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Abstract In the language of differential geometry, the incompressible inviscid Euler
equations can be written in vorticity-vector potential form as

∂tω + Luω = 0

u = δη̃−1�−1ω

where ω is the vorticity 2-form, Lu denotes the Lie derivative with respect to the
velocity field u, � is the Hodge Laplacian, δ is the codifferential (the negative of
the divergence operator), and η̃−1 is the canonical map from 2-forms to 2-vector
fields induced by the Euclidean metric η. In this paper we consider a generalisation
of these Euler equations in three spatial dimensions, in which the vector potential
operator η̃−1�−1 is replaced by a more general operator A of order −2; this retains
the Lagrangian structure of the Euler equations, as well as most of its conservation
laws and local existence theory. Despite this, we give three different constructions
of such an operator A which admits smooth solutions that blow up in finite time,
including an example on R

3 which is self-adjoint and positive definite. This indicates
a barrier to establishing global regularity for the three-dimensional Euler equations,
in that any method for achieving this must use some property of those equations that
is not shared by the generalised Euler equations considered here.
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1 Introduction

1.1 Formal Theory of the Generalised Euler Equations

In this paper we will consider finite time blowup for generalised equations of Euler
type on Euclidean spaces Rd , and more generally1 on flat cylinders Rm × (R/Z)d−m

for 0 � m � d, thus d represents the total number of spatial dimensions, and m the
total number of unbounded spatial dimensions. We will restrict attention primarily to
the domains R3, R2 ×R/Z, and R

2. In particular we shall assume that m � 2, in order
to avoid some technical issues involving the Biot-Savart law at low frequencies.

Recall that if M = R
m × (R/Z)d−m with d � m ≥ 2, the Euler equations for

incompressible, inviscid fluids on M can be written as

∂t u + (u · ∇)u = −∇ p

∇ · u = 0
(1.1)

where u : R×M → R
d is the velocity field and p : R×M → R is the pressure field.

For now, we shall only interpret the system (1.1) at the formal level, ignoring issues of
regularity or decay, and also ignoring all cohomology by assuming that closed forms
are automatically exact; we will return to these issues later, when we discuss local
existence theory.

It will be convenient in this paper to use the language of differential geometry, in
order to minimise the reliance on the Euclidean metric η on M; this will become
useful later when we exploit the properties of the Lie derivative Lu (which will not
preserve the Euclidean metric in general), as well as when we temporarily switch over
to (modified) cylindrical coordinates in Section 9. See for instance [2] for a basic
introduction to the differential geometry concepts used in this paper.

We begin with setting out notation for the standard Cartesian coordinates on M,
though we emphasise that the differential geometry constructions introduced here
are coordinate-independent (although some of them will rely on the standard volume
form d vol on M). We let x1, . . . , xd denote2 the usual coordinates on M = R

m ×
(R/Z)d−m (thus x1, . . . , xm ∈ R and xm+1, . . . , xd ∈ R/Z). Taking differentials, we
obtain the standard 1-forms dx1, . . . , dxd on M, and then on taking wedge products
we obtain the standard volume form

d vol := dx1 ∧ · · · ∧ dxd .

Dually, we have the standard vector fields

d

dx1 , . . . ,
d

dxd
.

1 A substantial portion of the discussion here could in fact be extended to arbitrary smooth Riemannian
manifold domains, but we will not need to do so here.
2 We use superscripts here instead of the more customary subscripts x1, . . . , xd in order to be compatible
with the raising and lowering conventions of differential geometry.
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Finite Time Blowup for Lagrangian Modifications... Page 3 of 79 9

We have suggestively written these vector fields to resemble first-order differential
operators, but in order to reduce confusion, we will use the symbol ∂i (as opposed to
∂

∂xi
) for i = 1, . . . , d to denote the partial differentiation operation in the xi direction,

to distinguish this partial differentiation operation from the associated vector field d
dxi

.
We let �0(M) denote the space of (formal) scalar functions from M to R. More

generally, for any k � 0, let �k(M) = �(
∧k T ∗M) denote the space of (formal)

k-forms on M, thus for instance dx1, . . . , dxd ∈ �1(M) and d vol ∈ �d(M).
The coordinates of a k-form ω ∈ �k(M) will be denoted ωi1...ik , where the indices
i1, . . . , ik range from 1 to d (with the usual summation conventions), and ωi1...ik is
antisymmetric in i1, . . . , ik . Of course, �k(M) is trivial for k > d. The standard basis
for �k(M) (as a �0(M)-module) is given by the constant k-forms

dxi1 ∧ · · · ∧ dxik

for 1 � i1 < · · · < ik � d; thus with the usual summation conventions we have

ω = 1

k!ωi1...ik dx
i1 ∧ · · · ∧ dxik

(the 1
k! factor reflecting the fact that the i1, . . . , ik are not necessarily in increasing

order with the usual summation conventions). Dual to the space �k(M) of k-forms is
the space �k(M) = �(

∧k TM) of (formal) k-vector fields on M; the coordinates of
an element α ∈ �k(M) will be denoted αi1...ik and is antisymmetric in the i1, . . . , ik ;
again, �k(M) is trivial for k > d, and we adopt the convention that it is trivial for
k < 0 also. We also make the identification �0(M) ≡ �0(M). The standard basis
for �k(M) (as a �0(M) = �0(M)-module) is given by the constant k-vector fields

d

dxi1
∧ · · · ∧ d

dxik

for 1 � i1 < · · · < ik � d, thus

α = 1

k!α
i1...ik d

dxi1
∧ · · · ∧ d

dxik
.

We have the usual pairing operation 〈, 〉 : �k(M) × �k(M) → �0(M), defined in
coordinates as

〈ω, α〉 := 1

k!ωi1...ikα
i1...ik ,

thus for instance 〈dxi , d
dx j 〉 equals 1 when i = j , and 0 otherwise.

We have the usual exterior derivative operator d : �k(M) → �k+1(M), defined
in coordinates as

(dω)i1...ik+1 :=
k+1∑

j=1

(−1) j−1∂i j ωi1...i j−1i j+1...ik+1;

123



9 Page 4 of 79 T. Tao

this is of course compatible with our notation dx1, . . . , dxd for the standard 1-forms
(viewing each coordinate function xi , locally at least, as an element of �0(M)).
Dually, we have the codifferential3 δ : �k+1(M) → �k(M) defined in coordinates
as

(δα)i2...ik+1 := −∂i1α
i1...ik+1 .

Thus, for instance, if X ∈ �1(M) is a vector field, then δX = − div X is the negative
divergence of X . As is well known, we have

d2 = 0 (1.2)

and
δ2 = 0; (1.3)

see e.g. [2, §5.17]. We let Bk(M) := {ω ∈ �k(M) : dω = 0} denote the space of
closed k-forms, and similarly let Bk(M) := {α ∈ �k(M) : δα = 0} denote the space
of divergence-free k-vector fields.

The Euclidean metric η on M is given by its first fundamental form

dη2 = (dx1)2 + · · · + (dxd)2.

It can be viewed in coordinates as a (0, 2)-tensor ηi j , or after inversion as a (2, 0)-
tensor ηi j . It provides an identification η̃ : �k(M) → �k(M) of k-vector fields with
k-forms, defined in coordinates by

(η̃T )i1...ik := ηi1 j1 . . . ηik jk T
j1... jk , (1.4)

thus for instance

η̃

(
d

dxi1
∧ · · · ∧ d

dxik

)

= dxi1 ∧ · · · ∧ dxik

or upon inverting

η̃−1
(
dxi1 ∧ · · · ∧ dxik

)
= d

dxi1
∧ · · · ∧ d

dxik
.

Suppose thatu, p (formally) solve (1.1). For each time t ,u(t) and p(t) can be viewed as
elements of B1(M) and �0(M) respectively; in coordinates with the usual summation
conventions, (1.1) becomes

∂t u
i + u j∂ j u

i = −ηi j∂ j p

3 In the usual Hodge theory literature, one uses a Riemannian metric to identify �k with �k as per (1.4),
so that the codifferential acts on k-forms rather than k-vector fields. However, it will be more convenient
here to avoid using the metric identification to define the codifferential, because the Euclidean metric η will
not in general be preserved by flowing along the velocity field u.
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∂i u
i = 0.

If we define the covelocity v(t) ∈ �1(R
d) to be the 1-form v = η̃u, thus in coordinates

vi := ηi j u
j ,

then we see that
∂tvi + u j∂ jvi + (∂i u

j )v j = −∂i p̃ (1.5)

where the modified pressure p̃(t) ∈ �0(M) is given by the formula

p̃ := p − 1

2
u jv j .

Recalling (see e.g. [2, §3.4]) that the Lie derivative Lu along a vector field u acts on
k-forms ω ∈ �k(M) by the Cartan formula

Luω = ιu(dω) + d(ιuω) (1.6)

where ιu : �k+1(M) → �k(M) is the contraction operator

(ιuω)i2...ik+1 := ui1ωi1...ik+1,

we see that

(Luv)i = u j∂ jvi + (∂i u
j )v j

and hence (1.5) can be written in coordinate-free notation as

∂tv + Luv = −d p̃.

If we define the vorticity ω(t) ∈ �2(M) to be the exterior derivative

ω := dv = dη̃u

of the covelocity v, and use the basic commutativity identity

dLu = Lud (1.7)

(see e.g. [2, Proposition 3.6]) and (1.2), we conclude that ω(t) in fact lies in B2(M)

(i.e. it is closed) and obeys the vorticity equation

∂tω + Luω = 0. (1.8)
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9 Page 6 of 79 T. Tao

Remark 1.1 The standard volume form d vol := dx1 ∧· · ·∧dxd ∈ �d(M), induces
the Hodge duality operator ∗: �k(M) → �d−k(M) for 0 � d � k, defined by the
formula

ω ∧ (∗α) = 〈ω, α〉d vol

for ω ∈ �k(M) and α ∈ �k(M). Thus for instance we have

δ = ∗d ∗−1 . (1.9)

The dual ∗−1ω ∈ �d−2(M) of the vorticity is then a scalar function in two dimensions
and a vector field in three dimensions, and in the Euler equation literature it is common
to refer to this scalar or vector field, rather than the 2-form ω, as the vorticity (i.e. one
replaces exterior derivative d with a suitable curl operator). The vorticity equation
then becomes the familiar equation ∂tω + (u · ∇)ω = 0 (in the two-dimensional case)
or ∂tω+ (u ·∇)ω = (ω ·∇)u (in the three-dimensional case). However, we will adopt
a more differential-geometric viewpoint in this paper by interpreting the vorticity as
a 2-form rather than a scalar or vector field. This distinction becomes particularly
important when applying Lie derivatives such as Lu , as these derivatives act on 2-
forms in a different fashion than on scalars or vector fields (this is related to the fact
that the velocity field u will almost never be a Killing vector field for the Euclidean
metric η, so that Luη �= 0). Interpreting the vorticity as a 2-form will also make it
easier to change to curvilinear coordinate systems, such as cylindrical coordinates, as
we will do in Section 9.

The velocity field u can be (formally) recovered from the vorticity ω by the Biot-
Savart law

u = δη̃−1�−1ω

where the Hodge Laplacian � : �k(M) → �k(M) is given by

� := dη̃δη̃−1 + η̃δη̃−1d,

which in the Euclidean metric coordinates simplifies to the familiar formula4 � =
−ηi j∂i∂ j . Note that � preserves Bk(M), and so the inverse operator �−1 does so
also (formally, at least). We make the technical remark that when m = 2, the operator
�−1 is only well defined up to constants, even when applied to forms that are smooth
and compactly supported, unless one arbitrarily fixes a convention for defining �−1.
However this will not be a major issue in practice because the operator δη̃−1�−1 will
remain canonically defined.

4 Note here the negative sign in our definition of the Laplacian, which differs from the usual conventions for
the Laplacian in the Euler equation literature. In particular, our Laplacian � will be positive semi-definite
rather than negative semi-definite. In the differential geometry literature it is common to refer to η̃δη̃−1

rather than δ as the codifferential, so that � = dδ + δd in this notation; however we prefer in this paper to
make the dependence on the metric η more explicit.
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By slight abuse of notation, we refer to the 2-vector field η̃−1�−1ω(t) as the vector
potential (also known as the stream function in the two-dimensional case d = 2), and
refer to the operator η̃−1�−1 : B2(M) → �2(M) as the vector potential operator for
the Euler equations. We observe that the vector potential operator η̃−1�−1 is formally
self-adjoint in the sense that we have the (formal) integration by parts identity

∫

Rd
〈ω, η̃−1�−1ω′〉 d vol =

∫

Rd
〈ω′, η̃−1�−1ω〉 d vol

for ω,ω′ ∈ B2(M).
We refer to the system

∂tω + Luω = 0

u = δη̃−1�−1ω

as the vorticity-vector potential formulation of the Euler equations. We now generalise
this system to other choices of vector potential operator:

Definition 1.2 (Generalised Euler equations). Let M = R
m × (R/Z)d−m for some

d � 2 and 0 � m � d, and let A : B2(M) → �2(M) be a (formal) linear operator
from the space of closed 2-forms to the space of 2-vector fields. We refer to the (formal)
system of equations

∂tω + Luω = 0 (1.10)

u = δAω, (1.11)

where ω(t) ∈ B2(M) and u(t) ∈ B1(M) for each time t , as the generalised Euler
equations with vector potential operator A. We say that the vector potential operator
A is formally self-adjoint if one formally has

∫

M
〈ω, Aω′〉 d vol =

∫

M
〈ω′, Aω〉 d vol (1.12)

for all ω,ω′ ∈ B2(M).

The vorticity-vector potential formulation of the Euler equations (which we will
now call the trueEuler equations for emphasis) are thus the generalised Euler equations
associated to the vector potential operator

η̃−1�−1. (1.13)

Another example of a system that can be (formally) written as the generalised Euler
equation is the (inviscid) surface quasi-geostrophic (SQG) equations

∂tθ + (u · ∇)θ = 0

u = (−∂2�
−1/2, ∂1�

−1/2)θ
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in two spatial dimensions d = 2, where θ : R × M → R is a scalar field and
u : R × M → R

2 is a vector field. This equation arises in atmospheric science and
can be considered as a toy model for the three-dimensional Euler equations; see [24]
for further discussion. If we set

ω := θd vol = θdx1 ∧ dx2

and define the vector potential operator A : B2(M) → �2(M) by A := �−1/2, or in
coordinates

A(θdx1 ∧ dx2) := �−1/2θ
d

dx1 ∧ d

dx2 (1.14)

then we see that the SQG equations become the generalised Euler equations in two
dimensions with the choice (1.14) of vector potential operator. Later, in Section 8.1,
we will give an alternate way of interpreting SQG as a generalised Euler equation,
this time in three dimensions, and with a vector potential operator of order −2 (like
η̃−1�−1).

Remark 1.3 The modified SQG equations, in which the exponent −1/2 appearing
in (1.14) is replaced by −α/2 for some parameter α between 1 and 2, is a family of
interpolants between SQG and the two-dimensional Euler equations which have also
been studied in the literature; see e.g. [49]. However, we will not study these equations
further in this paper, though we will note the recent paper [51] in which finite time
blowup was established for patch solutions to the generalised SQG equations in a
half-plane.

Remark 1.4 The formalism in Definition 1.2 does not directly use the Euclidean
metric η on M; one only needs the structure (M, d vol) of M as a smooth manifold
equipped with a volume form d vol (in order to define the codifferential δ). However,
when one works with the true Euler equations, the Euclidean metric η is needed
to define the vector potential operator A = η̃−1�−1. Thus we see that the role of
Euclidean geometry (beyond the volume form) in the true Euler equations has been
completely captured in this formalism by the operator A.

Remark 1.5 One can rewrite the generalised Euler equations in a form resembling the
traditional form (1.1) of the true Euler equations by formally defining the covelocity
v ∈ �1(M) to solve the system

dv = ω; δη̃−1v = 0

and then the generalised Euler equations may be rewritten as

∂tv + Luv = d p̃

u = δη̃−1Adv

δη̃−1v = 0.
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The generalised Euler equations (formally) obey many of the conservation laws that
the true Euler equations do, particularly if the vector potential operator A is formally
self-adjoint and commutes with a suitable symmetry. More precisely, we have

Proposition 1.6 (Formal conservation laws). Let M = R
m × (R/Z)d−m for some

d � 2 and 0 � m � d, and let A : B2(M) → �2(M) be a (formal) linear operator.
Let ω, u solve the generalised Euler equations with vector potential operator A.

(i) (Kelvin circulation theorem) If S = S(t) is a (time-dependent, oriented) surface
with boundary that evolves along the (time-dependent) velocity field u = u(t),
then the quantity5

∫
S ω is formally conserved in time.

(ii) (Preservation of vortex streamlines) If d = 3, then the curves formed by inte-
grating the vector field ∗−1ω(t) ∈ �1(M) (i.e., the vortex streamlines) are
transported by the velocity field u.

(iii) (Conservation of helicity) IfM = R
3, define the helicity H(t) to be the quantity

H(t) := ∫
M v(t) ∧ ω(t), where v(t) ∈ �1(M) is an arbitrary 1-form with

dv = ω; observe from Stokes’ theorem that this quantity does not depend on the
choice of v. Then H is formally conserved in time.

(iv) (Conservation of Hamiltonian) Suppose A is formally self-adjoint. Define the
energy E(t) to be the quantity

E(t) := 1

2

∫

M
〈ω, Aω〉 d vol . (1.15)

Then E is formally conserved in time.
(v) (Conservation of impulse) Suppose A is formally self-adjoint. Let X ∈ B1(M)

be a (time-independent) divergence-free vector field such that the Lie derivative
LX commutes with A: LX A = ALX . Suppose that α ∈ �2(M) is a time-
independent 2-vector field such that δα = X. Then the quantity

∫
M〈ω, α〉 d vol

is formally conserved in time.

In the case of the true Euler equations with M = R
d , examples of (formal) con-

servation laws arising from Proposition 8.1(v) include the total vorticity

�i j :=
∫

M
ωi j d vol

(corresponding to the zero vector field), the impulse

I j := −1

d − 1

∫

M
xiωi j d vol

5 In the case of the true Euler equations, this quantity
∫
S ω can be expressed via Stokes’ theorem as∫

∂S η̃u, which is the physical circulation of velocity along the boundary ∂S of S. For the generalised Euler
equations, this quantity is not quite the physical circulation, but is instead the quantity

∫
∂S v where v is

the covelocity from Remark 1.5. Nevertheless we shall abuse notation and refer to the quantity
∫
S ω as the

circulation around the surface S. We thank Peter Constantin for pointing out this subtle distinction between
the circulation conserved by Kelvin’s theorem and physical circulation in the context of generalised Euler
equations.
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9 Page 10 of 79 T. Tao

(corresponding to the translation vector fields d
dx j ), and the moment of impulse

Mjk := −1

d

∫

M
ηlk x

i xlωi j − ηl j x
i xlωik d vol

(corresponding to the rotation vector field xi d
dx j − x j d

dxi
). If the velocity field u has

sufficient decay, then �i j vanishes, I j is equal to the total momentum
∫
M u j d vol

(after contracting by η), and Mjk is equal to the total angular momentum
∫
M(x j uk −

xku j ) d vol (again after contracting by η); however, the Biot-Savart law does not
always give enough decay on u to justify these computations, even when ω is smooth
and compactly supported. See [58,61] for further discussion of these conservation
laws.

We prove Proposition 1.6 in Section 2 by direct computation, relying mostly on the
standard properties of the Lie and exterior derivatives. One can also interpret these
conservation laws as instances of Noether’s theorem, using the Euler-Poincaré inter-
pretation of generalised Euler equations (in the spirit of [1]) as formal geodesic flow in
the infinite-dimensional manifold of volume-preserving diffeomorphisms of M, with
the vector potential operator A determining the formal (right-)invariant Riemannian
metric to place on this manifold; see Section 3. It is certainly possible to prove rigorous
versions of Proposition 1.6 assuming sufficient regularity and decay of the solution
(and assuming that there are no cohomological obstructions), but we will not need to
do so here (except for Proposition 1.6(i), which is used to prove Theorem 1.11 below).

1.2 Local Existence Theory

Thus far, all of our discussion has been purely formal, ignoring all requirements of
decay and smoothness. We now turn to the rigorous existence theory of the generalised
Euler equations. For this we will need to place the fields u and ω in appropriate (high
regularity) function spaces; we will also now work in coordinates, abandoning any
pretense of coordinate invariance. As mentioned previously, we will assume that the
number m of non-compact directions is at least two, in order to avoid problems with
defining the inverse �−1 of the Hodge Laplacian.

For any 1 � p � ∞, we let L p ∩ �k(M) be the space of k-forms that are pth

power integrable, with the usual norm

‖ω‖L p(M) :=
(∫

M
|ω|p d vol

)1/p

with the usual Euclidean norm on tensors to define |ω|, and with the usual modifications
for p = ∞. Similarly define L p ∩ �k(M), L p ∩ Bk(M), and L p ∩ Bk(M), where
in the latter two cases we interpret the differential operators d, δ in the distributional
sense, thus for instance L p ∩ Bk(M) consists of those α in �k(M) that are pth power
integrable with δα = 0 in the sense of distributions. For any k � 0 and s ∈ R, we
define Ḣ s ∩ �k(M) to be the space of tempered distributional k-forms ω ∈ �k(M)

whose (tempered distributional) Fourier transform
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ω̂(ξ) :=
∫

M
ω(x)e−2π i x ·ξ dx

(computed by working in the standard coordinate basis and taking the tempered dis-
tributional Fourier transform of each component of ω separately) is such that |ξ |sω̂ is
square-integrable, thus

‖ω‖2
Ḣ s (M)

:=
∫

M̂
|2πξ |2s |ω̂(ξ)|2 dξ < ∞

(here we use the standard Euclidean norm on tensors to define |ω̂(ξ)|, and M̂ =
R
m × Z

d−m denotes the Pontryagin dual of M). The factors of 2π are of very minor
importance and can be ignored for a first reading. The space Ḣ s ∩ �k(M) can be
easily verified to be a Hilbert space. Similarly define Ḣ s ∩�k(M), Ḣ s ∩ Bk(M), and
Ḣ s ∩ Bk(M). As is usual, we write Hs := L2 ∩ Ḣ s (thus for instance Hs ∩ �k =
L2 ∩ Ḣ s ∩ �k) and

‖ω‖2
Hs (M) := ‖ω‖2

L2(M)
+ ‖ω‖2

Ḣ s (M)
.

We also defineC∞
c ∩�k(M) to be the space of k-forms that are smooth and compactly

supported, and similarly define C∞
c ∩ �k(M), etc..

Fix an integer s > d
2 + 1, and let 1 < p � 2 be an exponent6 with p < m, where

we recall that m is the number of non-compact dimensions in M. It turns out that a
convenient space to place the vorticity field ω(t) for a given time t is

L p ∩ Hs ∩ B2(M)

More precisely, to construct solutions on the time interval [0, T ], we will place ω in
the space

Xs,p := C0([0, T ] → L p ∩Hs ∩ B2(M))∩C1([0, T ] → Hs−1 ∩ B2(M)), (1.16)

thus the map t �→ ω(t) will be required to be a continuous map into L p∩Hs∩B2(M),
and a continuously differentiable map into Hs−1 ∩ B2(M), where we of course give
L p ∩ Hs ∩ B2(M) the topology generated by the L p and Hs norms, and similarly for
Hs−1 ∩ B2(M). Note from Sobolev embedding and the hypothesis s > d

2 + 1 that
this implies that ω ∈ C1

t,x ([0, T ] × M). Similarly, we will place the velocity field u
in the space

Y s,p := C0([0, T ] → Ẇ 1,p ∩ Ḣ s+1 ∩ B1(M)), (1.17)

where Ẇ 1,p is the Sobolev space of functions (or vector fields, in this case) whose
distributional derivative lies in L p; for technical reasons relating to the slow decay of

6 In particular, when m � 3 we can take p = 2, which simplifies some of the discussion below. On the
other hand, these hypotheses are not satisfiable if m = 0 or m = 1. The reason we need the L p integrability
for the vorticity ω is in order to make sense of the velocity u = δAω as a continuous function, and not
merely as a distribution.
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the Biot-Savart law (and its generalisations) at infinity, we do not insist that u itself lies
in L2 or L p. Note that the hypothesis u ∈ Y s,p and Sobolev embedding7 implies that
u ∈ C0

t C
1
x ([0, T ] × M). This is sufficient regularity to interpret the equation (1.10)

in the classical sense, as a “strong” solution rather than merely a weak distributional
solution.

To interpret (1.11), we will of course need some regularity hypotheses on the
operator A : B2(M) → �2(M). We will adopt the following choice of hypotheses.
We use X � Y or X = O(Y ) to denote the estimate |X | � CY , where C is a constant;
if C is to depend on one or more parameters, we indicate this by subscripting the �
or O() notation appropriately.

Definition 1.7 (Reasonable operator). Let M be a natural number, and let M =
R
m×(R/Z)d−m for some 2 � m � d. A vector potential operator A : C∞

c ∩B2(M) →
�2(M) is said to be M-reasonable if it has an integral representation

Aω(x) =
∫

M
K (x, y)ω(y) d vol(y) (1.18)

where the (tensor-valued) kernel K is smooth for x �= y and obeys the estimates

|∇ i
x∇ j

y K (x, y)| �d,M,A max(|x − y|−i− j−d+2, |x − y|−i− j−m+2) (1.19)

for all x �= y and all 0 � i, j � M with i + j � 1, where |x − y| denotes the distance
between x and y in M with respect to the Euclidean metric η; furthermore we assume
that

‖∇2Aω‖Hk (M) �d,M,A ‖ω‖Hk (M) (1.20)

for all 0 � k � M and all ω ∈ C∞
c ∩ B2(M). In particular, δA can be continuously

extended to a map from L2 ∩ B2(M) to Ḣ1 ∩ �1(M).

Remark 1.8 The right-hand side of (1.19) has the geometric interpretation of being
comparable to 1

|x−y|i+ j−2 vol(BM(0,|x−y|)) , where vol(BM(0, |x − y|)) is the volume of

the ball in M centred at the origin with radius |x − y|. In particular, the operator ∇2A
is a singular integral operator whose kernel obeys estimates of Calderón-Zygmund
type, which is of course consistent with the hypothesis (1.20).

From Plancherel’s theorem and the fundamental solution for the Laplacian on M,
we see that the vector potential operator η̃−1�−1 associated to the true Euler equations
obeys these requirements whenever m � 2. On the other hand, the vector potential
operator (1.14) associated to the SQG equations do not, as in this case A is only
smoothing of order 1 rather than 2. With the assumption that A is M-reasonable for
some sufficiently large M , one can now interpret (1.11) rigorously when ω ∈ X and
u ∈ Y .

7 More precisely, observe from Bernstein’s inequality and the hypothesis p < m that Ẇ 1,p embeds into
C1
x at low frequencies, and Ḣ s+1 embeds into C1

x at high frequencies.
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Finite Time Blowup for Lagrangian Modifications... Page 13 of 79 9

Using mostly standard “quasilinear well-posedness” energy methods (following
the basic approach of Bona and Smith [5], as described in the survey [70]), we can
prove the following classical local existence theorem:

Theorem 1.9 (Local existence). Let M = R
m × (R/Z)d−m for some d � 2 and

0 � m � d. Let s > d
2 + 1 be an integer, let 1 < p � 2 be such that p < m, and let

A : C∞
c ∩ B2(M) → Ḣ1 ∩ �2(M) be a s + 1-reasonable vector potential operator.

Then for any M > 0 there exists T > 0 such that for any ω0 ∈ L p ∩ Hs ∩ B2(M)

with ‖ω0‖L p(M) + ‖ω0‖Hs (M) < M, there exists a unique classical solution ω ∈
Xs,p and u ∈ Y s,p (with Xs,p,Y s,p defined in (1.16), (1.17) respectively) obeying
the generalised Euler equations (1.10), (1.11). Furthermore the solution ω depends
continuously on ω0 in the indicated topologies.

Finally, we have the Beale-Kato-Majda blowup criterion [3]: if the solution con-
structed above cannot be continued beyond a time 0 < T∗ < ∞ in the indicated
function spaces, then

∫ T∗

0
‖ω(t)‖L∞(M) dt = ∞.

We prove this theorem in Section 4. The argument is straightforward when m � 3,
in which case the L p norm plays no essential role. However, the situation becomes
delicate in the m = 2 case, basically because the generalised Biot-Savart operator δA
that appears in the vorticity-vector potential formulation no longer maps Hs into L∞
at low frequencies, and one must take advantage of the L p norm and Littlewood-Paley
decomposition to close the argument. A slightly different energy method approach
to these equations is also given in [58, Chapter 3]. There is also a particle trajec-
tory method to construct solutions to the true Euler equations using the contraction
mapping theorem rather than quasilinear method; see e.g. [58, Chapter 4]. However,
we were unable to extend it to this general context unless one imposed a translation-
invariance hypothesis on the vector potential operator A, as the estimates required for
the contraction mapping theorem appeared to fail if this hypothesis was not enforced.
It may also be possible to extend the local existence arguments in [37] for the true
Euler equations, based on the aforementioned interpretation of these equations as a
geodesic flow, to the setting of the generalised Euler equations.

Remark 1.10 There are several refinements of the Beale-Kato-Majda blowup crite-
rion in the literature [9,21,34,60]. It seems likely to the author that analogues of at
least some of these criteria can also be established for the generalised Euler equa-
tions (since the generalised Biot-Savart law obeys very similar estimates to the true
Biot-Savart law), although we have not attempted to do so here.

1.3 Finite Time Blowup

We now turn to the main focus of this paper, namely the establishment of finite time
blowup results for generalised Euler equations.
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It is a notorious open problem as to whether smooth solutions to the three-
dimensional true Euler equations (with suitable decay at infinity) can be extended
globally in time, although it is widely expected that finite time blowup can occur for
this system; see for instance the surveys [11,20] and recent numerical evidence for
blowup in [56,57], as well as a proposed blowup mechanism in [6].

As the global regularity problem for the true Euler equations is difficult to resolve
directly, there have been a number of studies of more tractable models of the Euler
equations. In particular, finite time blowup has been established for a number of equa-
tions that capture some, though not all, of the features of the true Euler-type equations.
For instance:

• In [46] a dyadic “shell model” of the Euler equations was introduced, and shown
to have solutions that blow up in finite time; see also [64] for a variant of this
construction that allows for Navier-Stokes type dissipation. These shell models
have the same scaling features as the true Euler equations in three dimensions, as
well as energy conservation, but do not have the vorticity transport equation.

• In [23], a one dimensional model for the vorticity equation of the true Euler equa-
tions was introduced, and again shown to have solutions that blow up in finite time;
see also the later papers [32,33,59,74] for further analysis of this model and its vari-
ants. These equations capture many of the features of the Euler equations, such as
energy conservation, vorticity stretching and an Euler-Poincaré Lagrangian formu-
lation, but do not correspond to incompressible flows (the formal Euler-Poincaré
geodesic flow is on the space of all diffeomorphisms of a manifold, rather than all
volume-preserving diffeomorphisms).

• In [43,45], a model of the axially symmetric true Euler equations with swirl was
studied in which the convection term was removed, and solutions constructed that
blow up in finite time. This system of equations still conserves energy, but does
not appear to have an Euler-Poincaré formulation, or a vorticity transport equation
analogous to (1.8).

• Further 1D models of axially symmetric true Euler equations outside of a cylindri-
cal obstacle were studied in [17,18,43], again with a number of finite time blowup
results; these systems have some remnant of circulation conservation (through the
transport of the “temperature” field θ ), but do not appear to have an Euler-Poincaré
formulation that involves an incompressible flow.

See also [8,14–16,22,25–28,30,35,36,39–43,47,49,54,61,69] for further study of
the existence and blowup properties of various simplified models for the Euler and
Navier-Stokes equations.

In this paper we establish some finite time blowup results in three spatial dimen-
sions for generalised Euler equations, with reasonable vector potential operator A. In
order to maximise the resemblance of these generalised Euler equations to the true
Euler equations, it is desirable to ensure that A be formally self-adjoint, and for A to
furthermore be “positive definite” in the sense that the conserved energy (1.15) to be
comparable to ‖ω‖2

Ḣ−1 (or to ‖u‖2
L2 ). It would also be desirable to construct blowup

solutions that are well localised in space, for instance by requiring the initial vorticity
to be compactly supported. Finally, one would like to demonstrate some stability in
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Finite Time Blowup for Lagrangian Modifications... Page 15 of 79 9

the blowup, by showing that blowup persists under some reasonable perturbation of
the initial data.

Unfortunately, we were not able to construct a blowup solution in which all of
these desirable criteria were satisfied simultaneously. However, we were able produce
three different constructions which enjoyed various subsets of this set of desiderata.
Taken together, they suggest that one should not be able to establish global regularity
properties for the true Euler equations merely by using properties that are shared with
the generalised Euler equations, such as energy conservation, the Kelvin circulation
theorem, and function space estimates for the vector potential operator.

Our first construction has compactly supported initial data (and a stable blowup),
but a non-self-adjoint (and non-positive definite) vector potential operator A:

Theorem 1.11 (Stable non-self-adjoint blowup). Let M = R
3. Then there exists a

100-reasonable vector potential operator A : C∞
c ∩ B2(M) → �2(M) and initial

data ω0 ∈ C∞
c ∩ B2(M) such that there is no solution ω ∈ X10,2, u ∈ Y 10,2 with

initial data ω0 on the time interval [0, 1].
We prove this result in Section 7. The exponents 10, 100 here have no particular

significance and are chosen primarily for sake of concreteness. The blowup is proba-
bly8 of a “neck pinch” nature, in which the vortex lines focus at a point (see Figure 1);
the non-self-adjoint vector potential A is designed to keep transporting the vorticity
ever closer to that point. We will not be able to achieve any fine level of control on the
dynamics of this finite time blowup, but fortunately we can use the conservation of
circulation, combined with a careful choice of A, to evaluate the velocity field u near
the blowup point and close the argument. As can be seen from the proof, the blowup
in Theorem 1.11 is stable in the sense the initial data ω0 can range in an open set in
C∞
c ∩ B2; any smooth closed perturbation of the data supported in a slight enlargment

of the support of ω0 will still lead to a solution that blows up in finite time.
As the initial data ω0 and operator A constructed in Theorem 1.11 are compactly

supported in space, it is an easy matter to extend the above theorem to R
2 × R/Z;

by adding compact dummy dimensions one can also extend to the case d � 3 and
2 � m � 3. It is likely that one can in fact obtain a result of the above form for
arbitrary d � 3 and 2 � m � d (increasing the exponents 10 and 100 as necessary),
but we will not do so here.

The blowup in Theorem 1.11 is perhaps unsurprising, given that the vector potential
operator A was not self-adjoint and so did not even have a conserved energy. Our
second blowup result involves a vector potential operator A which is now self-adjoint
and positive definite. However, to retain compact support of the data, it becomes
convenient to work in the domain R

2 × R/Z rather than R
3; also, the blowup is less

stable, as we require the initial data to be translation-invariant in the R/Z direction (in
order to reduce matters to a two-dimensional problem).

8 Because our argument will be a proof by contradiction, we will not actually be able to guarantee that the
solution blows up as intended; it may blow up at an earlier time than the formation of the neck pinch due
to other instabilities in the dynamics. However, the “neck pinch” scenario is what the blowup should be, if
it is not pre-empted by some earlier, unforeseen blowup. Similarly for the other finite time blowup results
in this paper.
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Fig. 1 A schematic depiction of a “neck pinch” blowup of the type expected from the construction in
Theorem 1.11 (ignoring a technical parameter M appearing in the proof). At times t close to the blowup
time (assumed here to be T∗ = 1), the vortex streamlines (shown here as dotted curves) travel through a
truncated hyperboloid region that is of unit diameter at its ends, but “pinches” through a narrow disk of
radius comparable to

√
1 − t , so that the vorticity increases to be comparable to 1

1−t near this disk, as per
the Kelvin circulation theorem. (The vortex streamlines may connect back to themselves outside of this
hyperboloid region; this is not pictured in the figure.) The velocity field, depicted here as dashed arrows,
points inwards with magnitude comparable to 1√

1−t
in the pinching region. At time t = 1, the vorticity

becomes infinite at a point, causing blowup

Theorem 1.12 (Self-adjoint partially periodic blowup). Let M = R
2 × R/Z and

let ε > 0. Then there exists a 100-reasonable, formally self-adjoint vector potential
operator A : C∞

c ∩ B2(M) → �2(M) obeying the positive definiteness property

(1 − ε)‖ω‖2
Ḣ−1(M)

�
∫

M
〈ω, Aω〉 d vol � (1 + ε)‖ω‖2

Ḣ−1(M)
(1.21)

for all ω ∈ C∞
c ∩ B2(M), as well as an initial vorticity ω0 ∈ C∞

c ∩ B2(M) such
that there is no solution ω ∈ X10,2, u ∈ Y 10,2 with initial data ω0 on the time interval
[0, 1].

We prove this result in Section 8. The main idea is to work in a “two-and-a-half-
dimensional” ansatz in which the velocity field u and vorticity ω are invariant with
respect to translations in the x3 direction, with the dx1 ∧ dx2 component of the
vorticity vanishing, but in which the third component u3 of the velocity is allowed
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Fig. 2 A schematic depiction of a “two-and-a-half-dimensional” blowup of the type expected from the
construction in Theorem 1.12 (again ignoring a technical parameter M). At times t close to the blowup time
(assumed here to be T∗ = 1), the vortex streamlines (shown here as dotted curves) are horizontal curves that
are pinched into a narrow region of horizontal diameter about 1− t , wherein the vorticity increases to about

1
1−t as per the Kelvin circulation theorem. The vorticity is invariant with respect to vertical translations,
which in the case of the true Euler equations would mean that the velocity field would be purely vertical (and
invariant along streamlines), and the solution would be stationary. Here, we work with a perturbation of the
true Euler equations that creates some horizontal velocity in the pinching region (of magnitude comparable
to 1) that causes the vorticity to pinch further. At time t = 1, the vorticity becomes infinite on a vertical
line (or more precisely, a copy of R/Z), causing blowup

to be non-zero. If the vector potential operator A is chosen properly, it turns out that
this component u3 obeys an SQG-like active scalar equation on R

2; furthermore, the
vector potential operator A0 for this SQG-like equation is no longer required to be self-
adjoint. It is then possible to modify the three-dimensional construction in Theorem
1.11 to create a two-dimensional blowup for this component u3, which then implies
blowup for the original fields u, ω; in fact the two-dimensional case is a little easier
than the three-dimensional one, and is carried out in Section 6. Due to the dimensional
reduction, the solution constructed in Theorem 1.12 will (probably) blow up on a
one-dimensional set, namely a copy of R/Z in R

2 × R/Z, in contrast to the solution
in Theorem 1.11 which (probably) blows up at a point. A schematic depiction of what
the blowup should look like in this construction is given in Figure 2.

Finally, we remove the periodic dimension from Theorem 1.12:
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Fig. 3 A schematic depiction of a “axisymmetric with swirl” blowup of the type expected from the construc-
tion in Theorem 1.13, which is essentially the same blowup as Theorem 1.12 if the Cartesian coordinates
were replaced with cylindrical ones. At times t close to the blowup time (assumed here to be T∗ = 1), the
vortex streamlines (shown here as dotted curves) are curves coplanar with the vertical axis (drawn here as
a thick line) that are pinched into a toroidal region that is roughly a 1 − t-neighbourhood of a circle of
radius comparable to 1. Within this region, the vorticity increases to about 1

1−t as per the Kelvin circulation
theorem. The vorticity and velocity fields are axially symmetric; the latter has magnitude comparable to 1
in the toroidal region, with significant inward components as well as some “swirl” around the vertical axis.
At time t = 1, the vorticity becomes infinite on a circle, causing blowup

Theorem 1.13 (Self-adjoint non-periodic blowup). Let M = R
3 and let ε > 0.

Then there exists a 100-reasonable, formally self-adjoint vector potential operator
A : C∞

c ∩ B2(M) → �2(M) obeying the positive definiteness property

(1 − ε)‖ω‖2
Ḣ−1(M)

�
∫

M
〈ω, Aω〉 d vol � (1 + ε)‖ω‖2

Ḣ−1(M)
(1.22)

for all ω ∈ C∞
c ∩ B2(M), as well as an initial vorticity ω0 ∈ C∞

c ∩ B2(M) such
that there is no solution ω ∈ X10,2, u ∈ Y 10,2 with initial data ω0 on the time interval
[0, 1].

We will prove Theorem 1.13 in Section 9; it will essentially be deduced from The-
orem 1.12 by embedding R

2 ×R/Z into R
3 using (modified) cylindrical coordinates.

The resulting dynamics resembles that of axisymmetric Euler equations with swirl
(particularly when viewed in the coordinates used in [4,69]. For the true Euler equa-
tions, the assumption of axial symmetry does not completely reduce matters to an
active scalar equation (in contrast to the situation with an assumption of translation
symmetry, as used in the proof of Theorem 1.12) due to the non-constant-coefficient
nature of the metric η in cylindrical coordinates; however, using the freedom to select
the vector potential A, we can replace η locally with a nearby metric which is constant
coefficient in cylindrical coordinates on the support of ω, at which point one can adapt
the argument used to prove Theorem 1.12. Due to the use of cylindrical coordinates,
the solution should now blow up on a circle; see Figure 3.

Remark 1.14 Another potential type of blowup scenario would be a self-similar
blowup (here one would need the vector potential operator A to commute with spa-
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tial dilations in an appropriate fashion). In the case of the true Euler equations, the
arguments of Chae [10,12,13] preclude non-trivial self-similar solutions in which the
vorticity decays rapidly at infinity; however, this leaves open the possibility of non-
trivial self-similar solutions that decay only slowly at infinity. However, we were not
able to construct such solutions while keeping A self-adjoint and positive semi-definite.

Remark 1.15 There are numerous issues preventing one from adapting these gen-
eralised Euler equation blowup results to the case of the generalised Navier-Stokes
systems (in the spirit of [64]). The most proximate issue is that all of the results
rely in one way or another on the conservation of circulation (Proposition 1.6(i)),
which is no longer true for Navier-Stokes type equations. However, even if one could
obtain bounds on circulation for Navier-Stokes that were of the same order as what
one obtains for Euler, the blowup results in Theorem 1.12 and Theorem 1.13 would
still create solutions that presumably blow up on a one-dimensional set, which can-
not occur for Navier-Stokes equations by the well known results of Caffarelli, Kohn,
and Nirenberg [7]. The blowup result in Theorem 1.11, which concentrates only at a
point, avoids this problem; however, the scaling is still (barely) unfavorable due to the
assumption of bounded circulation (which turns out to be a stronger condition, from
the perspective of scaling analysis, than conservation of energy). The numerology is
as follows. At a time t close to the blowup time T∗, one expects the vortex lines to
pinch in a disk of radius comparable to

√
T∗ − t (see Figure 1). As this disk has area

comparable to T∗ − t , conservation (or at least boundedness) of circulation suggests
that the vorticity ω is of size about 1

T∗−t on this disk, which corresponds on the level of

scaling to a velocity comparable to 1√
T∗−t

. Thus far the numerology is self-consistent,
but in the case of Navier-Stokes, a viscosity term �u in (1.1) would now be expected
to be comparable to 1

(T∗−t)3/2 , which is also the order of the transport term (u · ∇)u.
Thus we expect the viscosity effects to be comparable to the nonlinear effects, creating
a “critical” scenario (analogous to two-dimensional Navier-Stokes) which leads one
to predict that the blowup scenario will not occur. It may be possible to still obtain
blowup by weakening the viscosity term to something like �αu for some 0 < α < 1,
but with the full viscosity term �u, it appears that this blowup scenario can only occur
if either the viscosity somehow causes a significant increase in circulation, or if there
is a lot of “looping” of the vortex lines that causes the circulation through a small disk
to become very large due to the vortex lines passing through the disk multiple times.

Remark 1.16 The blowup mechanisms in this paper behave a little differently from
the locally (approximately) discretely self-similar solutions proposed in [6] (which
is in turn modeled on the dynamics seen in [64]). We have already discussed the
numerology of the blowup in Theorem 1.11 in the previous remark; now we discuss
the numerology in Theorem 1.12 (the situation for Theorem 1.13 is similar). At time t
close to the final blowup time T∗, one expects a particularly strong amount of vorticity
(with ω comparable to 1

T∗−t ) in a narrow tube of radius about T∗ − t and sidelength

1 (the tube will be a neighbourhood of a copy of R/Z in R
2 × R/Z); see Figure 2.

This vortex tube will only capture a small fraction (about T∗ − t) of the original
circulation; the remainder will come from a “wake” of larger vortex tubes trailing this
narrow tube. The velocity field u will be comparable to 1 throughout, and will pinch
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the narrowest vortex tube to a line (or more precisely, a copy of R/Z) by time T∗.
This scenario has some resemblance to that in [6], which also involves increasingly
narrow vortex tubes that carry less and less circulation, but which have increasingly
large pointwise vorticity; however, the tubes in [6] are not completely linear but have
some curvature (and their length goes to zero as t approaches T∗); furthermore there
is a complicated dynamic in [6] in which pairs of vortex tubes attract and deform to
become vortex planes, which then destabilise back into thinner vortex tubes, which is
probably not present in the blowup constructed in Theorem 1.12 (or Theorem 1.13).
Also, the scaling exponents in [6] are more flexible than the ones here, for instance
the width of the vortex tubes in [6] is not constrained to decay linearly in T∗ − t ,
nor is the vorticity constrained to behave inversely like 1

T∗−t . We do not know how to
implement the blowup scenario proposed in [6] using a generalised Euler equation,
even if one drops the requirements of self-similarity and positive definiteness for the
vector potential operator.

Remark 1.17 The blowup scenarios here are not of the “tube collapse” form ruled
out in [29], in which the volume of a vortex tube locally collapses to zero; instead,
only a small portion of the volume is either pinched in a neck, or creased on a line or
circle. As the vorticity is expected to blow up like 1/(T∗ − t), the Beale-Kato-Majda
blowup criterion is satisfied (as it must be). The blowup scenarios also do not appear
to be compatible with the scenarios ruled out in [21], either because the velocity
is unbounded or because the vorticity direction is changing too rapidly. One could
presumably use these blowup scenarios as test cases for any future blowup criterion
results for the true or generalised Euler equations in a similar fashion.

Remark 1.18 It is also tempting to construct blowup solutions by first choosing the
fields u, ω blowing up in a specified fashion (with ω being transported by u) and then
designing a vector potential operator A to solve the generalised Euler equations with
these choices of fields, in the spirit of [66,67]. This seems achievable if one does not
require A to be self-adjoint. If however self-adjointness is imposed, then this creates
a nonlocal-in-time constraint on the fields u, ω which makes this approach difficult.
Namely, if one writes ω = dv for some v ∈ �1(M), then an integration by parts
using the self-adjointness of A reveals that we must have the constraint

∫

M
〈v(t), u(t ′)〉 d vol =

∫

M
〈v(t ′), u(t)〉 d vol

relating the velocity u to the covelocity v for all times t, t ′. We do not know how to
design suitably blowing up fields u, ω obeying this constraint as well as (1.10) other
than by solving the generalised Euler equations.

Remark 1.19 We have attempted to design the generalised Euler equations so as to
capture as many of the known features of the true Euler equations as possible. However,
we should mention9 two properties of the Euler equations which are not obeyed by the
generalised Euler equations, namely translation invariance and rotation invariance; the

9 We thank an anonymous referee for stressing this point.
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operators A we construct are inhomogeneous and non-isotropic (indeed, if one were
to insist on these properties as well as dilation invariance, one would essentially be
restricting the class of generalised Euler equations back to the true Euler equations up
to some normalising constants, as the Biot-Savart law is basically determined by these
symmetries). In particular, we do not have conservation of momentum (impulse) or
angular momentum (moment of impulse) for these equations. On the other hand, the
class of generalised Euler equations remains invariant with respect to such symmetries,
in particular most of the useful estimates on solutions to the Euler or generalised Euler
equations involve function space norms which are invariant with respect to translations
or rotations. Also, the conservation laws of impulse and moment of impulse are very
rarely used in the local or global regularity theory for the Euler equations, so their
loss does not significantly reduce the body of results that should transfer over to the
generalised Euler equation setting.

2 Formal Proof of Conservation Laws

We now prove Proposition 1.6. In this section all calculations will be formal, in that
we do not check that all fields involved are smooth enough and exhibit sufficient decay
at infinity to justify invocations of identities such as Stokes’ theorem; we also assume
here that all closed forms are exact.

Let ω, u solve the generalised Euler equations with some vector potential operator
A. For future reference we observe from the divergence-free nature of the velocity
field u (or equivalently, that Lud vol = 0) we (formally) have10

∫

M
Lu f d vol = 0 (2.1)

for any f ∈ �0(M). Applying this with f = 〈ω, α〉 for any ω ∈ �k(M) and
α ∈ �k(M) using the Leibniz rule

Lu〈ω, α〉 = 〈Luω, α〉 + 〈ω,Luα〉, (2.2)

we (formally) conclude the integration by parts formula

∫

M
〈Luω, α〉 d vol = −

∫

M
〈ω,Luα〉 d vol . (2.3)

The proof of the Kelvin circulation theorem (i) is standard. For each time t , let
�(t) : M → M be the diffeomorphism formed by flowing along the vector field u,
thus �(0) is the identity and

∂t�(t, x) = u(t,�(t, x))

10 See e.g. [2, §3.4] for a definition of the Lie derivative on k-vector fields, as well as a proof of the Leibniz
rule (2.2).
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for all t ∈ R and x ∈ M. Using the interpretation of a Lie derivative as an infinitesimal
diffeomorphism, we have

∂t (�(t)∗α) = �(t)∗(∂tα(t)) + �∗(t)(Lu(t)α(t)) (2.4)

for any time-dependent form or vector field α, where �(t)∗ denotes the pullback by
�(t). From (1.10) we thus see that �(t)∗ω(t) is conserved in time, thus giving the
Cauchy vorticity formula

ω(t) = �(t)∗ω(0) (2.5)

where �(t)∗ is the pushforward by �(t) (the inverse of �(t)∗). The Kelvin circulation
theorem (i) then follows from the change of variables formula.

From (1.11) and (1.3), u is divergence-free, thus by (1.6)

Lud vol = 0 (2.6)

and thus by (2.4) �(t)∗d vol is conserved in time, thus �(t) is volume-preserving:

�(t)∗d vol = d vol .

Since the Hodge duality operator ∗ from Remark 1.1 is defined using the volume form
vol, we conclude that ∗ commutes with �(t)∗. In particular, we see from the Cauchy
vorticity formula (2.5) that

∗ω(t) = �(t)∗(∗ω(0)).

In three dimensions, this gives the transport (ii) of the vortex stream lines.
Now we establish (iii). Let v(t) be a time-dependent 1-form with dv = ω, then

from the product rule and differentiation under the integral sign we have

∂t H(t) =
∫

R3
∂tv ∧ ω + v ∧ ∂tω.

Writing ω = dv and using the Leibniz rule for the exterior derivative, we have

d(v ∧ ∂tv) = ω ∧ ∂tv − v ∧ ∂tω.

As the wedge product is commutative between 1-forms and 2-forms, we have ω∧∂tv =
∂tv ∧ ω. We conclude upon integrating and using Stokes’ theorem that

∂t H(t) = 2
∫

R3
v ∧ ∂tω

and hence by (1.10)

∂t H(t) = −2
∫

R3
v ∧ Ludv. (2.7)
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Recall (see e.g. [2, §2.25, 3.4]) that the Lie derivative Lu and the exterior derivative d
obey the Leibniz rules

Lu(ω ∧ λ) = (Luω) ∧ λ + ω ∧ (Luλ) (2.8)

and
d(ω ∧ λ) = (dω) ∧ λ + (−1)kω ∧ (dλ) (2.9)

for all ω ∈ �k(M) and λ ∈ �l(M). From these Leibniz rules and (1.7) we have

Lu(v ∧ dv) + d(Luv ∧ v) = 2v ∧ Ludv

and the claim (iii) now follows from (2.7), (2.1), and Stokes’ theorem.
Now we prove (iv). From the Leibniz rule and the self-adjointness of A, we have

∂t E(t) =
∫

M
〈∂tω, Aω〉 d vol .

Using (1.10), (2.6) and (2.3), we conclude

∂t E(t) =
∫

M
〈ω,Lu Aω〉 d vol .

As ω is closed, and we are working formally, we may write ω = dv for some 1-form
v. By duality, we thus have

∂t E(t) =
∫

M
〈v, δLu Aω〉 d vol .

SinceLu annihilatesd vol, it commutes with ∗; by (1.7) and (1.9) it therefore commutes
with δ, thus by (1.11)

δLu Aω = Luu = [u, u] = 0

(where [X,Y ] denotes the Lie bracket of two vector fields X,Y ) and the claim follows.
Finally, we establish (v). From (1.10), we have

∂t

∫

M
〈ω, α〉 d vol = −

∫

M
〈Luω, α〉 d vol .

By (2.6) and (2.3), the right-hand side is equal to

∫

M
〈ω,Luα〉 d vol .

Writing ω = dv as before, and using (2.3), (1.7) and dα = X , we can write this as

−
∫

M
〈v,Lu X〉 d vol .
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Since

Lu X = [u, X ] = −[X, u] = −LXu

we can use (1.11) to write the previous expression as

∫

M
〈v,LX δAω〉 d vol .

As X is divergence-free,LX commutes with ∗ and thus with δ. By duality and dv = ω,
the above expression becomes

∫

M
〈ω,LX Aω〉 d vol .

Using (2.3) and using the self-adjointness of A, this is equal to

−
∫

M
〈ALXω,ω〉 d vol .

But as A and LX commute, the previous two expressions are also negations of each
other, and must thus be zero. The claim follows.

3 Formal Lagrangian Formulation

As in the preceding section, our calculations here will be purely formal, without regard
to issues of smoothness or decay.

Given a divergence-free velocity field u : [0, T ] → B1(M), we can form the family
of volume-preserving diffeomorphisms �(t) : M → M for t ∈ [0, T ] by solving the
ODE

∂t�(t, x) = u(t,�(t, x))

with initial data �(0, x) = x . We can then deform this family to a two-parameter
family �(s, t) : M → M of volume-preserving diffeomorphisms with s near zero
by solving a further ODE

∂s�(s, t, x) = v(t,�(s, t, x)) (3.1)

for some additional divergence-free velocity field v : [0, T ] → B1(M), with initial
data �(0, t, x) = �(t, x). The velocity field u then deforms in s via the formula

∂t�(t, x) = u(s, t,�(t, x)). (3.2)

Differentiating (3.1) in t and (3.2) in s and comparing at s = 0 gives the identity

∂su + (v · ∇)u = ∂tv + (u · ∇)v;
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since

Luv = [u, v] = (u · ∇)v − (v · ∇)u

we thus have11

∂su = ∂tv + Luv. (3.3)

Let A : B2(M) → �2(M) be formally self-adjoint. We now introduce the formal
Lagrangian

L[�] := 1

2

∫ T

0

∫

M
〈ω, Aω〉 d vol dt, (3.4)

where ω ∈ B2(M) is closed and solves (1.11); we assume that δA is invertible, so
that ω is uniquely determined by u. We claim that if u also solves (1.10), then it is a
(formal) critical point of the Lagrangian if one holds the endpoints �(0),�(T ) fixed;
in other words, if one deforms u and � as above using a divergence-free field v that
vanishes at the endpoints t = 0, T , then

∂sL[�] = 0

at s = 0. Indeed, from (3.4) and the self-adjointness of A, the left-hand side is

∫ T

0

∫

M
〈ω, ∂s Aω〉 d vol dt.

As ω is closed, we can write ω = dα for some 1-form α. Integrating by parts and
using (1.11), this quantity can be rewritten as

∫ T

0

∫

M
〈α, ∂su〉 d vol dt

which by (3.3) and (2.3) is equal to

∫ T

0

∫

M
〈−∂tα − Luα, v〉 d vol dt.

As v is divergence-free, we can (formally) write v = δβ for some 2-vector field β.
Integrating by parts using dα = ω, we can rewrite the preceding expression as

∫ T

0

∫

M
〈−∂tω − Luω, β〉 d vol dt.

But this vanishes by (1.10).

11 Another way of interpreting the identity (3.3) is as follows. The diffeomorphisms � can be viewed as
a trivialisation of the M-bundle over the parameter space R

2 of the variables (s, t). The flat connection
associated to this trivialisation, when written in terms of the standard trivialisation, correspond to the
differential operators ∂t +Lu and ∂s +Lv . As the connection is flat, these operators commute, giving (3.3).
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Remark 3.1 Suppose the operator A is (formally) positive definite. Then one can
interpret the above calculation as asserting that the generalised Euler equations in
Definition 1.2 are the formal geodesic flow on the infinite-dimensional manifold
Sdiff(M) of volume-preserving diffeomorphisms on M, where we endow this man-
ifold with a right-invariant metric whose quadratic form on the tangent space of the
identity (which one can identify with divergence-free vector fields u) is given by
u �→ ∫

M〈ω, Aω〉d vol, where ω obeys (1.11). In the case of the true Euler equations,
this fact was famously observed by Arnold [1], as a special case of the Euler-Poincaré
formalism, and a rigorous version of these computations was used in [37] to obtain
a local existence theorem for the true Euler equations that is close to that in The-
orem 1.9. See [71] for some analogous results for the SQG equation. If one drops
the requirement that the diffeomorphisms be volume preserving, then there are several
compressible fluid equations that also have a rigorous geodesic flow interpretation; see
e.g. [19,38,47,54,73]. It is thus likely that the formal computations in this section can
similarly be made rigorous given suitable hypotheses on the vector potential operator
A and on the initial data, but we will not attempt to do so here.

Given the above Lagrangian formulation of the generalised Euler equations in
Definition 1.2, it should come as no surprise that the conservation laws in Proposition
1.6 are associated to symmetries of the Lagrangian (3.4), in accordance with Noether’s
theorem. Indeed, the Kelvin circulation theorem (and hence helicity conservation and
stream line conservation) come from the invariance of (3.4) with respect to the right
action of Sdiff(M), while conservation of the Hamiltonian comes (as usual) from time
translation symmetry, and conservation of impulse comes from the symmetry arising
from the diffeomorphisms esX generated by the vector field X . See [61,65] for further
discussion.

4 Classical Local Existence

In this section we leave the realm of formal calculations, and prove Theorem 1.9
rigorously. We will rely primarily on the energy method, with some modification at
low frequencies to deal with the failure of the generalised Biot-Savart operator δA
to map Hs to L∞ in the m = 2 case. To abbreviate the notation, we write ‖‖Ḣ s for
‖‖Ḣ s (M), and similarly for ‖‖L p , ‖‖Hs , etc.. It will also be convenient to use the norm

‖ f ‖L p∩Hs := ‖ f ‖L p + ‖ f ‖Hs .

Let M, d, A, M, p be as in Theorem 1.9. For brevity, we drop the dependence of
constants on d, M, A, p from the asymptotic notation.

We can of course write the system (1.10), (1.11) as a single equation

∂tω + LδAωω = 0. (4.1)

In coordinates, the equation (4.1) becomes

∂tω + (δAω · ∇)ω = O((∇2Aω)ω) (4.2)
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where we use O(X) to denote an expression that has the schematic form of X in the
sense that it is a linear combination (with constant coefficients) of components of a
tensor of the form X (interpreting all products in X as tensor products).

We first establish uniqueness. Given two solutions ω1, ω2 ∈ Xs,p to (4.2) with
initial data ω0, the difference α := ω1 − ω2 lies in Xs,p and obeys an equation of the
form

∂tα + (δAω2 · ∇)α + (δAα · ∇)ω1 = O((∇2Aα)ω1) + O((∇2Aω2)α). (4.3)

Taking inner products with α|α|p−2 and integrating using the divergence-free nature
of δAω2, we obtain12 the inequality

∂t‖α‖L p � ‖(δAα · ∇)ω1‖L p + ‖(∇2Aα)ω1‖L p + ‖(∇2Aω2)α‖L p ,

and hence by Hölder’s inequality one has

∂t‖α‖L p � ‖Plo∇Aα‖Lq‖∇ω1‖Lm + ‖Phi∇Aα‖Lr ‖∇ω1‖Ld

+ ‖∇2Aα‖L p‖ω1‖L∞ + ‖∇2Aω2‖L∞‖α‖L p

where 1
q := 1

p − 1
m , 1

r := 1
p − 1

d , and Plo, Phi are the Fourier projections to frequencies

|ξ | � 1 and |ξ | > 1 respectively. From Sobolev embedding inRm×(R/Z)d−m , (1.20),
and the hypothesis s > d

2 + 1, one has

‖Plo∇Aα‖Lq , ‖Phi∇Aα‖Lr � ‖∇2Aα‖L p

‖∇ω1‖Lm , ‖∇ω1‖Ld , ‖ω1‖L∞ � ‖ω1‖Hs � ‖ω1‖Xs,p

‖∇2Aω2‖L∞ � ‖∇2Aω2‖Hs � ‖ω2‖Hs � ‖ω2‖Xs,p .

Also, from Definition 1.7, the operator ∇2A is bounded on L2 and has a kernel obeying
Calderón-Zygmund estimates, so is bounded on L p by Calderón-Zygmund theory (see
e.g. [62]). We conclude that

∂t‖α‖L p � (‖ω1‖Xs,p + ‖ω2‖Xs,p )‖α‖L p .

Since α(0) = 0, we conclude from Gronwall’s inequality that α = 0 identically,
giving uniqueness.

Next, we show existence of (weak) solutions using a standard viscosity method
which we briefly sketch here; later on we will upgrade the regularity of solutions from
weak to strong. For any ε > 0 we can consider the generalised Navier-Stokes equation

∂tω + LδAωω + ε�ω = 0 (4.4)

12 To be more rigorous here, one could obtain instead a transport equation for (ε2 + |α|2)p/2 for ε > 0,
run the Gronwall argument below for the quantity ‖(ε2 + |α|2)1/2‖L p , and then send ε to zero; we leave
the details to the interested reader. Similarly for other arguments in this section involving derivatives of L p

or L2 norms.
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(recall in this paper that � denotes the Hodge Laplacian, which is positive semi-
definite). We can write this equation schematically as

∂tω + ε�ω = O(∇Aω∇ω) + O((∇2Aω)ω). (4.5)

From repeated application of the Hölder and Sobolev inequalities, as well as (1.20),
the L p boundedness of ∇2A, and the hypothesis s > d

2 + 1, one can check that if
ω1, ω2 ∈ L p ∩Hs+1 ∩ B2(M), then the expression O(∇Aω1∇ω2)+O((∇2Aω1)ω2)

lies in L p ∩ Hs(M), and that this operation is locally Lipschitz13 in the ω1 and ω2
variables in the indicated norms. By running a contraction mapping argument that
places ω in the function space

C0([0, T ] → L p ∩ Hs ∩ B2(M)) ∩ L2([0, T ] → Hs+1 ∩ B2(M)),

and using the parabolic smoothing effects of the heat equation (and also noting that
the Lie derivative operator LδAω and the Hodge Laplacian � both preserve the space
B2(M) of closed 2-forms), one can then construct local solutions in (4.4) in the above
space that can be continued as long as one has a uniform bound on the quantity

‖ω(t)‖L p∩Hs . (4.6)

But for any constant coefficient differential operator D of order k for some 0 � k � s
(with no lower order terms), we have upon differentiating (4.4) by D that

∂t Dω + (δAω · ∇)Dω + ε�Dω = F

where

F := [δAω, D] · ∇ω + O(D((∇2Aω)ω))

and [A, B] := AB − BA. Multiplying by Dω and integrating by parts, we obtain an
energy inequality of the form

∂t‖Dω‖2
L2 � ‖F‖L2‖Dω‖L2 (4.7)

where the implied constant does not depend on ε. However, using the Moser estimate

‖D(uv)‖L2 � ‖u‖Ḣ k‖v‖L∞ + ‖u‖L∞‖v‖Ḣ k (4.8)

13 Indeed, ∇Aω1, ∇2Aω1, ∇ω2, ω2 both lie in Hs (M) thanks to (1.20), and the product of two functions
in Hs (M) lies in both Hs (M) and L p(M) by the Leibniz rule and the Hölder and Sobolev inequalities.
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(see e.g. [68, (2.0.22)]), as well as the commutator estimate14

‖[u, D]∇v‖L2 � ‖u‖Ḣ k+1‖v‖L∞ + ‖∇u‖L∞‖v‖Ḣ k (4.9)

(see e.g. [52,53], noting the claim is trivial for k = 0), we see that

‖F‖L2 � ‖∇2Aω‖L∞‖∇kω‖L2 + ‖∇k+2Aω‖L2‖ω‖L∞ . (4.10)

Applying Sobolev embedding then gives

‖F‖L2 � ‖∇2Aω‖Hs‖ω‖Hs .

Hence by (1.20) and summing over a suitable choice of D we have

∂t‖ω‖2
Hs � ‖ω‖3

Hs . (4.11)

Since ‖ω(0)‖Hs � M , this gives an a priori bound

‖ω(t)‖Hs � M (4.12)

for 0 � t � T , if T is sufficiently small depending on the bound M .
Now we need to control the L p component in (4.6). Since ∇2A is bounded in

L p, ∇2Aω has a L p norm of O(‖ω‖L p ). In particular, from Sobolev embedding and
Hölder we have

‖O(∇Aω∇ω) + O((∇2Aω)ω)‖L p � ‖∇Aω‖Lq‖∇ω‖L2 + ‖∇2Aω‖L∞‖ω‖L p

� ‖∇2Aω‖L p∩Hs‖ω‖Hs + ‖∇2Aω‖Hs‖ω‖L p

� ‖ω‖L p∩Hs‖ω‖Hs

(4.13)

where 1/q := 1/p − 1/2, and hence by (4.5), (4.12), and the contractivity of the heat
semigroup in L p

∂t‖ω‖L p �M 1 + ‖ω‖L p

and hence by Gronwall’s inequality we have

sup
0�t�T

‖ω(t)‖L p �M,T 1 (4.14)

14 The commutator estimate would usually have ‖u‖Ḣk ‖∇v‖L∞ in place of ‖u‖Ḣk+1‖v‖L∞ here, but
it is not difficult to adapt the standard (paraproduct-based) proof of the estimate to also establish (4.9) as
written. Indeed, one can use the Leibniz rule to write [u, D]∇v as

∑k
i=1 O(∇i u∇k+1−iv); the contribution

of the cases i = 1, i = k + 1 are trivial, and all intermediate cases can be handled by paraproducts or
Littlewood-Paley decomposition.
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giving the required uniform bound on (4.6). This a priori bound allows us to continue
the solution to (4.4) up to a timeT > 0 that is independent of ε. A standard compactness
argument sending ε → 0 (and noting from the Rellich compactness theorem that weak
convergence in L p∩Hs implies strong convergence inC1) then gives a (distributional)
solution to the inviscid system (1.10), (1.11) with the regularity

ω ∈ L∞([0, T ] → L p ∩ Hs ∩ B2(M)). (4.15)

This is not quite smooth enough to place ω in Xs,p (mainly because of the lack of
continuity in time); we will upgrade the regularity of ω shortly.

To prove continuous dependence on the initial data, we use an argument originally
due to Bona and Smith [5] (see also the survey of Tzvetkov [70]). Let ω0 ∈ L p ∩Hs ∩
B2(M) with

‖ω0‖L p∩Hs < M.

Let ω′
0 ∈ L p ∩ Hs+1 ∩ B2(M) be a suitable mollification of ω0 which also obeys the

bound

‖ω′
0‖L p∩Hs < M;

we will choose ω′
0 more precisely later. Let ω ∈ L∞([0, T ] → L p ∩ Hs ∩ B2(M))

be a solution to (4.1) with initial data ω0 constructed by the preceding compactness
argument, and similarly define ω′ ∈ L∞([0, T ] → L p ∩ Hs ∩ B2(M)). From (4.12),
(4.14) we have the bounds to be the solution to (4.1) with initial data ω′

0. Then we
have

‖ω(t)‖L p∩Hs , ‖ω′(t)‖L p∩Hs �M,T 1 (4.16)

for all 0 � t � T . A routine modification of the proof of (4.11) yields the a priori
bound

∂t‖ω′‖2
Hs+1 � ‖ω‖Hs‖ω′‖2

Hs+1

which by Gronwall’s inequality and (4.16) leads to the bound

‖ω′(t)‖Hs+1 �M,T ‖ω′
0‖Hs+1 (4.17)

for all t ∈ [0, T ].
Next, we set α := ω′ − ω. As in (4.3), we have the difference equation

∂tα + (δAω · ∇)α + (δAα · ∇)ω′ = O((∇2Aα)ω′) + O((∇2Aω)α). (4.18)

Taking inner products with α|α|p−2 as before, we see that

∂t‖α‖L p � ‖∇Aα∇ω′‖L p + ‖∇2Aαω′‖L p + ‖∇2Aωα‖L p .
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Using Sobolev embedding and Hölder as in (4.13), as well as the boundedness of ∇2A
on L p, we conclude that

∂t‖α‖L p � ‖α‖L p (‖ω′‖Hs + ‖ω‖Hs )

and hence by (4.16) and Gronwall’s inequality we have

‖α(t)‖L p �M,T ‖α(0)‖L p (4.19)

for all t ∈ [0, T ].
Next, if D is a constant coefficient operator of order k for some k � s, then upon

applying D to (4.18) we have

∂t Dα + (δAω · ∇)Dα = F ′ (4.20)

where

F ′ := [δAω, D] · ∇α + [δAα, D] · ∇ω′ − (δAα · ∇)Dω′ + O(D((∇2Aα)ω))

+O(D((∇2Aω′)α)).

Multiplying (4.20) by Dα and then integrating by parts, we conclude that

∂t‖Dα‖2
L2 � ‖Dα‖L2‖F ′‖L2

On the other hand, by using (4.8), (4.9), (1.20) as before, followed by (4.16), we have

‖F ′‖L2 � ‖α‖Hk (‖ω‖Hs + ‖ω′‖Hs ) + ‖(δAα · ∇)Dω′‖L2

�M,T ‖α‖Hk + ‖∇Aα‖L∞‖ω′‖Hk+1 .

Summing over a suitable set of D, we conclude that

∂t‖α‖2
Hk �M,T ‖α‖2

Hk + ‖α‖Hk‖∇Aα‖L∞‖ω′‖Hk+1

and thus
∂t‖α‖Hk �M,T ‖α‖Hk + ‖∇Aα‖L∞‖ω′‖Hk+1 (4.21)

for any 0 � k � s.
When m � 3, we can use Sobolev embedding and (1.20) to bound

‖∇Aα‖L∞ � ‖∇2Aα‖Hs−1 � ‖α‖Hs−1 .

However when m = 2 the situation is more delicate. If Phi and Plo denote the Fourier
projections used previously, we have

‖Phi∇Aα‖L∞ � ‖∇2Aα‖Hs−1 � ‖α‖Hs−1
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For Plo, we see for any N � 2 using the Bernstein and Cauchy-Schwarz inequalities,
as well as Plancherel’s theorem, that

‖Plo∇Aα‖L∞ �
∑

M�1

‖PM∇Aα‖L∞

�
∑

M�1

‖PM∇2Aα‖L2

�
∑

M�N−C

M1/2−1/p‖∇2Aα‖L p +
∑

N−C<M�1

‖PM∇2Aα‖L2

� 1

N 2 ‖∇2Aα‖L p + √
log N

⎛

⎝
∑

N−C<M�1

‖PM∇2Aα‖2
L2

⎞

⎠

1/2

� 1

N 2 ‖∇2Aα‖L p + √
log N‖∇2Aα‖L2

where C := 2/(1/p−1/2), M ranges over dyadic numbers M = 2m , m ∈ Z, and PM
is a Littlewood-Paley type Fourier projection to frequencies comparable to M . Since
∇2A is bounded on L p, L2, and Hs−1, we conclude for any choice of m that

‖∇Aα‖L∞ � 1

N 2 ‖α‖L p + √
log N‖α‖L2 + ‖α‖Hs−1

Inserting these bounds and (4.19) into (4.21), we have

∂t‖α‖Hk �M,T ‖α‖Hk +
(

1

N 2 ‖α(0)‖L p + √
log N‖α‖L2 + ‖α‖Hs−1

)

‖ω′‖Hk+1

(4.22)
for any 0 � k � s and N � 2. We first apply this bound with k = 0 using (4.16) to
obtain

∂t‖α‖L2 �M,T
1

N
‖α(0)‖L p + √

log N‖α‖L2

and hence by Gronwall’s inequality

‖α(t)‖L2 �M,T exp(OM,T (
√

log N ))

(
1

N 2 ‖α(0)‖L p + ‖α(0)‖L2

)

which on re-insertion back into (4.22) and conceding some powers of N give

∂t‖α‖Hk �M,T ‖α‖Hk +
(

1

N
‖α(0)‖L p + Ns−1‖α(0)‖L2 + ‖α‖Hs−1

)

‖ω′‖Hk+1 .

(4.23)
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Applying this bound with k = s − 1 and using (4.16), we conclude that

∂t‖α‖Hs−1 �M,T ‖α‖Hs−1 + 1

N
‖α(0)‖L p + Ns−1‖α(0)‖L2

and hence by Gronwall’s inequality

‖α(t)‖Hs−1 �M,T ‖α(0)‖Hs−1 + 1

N
‖α(0)‖L p + Ns−1‖α(0)‖L2

for any 0 � t � T . Inserting this back into (4.22) for k = s and using (4.17), we have

∂t‖α‖Hs �M,T ‖α‖Hs +
(

1

N
‖α(0)‖L p + Ns−1‖α(0)‖L2 + ‖α(0)‖Hs−1

)

‖ω′(0)‖Hs+1

and hence by Gronwall’s inequality

‖α(t)‖Hs �M,T ‖α(0)‖Hs +
(

1

N
‖α(0)‖L p + Ns−1‖α(0)‖L2 + ‖α(0)‖Hs−1

)

‖ω′(0)‖Hs+1

for any 0 � t � T . Combining this with (4.19) and the definition of α, we have

‖ω′(t) − ω(t)‖L p∩Hs �M,T ‖ω′
0 − ω0‖L p∩Hs

+
(

1

N
‖ω′

0 − ω0‖L p + Ns−1‖ω′
0 − ω0‖L2 + ‖ω′

0 − ω0‖Hs−1

)

‖ω′
0‖Hs+1 .

(4.24)
Let ε > 0. If we let ω̃0 be initial data in L p ∩ Hs ∩ B2(M) that is sufficiently close

to ω0 in L p ∩ Hs norm (depending on ε, N ), and let ω̃ be the corresponding solution
to (4.1), the same argument (replacing ω with ω̃) gives

‖ω′(t) − ω̃(t)‖L p∩Hs �M,T ‖ω′
0 − ω0‖L p∩Hs

+
(

1

N
‖ω′

0 − ω0‖L p + Ns−1‖ω′
0 − ω0‖L2 + ‖ω′

0 − ω0‖Hs−1

)

‖ω′
0‖Hs+1 + ε

and thus by the triangle inequality

‖ω(t) − ω̃(t)‖L p∩Hs �M,T ‖ω′
0 − ω0‖L p∩Hs

+
(

1

N
‖ω′

0 − ω0‖L p + Ns−1‖ω′
0 − ω0‖L2 + ‖ω′

0 − ω0‖Hs−1

)

‖ω′
0‖Hs+1 + ε

for ω̃0 sufficiently close to ω0 in L p ∩ Hs ∩ B2(M).
If we now let ω′

0 be a smoothed Fourier projection of ω0 (of Littlewood-Paley
type) to frequencies less than N , we see from Plancherel’s theorem and dominated
convergence that

‖ω′
0 − ω0‖L p∩Hs � ε

Ns‖ω′
0 − ω0‖L2 � ε
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N‖ω′
0 − ω0‖Hs−1 � ε

1

N
‖ω′

0‖Hs+1 � ε

for N large enough, and thus

sup
0�t�T

‖ω(t) − ω̃(t)‖L p∩Hs �M,T ε (4.25)

whenever ω̃0 is sufficiently close to ω0. Writing β := ω − ω̃, we have the difference
equation

∂tβ = −(δAω̃ · ∇)β − (δAβ · ∇)ω + O((∇2Aβ)ω) + O((∇2Aω̃)β).

Using (4.25), (4.12), and (1.20), all the terms on the right-hand side can be computed
to have an Hs−1 norm of OM,T (ε), and so

sup
0�t�T

‖∂t (ω(t) − ω̃(t))‖Hs−1 �M,T ε. (4.26)

The estimates (4.25), (4.26) will give continuous dependence of the solution map
ω0 �→ ω from L p ∩ Hs ∩ B2(M) to Xs,p as soon as we establish that the solution
ω actually lies in Xs,p. We already have the L∞ regularity (4.15); we now upgrade
this to C0 regularity. By approximating ω0 by initial data in L p ∩ Hs+1 ∩ B2(M) and
using the continuity estimates already established, it suffices to establish C0 regularity
under the hypothesis that ω0 ∈ L p ∩ Hs+1 ∩ B2(M). By (4.17) we then have

‖ω(t)‖L p + ‖ω(t)‖Hs+1 �ω0 1

for all 0 � t � T ; from (4.4), the Hölder and Sobolev inequalities, and (1.20) we then
have

‖∂tω(t)‖Hs �ω0 1

and from repeating the proof of (4.13) we also have

‖∂tω(t)‖L p �ω0 1

and on integrating in t this gives the desired continuity in time in the L p ∩ Hs(M)

topology. Finally, once we know that ω lies in C([0, T ] → L p ∩ Hs(M)), we can
use (4.4), (1.20), and the Hölder and Sobolev inequalities to conclude that ∂tω lies in
C([0, T ] → Hs−1(M)), and so ω lies in Xs,p as required. Setting u := δAω, we
also have u ∈ Y s,p by (1.20) and the boundedness of the Calderón-Zygmund operator
∇2A on L p; this also gives continuous dependence of u on ω0. This concludes the
proof of the local wellposedness portion of Theorem 1.9.
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Now we establish the Beale-Kato-Majda criterion. Suppose a priori that we have
a solution ω ∈ Xs,p, u ∈ Y s,p to (1.10), (1.11) up to some (possibly large) time
0 < T∗ < ∞ with the bounds

‖ω(0)‖L p + ‖ω(0)‖Hs � M (4.27)

and ∫ T∗

0
‖ω(t)‖L∞ dt � M (4.28)

for some 0 < M < ∞. Multiplying (4.2) by ω and integrating, we have

∂t‖ω‖2
L2 � ‖∇2Aω‖L2‖ω‖L∞‖ω‖L2

and hence by (1.20)

∂t‖ω‖2
L2 � ‖ω‖L∞‖ω‖2

L2

and hence by Gronwall’s inequality and (4.27), (4.28) one has

‖ω(t)‖L2 �M,T∗ 1 (4.29)

for all 0 � t � T∗.
Next, let D be a constant coefficient differential operator of order k � s, with no

lower order terms. From (4.7), (4.10) we have

∂t‖Dω‖2
L2 � (‖∇2Aω‖L∞‖∇kω‖L2 + ‖∇k+2Aω‖L2‖ω‖L∞)‖Dω‖L2

and hence on summing over suitable D and using (1.20)

∂t‖ω‖2
Hs � ‖ω‖2

Hs (‖ω‖L∞ + ‖∇2Aω‖L∞).

We now establish a key logarithmic inequality, as in [3]:

Lemma 4.1 We have

‖∇2Aω‖L∞ � 1 + ‖ω‖L2 + ‖ω‖L∞ log(2 + ‖ω‖Hs ).

Proof Let N � 2 be a parameter to be chosen later. From (1.20) and Sobolev embed-
ding we have

‖∇3Aω‖L∞ � ‖∇2Aω‖Hs � ‖ω‖Hs

and hence for any x0 ∈ M, we have

|∇2Aω(x0)| � Nd
∣
∣
∣
∣

∫

M
φ(N (x − x0))∇2Aω(x) d vol(x)

∣
∣
∣
∣ + 1

N
‖ω‖Hs
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for some fixed bump function φ supported on the unit ball BM(0, 1), where of course

BM(x0, r) := {x ∈ M : |x − x0| � r}

is the ball of radius r centred at x0 with respect to the distance associated with the
Euclidean metric η onM. We split ω = ω1BM(x0,2/N )+ω(1−1BM(x0,2/N )). The for-
mer term has an L2 norm of O(N−d/2‖ω‖L∞), hence by (1.20) and Cauchy-Schwarz,
we have

Nd
∣
∣
∣
∣

∫

M
φ(N (x − x0))∇2A(ω1BM(x0,2/N ))(x) d vol(x)

∣
∣
∣
∣ � ‖ω‖L∞ .

Now we turn to the contribution of ω(1−1BM(x0,2/N )). Using the kernel representation
(1.18) of A, we can bound

Nd
∣
∣
∣
∣

∫

M
φ(N (x − x0))∇2A(ω(1 − 1BM(x0,2/N )))(x) d vol(x)

∣
∣
∣
∣

� N 3
∫

BM(x0,1/N )

∫

M\BM(x0,2/N )

|∇2
x K (x, y)||ω(y)| d vol(y)d vol(x).

From (1.19) one has |∇2
x K (x, y)| � |x − y|−d + |x − y|−m . Using L∞ bounds on ω

for y ∈ BM(x0, 1) and L2 bounds elsewhere, we can bound the above expression by

‖ω‖L∞ log N + ‖ω‖L2

and hence

‖∇2Aω‖L∞ � 1

N
‖ω‖Hs + ‖ω‖L2 + ‖ω‖L∞ log N .

Setting N := 2 + ‖ω‖Hs , we obtain the claim. ��
Using this inequality and (4.29), we thus have

∂t‖ω‖2
Hs �M,T∗ ‖ω‖2

Hs (1 + ‖ω‖L∞ log(2 + ‖ω‖Hs ))

and hence by the chain rule

∂t log(2 + ‖ω‖Hs ) �M,T∗ (1 + ‖ω‖L∞) log(2 + ‖ω‖Hs ).

Using Gronwall’s inequality and (4.27), we conclude the a priori bound

‖ω‖Hs �M,T∗ 1

all the way up to T∗; repeating the proof of (4.14) we also have

‖ω‖L p �M,T∗ 1
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all the way to this time. By the local existence theory already established, this allows
one to continue the solution beyond the time T∗. Taking contrapositives, we obtain the
Beale-Kato-Majda blowup criterion.

5 Non-self-adjoint Blowup: A Simple One-Dimensional Example

Our three blowup theorems will rely on a “non-self-adjoint blowup” mechanism in
which the velocity field u depends on the dynamic field (which will either be a scalar θ

or a 2-form ω, depending on the dimensionality) in a non-self-adjoint fashion (though
for the last two of our theorems, we will rely on an embedding trick to make the vector
potential operator self-adjoint again). To illustrate this mechanism, we begin with a
simple blowup result for a (compressible) one-dimensional equation (a variant of the
inviscid Burgers equation). This result will not be directly used elsewhere in the paper,
but may help illustrate the basic strategy of the arguments in subsequent sections.

Proposition 5.1 (One-dimensional non-self-adjoint blowup). Let θ0 : R → R be a
smooth function with θ0(0) = 0 and θ0(x) = 1 for all x > 1/4. Then there does not
exist a smooth bounded solution u, θ : [0, 1] × R → R to the system

∂tθ + u∂xθ = 0 (5.1)

u(t, x) = −θ(t, 2x) (5.2)

with initial data θ(0, x) = θ0(x).

Note that the negative dilation map that sends a function x �→ θ(x) to the function
x �→ −θ(2x) is non-self-adjoint. The system (5.1), (5.2) transports the field θ at a
position x with a velocity that depends on the value of the field θ at the position 2x ;
however, due to the non-self-adjointness, the value of θ at x has no direct impact on the
dynamics of θ at 2x . This one-way causality makes it easy to force the θ = 1 portion
of the solution to collide with the θ = 0 portion to create the desired singularity; the
point is that the “front” of the θ = 1 portion is being driven by the “bulk” of that
portion, without any feedback in the opposite direction. This basic dynamic will also
power all the rest of the blowup arguments in this paper.

Proof Suppose for contradiction that there are u, θ with the claimed properties. We
use the barrier method, introducing a time-varying barrier �(t) which, on its boundary,
expands slower than the velocity field. More precisely, for each time t ∈ [0, 1], let
�(t) ⊂ R denote the half-line

�(t) := [(1 − t)/2,+∞),

thus �(t) expands outwards at speed 1/2 until it reaches the origin at time t = 1;
see Figure 4. Let T∗ denote the supremum of all the times 0 � T∗ � 1 such that
θ(t, x) = 1 for all 0 � t � T∗ and x ∈ �(t). From the initial condition θ = θ0, and
the fact that θ is transported by the bounded velocity field u, we see that 0 < T∗ � 1.
By continuity we see that θ(T∗) equals 1 on �(T∗).
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Fig. 4 The region �(t) (to the right of the solid bracket) and a slightly later region �(t + dt) (to the right
of the dotted bracket). The active scalar θ(t) is known to equal one on �(t), and to vanish at the origin
(depicted here by a small circle). The curved arrow from 2x to x represents the one-way causality of the
(non-self-adjoint) negative dilation operator in (5.2) that sends x �→ θ(x) to x �→ −θ(2x)

From (5.1), (5.2) applied to x = 0, we have

∂tθ(t, 0) = θ(t, 0)∂xθ(t, 0).

Since θ(0, 0) = θ0(0) = 0 and θ is smooth, we conclude from Gronwall’s inequality
that θ(1, 0) = 0. Since �(1) contains 0, we conclude that T∗ cannot equal 1, thus
0 < T∗ < 1.

Let x∗ := (1−T∗)/2. By construction of T∗ and continuity, we have θ(T∗, x∗) = 1,
but θ(T∗, x) �= 1 for x arbitrarily close to x∗. On the other hand, we have θ(t, x) = 1
for all 0 � t � T∗ and x ∈ �(t). Since x∗ lies on the boundary of �(T∗), which
moves at a velocity of −1/2, and θ is transported by the velocity field u, we conclude
(by the method of characteristics) that

u(T∗, x∗) � −1/2, (5.3)

otherwise one could flow θ backwards in time from T∗ and conclude that θ(t, x) �= 1
for some t slightly less than T∗ and some x barely inside �(t).

On the other hand, we have θ(T∗, x) = 1 for all x ≥ (1 − T∗)/2, and hence from
(5.2) we see that u(T∗, x∗) = −1. This contradicts (5.3) and gives the claim. ��

Remark 5.2 The above argument suggests that, at best, the solution u will survive up
to time 1, and for times t close to 1 it will equal 1 on the region �(t) and vanish at and to
the left of 0. However, as the proof of the above proposition is by contradiction, it does
not preclude the possibility that the solution u in fact blows up sooner, and possibly
with a qualitatively different dynamics15 than the one suggested here. Similarly, the
arguments used to prove the main theorems in our paper suggest a possible blowup
mechanism, but do not ensure that this mechanism actually occurs because the solution
may in fact blow up sooner, and in a different fashion, from that mechanism.

15 In the case when θ is non-negative and vanishing to the left of the origin, it may be possible to analyse
the solution more carefully using some variant of the method of characteristics to obtain more definitive
control on the blowup, for instance it seems possible to show that blowup at a point x0 > 0 cannot occur
if the solution remained regular in the region x � 2x0, which on iteration suggests that blowup can only
occur at (or to the left of) the origin. We thank an anonymous referee for this observation.
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6 A Non-self-adjoint Blowup of an SQG-Type Equation

We now give a two-dimensional version of the argument in the previous section,
establishing finite time blow up of an SQG type equation with a non-self-adjoint vector
potential operator A. The construction here can be viewed as a simplified version of the
three-dimensional blowup construction used to establish Theorem 1.11, and will also
be embedded directly into the three-dimensional blowup constructions in Theorem
1.12 and Theorem 1.13.

Consider the generalised Euler equation (1.10), (1.11) on R
2. We formally write

the vector potential operator A : B2(R
2) → �2(R2) in coordinates as

A(θdx1 ∧ dx2) = (A0θ)
d

dx1 ∧ d

dx2

for some linear operator A0 : �0(R
2) → �0(R

2) and all scalar functions θ : R2 → R.
If we write the fields ω, u in coordinates as

ω = θdx1 ∧ dx2

and

u = u1 d

dx1 + u2 d

dx2

we thus arrive at the active scalar system

∂tθ + u1∂1θ + u2∂2θ = 0 (6.1)

u1 = ∂2(A0θ) (6.2)

u2 = −∂1(A0θ). (6.3)

As noted in the introduction, the SQG equation corresponds to the case A0 = �−1/2.
We now construct an operator A0 which will behave like16 a non-self-adjoint variant
of �−1/2, as follows. We will need some cutoff functions:

• A Littlewood-Paley type cutoff γ : R → R which is smooth, non-negative, sup-
ported on [1/2, 2], and obeys the identity

∑

j∈Z
γ (2 j x) = 1 (6.4)

for all x > 0;

16 In fact, it will be almost be a pseudodifferential operator in the exotic symbol class S−1
1,1, as defined in

[62, Chapter VII], in that the symbol obeys a large but finite number of the estimates required for this class.
We will not prove or use this fact here.
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• A smooth function ψ : R → R supported on [−20, 20] that equals 1 on [−10, 10]
and obeys the moment conditions

∫
R

ψ(x)P(x) dx = 0 for all polynomials
P : R → R of degree at most 1000;

• A smooth function ϕ : R2 → R supported on BR2((0, 10), 1) ∪ BR2((0,−10), 1)

such that
∫
B
R2 ((0,10),1)

ϕ(x) dx = 1, but such that
∫
R2 ϕ(x)P(x) dx = 0 for all

polynomials P : R → R of degree at most 1000.

It is not difficult to construct examples of such cutoff functions γ,ψ, ϕ. The moment
conditions on ψ, ϕ will not be needed in this section, but will become useful in Sections
8, 9, when verifying that certain vector potential operators A constructed using these
functions are reasonable.

Let M � 1 be a sufficiently large constant (depending on γ,ψ, ϕ). The operator
A0 will now be defined for locally integrable θ as

A0(θ)(x1, x2) := 2

M

∞∑

k=0

22k x1γ (2k x2)ψ(2k x1)

∫

R2
θ(y)ϕ(2k y) d vol(y). (6.5)

Note that if θ is supported on the upper half-plane {(x1, x2) : x2 � 0}, then the
value of A0(θ) near (0, 2−k) for some k � 0 is mostly driven by the behaviour of
θ near (0, 10 × 2−k). This is analogous to how, in the previous section, the value of
the velocity field u at a position x was driven by the active scalar θ at position 2x .
Roughly speaking, the operator A0 is normalised so that it will produce a downward
velocity (∂2A0θ,−∂1A0θ) of (0,− 2

M ) near (0, 2−k) whenever the active scalar θ is
equal to 1 near (0, 10 × 2−k).

We now have the following blowup result:

Proposition 6.1 (Finite time blowup). Let θ0 : R2 → R be smooth, compactly sup-
ported, vanishing in the half-plane {(x1, x2) : x2 � 0}, and equal to 1 on the trapezoid
R := {(x1, x2) : 1

2M � x2 ≤ 100; |x1| � x2}. Then there does not exist continuously
differentiable and compactly supported fields θ, u1, u2 : [0, 1] × R

2 → R solving
(6.1), (6.2), (6.3) with θ(0) = θ0.

We now prove this proposition. Let θ0 be as in the proposition, and suppose for
contradiction that such fields θ, u1, u2 exist. From (6.5) we see that for all 0 � t � 1,
A0(θ(t)) vanishes on the half-space {(x1, x2) : x2 < 0}, so by (6.2), (6.3) we conclude
that the velocity fields u1(t), u2(t) do also; from (6.1) and the vanishing of θ0 we
conclude that θ(t) also vanishes here. By continuity we thus have

θ(t, x1, x2) = 0 (6.6)

for all 0 � t � 1 and x2 � 0.
To obtain the required contradiction, we again use the barrier method. For each

time t ∈ [0, 1], let �(t) ⊂ R
2 denote the truncated hyperbolic region

�(t) :=
⎧
⎨

⎩
(x1, x2) :

√

((1 + t)x1)2 +
(

1 − t

M

)2

� x2 � 20

⎫
⎬

⎭
(6.7)
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Fig. 5 A schematic depiction of �(t) (the region above the solid hyperboa, with the upper boundary
x2 = 20 out of view), together with a slightly later version �(t+dt) (the region above the dotted hyperbola).
The origin (0, 0) is marked by a small circle. The rectangle and large disk represent the supports of the
two functions (x1, x2) �→ x1γ (2k x2)ψ(2k x1) and y �→ ϕ(2k y) respectively that occur in (6.5), for the
value of k that is of most importance at the time t . (Actually, y �→ ϕ(2k y) also has a component supported
below the x1 axis, but this component will not be of relevance since θ vanishes there thanks to (6.6).) The
active scalar θ(t) is known to equal one on �(t), and to vanish at and below the x1 axis. The curved arrow
signifies the one-way causality of the non-self-adjoint operator A0

(see Figure 5). Informally, �(t) describes the region where we will be able to force
θ(t) to take the value of 1. Note that as t increases from zero to one, the vertex (0, 1−t

M )

of this region is moving outwards (towards the origin) at a constant speed 1
M , but the

middle portion of the boundary (where x1, x2 are comparable to 1) is instead moving
inwards due to the narrowing of the hyperbola bounding �(t). These dynamics are
chosen to match the bounds we will be able to establish on the velocity field u on the
boundary of this domain.

As in the previous section, let T∗ denote the supremum of all the times 0 � T∗ � 1
such that θ(t) is equal to 1 on �(t) for all 0 � t � T∗. By hypothesis, θ0 equals 1 on
�(0), and so 0 � T∗ � 1. In fact, since ω0 equals 1 on a neighbourhood of �(0), and
θ is transported by the continuous vector field u1 d

dx1 +u2 d
dx2 thanks to (6.1), we have

T∗ > 0. By continuity we see that θ(T∗) equals 1 on �(T∗). Since �(1) contains the
origin, we conclude from (6.6) that T∗ < 1. Thus we have 0 < T∗ < 1.

As θ is transported continuously by u := u1 d
dx1 + u2 d

dx2 , and �(t) is compact and

varies continuously with t , there must exist a point x∗ = (x1∗, x2∗) on the boundary of
�(T∗) which is also on the boundary of the set {x : θ(T∗, x) = 1}. On the other hand,
from (6.5) we see that A0(θ(t)) is supported in the region {(x1, x2) : x2 � 2} for all t ,
and so from (6.1), (6.2), (6.3) we see that θ(t, x1, x2) = θ0(x1, x2) whenever x2 � 2
and 0 � t � 1. Since θ0 = 1 on the trapezoid R, we conclude that θ(T∗) equals 1 in
a neighbourhood of {(x1, x2) ∈ �(T∗) : x2 � 2}. Thus we must have x2∗ < 2, and
hence by (6.7) we have
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x2∗ =
√

((1 + T∗)x1∗)2 +
(

1 − T∗
M

)2

. (6.8)

In particular,
1 − T∗
M

� x2∗ < 2. (6.9)

From (6.8) we have

∂t

√

((1 + t)x1)2 +
(

1 − t

M

)2
∣
∣
∣
∣
∣
∣
t=T∗

= (1 + T∗)(x1∗)2 − (1 − T∗)/M2

x2∗

and thus �(T∗) expands outward at (x1∗, x2∗) at velocity

(1 + T∗)(x1∗)2 − (1 − T∗)/M2

x2∗
n2 (6.10)

where n2 < 0 is the x2 component of the outward unit normal n of �(T∗) at (x1∗, x2∗)

(this expansion becomes negative for large x1∗). Since θ(t) is equal to 1 on �(t) for
t � T∗ and is transported by u, but θ(T∗, x1, x2) is not equal to 1 for (x1, x2) arbitrarily
close to (x1∗, x2∗), we conclude (on tracing characteristics backwards in time from T∗)
the inequality

n · u(T∗, x1∗, x2∗) � (1 + T∗)(x1∗)2 − (1 − T∗)/M2

x2∗
n2, (6.11)

that is to say the outward normal velocity cannot exceed the expansion of the barrier
at (T∗, x∗).

To compute the left-hand side of (6.11), we first compute A0(θ)(T∗, x1, x2) for
(x1, x2) in a small neighbourhood of (x1∗, x2∗). We expand this quantity using (6.5).
From the support of γ , we need only restrict attention to those k for which 2−k � 1

2 x
2;

in particular, from (6.9) and the restriction k � 0 we have

1 � 2−k � 1 − T∗
3M

(6.12)

for (x1, x2) sufficiently close to (x1∗, x2∗). The function y �→ ϕ(2k y) in the integrand
in (6.5) is supported in BR2((0, 10 × 2−k), 2−k) ∪ BR2((0,−10 × 2−k), 2−k). By
(6.6), θ vanishes on the latter ball BR2((0,−10 × 2−k), 2−k). By (6.12), the ball
BR2((0, 10 × 2−k), 2−k) is contained in the truncated cone

{

(x1, x2) : 9 × (1 − T∗)
3M

� x2 � 11; |x1| � 1

9
x2

}
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which can be seen in turn from (6.7) and a brief calculation to lie in �(T∗). By
construction of T∗ and continuity, we have θ(T∗, y) = 1 for all y in BR2((0, 10 ×
2−k), 2−k), and hence

∫

R2
θ(y)ϕ(2k y) d vol(y) =

∫

B
R2 ((0,10×2−k),2−k )

ϕ(2k y) d vol(y)

= 2−2k
∫

B
R2 ((0,10),1)

ϕ(y) d vol(y)

= 2−2k

by construction of ϕ. Inserting this into (6.5), we conclude that

A0(θ)(T∗, x1, x2) = 2

M

∞∑

k=0

x1γ (2k x2)ψ(2k x1).

From (6.8) we have |x1∗| � x2∗ , and hence

|x1| � 2|x2|

for (x1, x2) sufficiently close to (x1∗, x2∗). From the construction of γ and ψ , we
conclude that ψ(2k x1) equals 1 whenever γ (2k x2) is non-zero. Thus

A0(θ)(T∗, x1, x2) = 2

M
x1

∞∑

k=0

γ (2k x2). (6.13)

If x2∗ � 1/2, then the constraint k � 0 can be dropped, and from (6.4) we thus have
A0(θ)(x1, x2) = 2

M x1. From (6.2), (6.3) we thus have

u(T∗, x1∗, x2∗) =
(

0,− 2

M

)

, (6.14)

and hence by (6.11) and the negativity of n2

2

M
� (1 − T∗)/M2 − (1 + T∗)(x1∗)2

x2∗
.

But this contradicts (6.9) (discarding the negative term (1 + T∗)(x1∗)2). Thus we must
have x2∗ � 1/2. But then the quantity γ (2k x2) only is non-zero for k = 0, 1. Mean-
while, from (6.9), (6.8) we have

1 � |x1∗|, x2∗ � 1. (6.15)
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From (6.13), (6.2), (6.3) we then have the crude bounds

u(T∗, x1∗, x2∗) = O(1/M).

From (6.11) we thus have

(−n2)
(1 + T∗)(x1∗)2 − (1 − T∗)/M2

x2∗
� O(1/M).

On the other hand, from (6.15) we have for M large enough that −n2 � 1 and
(1+T∗)(x1∗)2−(1−T∗)/M2

x2∗
� 1, giving the required contradiction. This concludes the proof

of Proposition 6.1.

7 A Stable, Non-self-adjoint Blowup

In this section we prove Theorem 1.11, using a three-dimensional variant of the argu-
ment17 used to prove Proposition 6.1. We will need a large constant M > 1 to be
chosen later. Now we select initial data ω0 ∈ B2(R

3) with the following properties:

• ω0 is smooth and compactly supported. When restricted to the ball BR3(0, 100M),
ω0 supported on the cylindrical region {(x1, x2, x3) ∈ BR3(0, 100M) : (x1)2 +
(x2)2 � 1

M }.
• For any −50M � x3 � 50M , one has the constant circulation

∫

{(x1,x2,x3):(x1)2+(x2)2� 1
M }

ω0 = 1 (7.1)

where we give the disk {(x1, x2, x3) : (x1)2 + (x2)2 � 1
M } the orientation of

d
dx1 ∧ d

dx2 .

To create such an ω0, one can for instance set ω0 = dλ, where λ ∈ C∞
c ∩ �1(R

3)

is chosen to be equal to the closed form

λ = 1

2π

x1dx2 − x2dx1

(x1)2 + (x2)2

in the region {(x1, x2, x3) ∈ BR3(0, 100M) : (x1)2 + (x2)2 � 1
M }, but otherwise

arbitrary outside of this region; the constant circulation (7.1) then follows from Stokes’
theorem.

Next, we construct the vector potential operator A. We introduce the cylindrically
radial variable

r :=
√

(x1)2 + (x2)2

17 A simplified version of this argument, involving a non-compactly supported initial vorticity ω0, can be
found at terrytao.wordpress.com/2016/02/01.
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and the associated cylindrically radial vector field

d

dr
:= x1

r

d

dx1 + x2

r

d

dx2 ,

defined away from the x3 axis {(0, 0, x3) : x3 ∈ R}. Our construction will be designed
so that the velocity field u = δAω will be equal to the inward cylindrically radial vector
field

− 1

Mr

d

dr
= −x1 d

dx1 − x2 d
dx2

Mr2

in a certain key portion of physical space R3. Observe that away from the x3-axis, this
field is divergence free, and can be written in turn as a divergence

− 1

Mr

d

dr
= δ

−x1x3 d
dx1 ∧ d

dx3 − x2x3 d
dx2 ∧ d

dx3

Mr2 . (7.2)

For technical reasons (having to do with ensuring that the vector potential oper-
ator A we will construct is reasonable), we need to replace the 2-vector field
−x1x3 d

dx1 ∧ d
dx3 −x2x3 d

dx2 ∧ d
dx3

r2 appearing on the right-hand side of (7.2) by a variant α

that enjoys better moment vanishing conditions. More precisely, by inserting a suitable
cutoff in the angular variable, one can find a 2-vector field α ∈ �2(R3) that is smooth
away from the origin and homogeneous of degree zero, such that

α = −x1x3 d
dx1 ∧ d

dx3 − x2x3 d
dx2 ∧ d

dx3

r2

and hence

δα = −1

r

d

dr
(7.3)

in the exterior cone region {(x1, x2, x3) : r > |x3|}, and such that all moments of α

vanish to order 1000 (say) on each sphere, or in other words the three components
α12, α13, α23 of α are such that

∫

S2
αi j (θ)P(θ)dθ = 0

for all polynomials P : R3 → R of degree at most 1000, where S2 is the unit sphere
in R

3 and dθ denotes surface measure.
We introduce a smooth dyadic partition of unity of Littlewood-Paley type, writing

1 =
∑

k∈Z
ψ(2k x)
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for a suitable smooth, spherically symmetric function ψ : R3 → R (not depending on
M) supported on the annulus {x : 1/2 � |x | � 2}. Clearly we can then decompose
α = ∑

k∈Z αk , where αk ∈ C∞
c ∩ �2(R3) is defined by the formula

αk(x) := α(x)ψ(2k x).

Next, we let ϕ : R3 → R be a smooth compactly supported function (not depending
on M) of the form

ϕ(x1, x2, x3) = ϕ12(x
1, x2)ϕ3(x

3) (7.4)

where ϕ12 : R2 → R is a smooth spherically symmetric function supported on the disk
BR2(0, 20) that equals one on the disk BR2(0, 10) and obeys the moment conditions

∫

R2
ϕ12(x

1, x2)P(x1, x2) d vol(x) = 0 (7.5)

for any polynomial P of degree at most 1000, and ϕ3 : R → R is a smooth function
supported on [1, 2] with the normalisation

∫ 2

1
ϕ3(x

3) dx3 = 1. (7.6)

We define the vector potential operator A by the formula

Aω(x) :=
∞∑

k=0

2k

M2 αk(x)
∫

R3
ω12(y)ϕ(2k y/M) d vol(y) (7.7)

where ω12 is the dx1 ∧ dx2 component of ω. This operator A is designed so that Aω

will equal 1
M α in regions where ω has circulation equal to one. In particular, u = δAω

will equal − 1
Mr

d
dr in these regions.

It is easy to see that the sum defining Aω is absolutely convergent for ω ∈ C∞
c ∩

B2(R
3). One can write A as an integral operator

Aω(x) =
∫

R3
K (x, y)ω12(y) d vol(y)

where the kernel K is given by the formula

K (x, y) =
∞∑

k=0

2k

M2 αψ(2k x)ϕ(2k y/M)

(here we exploit the hypothesis that α is homogeneous of degree zero). Since αψ, ϕ

are smooth and compactly supported, we see that K obeys the bounds (1.19) for all
0 � i, j � 100 (with implied constants depending on M); indeed, one can even
replace the quantity |x − y| in (1.19) by the larger quantity 2 max(|x |, |y|), and obtain
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bounds for arbitrary i, j � 0 if one allows the implied constant to depend on these
parameters. Now we show (1.20) (again with bounds depending on M). It will suffice
to establish the slightly stronger bounds

‖Aω‖Ḣr+2(M) �M ‖ω‖Ḣr k(M)

for all 0 � r � 100. By duality, it suffices to establish the bounds

∫

R3
〈β(x), Aω(x)〉 d vol(x) �M ‖ω‖Ḣ s (R3)‖β‖Ḣ−s−2(R3)

for any β ∈ Ḣ−s−2 ∩ �2(R
3) and any 0 � s � 100. By Littlewood-Paley decompo-

sition and Schur’s test, it suffices to show that

∫

R3
〈β(x), Aω(x)〉 d vol(x) �M min(N−2

1 , N 200
1 N−202

2 )‖ω‖L2(R3)‖β‖L2(R3)

whenever ω, β ∈ C∞
c ∩ �2(R

3) have Fourier transforms supported on the annuli
{ξ : |ξ | ∼ N1} and {η : |η| ∼ N2} respectively for some N1, N2 > 0. The left-hand

side may be expanded as
∑∞

k=0
2k

M2 XkYk , where

Xk :=
∫

R3
〈β(x), αψ(2k x)〉 d vol(x)

and

Yk :=
∫

R3
ω12(y)ϕ(2k y/M) d vol(y).

From the smoothness and moment conditions on αψ , the Parseval identity, and
Cauchy-Schwarz, we see that

Xk � min(N1/2k, 2k/N1)
3002−3k/2‖β‖L2(R3)

for any k; similarly

Yk �M min(N2/2k, 2k/N2)
3002−3k/2‖ω‖L2(R3).

Inserting these bounds and summing in k, one obtains the claim.
We can now prove Theorem 1.11 with this choice of ω0 and A. Suppose for con-

tradiction that there is a solution ω ∈ X10,2, u ∈ Y 10,2 to (1.10), (1.11) with s = 10
on the time interval [0, 1]. This is enough regularity to interpret the equations (1.10),
(1.11) in the classical sense. The velocity u is bounded in R

3 ×[0, 1], and the vorticity
ω is transported by u and is compactly supported at time zero, and is thus compactly
supported in all of R3 × [0, 1]. From (7.7), (1.11) we see that u is supported in the
ball BR3(0, 2), and thus by (1.11) ω is stationary outside of this ball.
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Fig. 6 A schematic depiction of �(t) (the region inside the hyperboloid, with the exterior of B
R3 (0, 50M)

out of view), together with a slightly later version �(t +dt) (the region inside the dotted hyperboloid). The
origin (0, 0) is marked by a small circle. The vorticity ω is supported inside �(t), which allows one to use
the Kelvin circulation theorem to calculate the circulation on disks Dx3 such as the shaded one depicted
here. The curved arrow depicts the causal relationship in the non-self-adjoint vector potential A, which uses
the circulation on disks such as Dx3 to determine the velocity field in the “neck” of the hyperboloid

We once again use the barrier method. For any time 0 � t � 1, let �(t) ⊂ R
3

denote the region

�(t) := (R3\BR3(0, 50M)) ∪
{

(x1, x2, x3) ∈ R
3 : r �

√
1 − t

M
+ (1 + t)(x3)2

}

;
(7.8)

inside the ball BR3(0, 50M); this is the interior of a one-sheeted hyperboloid which
pinches at the spatial origin (0, 0, 0) at time t = 1, while simultaneously becoming
slightly wider away from this origin. See Figure 6. From the construction of ω0, we
see that ω0 is supported in �(0); from continuity and the fact that the support of ω

propagates at bounded speed, we see also that ω(t) is supported in �(t) for sufficiently
small t . Let T∗ be the supremum of all times 0 � T∗ � 1 for which ω(t) is supported in
�(t) for all 0 � t � T∗, then from the previous observation we have 0 < T∗ � 1, and
from continuity ω(T∗) is supported in �(T∗). We now claim the circulation identity

∫

Dx3

ω(t) = 1 (7.9)
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on the disk Dx3 := {(x1, x2, x3) : r � 30M} for all −10M � x3 � 10M and
0 � t � T∗. For t = 0, this follows from the construction of ω0. The set of 0 � t � T∗
for which the above bound holds is clearly closed in t . Finally, if the above bound
holds for some 0 � t < 1, and t ′ is a time slightly larger than t , then from conservation
of circulation we have

∫

S
ω(t ′) = 1

where S is the image of the disk Dx3 after flowing along the velocity field u from time
t to time t ′. But if t ′ is sufficiently close to t , S is homologous to Dx3 up to a thin
annular strip outside of �(t ′), and so from Stokes theorem and the closed nature of
ω we conclude that (7.9) holds for all t ′ slightly larger than t , and from a continuity
argument we conclude that (7.9) holds for all 0 � t � T∗.

We can now exclude the case T∗ = 1, since in this case �(1) degenerates to a cone
that only intersects the disk D0 = {(x1, x2, 0) : r � 30M} at the origin (0, 0, 0),
contradicting (7.9) and the regularity hypotheses on ω. Thus we have 0 < T∗ < 1.

By definition of T∗, and the continuity of ω, there must be a point x∗ = (x1∗, x2∗, x3∗)

on the boundary of �(T∗) which is on the boundary of the support of ω(T∗). Since
ω(T∗) is equal to ω0 outside of BR3(0, 2), and ω0 vanishes near the boundary of �(T∗),
we must have x∗ ∈ BR3(0, 2). From (7.8) we conclude that the radial coordinate
r∗ := √

(x1∗)2 + (x2∗)2 is given by

r∗ =
√

1 − T

M
+ (1 + T )(x3∗)2

which implies in particular that

max

(

|x3∗|,
√

1 − T∗
M

)

� r � 2 max

(

|x3∗|,
√

1 − T∗
M

)

(7.10)

and hence by Pythagoras’ theorem

max

(

|x3∗|,
√

1 − T∗
M

)

� |x∗| � 3 max

(

|x3∗|,
√

1 − T∗
M

)

. (7.11)

On the other hand, if n denotes the outward normal to �(T∗) at x∗, then since

d

dt

√
1 − t

M
+ (1 + t)(x3∗)2

∣
∣
∣
∣
∣
t=T∗

= (x3∗)2 − 1
M

2

1
√

1−T∗
M + (1 + T∗)(x3∗)2

= −
1
M − (x3∗)2

2r∗
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we see that at x∗, �(T∗) is moving outwards at speed

(x3∗)2 − 1
M

2r∗
nr

where nr is the radial component of n (note this component is negative, reflecting
inwards motion, when x3 is small). Since ω is transported by u and is supported on
�(t) for all t � T∗, we thus have

n · u(T∗, x∗) �
(x3∗)2 − 1

M

2r∗
nr . (7.12)

Now we compute the velocity field u(T∗, x∗) at (T∗, x∗). By (1.11), (7.7) we have

u(T∗, x∗) :=
∞∑

j=0

2 j

M2 δα j (x∗)
∫

R3
ω12(T, y)ϕ(2 j y/M) d vol(y). (7.13)

The quantity δαk(x∗) is only non-vanishing when

2−k−1 � |x∗| � 2−k+1, (7.14)

so we may restrict to k obeying these bounds. By (7.4), the function ϕ(2k y/M) is only
non-vanishing when

2−kM � y3 � 2−k+1M (7.15)

and

r(y) � 20M2−k

where r(y) := √
(y1)2 + (y2)2 is the cylindrically radial component of y. In particular

|y| � 30M since k ≥ 0. Since ω(T∗) is supported in �(T∗), we conclude that
ω12(T, y)ϕ(2k y/M) is only non-vanishing when

r(y) �
√

1 − T∗
M

+ (1 + T∗)(y3)2

which implies from the triangle inequality that

r(y) �
√

1 − T∗
M

+ 2|y3|.

Using (7.15), (7.14), (7.11) we have

y3 � 1

2
M |x∗| � 1

2
M

√
1 − T∗
M
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and hence by (7.15)

r(y) � 3y3 � 6M2−k .

Using (7.4), we then have

ϕ(2k y/M) = ϕ3(2
k y3/M)

and thus

∫

R3
ω12(T∗, y)ϕ(2k y/M) d vol(y) =

∫

R

ϕ3(2
k y3/M)

(∫

r(y)�30M
ω12(T∗, y) dy1dy2

)

dy3.

Applying (7.9) and (7.6), the right-hand side evaluates to M/2k . From (7.13) we
conclude that

u(T∗, x∗) := 1

M

∞∑

k=0

δαk(x∗).

Suppose first that |x∗| � 1/2, then δαk vanishes for k < 0, and we conclude from
(7.3) that u(T∗, x∗) is the inward vector field

u(T∗, x) = − 1

Mr∗
d

dr
,

and hence

n · u(T∗, x∗) = − 1

Mr∗
nr .

Since nr is positive, this contradicts (7.12). Thus we must have 1/2 � |x∗| � 2, which
from (7.11) implies that |x3| is comparable to 1. Now we use the boundedness of α

and its derivatives on this annulus to obtain the crude bound

u(T∗, x∗) = O(1/M)

n · u(T∗, x∗) = O(1/M).

On the other hand, in the region 1/2 � |x∗| � 2, one checks from (7.8) that nr is
comparable to 1, and this again contradicts (7.12) for M large enough. This concludes
the proof of Theorem 1.11.
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8 Embedding SQG Type Equations into Euler Type Equations

8.1 Formal Calculations

To motivate our proof of Theorem 1.12, we begin with the following observation that
embeds solutions of SQG type equations on R

2 into solutions of Euler type equations
on R

2 × R/Z; a key feature of this embedding is that the vector potential operator
Ã on R

2 × R/Z will always be formally self-adjoint, even when the vector potential
operator A on R

2 is not. In this subsection we ignore issues of regularity or decay in
calculations, proceeding instead at a purely formal level.

Let A : B2(R
2) → �2(R2) be a (formal) vector potential operator on R

2. We can
write this operator in coordinates as

A(θdx1 ∧ dx2) = (A0θ)
d

dx1 ∧ d

dx2

for all scalar functions θ : R2 → R, and some linear operator A0 : �0(R
2) → �0(R

2).
Let ω, u solve the generalised Euler equations with vector potential operator A; writing
in coordinates

ω = θdx1 ∧ dx2

and

u = u1 d

dx1 + u2 d

dx2

we thus arrive at the active scalar system (6.1), (6.2), (6.3) from Section 6. We can
formally define the adjoint A∗

0 : �0(R
2) → �0(R

2) of A0 by requiring the formal
identity

∫

R2
(A0θ)(x)θ ′(x) d vol(x) =

∫

R2
θ(x)(A∗

0θ
′)(x) d vol(x)

for all θ, θ ′ ∈ �0(R
2).

We now suppose we have a three-dimensional extension Ã0 : �0(R
2 × R/Z) →

�0(R
2 ×R/Z) of A0, by which we mean a linear operator on �0(R

2 ×R/Z) obeying
the compatibility condition

Ã0(θ ◦ π) := (A0θ) ◦ π (8.1)

for all θ ∈ �0(R
2), where π : R2×R/Z → R

2 is the projection map π(x1, x2, x3) :=
(x1, x2). We also suppose that we have an adjoint operator Ã∗

0 : �0(R
2 × R/Z) →

�0(R
2 × R/Z) which extends A∗

0 in the sense that the analogue

Ã∗
0(θ ◦ π) := (A∗

0θ) ◦ π
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of (8.1) holds for all θ ∈ �0(R
2); we also assume that Ã∗

0 is the adjoint of Ã0 in the
sense that

∫

R2×R/Z

( Ã0θ)(x)θ ′(x) d vol(x) =
∫

R2
θ(x)( Ã∗

0θ
′)(x) d vol(x) (8.2)

for all θ, θ ′ ∈ �0(R
2 × R/Z). One could impose further properties on Ã0 and Ã∗

0,
for instance that they are invariant with respect to translations in the x3 direction, but
we will not need to do so for this formal calculation. Heuristically, if A0 (and hence
A∗

0) are pseudodifferential operators of order −1, then we would expect to be able to
select extensions Ã0, Ã∗

0 to also be pseudodifferential operators of order −1; again,
we will not enforce these requirements during this formal discussion.

We now formally define an operator Ã : B2(R
2 × R/Z) → �2(R2 × R/Z) by the

formula

Ãω := − Ã0�
−1(∂1ω13 + ∂2ω23)

d

dx1 ∧ d

dx2

+ ∂1�
−1 Ã∗

0ω12
d

dx1 ∧ d

dx3

+ ∂2�
−1 Ã∗

0ω12
d

dx2 ∧ d

dx3

+ �−1ω13
d

dx1 ∧ d

dx3

+ �−1ω23
d

dx2 ∧ d

dx3

+ �−1ω12
d

dx1 ∧ d

dx2

(8.3)

whenever ω ∈ B2(R
2 × R/Z), where ω is expressed in coordinates as

ω = ω12dx
1 ∧ dx2 + ω13dx

1 ∧ dx3 + ω23dx
2 ∧ dx3.

Here we pause to make a technical remark: because there are only two noncompact
dimensions in R

2 ×R/Z, the operator �−1 is not quite uniquely defined even on C∞
c

(the symbol 1
4π |ξ |2 is not absolutely integrable near the origin of the frequency space

R
2 × Z). However, the ambiguity is only up to constant functions, which will not

be an issue since every appearance of �−1 will eventually be combined with at least
one spatial derivative. For sake of concreteness, though, we fix an explicit choice18 of
�−1ω for ω ∈ C∞

c ∩ �0(R
2 × R/Z) by the formula

�−1ω(x) =
∫

R2×R/Z

ω(x ′)K1(x − x ′) d vol(x ′)

18 In the language of distributions, this corresponds to fixing an explicit interpretation of the symbol 1
4π |ξ |2

as a tempered distribution, which is well defined up to a constant multiple of the Dirac mass at the origin.
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where the fundamental solution K1(x) for x �= 0 can be obtained via descent from
the fundamental solution 1

4π |x | on R
3 by the renormalised summation formula

K1(x) := lim
N→∞

N∑

n=−N

1

4π |x̃ + (0, 0, n)| − log N

2π
(8.4)

where x̃ is an arbitrary lift of x from R
2 ×R/Z to R

3 (it is easy to see that the precise
choice of lift is irrelevant). Roughly speaking, this kernel behaves like 1

4π |x | when |x |
is small and like log |x | when |x | is large. Note that the convergence of the sum in
(8.4) improves after taking at least one derivative; for instance, one has the absolutely
convergent series representation

∇K1(x) =
∞∑

n=−∞

−(x̃ + (0, 0, n))

4π |x̃ + (0, 0, n)|3 . (8.5)

Since the Hodge Laplacian � is diagonalised by the basis dx1∧dx2, dx1∧dx3, dx2∧
dx3, one could also write the last three terms in (8.3) more compactly as η̃−1�−1ω,
as per (1.13). Observe that if Ã0 is a pseudodifferential operator of order −1, then Ã
will be a pseudodifferential operator of order −2 (formally, at least); similarly, if A0
and A∗

0 commute with translations in the x3 direction, then so does Ã.
From definition and integration by parts it is clear that Ã is formally self-adjoint in

the sense of (1.12). Next, we introduce the 2-form ω ∈ �2(R
2 ×R/Z) and the vector

field ũ ∈ �1(R2 × R/Z) at any given time by the formulae

ω := d(θ̃dx3)

= (∂1θ̃ )dx1 ∧ dx3 + (∂2θ̃ )dx2 ∧ dx3 (8.6)

ũ := ũ1 d

dx1 + ũ2 d

dx2 − θ̃
d

dx3 . (8.7)

where θ̃ := θ ◦ π , ũ1 := u1 ◦ π , ũ2 := u2 ◦ π are the lifts of θ, u1, u2 from R
2 to

R
2 × R/Z. It is clear that ω is closed, and thus lies in B2(R2 × R/Z).

We now claim

Proposition 8.1 ω and ũ (formally) obey the generalised Euler equations (1.10),
(1.11) on R

2 × R/Z with vector potential operator Ã.

Proof We begin with (1.10). By (8.3), (8.6) we have

Ãω = − Ã0�
−1(∂1∂1θ̃ + ∂2∂2θ̃ )

d

dx1 ∧ d

dx2

+ �−1∂1θ̃
d

dx1 ∧ d

dx3

+ �−1∂2θ̃
d

dx2 ∧ d

dx3 .
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But since θ̃ = θ ◦ π is constant in the x3 direction, we have from definition of the
Hodge Laplacian that

∂1∂1θ + ∂2∂2θ̃ = −�θ̃. (8.8)

Taking divergences, and again noting that θ̃ is constant in the x3 direction, we have

δ Ãω = −∂1 Ã0θ̃
d

dx2 + ∂2 Ã0θ̃
d

dx1

+ ∂1�
−1∂1θ̃

d

dx3

+ ∂2�
−1∂2θ̃

d

dx3 .

From (6.2), (6.3), (8.1) one has

ũ1 = ∂2 Ã0θ̃; ũ2 = −∂1 Ã0θ̃;

inserting this and (8.8) into the above computation, we obtain (1.11).
Now we turn to (1.10). From (8.6) we have

ω = d θ̃ ∧ dx3

and hence by (1.7) and (2.8), we have

∂tω + Lũω = d(∂t θ̃ + Lũ θ̃ ) ∧ dx3 − d θ̃ ∧ d(Lũ x
3).

From (8.7) we have

Lũ x
3 = −θ̃

and hence

d θ̃ ∧ d(Lũ x
3) = −d θ̃ ∧ d θ̃ = 0.

Next, since ũ = u ◦ π − θ̃ d
dx3 and θ̃ is constant in the x3 variable, we have

Lũθ = (Luθ) ◦ π

and hence by (6.1)

∂t θ̃ + Lũ θ̃ = 0.

The claim (1.10) follows. ��
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8.2 Rigorous Construction

We now prove Theorem 1.12 rigorously. Set M = R
2 × R/Z, and let ε > 0. Let

M > 1 be sufficiently large depending on ε. Let A0 : �0(R
2) → �0(R

2) be the linear
operator defined in (6.5), thus

A0(θ)(x1, x2) := 2

M

∞∑

k=0

22k x1η(2k x2)ψ(2k x1)

∫

R2
θ(y)ϕ(2k y) d vol(y).

We then define the extension Ã0 : �0(R
2 ×R/Z) → �0(R

2 ×R/Z) by the formula

Ã0(θ)(x1, x2, x3) := 2

M

∞∑

k=0

22k x1η(2k x2)ψ(2k x1)

∫

R

∫

R2
θ(y, x3

+2−k z)ϕ(2k y) d vol(y)κ(z) dz (8.9)

where κ : R → R is a smooth function supported on [−1/2, 1/2] with
∫
R

κ(z) dz = 1.
The purpose of the additional averaging in the z variable is so that Ã0 obeys the kernel
estimates (1.19) in the definition of a reasonable operator.

It is easy to see that the sum defining Ã0(θ) is absolutely convergent for θ in
C∞
c ∩�0(R

2×R/Z); indeed, the summands have size Oθ (2− j ). It is also easy to verify
the relation (8.1) with θ ∈ C∞

c ∩ �0(R
2). The adjoint map Ã∗

0 : �0(R
2 × R/Z) →

�0(R
2 × R/Z) is given by the formula

Ã∗
0(θ)(y1, y2, y3) := 2

M

∞∑

k=0

22kϕ(2k y1, 2k y2)

∫

R

∫

R2
x1η(2k x2)ψ(2k x1)θ(x, y3

−2−k z) dxκ(z) dz;

again, one can check that the sum defining Ã∗
0 is absolutely convergent for θ ∈ C∞

c ∩
�0(R

2 ×R/Z), that Ã∗
0 is the adjoint of Ã0 in the sense of (8.2), and that Ã∗

0 extends
A∗

0. Finally it is clear from construction that Ã0 and Ã∗
0 are both invariant with respect

to translations in the x3 direction.
Now we establish

Proposition 8.2 Ã is a 100-reasonable vector potential operator.

Proof We first prove (1.20). As in the previous section, it will suffice to establish the
slightly stronger bounds

‖ Ãω‖Ḣ k+2(M) � ‖ω‖Ḣ k (M)

for all 0 � k � 100.
The claim is clear for the last three components of (8.3), so we focus on the first

three components. By duality (and commuting �−1 with ∂1, ∂2) it will suffice to show
that
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‖ Ã0∂lω‖Ḣ s (R2×R/Z) � ‖ω‖Ḣ s (R2×R/Z) (8.10)

for all −102 � s � 102, l = 1, 2, and ω ∈ Ḣ s(M) (dropping the requirement that
ω be divergence-free). For future reference we note that we will in fact gain an extra
factor of 1/M , and show that

‖ Ã0∂lω‖Ḣ s (R2×R/Z) � 1

M
‖ω‖Ḣ s (R2×R/Z). (8.11)

Unwinding the definition of the Sobolev norms, it suffices to show that

‖�s/2 Ã0∂l�
−s/2 f ‖L2(R2×R/Z) � 1

M
‖ f ‖L2(R2×R/Z)

for all f ∈ L2(R2 × R/Z). By Minkowski’s inequality and translation invariance, it
suffices to prove this with Ã0 replaced by the variant operator Ã′

0 defined by

Ã′
0(θ)(x1, x2, x3) := 2

M

∞∑

k=0

22k x1γ (2k x2)ψ(2k x1)

∫

R2
θ(y, x3)ϕ(2k y) d vol(y)

thus Ã′
0 simply applies the operator A0 on each x3 slice of R2 ×R/Z. Taking Fourier

coefficients in theR/Z coordinate (noting that A′
0 and ∂i commute with this operation),

it suffices to show the two-dimensional estimate

‖(E + �)s/2A0∇(E + �)−s/2 f ‖L2(R2) � 1

M
‖ f ‖L2(R2)

for all f ∈ L2(R2) and E � 0, where � now denotes the Hodge Laplacian on R
2

rather than R
2 × R/Z.

Fix E � 0. By duality, it suffices to establish the bound

|〈A0∇(E + �)−s/2 f, (E + �)s/2g〉| � 1

M
‖ f ‖L2(R2)‖g‖L2(R2)

for f, g ∈ L2(R2). By (6.5) and integration by parts, the left-hand side is
− 1

M

∑∞
k=0 XkYk , where

Xk := 2k
∫

R2
(E + �)−s/2 f (y)(∇ϕ)(2k y) d vol(y)

and

Yk := 2k
∫

R2
(E + �)s/2g(x)2k x1γ (2k x2)ψ(2k x1) d vol(x).

The functions y �→ ∇ϕ(y) and (x1, x2) �→ x1γ (x2)ψ(x1) are smooth and compactly
supported, and orthogonal to all polynomials of degree up to 1000, thus their Fourier
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transforms are Schwartz functions that vanish to order 1000 at the origin. From this,
Plancherel’s theorem, and Cauchy-Schwarz, we see that

Xk �
∑

N

(E + N 2)−s/2 min(N/2k, 2k/N )1000‖PN f ‖L2(R2)

and

Yk �
∑

M

(E + M2)−s/2 min(M/2k, 2k/M)1000‖PMg‖L2(R2)

where N , M range over the dyadic numbers 2n, n ∈ Z, and PN denotes the Fourier
projection to frequencies N � |ξ | � 2N . Multiplying and summing in k and using
the hypothesis |k| � 102, we conclude that

∞∑

k=0

XkYk �
∑

N

∑

M

min(M/N , N/M)100‖PN f ‖L2(R2)‖PMg‖L2(R2)

and the claim now follows from Schur’s test and Plancherel’s theorem.
Now we prove (1.19). We need to show that the integral kernel of Ã obeys the

bounds

|∇ i
x∇ j

y K (x, y)| � max(|x − y|−i− j−1, |x − y|−i− j )

for 0 � i, j � 100 with i + j � 1. The contribution of the last three components
of Ã in (8.3) are acceptable after differentiating (8.4) as in (8.5) (note here that it is
important that i+ j ≥ 1). It remains to control the kernel of the first three components.
This kernel on R

2 × R/Z (and its derivatives) can be obtained by descent from the
kernel of the corresponding operator on R

3 (and its derivatives) by summing over
cosets of {0} × {0} × Z as in (8.4), (8.5). Thus, if we let K̃ denote the kernel of the
first three components of Ã on R

3, it will suffice to show that

|∇ i
x∇ j

y K̃ (x, y)| �i, j |x − y|−i− j−1

for 0 � i, j � 100 with i + j � 1; the condition i + j ≥ 1 is needed to ensure
a convergent sum over the coset of {0} × {0} × Z, but will not otherwise be needed
henceforth.

By linearity and taking adjoints, it thus suffices to verify the above bound for the
integral kernel of Ã0�

−1∂l on R
3 for l = 1, 2.

From the Newton formula

�−1 f (w) = 1

4π

∫

R3

f (y)

|w − y| d vol(y)
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on R
3, we see that the kernel �−1∂l is given by L(w − y), where

L(x) := −1

4π

xl

|x |3 ;

also, from (8.9), the kernel R(x, w) of Ã0 is given by

R(x, w) =
∞∑

k=0

Rk(x, w)

where

Rk(x, w) := 2

M
23k x1γ (2k x2)ψ(2k x1)ϕ(2k(w1, w2))κ(2k(x3 − w3)).

Thus it will suffice to show that

|
∞∑

k=0

∇ i
x∇ j

y

∫

R3
Rk(x, w)L(w − y) d vol(w)| � |x − y|−i− j−1 (8.12)

for 0 � i, j � 100.
From the construction of γ,ψ, ϕ, κ we see that Rk(x, w) is supported on the region

|x − w| � 100 × 2−k and obeys the derivative bounds

|∇ i
x∇ j

wRk(x, w)| � 2(i+ j+2)k (8.13)

for 0 � i, j � 100. Also, from the moment conditions on ϕ we see that for any
x ∈ R

3, the function w �→ Rk(x, w) is orthogonal to any polynomial of degree at
most 1000.

Let us first consider the contribution to the left-hand side of (8.12) of those k for
which

|x − y| � 200 × 2−k . (8.14)

Then we have |w − y| � |x − y|, and hence |∇m
y L(w − y)| � |x − y|−2−m for any

0 � m � 1000. For each fixed x ∈ R
3, and for w in the support of Rk(x, w), one can

then use Taylor expansion to write ∇ j L(w − y) as a polynomial of degree at most
1000, plus an error of size at most O((2−k/|x− y|)500|x− y|−2− j ) (say). Using (8.13)
(with j replaced by 0), and the support of Rk , we conclude that

|∇ i
x∇ j

y

∫

R3
Rk(x, w)L(w − y) dw| � 2(i+2)k × 2−3k × (2−k/|x − y|)500|x − y|−2− j .

Summing over all k obeying (8.14), we see that this contribution to the left-hand side
of (8.12) is acceptable.
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It remains to treat the contribution of those k for which (8.14) fails. In this case we
integrate by parts to obtain the identity

|∇ i
x∇ j

y

∫

R3
Rk(x, w)L(w − y) d vol(w)| = |

∫

R3
∇ i
x∇ j

wRk(x, w)L(w − y) d vol(w)|.

Applying (8.13) and the support of Rk , we conclude that

|∇i
x∇ j

y

∫

R3
Rk(x, w)L(w − y) d vol(w)| � 2(i+ j+2)k

∫

|w−x |�100×2−k
|L(w − y)| d vol(w).

Since (8.14) fails, the condition |w − x | � 100 × 2−k implies that |w − y| � 2−k ,
and hence by the bound |L(w − y)| � |w − y|−2, we have

2(i+ j+2)k
∫

|w−x |�100×2−k
|L(w − y)| d vol(w) � 2(i+ j+1)k .

Summing over all k for which (8.14) fails, we see that this contribution to (8.12) is
also acceptable. ��

Next, we establish positive definiteness.

Proposition 8.3 For any ω ∈ C∞
c ∩ B2(M), we hqave

∫

M
〈ω, Ãω〉 d vol =

(

1 + O

(
1

M

))

‖ω‖2
Ḣ−1(M)

. (8.15)

Proof From Plancherel’s theorem, the contribution of the last three terms of (8.3) to the
left-hand side of (8.15) is precisely ‖ω‖2

Ḣ−1(M)
. By the Cauchy-Schwarz inequality

and the triangle inequality, it thus suffices to establish the bounds

‖ Ã0u‖Ḣ1(M) � 1

M
‖u‖L2(M)

and

‖ Ã∗
0v‖L2(M) � 1

M
‖v‖Ḣ−1(M)

for u ∈ L2(M) and v ∈ Ḣ−1(M). But this follows from (8.11) and duality. ��
Let θ0 : R2 → R be initial data of the type in Proposition 6.1, and let θ̃0 : M → R

be the lift of θ0 to M defined by θ̃0 := θ0 ◦ π . Following (8.6), we define the initial
data ω0 ∈ C∞

c ∩ B2(M) by the formula

ω0 := (∂1θ̃0)dx
1 ∧ dx3 + (∂2θ̃0)dx

2 ∧ dx3. (8.16)

We now claim (for M sufficiently large) that Theorem 1.12 holds with this choice of
initial data ω0 and with the operator Ã constructed above as vector potential operator.
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We have already verified that Ã is 100-reasonable, formally self-adjoint, and obeys
(1.21) (if M is sufficiently large depending on ε). Thus, the only way that Theorem
1.12 can still fail is if there is a solution ω ∈ X10,2, u ∈ Y 10,2 to the generalised Euler
equations with vector potential operator Ã and initial vorticity ω0 on the time interval
[0, 1].

Suppose for contradiction that this is the case. Obseve that ω0 is invariant with
respect to translations in the x3 direction, and that Ã commutes with these translations.
Thus, if ω, u solve the generalised Euler equations with initial data ω0, then so do any
translates of ω, u in the x3 direction. Applying the uniqueness component of Theorem
1.9, we conclude that ω, u are invariant with respect to translations in the x3 direction,
thus

∂3ω = 0; ∂3u = 0.

We define the scalar field θ̃ : [0, 1] × M → R by solving the transport equation

∂t θ̃ + Lu θ̃ = 0 (8.17)

with initial data θ̃ = θ̃0. Since u lies in Y 10,2 and θ̃0 is smooth and compactly sup-
ported, there is no difficulty defining θ̃ uniquely, in such a way that it is continuously
differentiable in both space and time, and compactly supported in space. Since θ̃ and
u are invariant with respect to translations in the x3 direction, θ̃ is also.

We now can justify the formal ansatz (8.6):

Proposition 8.4 On [0, 1] × M, we have

ω = d θ̃ ∧ dx3

= ∂1θ̃dx
1 ∧ dx3 + ∂2θ̃dx

2 ∧ dx3.

Proof Set α to be the 2-form

α := ω − d θ̃ ∧ dx3,

then α is continuously differentiable in space and time, and our task is to show that
α(t) = 0 for all t ∈ [0, 1]. From (8.16) we know that α(0) = 0. We now use (1.10),
(8.17) to compute

(∂t + Lu)α = (∂t + Lu)α − (∂t + Lu)(d θ̃ ∧ dx3)

= 0 − d0 ∧ dx3 − d θ̃ ∧ dLux
3

= −d θ̃ ∧ du3.

On the other hand, from (1.11) and (8.3) we have

u3 = ∂1∂1�
−1 Ã∗

0ω12 + ∂2∂2�
−1 Ã∗

0ω12

+ ∂1�
−1ω13 + ∂2�

−1ω23
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= Ã∗
0α12 + ∂1�

−1∂1θ̃ + ∂2�
−1∂2θ̃

+ ∂1�
−1α13 + ∂2�

−1α23

= ( Ã∗
0α12 + ∂1�

−1α13 + ∂2�
−1α23) − θ̃ .

Since d θ̃ ∧ d θ̃ = 0, we thus have

(∂t + Lu)α = −d θ̃ ∧ d( Ã∗
0α12 + ∂1�

−1α13 + ∂2�
−1α23).

Taking inner products with α and integrating by parts (which can be justified as ω lies
in X10,2 and θ is continuously differentiable and compactly supported), we conclude
that

∂t‖α‖2
L2 = −2〈d θ̃ ∧ d( Ã∗

0α12 + ∂1�
−1α13 + ∂2�

−1α23), α〉L2(M).

From the proof of Proposition 8.2, we know that Ã∗
0 maps L2(M) to Ḣ1(M). As d θ̃

is bounded, we conclude that

∂t‖α‖2
L2 �θ ‖α‖2

L2

and hence from Gronwall’s inequality we have α(t) = 0 for all 0 � t � 1, as required.
��

If we insert the above proposition back into (8.3), we have

Ãω := − Ã0�
−1(∂1∂1θ̃ + ∂2∂2θ̃ )

d

dx1 ∧ d

dx2

+ �−1∂1θ̃
d

dx1 ∧ d

dx3

+ �−1∂2θ̃
d

dx2 ∧ d

dx3 .

The first term on the right-hand side simplifies to Ã0θ̃
d

dx1 ∧ d
dx2 . Taking divergences

(and recalling that θ̃ is constant in the x3 direction), and using (1.11), we conclude
that

u = ∂2( Ã0θ̃ )
d

dx1 − ∂1( Ã0θ̃ )
d

dx2 − θ̃
d

dx3

(cf. (8.7)). The equation (8.17) then becomes

∂t θ̃ + ∂2( Ã0θ̃ )∂1θ̃ − ∂1( Ã0θ̃ )∂2θ̃ = 0.

Since θ̃ is constant in the x3 direction, we can write θ̃ = θ ◦ π for some continuously
differentiable, compactly supported θ : [0, 1] × R

2 → R. From (8.1) we then have

∂tθ + ∂2(A0θ)∂1θ − ∂1(A0θ)∂2θ = 0.
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But then θ contradicts Proposition 6.1 (with u1 := ∂2(A0θ) and u1 := −∂1(A0θ)), as
required.

Remark 8.5 Applying the above arguments with A0 replaced by the SQG vector
potential operator �−1/2, we obtain a rigorous connection between SQG and an
explicit three dimensional generalised Euler equation. Namely, if there exists a finite
time blowup solution to SQG in R

2 (with suitable decay at infinity), then there exists
a finite time blowup solution to a generalised Euler equation in R

2 × R/Z for an
explicit vector potential operator A that is a Fourier multiplier of order −2 which is
self-adjoint and positive definite.

9 Removing the Periodicity

We now modify the arguments of the previous section to prove Theorem 1.13. Let
M denote the Euclidean manifold that is represented in Cartesian coordinates by R

3.
Whereas in previous sections we would use the notations M and R

3 interchangeably,
in this section we will take care to distinguish the manifold M from its Cartesian
coordinate representation R

3. This is because we will be using a number of other
coordinate systems for M, such as cylindrical coordinates, in which the coordinate
space is notR3. More precisely, for any triple (x1, x2, x3) ∈ R

3 of real numbers, we let
(x1, x2, x3)car ∈ M denote the associated point on M, thus the map (x1, x2, x3) �→
(x1, x2, x3)car gives an isomorphism between R

3 and M; however we will not view
this isomorphisms as an identification, keeping the point (x1, x2, x3)car ∈ M and the
triple (x1, x2, x3) ∈ R

3 conceptually distinct.
As mentioned in the introduction, the strategy is to try to embed R

2 × R/Z (or
more precisely, R2 × R/Z equipped with a constant coefficient Riemannian metric)
intoM. Clearly this cannot be done globally, and certainly not isometrically; however,
it can be done locally, and nearly isometrically, by modifying the familiar cylindrical
coordinates19 (z, r, α)cyl of M, with (z, r, α) ∈ R × [0,+∞) × R/2πZ, defined in
terms of the Cartesian coordinate system (x1, x2, x3)car by the change of variables

(x1, x2, x3)car = (r cos α, r sin α, z)car = (z, r, α)cyl.

Of course, the cylindrical coordinate system is singular at the x3-axis

{(x1, x2, x3)car : x1 = x2 = 0} = {(z, r, α)cyl : r = 0}, (9.1)

but let us ignore this singularity for the moment and work away from this axis, in
which the map (z, r, α) �→ (z, r, α)cyl becomes a diffeomorphism between (most of)
R × [0,+∞) × R/2πZ and (most of) M. In cylindrical coordinates, the Euclidean
first fundamental form

dη2 = (dx1)2 + (dx2)2 + (dx3)2

19 We use α here instead of θ to denote the angular variable, as we will reserve the latter symbol for an
active scalar field later in this section.
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becomes

dη2 = dz2 + dr2 + r2dα2

while the volume form

d vol = dx1 ∧ dx2 ∧ dx3

becomes

d vol = rdz ∧ dr ∧ dα.

Note that the first fundamental form and the volume element both have variable coeffi-
cients due to the factors of r . In the latter case, we can rectify this by replacing the radial
variable r with the modified radial variable y := r2/2, thus introducing20 a modified
cylindrical coordinate system (z, y, α)mod with (z, y, α) ∈ R × [0,+∞) × R/2πZ,
defined through the change of variables

(x1, x2, x3)car = (
√

2y cos α,
√

2y sin α, z)car = (z,
√

2y, α)cyl = (z, y, α)mod.

The volume form is now constant coefficient,

d vol = dz ∧ dy ∧ dθ,

so in particular the Hodge star ∗ and codifferential δ look the same when written in
(z, y, α)mod coefficients as they do in (x1, x2, x3)car coordinates. However the first
fundamental form remains variable coefficient:

dη2 = dz2 + 1

2y
dy2 + 2ydα2.

Nevertheless, we observe that the first fundamental form is approximately constant
coefficient when y is large. Indeed, let ε > 0 be the quantity in Theorem 1.13. If
M � 1010 is a large constant depending on ε to be chosen later, and we reparameterise
the annular region

{(z, y, α)mod : |y − M2/2| < M3/2; |z| < M1/2} (9.2)

in M using rescaled coordinates (w1, w2, w3)rsc, with (w1, w2, w3) confined to the
region

Q := (−M1/2, M1/2) × (−M1/2, M1/2) × R/2πMZ,

20 This modified cylindrical coordinate system has been used previously to simplify the true Euler equations
in the case of axisymmetric solutions with swirl; see [4,69].
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defined by

(z, y, α)mod = (w1, M2/2 + Mw2,
w3

M
)mod = (w1, w2, w3)rsc

or equivalently

(w1, w2, w3)rsc =
(√

M2/2 + Mw2 cos
w3

M
,

√

M2/2 + Mw2 sin
w3

M
, w1

)

car

then the volume form is still constant coefficient in this region,

d vol = dw1 ∧ dw2 ∧ dw3

and the first fundamental form is almost Euclidean:

dη2 = (dw1)2 +
(

1 + 2w2

M

)−1

(dw2)2 +
(

1 + 2w2

M

)

(dw3)2. (9.3)

From this it is easy to see that the map w �→ wrsc is a bilipschitz identification of Q
(with the Euclidean metric) with the region (9.2), where the bilipschitz constants are
bounded uniformly in M . It will later be convenient (mostly for notational reasons) to
embed Q as a subset ofR2×R/2πMZ, but we do not attempt to identify the remaining
portion of R

2 × R/2πMZ with any portion of M, thus leaving the (w1, w2, w3)

coordinate system as a local coordinate system parameterising (9.2) only.
In order to smoothly interpolate between the Euclidean structure onR2 ×R/2πMZ

and the Euclidean structure on R
3, we will (for technical reasons) need a very gentle

cutoff function ϕ ∈ Cc(M) supported in (9.2) which is bounded by 1 and small in
Ḣ1(M), while remaining invariant with respect to rotations around the axis (9.1); this
is possible due to the failure of the two-dimensional Sobolev embedding Ḣ1 �⊂ L∞.
More precisely, we set

ϕ((w1, w2, w3)rsc) := h(w1, w2)

in (9.2), with ϕ vanishing outside of (9.2), where h : R2 → [0, 1] is a smooth, spheri-
cally symmetric function supported on BR2(0,

√
M) which equals 1 on BR2(0, 103),

and is such that

h(w) = 1 − log |w|
log

√
M

when 104 � |w| �
√
M/10, with the derivative estimates

|∇ j h(w)| � j
1

log M

1

(1 + |w|) j

for all j � 1 and w ∈ R
2.
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Let I : �0(M) → �0(R
2 × R/2πMZ) be the operator defined by

I f (w1, w2, w3) := (ϕ f )((w1, w2, w3)rsc)

for (w1, w2, w3) in Q, with I f vanishing outside of this region. The adjoint operator
I ∗ : �0(R

2 × R/2πMZ) → �0(M) is then given by the formula

I ∗ f ((w1, w2, w3)rsc) = ϕ((w1, w2, w3)rsc) f (w
1, w2, w3)

in the annulus (9.2), with I ∗ f vanishing outside of this annulus. (The fact that I ∗
is the adjoint of I follows from the fact that the volume form on M is given by
dw1 ∧ dw2 ∧ dw3 in (9.2), so there is no Jacobian factor.)

Let Ã0 : �0(R
2 × R/2πMZ) → �0(R

2 × R/2πMZ) be the operator defined by
(8.9) (but now with the x3 variable ranging in R/2πMZ rather than R/Z). We now
define the operator Ã : B2(M) → �2(M) by the formula

Ã = I ∗A′ I + η̃−1�−1 − ϕη̃−1�−1ϕ (9.4)

where the operator A′ : �2(R
2 × R/2πMZ) → �2(R2 × R/2πMZ) is given by the

formula

A′ω := − Ã0�
−1
w (∂1ω13 + ∂2ω23)

d

dw1 ∧ d

dw2

+ ∂1�
−1
w Ã∗

0ω12
d

dw1 ∧ d

dw3

+ ∂2�
−1
w Ã∗

0ω12
d

dw2 ∧ d

dw3

+ �−1
w ω13

d

dw1 ∧ d

dw3

+ �−1
w ω23

d

dw2 ∧ d

dw3

+ �−1
w ω12

d

dw1 ∧ d

dw2

(9.5)

where ω ∈ �2(R
2 × R/2πMZ) is expressed in coordinates as

ω = ω12dw1 ∧ dw2 + ω13dw1 ∧ dw3 + ω23dw2 ∧ dw3,

and �w denotes the Euclidean Laplacian on R
2 × R/2πMZ (the reader should take

care to not confuse this with the Laplacian � onM, although the two operators become
close to each other in some sense when M is large). As in the previous section, we
need to fix an inverse of �−1

w ; for sake of concreteness we set

�−1
w ω(w) =

∫

R2×R/2πMZ

ω(w′)K2πM (w − w′) d vol(w′)
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where

K2πM (w) := lim
N→∞

N∑

n=−N

1

4π |w̃ + (0, 0, 2πMn)| − log N

2π
(9.6)

and w̃ is an arbitrary lift of w from R
2 × R/2πMZ to R

3.
Informally, Ã behaves like the true Euler vector potential η̃−1�−1 away from (9.2),

but inside the smaller region

{(w1, w2, w3)rsc : (w1, w2) ∈ BR2(0, 103)}

it behaves (in (w1, w2, w3) coordinates) like the operator defined in (8.3).
It is easy to see that Ã is well defined on C∞

c ∩ B2(M) and formally self-adjoint.
Now we verify the further properties of Ã needed for Theorem 1.13.

Proposition 9.1 Ã is a 100-reasonable vector potential operator.

Proof We begin with establishing (1.20). Let 0 � k � 100. From standard elliptic
estimates we see that the contribution of the η̃−1�−1 term in (9.4) is acceptable. Now
we turn to the ϕη̃−1�−1ϕ term. If ω is bounded in Hk(M), then from the Leibniz rule
and Hölder’s inequality ϕω is bounded in both Hk(M) and L1(M). From Sobolev
embedding we see that �−1ϕω is locally in Hk+2(M) (this can be seen for instance by
breaking up ϕω into low frequency and high frequency components), with bounds that
are allowed to depend on M . From this and the Leibniz rule we see that ϕη̃−1�−1ϕω

is bounded in Hk+2(M), and from this we see that the contribution of the ϕη̃−1�−1ϕ

is also acceptable.
To finish the proof of (1.20), it will suffice to show that

‖I ∗A′ Iω‖Hk+2(M) �M ‖ω‖Hk (M).

Changing variables to (w1, w2, w3)rsc coordinates, we see that it suffices to show that

‖ϕA′ω‖Hk+2(R2×R/2πMZ) �M ‖ω‖Hk (R2×R/2πMZ)

whenever ω is supported on the support of ϕ (which by abuse of notation we now view
as a function on R

2 × R/2πMZ). The contribution of the �−1
w ωi j terms in (9.5) for

i j = 13, 23, 12 can be treated by the same argument used to control ϕη̃−1�−1ϕ. It
thus remains to show that

‖ϕ Ã0�
−1
w ∇ω‖Hk+2(R2×R/2πMZ) �M ‖ω‖Hk (R2×R/2πMZ) (9.7)

and
‖ϕ∇�−1

w Ã∗
0ω‖Hk+2(R2×R/2πMZ) �M ‖ω‖Hk (R2×R/2πMZ) (9.8)

for scalar ω ∈ Hk(R2 × R/2πMZ) supported in the support of ϕ.
If ω is bounded in Hk(R2 × R/2πMZ), then by (8.10) (replacing R/Z with

R/2πMZ) we see that Ã0�
−1
w ∇ω is bounded in Ḣ k+2(R2 × R/2πMZ), but from
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(8.9) we also see that this function is supported in BR2×R/2πMZ(0, 100). From this

and the fundamental theorem of calculus we see that Ã0�
−1
w ∇ω is in fact bounded in

Hk+2(R2 × R/2πMZ), giving (9.7). A similar argument gives (9.8), completing the
proof of (1.20).

Now we show (1.19). From the explicit formula 1
4π |x−y| for the Newton potential

kernel of �−1, we see that the contribution of the η̃−1�−1 term in (9.4) is acceptable.
The remaining terms in (9.4) only give a contribution to the kernel when x, y = OM (1).
The contribution of ϕη̃−1�−1ϕ can then be seen to also be acceptable by the Leibniz
rule. By further application of the Leibniz rule and the chain rule, it thus suffices to
show that the kernel K (w,w′) of A′ obeys the estimates

|∇ i
w∇ j

w′K (w,w′)| �M |w − w′|−i− j−1

whenever 0 � i, j � M with i + j � 1. But this follows from the arguments used to
prove Proposition 8.2. ��
Proposition 9.2 For any ω ∈ C∞

c ∩ B2(M), we have

∫

M
〈ω, Ãω〉 d vol =

(

1 + O

(
1

log M

))

‖ω‖2
Ḣ−1(M)

. (9.9)

Proof From Fourier analysis we may write ω = dv for some v ∈ L2 ∩ �1(M) with

‖v‖L2(M) = ‖ω‖Ḣ−1(M).

From integration by parts, we have

∫

M
〈dv, η̃−1�−1dv〉 d vol = ‖v‖2

L2(M)
(9.10)

so by (9.4) and the triangle inequality it suffices to show that

∫

M
〈dv, (I ∗A′ I − ϕη̃−1�−1ϕ)dv〉 d vol = O

(
1

log M
‖v‖2

L2(M)

)

.

From the Newton formula

�−1 f (x) =
∫

M
f (y)

4π |x − y| d vol(y)

one has

∫

M
〈dv, ϕη̃−1�−1ϕdv〉 d vol =

∫

M

∫

M
〈ϕdv(x), η̃−1ϕdv(y)〉

4π |x − y| d vol(x) d vol(y)

=
∫

R2×R/2πMZ

∫

R2×R/2πMZ

〈I dv(w), (η̃′)−1 I dv(w′)〉
4π |wrsc − w′

rsc|
d vol(w) d vol(w′)
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where η′ is the metric on the support of Iω formed by pulling back the Euclidean
metric η, thus by (9.3)

(dη′)2 = (dw1)2 +
(

1 + 2w2

M

)−1

(dw2)2 +
(

1 + 2w2

M

)

(dw3)2. (9.11)

Meanwhile, from (9.5) we have

∫

M
〈dv, I ∗A′ I dv〉 d vol =

∫

R2×R/2πMZ

〈I dv, A′ I dv〉 d vol

= −2
∫

R2×R/2πMZ

〈I dv, Ã0�
−1
w (∂1(I dv)13 + ∂2(I dv)23)

d

dw1 ∧ d

dw2 〉 d vol

+
∫

R2×R/2πMZ

∫

R2×R/2πMZ

K2πM (w − w′)〈I dv(w), η̃−1 I dv(w′)〉 d vol(w) d vol(w′),

where by abuse of notation η now also denotes the Euclidean metric onR2×R/2πMZ,
and K2πM was defined in (9.6). Thus by the triangle inequality it will suffice to establish
the estimates

∫

R2×R/2πMZ

〈

I dv, Ã0�
−1
w (∂1(I dv)13 + ∂2(I dv)23)

d

dw1 ∧ d

dw2

〉

d vol

= O

(
1

log M
‖v‖2

L2(M)

)

(9.12)

and

∫

R2×R/2πMZ

∫

R2×R/2πMZ

〈I dv(w), (η̃′)−1 I dv(w′)〉
4π |wrsc − w′

rsc|
− K2πM (w − w′)〈I dv(w), η̃−1 I dv(w′)〉

d vol(w) d vol(w′) = O(
1

log M
‖v‖2

L2(M)
).

(9.13)

The bound (9.12) follows easily from (8.11) (with the factor of 1
log M improved to 1

M ),
so we turn to (9.13). Forming the tensor kernel

L(w,w′) := 1

4π |wrsc − w′
rsc|

η̃′(w′)−1 − K2πM (w − w′)η̃(w′)−1

we see from integration by parts, the chain rule and duality that it suffices to prove the
operator norm bound
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∥
∥
∥
∥δ

∫

R2×R/2πMZ

ϕ(·)L(·, w′)ϕ(w′)dv(w′) d vol(w′)
∥
∥
∥
∥
L2(R2×R/2πMZ)

� 1

log M
‖v‖L2(R2×R/2πMZ) (9.14)

for all v ∈ L2 ∩ �1(R
2 × R/2πMZ).

To prove this estimate, we first claim the kernel estimates

|∇ i
w∇ j

w′L(w,w′)| �i, j
1√
M

1

|w − w′|i+ j

(
1√
M

+ 1

|w − w′|
)

(9.15)

for distinct w,w′ ∈ Q and i, j � 0.
From (9.11) we have

|η̃′(w′)−1 − η̃(w′)| � 1√
M

for w′ ∈ Q, and more generally

∣
∣
∣∇ j

w′(η̃′(w′)−1 − η̃(w′))
∣
∣
∣ � j

1√
M

1

M j

for w′ ∈ Q and j � 0. Also, from many applications of the chain rule one has

∣
∣
∣
∣∇ i

w∇ j
w′

1

4π |wrsc − w′
rsc|

∣
∣
∣
∣ �i, j

1

|x − y|1+i+ j

for w,w′ ∈ Q and i, j � 0, and hence by the product rule

∣
∣
∣
∣∇ i

w∇ j
w′(

1

4π |wrsc − w′
rsc|

(η̃′(w′)−1 − η̃(w′)−1)

∣
∣
∣
∣ �i, j

1√
M

1

|w − w′|1+i+ j
.

Thus by the triangle inequality it suffices to show that

∣
∣
∣
∣∇ i

w∇ j
w′(

1

4π |wrsc − w′
rsc|

η̃(w′)−1 − K2πM (w − w′)η̃(w′)−1)

∣
∣
∣
∣

�i, j
1√
M

1

|w − w′|i+ j

(
1√
M

+ 1

|w − w′|
)

.

As η̃ is constant coefficient, we can drop the η̃(w′)−1 factor, thus we reduce to estab-
lishing
∣
∣
∣
∣∇i

w∇ j
w′ (

1

4π |wrsc − w′
rsc| − K2πM (w − w′))

∣
∣
∣
∣ �i, j

1√
M

1

|w − w′|i+ j

(
1√
M

+ 1

|w − w′|
)

(9.16)
for w,w′ ∈ Q and i, j � 0.
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We first dispose of the case where w,w′ are very far apart in the sense that |w−w′| �
M/10. From (9.6) (and recalling that the w1 and w2 components of w,w′ are O(

√
M))

we see that

|K2πM (w − w′)| � 1

M

which by the harmonicity of K2πM implies that

|∇ i
w∇ j

w′K2πM (w − w′)| �i, j
1

M1+i+ j

Similarly, as the map w �→ wrsc is bilipschitz with all derivatives bounded, we have

∣
∣
∣
∣

1

4π |wrsc − w′
rsc|

∣
∣
∣
∣ � 1

M

and more generally

∣
∣
∣
∣∇ i

w∇ j
w′

1

4π |wrsc − w′
rsc|

∣
∣
∣
∣ �i, j

1

M1+i+ j
,

and so (9.16) follows from the triangle inequality in this case.
Henceforth we suppose that |w − w′| < M/10. From (9.6) we now have

∣
∣
∣
∣K2πM (w − w′) − 1

4π |w − w′|
∣
∣
∣
∣ � 1

M

which by harmonicity implies

∣
∣
∣
∣∇ i

w∇ j
w′(K2πM (w − w′) − 1

4π |w − w′| )
∣
∣
∣
∣ �i, j

1

M

1

|w − w′|i+ j
.

Thus by the triangle inequality, it suffices to show that
∣
∣
∣
∣∇ i

w∇ j
w′

(
1

|wrsc − w′
rsc|

− 1

|w − w′|
)∣
∣
∣
∣ �i, j

1√
M

1

|w − w′|i+ j

(
1√
M

+ 1

|w − w′|
)

.

(9.17)
We divide into two cases, depending on whether |w − w′| is less than

√
M or not.

First suppose that |w −w′| �
√
M , thus w,w′ both lie in BR2×R/2πMZ(w0,

√
M) for

some w0 ∈ Q. Let B denote the convex region

B := {u ∈ BR3(0, 1) : w0 + √
Mu ∈ Q},

and let f : B → R
3 be the map

f (u) := (w0 + √
Mu)rsc − (w0)rsc√

M
(9.18)
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then it is easy to see that f is bilipschitz on B with constants comparable to 1, and
from Taylor expansion we see that

∇ i
u( f (u) − u) = Oi

(
1√
M

)

on B for all i � 0. In particular, we have for distinct u, v ∈ B that | f (u) − f (v)| is
comparable to |u − v|, and from several applications of the chain rule (and writing
f (u) = u+ 1√

M
g(u) for some function g with all derivatives bounded on B) we have

∇ i
u∇ j

v

(
1

| f (u) − f (v)| − 1

|u − v|
)

= Oi, j

(
1√

M |u − v|1+i+ j

)

for i, j � 0. Setting w = w0 + √
Mu and w′ = w0 + √

Mv, we obtain (9.17) when
|w − w′| �

√
M .

To complete the proof of (9.15), we need to establish (9.17) in the case
√
M <

|w − w′| � M/10. Set R := |w − w′|/√M , then 1 � R �
√
M/10, and w,w′ both

lie in BR2×R/2πMZ(w0, R
√
M) for some w0 ∈ Q. Setting BR to be the convex region

BR := {u ∈ BR3(0, R) : w0 + √
Mu ∈ Q}

and defining f by (9.18) as before, one has from Taylor expansion that

f (u) = u + O

(
R2

√
M

)

and more generally

∇ i
u( f (u) − u) = Oi (

R2−i

√
M

)

on BR for all i � 0. As before, | f (u) − f (v)| is comparable to |u − v|. By many
applications of the chain rule, we have

∇ i
u∇ j

v

(
1

| f (u) − f (v)| − 1

|u − v|
)

= Oi, j

(
R√
M

|u − v|−1−i− j
)

for i, j � 0. Setting w = w0 + √
Mu and w′ = w0 + √

Mv, so that |u − v| is
comparable to R, we obtain (9.17) when

√
M < |w − w′| � M/10.

This completes the proof of (9.15) in all cases. We now return to the proof of
(9.14). Let π : R2 ×R/2πMZ → R

2 denote the projection map π : (w1, w2, w3) �→
(w1, w2). We smoothly partition L = L1 + L2, where L1(w,w′) is the “local” part
of L(w,w′) smoothly restricted to the region where |w − w′| � log M min(|π(w)|,
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|π(w′)|), and L1 is the “global” part, restricted to the region where |w − w′| �
log M min(|π(w)|, |π(w′)|). More explicitly, we can set

L1(w,w′) := L(w,w′)χ
(

w − w′

|π(w)| log M

)

χ

(
w − w′

|π(w′)| log M

)

where χ : R2 → [0, 1] is a smooth function supported on BR2(0, 1) that equals one
on BR2(0, 1/2), and set L2 := L − L1. By the triangle inequality, it thus suffices to
establish the bounds

∥
∥
∥
∥δ

∫

R2×R/2πMZ

ϕ(·)Ll(·, w′)ϕ(w′)dv(w′) d vol(w′)
∥
∥
∥
∥
L2(R2×R/2πMZ)

� 1

log M
‖v‖L2(R2×R/2πMZ) (9.19)

for l = 1, 2.
In the l = 1 case, we note that as Ll is supported in the regime where |w − w′| �

|π(w)| log M, |π(w′)| log M �
√
M log M , and we see from (9.15) and the product

rule that we have the Calderón-Zygmund bounds

|∇w∇w′(ϕ(w)Ll(w,w′)ϕ(w′))| � logO(1) M√
M

1

|w − w′|3

and

|∇w,w′∇w∇w′(ϕ(w)Ll(w,w′)ϕ(w′))| � logO(1) M√
M

1

|w − w′|4

for w �= w′. Also, the operator that maps v to

δ

∫

R2×R/2πMZ

ϕ(·)Ll(·, w′)ϕ(w′)dv(w′) d vol(w′)

clearly annihilates the constant function 1, as does its adjoint. Applying the T (1)

theorem of David and Journé [31], we obtain the l = 1 case of (9.19) (with the 1
log M

factor improved to logO(1) M√
M

).

Now we handle the l = 2 case. From (9.15) and the product rule, we have the
bounds

|∇w∇w′(ϕ(w)Ll(w,w′)ϕ(w′))| � 1√
M

(
1√
M

+ 1

|w − w′|
)

× 1

log2 M

1

1 + |π(w)|
1

1 + |π(w′)|
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since any factor of 1
|w−w′| that comes when a derivative falls on Ll can be replaced

instead by 1
log M

1
1+|π(w)| or 1

log M
1

1+|π(w′)| . In particular, we have the estimates

∫

R2×R/2πMZ

|∇w∇w′(ϕ(w)Ll(w,w′)ϕ(w′))| d vol(w′)
1 + |π(w′)| � 1

log M

1

1 + |π(w)|

for all w, and

∫

R2×R/2πMZ

|∇w∇w′(ϕ(w)Ll(w,w′)ϕ(w′))| d vol(w)

1 + |π(w)| � 1

log M

1

1 + |π(w′)|

for all w′. The l = 2 case of (9.19) then follows from the weighted Schur test (after
integrating by parts to move all derivatives onto ϕ(w)Ll(w,w′)ϕ(w′)). ��

Now we prove Theorem 1.13. As in the previous section, let θ0 : R2 → R be initial
data of the type in Proposition 6.1; we can choose θ0 so that it is supported in the ball
BR2(0, 200). Let θ̃0 : M → R be the lift of θ0 to M defined by setting

θ̃0((w
1, w2, w3)rsc) := θ0(w

1, w2)

in the region (9.2), with θ̃0 vanishing outside of (9.2). Clearly θ̃ is smooth and supported
in the set {(w1, w2, w3)rsc : |w1|, |w2| � 200}. We define the initial data ω0 ∈
C∞
c ∩ B2(M) by the formula

ω0 := d θ̃0 ∧ dw3 = d(θ̃0dw3), (9.20)

noting that the 1-form dw3 is well-defined on the support of θ̃0. This is clearly a
closed 2-form. We now claim (for M sufficiently large) that Theorem 1.13 holds with
this choice of initial data ω0 and with the operator Ã constructed above as vector
potential operator. We have already verified that Ã is 100-reasonable, formally self-
adjoint, and obeys (1.22) (if M is sufficiently large depending on ε). Thus, the only
way that Theorem 1.13 can still fail is if there is a solution ω ∈ X10,2, u ∈ Y 10,2 to
the generalised Euler equations with vector potential operator Ã and initial vorticity
ω0 on the time interval [0, 1].

Suppose for contradiction that this is the case. Observe that ω0 is invariant with
respect to rotations around the x3 axis (9.1) (which, in the region (9.2), corresponds
to translations in the w3 direction), and that Ã commutes with these rotations. Thus,
if ω, u solve the generalised Euler equations with initial data ω0, then so do any
rotations of ω, u around the x3 axis. Applying the uniqueness component of Theorem
1.9, we conclude that ω, u are invariant with respect to rotations around the x3 axis.
In particular, in the region (9.2), we have

∂3ω = 0; ∂3u = 0

in the (w1, w2, w3)rsc coordinate system.
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We define the scalar field θ̃ : [0, 1] × M → R by solving the transport equation
(8.17) with initial data θ̃ = θ̃0. Again, there is no difficulty defining θ̃ , and it is
continuously differentiable in both space and time, and compactly supported in space.
Since θ̃ and u are invariant with respect to rotations around the x3 axis, θ̃ is also.

Next, we claim that ω stays well within the region (9.2) and obeys the analogue of
Proposition 8.4:

Proposition 9.3 For each 0 � t � 1, let �(t) be the subset of (9.2) defined by

�(t) := {(w1, w2, w3)rsc : |w1|, |w2| � 300 + t}.

Then ω(t) and θ̃ (t) are supported in �(t) for all 0 � t � 1, and we have

ω = d θ̃ ∧ dw3

= ∂1θ̃dw1 ∧ dw3 + ∂2θ̃dw2 ∧ dw3.

Proof We again use the barrier method. Since u lies in Y 10,2, it is bounded, and hence
ω is transported at bounded speed. Suppose the first claim fails, thus ω(t) or θ̃ (t) is
not supported in �(t) for some 0 � t � 1. Let 0 � T � 1 be the infimum of all the
times t in which ω(t) or θ̃ (t) is not supported in �(t). Since this is a closed condition,
we have T < 1. Since ω(0) and θ̃ (0) are supported in the interior of �(0) and is
transported at bounded speed, we have T > 0.

For times t ∈ [0, T ], set α to be the 2-form

α := ω − d θ̃ ∧ dw3,

then α is continuously differentiable in space and time and supported in (9.2). From
(8.16) we know that α(0) = 0. As in the proof of Proposition 8.4, we use (1.10), (8.17)
to compute

(∂t + Lu)α = (∂t + Lu)α − (∂t + Lu)(d θ̃ ∧ dw3)

= 0 − d0 ∧ dw3 − d θ̃ ∧ dLuw
3

= −d θ̃ ∧ du3

where u3 is the d
dw3 component of u. On the other hand, from (1.11) and (9.4), (9.5)

(noting that η̃ equals 1 on the support of ω or θ̃ for times in [0, T ]) we have

u3 = ∂1∂1�
−1
w Ã∗

0ω12 + ∂2∂2�
−1
w Ã∗

0ω12

+ ∂1�
−1
w ω13 + ∂2�

−1
w ω23

= Ã∗
0α12 + ∂1�

−1∂1θ̃ + ∂2�
−1
w ∂2θ̃

+ ∂1�
−1α13 + ∂2�

−1
w α23

= ( Ã∗
0α12 + ∂1�

−1
w α13 + ∂2�

−1
w α23) − θ̃
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where all derivatives and components are with respect to the (w1, w2, w3)rsc coordi-
nate system. Repeating the arguments in Theorem 8.4 verbatim, we thus have α(t) = 0
for all 0 � t � T . Thus we have

ω = d θ̃ ∧ dw3

for times 0 � t � T . In particular, ω12 vanishes.
By continuity and a compactness argument, there must exist a point (w1, w2, w3)rsc

on the boundary of �(T ) which is also on the boundary of the support of ω(T ) or θ̃ (T ),
but such that the support of ω(t) or θ̃ (t) escapes �(t) in any given neighbourhood of
(w1, w2, w3)rsc for times t > T arbitrarily close to T .

Now we compute the vector potential Ãω and velocity field u at time T and in a
sufficiently small neighbourhood of this point (w1, w2, w3)rsc. In this neighbourhood
and on the support of ω(T ), the cutoff η̃ equals 1, and from (8.9) we see that A0 and
A∗

0 vanish in this neighbourhood. From (9.4), (9.5) and the vanishing of ω12 we thus
have

Ãω = �−1
w ω13

d

dw1 ∧ d

dw3 + �−1
w ω23

d

dw2 ∧ d

dw3

in this neighbourhood, after abusing notation and identifying this neighbourhood with
a subset of R2 ×R/2πMZ. Since ω13, ω23 are invariant with respect to translations in
the w3 neighbourhood, we conclude that δ Ãω has vanishing d

dw1 and d
dw2 components

in this neighbourhood, thus the velocity field u is parallel to d
dw3 . But since �(T ) is

invariant in the d
dw3 direction and is expanding outwards in the other two directions,

we see from the transport equations for ω(t) and θ̃ (t) that for t > T sufficiently close
to T , ω(t) and θ̃ (t) are supported inside �(t) in this neighbourhood, contradicting
the construction of (w1, w2, w3)rsc. Thus ω(t) and θ̃ (t) are supported in �(t) for all
0 � t � 1. Repeating the above arguments we then obtain the second claim of the
proposition. ��

If we insert the above proposition back into (9.4), (9.5), noting again that η̃ equals
1 on the support of ω or θ̃ , we have

Ãω := − Ã0�
−1
w (∂1∂1θ̃ + ∂2∂2θ̃ )

d

dw1 ∧ d

dw2

+ �−1
w ∂1θ̃

d

dw1 ∧ d

dw3

+ �−1
w ∂2θ̃

d

dw2 ∧ d

dw3 .

Repeating the arguments of the previous section verbatim, we see that
(in (w1, w2, w3)rsc coordinates) θ̃ is the lift of a continuously differentiable, com-
pactly supported function θ : [0, 1] × R

2 → R that contradicts Proposition 6.1, as
required.
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