs are studied by De [6,7]. On the other hand, we can also
obtain the t-thorny graph Gt by cluster product of G and the star graph St+1 with (t + 1)
vertices, where the root of St+1 is on its vertex of degree t . This type of cluster product graph
is known as t-fold bristled graph Brst (G). So by the previous theorem the total eccentricity
index of t-thorny graph Gt or t-fold bristled graph Brst (G) can easily be computed.

Corollary 3 The total eccentricity index of the t-thorn graph Gt is computed as follows

ζ(Gt ) = (t + 1)ζ(G) + n(2t + 1). (7)

Proof Let H ∼= St+1, with root of St+1 being the central vertex of the starwhich is of degree t .
Then, we have εH (x) = 1, d(x |(H) = t and |V (H)| = (t + 1).

So, using last theorem the desired result follows. ��
From the above corollary, the total eccentricity index of the t-fold bristled graph of Cn

and Pn can easily be computed.

Example 6 The total eccentricity index of t-thorny ring Ct
n is given by

ζ(Ct
n) =

{ 1
2n

2t + 2nt + 1
2n

2 + n, when n is even

1
2n

2t + 3
2nt + 1

2n
2 + 1

2n, when n is odd.
(8)

Example 7 The total eccentricity index of t-thorny ring Pt
n is given by

ζ(Pt
n) =

{ 3
4n

2t + 3
2nt + 3

4n
2 + 1

2n, when n is even

3
4n

2t + 3
2nt + 3

4n
2 + 1

2n − 1
4 (t + 1), when n is odd.

(9)

Example 8 The square comb latticeCq(N ) is the cluster product graph Pn {Pn}, with N = n2

number of vertices and the root of Pn is on the vertex of degree one. So using (6), its total
eccentricity index is given by

ζ(Cq(N )) =
{
n2

( 9
4n − 2

)
, when n is even

n2
( 9
4n − 2

) − 1
4n, when n is odd.

(10)

Now let us compute the total eccentricity index of the corona product of graphs.

Definition 5 The corona product of two graphs G and H denoted by G � H , is a graph
obtained by taking one copy of G and |V (G)| copies of H and joining the i-th vertex of G to
every vertex of in the copy of H , for i = 1, 2, . . . , |V (G)|. According to definition of corona
product graph |V (G � H)| = (nn′ + n) and |E(G � H)| = (q + nq ′ + nn′).

Corollary 4 Let G be a connected (n, q) graph and H is (n′, q ′) graph. Then

ζ(G � H) = n(2n′ + 1) + (n′ + 1)ζ(G) (11)

Proof For any graph H , let |V (H)| = n and |E(H)| = q . Also let x be the root vertex of
the join of the graphs H and K1, denoted by (H + x). Then graph |V (H + x)| = n′ + 1 and
|E(H)| = n′ + q ′. Also note that,

ε(H+x)(x) = 1, d(x |(H + x)) = n′ andG � H = G({H + x}).
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So from the relation (6), we have

ζ(G {H + x}) = |V (G)| [|V (H + x)|εH+x (x) + d(x |H + x)
] + |V (H + x)|ζ(G)

= n
[
(n′ + 1) + n′] + (n′ + 1)ζ(G).

as desired. ��
Remark 1 Note that, for a given graph G, G {St+1} = G � K̄t , where Kt is the complete
graph with t vertices and St+1 is the star graph on (t + 1) vertices, with the root of St+1 as
the central vertex which is of degree t . Here we can easily verify that

ζ(G {St+1}) = ζ(G � K̄t ) = n(2t + 1) + (t + 1)ζ(G).

Example 9 Let H be any graph with n vertices, then using (11) the following result follows.

ζ(Pm � H) =
{
m(2n + 1) + (n + 1)( 34m

2 − 1
2m), when m is even

m(2n + 1) + (n + 1)( 34m
2 − 1

2m − 1
4 ), when m is odd.

(12)

Example 10 Similarly for any graph H with n vertices, using (11) the following result fol-
lows.

ζ(Cm � H) =
{
m(2n + 1) + 1

2m
2(n + 1), when m is even

m(2n + 1) + 1
2m(m − 1)(n + 1), when m is odd.

(13)

Example 11 One of the hydrogen suppressed molecular graph i.e., kenograph is bottleneck
graph (B) which is the corona product of K2 and G, where G is a given graph. So, by (11),
total eccentricity of (B) is given by ζ(B) = 6n + 4, where n is the number of vertices of G.

The star graph Sn on n vertices is the corona product of K1 and Kn−1. The bistar Bn,n

is the graph obtained by joining the centre vertices of two copies of K1,n by an edge and
is given by P2 � Kn . So from the above formula the total eccentricities of these graphs are
obtained as below.

Example 12 ζ(K1 � Kn−1) = 2n − 1 and ζ(P2 � Kn) = 6n + 4.

Let G be the graph of order n. Then the following result follows.

Corollary 5 The total eccentricity index of suspension graph K1�G is ζ(K1�G) = 2n+1.

The sunlet graph with 2n vertices is obtained by attaching n pendent edges to the cycle
Cn . So it can be obtained by corona product of Cn and K1.

Example 13 For the sunlet graph Cn � K1, we have

ζ(Cn � K1) =
{
3n + n2, when n is even

3n + n(n − 1), when n is odd.

Let G1,G2, ...,Gn be a set of finite pairwise disjoint graphs. The bridge graph with
respect to the vertices v1, v2, ..., vn , denoted by B(G1,G2, ...,Gn; v1, v2, ..., vn) is the graph
obtained by connecting the vertices vi and vi+1 of Gi and Gi+1 by an edge for all i =
1, 2, ..., (n−1). IfG1 ∼= G2 ∼= ... ∼= Gn and v1 = v2 = ... = vn = v, we defineGn(G, v) =
B(G,G, ...,G; v, v, ..., v). In particular, let Bn = Gn(P3, v) and Tn,k = Gn(Ck, u) are
special brige graphs. Then from definition of corona product of graphs, Bn ∼= Pn � K 2 and
Tn,3 ∼= Pn � K2.
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Example 14

ζ(Bn) = ζ(Tn,3) =
{ 9

4n
2 + 7

2n, when n is even

9
4n

2 + 7
2n − 3

4 , when n is odd.
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