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Abstract This paper establishes that on the domain of outer communications of a
general class of stationary and asymptotically flat Lorentzian manifolds of dimension
d + 1, d ≥ 3, the local energy of solutions to the scalar wave equation �gψ = 0
decays at least with an inverse logarithmic rate. This class of Lorentzian manifolds
includes (non-extremal) black hole spacetimes with no restriction on the nature of the
trapped set. Spacetimes in this class are moreover allowed to have a small ergoregion,
but are required to satisfy an energy boundedness statement. Without making further
assumptions, this logarithmic decay rate is shown to be sharp. Our results can be
viewed as a generalisation of a result of Burq, dealing with the case of the wave
equation on flat space outside compact obstacles, and results of Rodnianski–Tao for
asymptotically conic product Lorentzian manifolds. The proof will bridge ideas from
Rodnianski and Tao (see [58]) with techniques developed in the black hole setting by
Dafermos and Rodnianski (see [21,22]). As a soft corollary of our results, we will
infer an asymptotic completeness statement for the wave equation on the spacetimes
considered in the case where no ergoregion is present.
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1 Introduction

Recent progress in understanding the behaviour of solutions to the scalar wave equation

�gψ = 0 (1.1)

on various general relativistic backgrounds has been astonishing: In the case of the
Schwarzschild exterior background, boundedness and decay results were established
in [6,7,14,15,18,43]. In the case of the Kerr family, similar results in the very slowly
rotating case (i. e. for angular momentum a and mass M satisfying |a| � M) were
obtained in [1,19,21,22,66]. The full subextremal range |a| < M was finally treated
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in [17,23,64]. See also [13] for the Kerr–Newman case. Various refinements of the
earlier decay results on these spacetimes appear in [45,46,62]. This picture changes
dramatically when one switches attention to extremal black hole spacetimes, where
instability results have been established in [2–5].

All the preceding examples dealt with asymptotically flat spacetimes, but a plethora
of relevant results have also been proven for spacetimes with different asymptotic
structure: See [16,30,31,48,67] for the case of Schwarzschild- and Kerr-de Sitter
spacetimes, and [38–40] for the case of Kerr-AdS spacetimes.

Given the amount of technical machinery that has been developed by the afore-
mentioned authors, it is now feasible to move out of the realm of backgrounds that are
algebraically special solutions to the Einstein equations or perturbations thereof and
address questions regarding the behaviour of scalar waves on more general Lorentzian
manifolds (Md+1, g). A demanding first question in this direction is the following:

What are the most general types of spacetimes (Md+1, g) on which boundedness
and decay of solutions to the scalar wave equation (1.1) can be obtained and studied?
Or, from a different perspective, what are the possible obstructions to stability for (1.1)
on general backgrounds?

This paper aims to make a step towards providing answers to the above question,
by establishing the following general decay result:

Theorem Let (Md+1, g), d ≥ 3, be a globally hyperbolic spacetime, which is sta-
tionary and asymptotically flat, and which can possibly contain black holes with a
non degenerate horizon and a small ergoregion. Moreover, suppose that an energy
boundedness statement is true for solutions ψ to (1.1) on the domain of outer com-
munications D of (M, g). Then the local energy of ψ on D decays at least with a
logarithmic rate:

Eloc(t) �m
1

{
log(2 + t)

}2m E (m)
w (0), (1.2)

where t is a suitable time function on D and E (m)
w (0) is a weighted initial energy of

the first m derivatives of ψ.

A more detailed and rigorous statement of this theorem and the assumptions on the
spacetimes under consideration will be presented in Sections 2.1 and 2.3.

As an application of our results, we will deduce quantitative decay rates for solutions
to (1.1) on a number of vacuum (and other) spacetime backgrounds which appear in
the literature, but whose trapping structure is not yet completely understood. These
examples include, for instance, axisymmetric scalar waves on the Emparan–Reall
black rings (see [34]) and the Elvang–Figueras black Saturn (see [32]). Furthermore,
the results of the current paper will be used to rigorously establish the so called
Friedman ergosphere instability (introduced and supported heuristically in [35]). That
is to say, we will establish by contradiction that no non-degenerate energy boundedness
statement can hold on stationary spacetimes with ergoregion and no event horizon;
see our forthcoming [51].

As a corollary of the above theorem, using also the results of [52], we will infer
that the energy flux of solutions ψ to (1.1) through a foliation of hyperboloidal
hypersurfaces decays logarithmically in time. This result will in turn yield an asymp-
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totic completeness statement for the wave equation on spacetimes (M, g) satisfying
the assumptions of the above theorem but without ergoregion. See Sections 2, 10
and 11.

In the context of non-asymptotically flat spacetimes, we should note the results of
Vasy [67], dealing with a class of Lorentzian manifolds generalising Kerr-de Sitter
spacetime. For [67], however, the structure of the trapped null geodesics of the
underlying manifold and the de Sitter asymptotics play a crucial role in establish-
ing exponential decay rates for solutions to the wave equation �gψ = 0. In particular,
the trapped set is required to resemble closely that of Kerr-de Sitter spacetime. In con-
trast, in our setting no structural condition is placed on the trapped set, which leads
to an inverse logarithmic decay rate (1.2) for the local energy of scalar waves which
is sharp for some of the spacetimes in the class under consideration. Notice also that
the asymptotic flatness of the spacetimes considered here would prohibit establishing
faster than polynomial decay rates for solutions to (1.1).

Before stating more precisely the main result of the current paper, we will first
examine two well understood examples: Solutions of (1.1) on flat space outside a
compact obstacle and solutions to (1.1) on asymptotically conic manifolds of product
type. It is the results of Burq [8], in the obstacle case, and of Rodnianski–Tao [58], in
the product case, that our main theorem generalises.

1.1 The Wave Equation on R
d with Obstacles and a Result of Burq

Let O be a compact subset of R
d , which is the closure of a finite number of domains

with smooth boundary. Let also ψ = ψ(t, x) ∈ C∞(
R × (Rn\O)

)
solve

(∂2
t − �)ψ = 0 (1.3)

on R × (Rd\O), with ψ ≡ 0 on ∂O and with (ψ, ∂tψ) compactly supported (or at
least suitably decaying) on {t = 0}. In this case, one immediately sees that there exists
a positive-definite conserved energy

E(t) =
∫

Rd\O
|∂ψ(t, x)|2 dx (1.4)

(corresponding to the Killing field ∂t on R
d+1\(R×O)), which allows to easily handle

boundedness issues.
Starting from the boundedness of the energy E(t), “soft” arguments can be used

to infer that for any R > 0, the local energy ER(t) (i. e. the energy contained in a ball
BR of R

d of fixed radius R) tends to 0 as t → +∞. Attempting to study the precise
rate at which the local energy decays, it is inevitable that the nature of trapping1 will

1 Line rays that are “reflected” on the obstacle’s surface and remain in a bounded region of space for
arbitrarily long time are said to be trapped. An obstacle is called non-trapping if it does not give rise to a
trapped ray.
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come into play. This subject has been extensively studied during the last 50 years, but
here we will refer to only a few indicative results. In the case the obstacle O ⊆ R

d is
non-trapping, Morawetz, Ralston and Strauss (see [49]) showed that for any function
ψ solving (∂2

t − �)ψ = 0 on R × (Rd\O), with ψ = 0 on ∂O and (ψ, ∂tψ)|t=0
compactly supported, the local energy

ER(t)
.=
∫

BR\O
|∂ψ(t, x)|2 dx

decays at least polynomially in time t , and in fact this decay rate becomes exponential
if the space dimension d is odd. In order to establish this decay rate, it was first shown
that ∫ ∞

0
ER(t) dt ≤ C(R) · E(0) (1.5)

where E(0) = ∫
Rd\O |∂ψ(0, x)|2 dx is the initial energy of the wave. An inequality

of the form (1.5) is usually referred to as an integrated local energy decay estimate.
Due to a result by Ralston (see [55]), however, the presence of even a single trapped

ray is inconsistent with any quantitative decay rate for the local energy of waves in
terms only of their initial energy. Moreover, no statement of the form (1.5) can be valid.
This fact has been recently generalised to the case of globally hyperbolic Lorentzian
manifolds with trapped null geodesics by Sbierski in [59].

If one is willing to “sacrifice” some initial regularity on the right hand side of (1.5),
so as to establish a quantitative decay estimate for the local energy of a wave ψ in terms
of the initial energy of higher order derivatives of ψ, then one can still obtain various
types of decay rates, which are expected to become faster as the trapping becomes
more unstable (compare for instance [41] and [56]). It is remarkable, therefore, that in
[8] Burq was able to prove without any assumptions regarding the nature of trapping
and the form of the obstacle O, and with the hypotheses on ψ as before, that one
has

ER(t) �
{

log(2 + t)
}−2m · E (m)(0), (1.6)

where E (m)(0) denotes the energy of the first m derivatives of ψ at {t = 0}. In the
preceding � notation, the implicit constant depends on R and on the size of the compact
support of the initial data for ψ on {t = 0}.

In fact, Burq’s result is a bit more general, as it allowed for ψ satisfying an equation
of the form

∂2
t ψ − ∂i

(
ai j∂ j

)
ψ = 0 (1.7)

where ai j = ai j (x) is a smooth positive definite matrix which is equal to the identity
outside some large compact set. However, the fact that this operator is identical to
∂2
t − � outside a large spatial ball was used in an essential way in Burq’s argument,

which relied on a decomposition of ψ into spherical harmonics outside a large ball
and on using explicit representation formulas to study the asymptotics of the resulting
Hankel functions. Hence, his proof does not immediately generalise to the case where
{ai j } − I d is not compactly supported.
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1.2 A Result of Rodnianski–Tao for Product Lorentzian Manifolds

The next step after studying the wave equation on R
d outside a compact obstacle is

addressing the wave equation on product Lorentzian manifolds with a more general
asymptotically flat structure.

Given an arbitrary Riemannian manifold (N d , ḡ), quantitative estimates for the
resolvent R(λ +i ε;�ḡ) of the Laplacian �ḡ on (N , g) are closely connected to
estimates for solutions to the wave equation �gψ = 0 on the product Lorentzian
manifold (R × N , g) with g = −dt2 + ḡ, t being the projection to the first factor
of R × N (see e.g. [58,60,61] and references therein).2 Therefore, relevant to our
question on the behaviour of scalar waves on general Lorentzian manifolds are the
results of Rodnianski and Tao [58]. In particular, in [58] the authors have established
(among other results) quantitative bounds for such resolvents for a general class of
asymptotically conic Riemannian manifolds N of dimension d ≥ 3. This enabled
them to obtain, as a corollary of their resolvent estimates, a decay without a rate result
for solutions to the wave equation on (R × N , g).

Though not explicitly stated, the results established in [58] are also sufficient to
obtain a logarithmic decay statement for scalar waves on (R×N , g): The exponential
bounds on the resolvent R(λ +i ε;�ḡ) as λ → ∞, as well as the bounds for the
resolvent near λ = 0, suffice to establish that on the product manifold (R × N , g),
the local energy of solutions ψ to the wave equation decays with a rate of the form:

ER(τ) �
{

log(2 + τ)
}−2m · E (m)

w (0).

In the above, ER(t) = ∫{t=τ}∩{r≤R}
(|∂tψ|2 +|∇(N )ψ|2) is the local energy contained

in the region {r ≤ R} at time τ, for some function r ≥ 0 tending to +∞ towards
the asymptotically conic end of N , and E (m)

w (0) is a suitable weighted energy of the
first m derivatives of ψ at {t = 0}. Moreover, the implicit constant in the preceding �
notation depends only on the geometry of (N , ḡ), and not on the size of the support
of the intial data for ψ.

Thus, the results of [58] generalise the results of Burq in [8] to the case of prod-
uct asymptotically conic Lorentzian manifods, that are not necessarily identical to
(Rd+1,η) outside a bounded cylinder, η being the usual Minkowski metric on R

d+1.
See also the work of Cardoso and Vodev [9,10], establishing resolvent estimates simi-
lar to the ones in [58], but restricted to the high frequency regime λ � 1 (and obtained
by different methods), extending the logarithmic decay results of Burq to a general
class of product Lorentzian manifods. For an alternative derivation of similar high fre-
quency resolvent estimates for Schrödinger operators with weak decay and regularity
assumptions on the potential, see [25].

We will now proceed to state the main result of this paper, which should be viewed as
a generalisation of the results of [58] to not necessarily product Lorentzian manifolds,
which are moreover allowed to contain black hole regions and a small ergoregion. We

2 Notice that on such a Lorentzian manifold, the Killing field ∂t immediately gives rise to a bounded (in

fact preserved) energy
∫
t=const J

∂t
μ (ψ)nμ for solutions ψ to the wave equation �gψ = 0.
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remark already that many of the ideas of the proof of the main result of the current
paper actually originate in [58]. The importance of the ideas and techniques of [58] in
our setting will become evident in the subsequent sections.

1.3 The Main Result: Logarithmic Decay in a Suitably General Asymptotically
Flat Setting

The aforementioned results of Burq and Rodnianski–Tao indicate that if one wants
to study a more general class of asymptotically flat spacetimes, possibly containing a
black hole and a small ergoregion, and with few further restrictions on the geometry
of the region between the horizon (if non empty) and “infinity”, one can only hope to
prove a logarithmic decay rate for the local energy of solutions to (1.1). This is exactly
the result that we will prove here.

In particular, we will be concerned with globally hyperbolic spacetimes (Md+1, g),
d ≥ 3, satisfying the following assumptions:

1. Asymptotic flatness and stationarity: The metric ḡ and the second fundamental
form k induced on a Cauchy hypersurface � of (M, g) must form an asymptoti-
cally flat triad (�, ḡ, k). Moreover, there must exist a Killing field T (called the
stationary Killing field) with complete orbits on the domain of outer communi-
cations D of (M, g), extending also to the boundary of D, such that T becomes
strictly timelike in the asymptotically flat region of (M, g). See Section 2.1 for a
precise definition of these notions.

2. Killing horizon with positive surface gravity: If (M, g) is not identical to the
domain of outer communications D, then the boundary H of D (called the event
horizon of the spacetime) must be a non degenerate Killing horizon (possibly for
a different Killing vector field than T ), with positive surface gravity.

3. Smallness of the ergoregion: The subset {g(T, T ) ≥ 0} of the domain of outer
communications D must be quantitatively small, as should be the maximum pos-
itive value of g(T, T ). If H = ∅, then this requirement reduces to the assumption
that the ergoregion being empty.3

4. Boundedness of the energy of waves: The energy of solutions ψ to the scalar wave
equation �gψ = 0 with respect to a T -invariant, globally timelike vector field N
and a suitable foliation of the domain of outer communications D must remain
bounded by a constant times the energy of ψ initially.

These assumptions will be stated more precisely in Section 2.1. The main result of
this paper can be stated as follows:

Theorem 1.1 Let (Md+1, g), d ≥ 3, be a spacetime satisfying the hypotheses 1–4,
and let D be its domain of outer communications. Then any smooth solution ψ to
�gψ = 0 onD with suitably decaying initial data on a Cauchy hypersurface � ofM
satisfies for any integer m > 0 and any 0 < δ0 ≤ 1:

3 For the energy instability associated to the existence of an ergoregion in the absence of an event horizon,
see already our forthcoming [51]. We will return to this issue at the discussion in the next section.
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Eloc(t) ≤ Cm
{

log(2 + t)
}2m E (m)(0) + C

tδ0
Ew,δ0(0). (1.8)

In the above, t ≥ 0 is a suitable time function on J+(�)∩D (J+(�) being the causal
future of �) with {t = 0} ≡ � ∩ D, and Eloc(t) is the local energy of the wave at
time t. E (m)(0) is the energy of the first m derivatives of ψ at {t = 0}, while Ew,δ0(0)

is a suitable weighted energy of ψ at {t = 0}. The constant C on the right hand side
depends on the size of the ball where the local energy Eloc is measured and on the
geometry of (D, g), while in addition to that, Cm also depends on the number m of
derivatives of ψ in E (m)(0).

A more precise statement of the above result will be given in Section 2.3, after a more
detailed discussion of the geometric hypotheses on (M, g).

This result can be immediately applied to many interesting black hole spacetimes,
on many of which no decay result had been established so far. These examples will
be discussed in Section 1.5.

Let us also mention here that our result is a proper generalisation of the theorem of
Burq (at least in dimensions d ≥ 3): While not explicitly mentioned later in this paper,
the proof of Theorem 1.1 can also be repeated in the case of the wave equation on R

d

with obstacles, relaxing the assumption of ai j in the perturbed Laplacian ∂i (ai j∂ j )

being equal to I d outside a compact set (as required by Burq) to just demanding that
(ai j ) → I d as r → ∞ in a quantitative manner. Moreover, the constants in the final
inequality do not depend on the size of the support of the initial data for ψ (which in
particular needs not be compactly supported initially); only the finiteness of a suitable
weighted norm of an initial higher order energy of ψ is necessary.

1.4 Necessity of Assumptions 1–4

At this point, a few words should be said regarding the necessity of Assumptions 1–4 on
the spacetimes under consideration. We will see that while each of these assumptions
can possibly be relaxed, discarding completely any of them (without adding any extra
hypothesis in its place) appears to lead to spacetimes where Theorem 1.1 does not
hold.

Some assumption of global character, such as Assumption 1 on stationarity and
asymptotic flatness, seems to be necessary for a first statement of the generality we
are after. In particular, Assumption 1 seems to be the most appropriate for applications
in cases of isolated self gravitating relativistic systems satisfying the Einstein equations
(with suitable matter fields) with zero cosmological constant.

Replacing the asymptotic flatness assumption with other asymptotics can lead to
instability results contradicting Theorem 1.1: This is the case for asymptotically AdS
spacetimes, for instance (with suitable boundary conditions at the timelike conformal
boundary considered as in [38]). In fact, on Anti-deSitter space itself, while the usual
∂t Killing vector field gives rise to a conserved non degenerate energy current, there
exist time periodic solutions to the wave equation, and this fact prohibits the proof of
any sort of uniform decay rate (see [40] and references therein).
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Remark The presence of a non-empty non-degenerate horizon H+ in an asymptoti-
cally AdS spacetime might be sufficient to provide stability results for scalar waves, at
least in the case where a boundedness statement for the energy of solutions to �ψ = 0
is true, as the results on Kerr-AdS suggest: In [39], Holzegel and Smulevici show that
under certain bounds on the value of the cosmological constant �, the angular momen-
tum a, the mass M of the Kerr-AdS spacetime and the mass m, implying among other
things the existence of a globally causal Killing field, any solution ψ to the massive
wave equation

�gψ + mψ = 0 (1.9)

decays logarithmically in time (provided, of course, that some weighted energy of
the initial data is finite). And in fact, this decay rate is optimal (see [40], and also
[37]). Hence, it would be of particular interest to explore the minimal geometric
conditions that need to be imposed on a general asymptotically AdS spacetime with a
non-degenerate event horizon, in order for a logarithmic decay estimate for solutions
to (1.9) to hold. Notice, of course, that such a decay estimate can not hold on all
asymptotically AdS spacetimes containing a non-degenerate horizon, since there exist
examples of such spacetimes on which (1.9) is actually unstable: In the recent [29],
Dold constructed exponentially growing solutions to the massive wave equation on
Kerr-AdS spacetimes violating the Hawking–Reall bound.

Concerning Assumption 2 on the non-degeneracy of the horizonH+, we notice that the
instability results of Aretakis [2–5] on extremal black holes are rooted in the absence
of a red shift type vector field near H+ in the sense of [18]. This fact suggests that
dispensing with Assumption 2 might lead to spacetimes on which Theorem 1.1 is not
true. Notice, however, that Aretakis in [2,3] was able to exploit additional geometric
features of the horizon of extremal Reissner–Nordström spacetime in order to obtain
stability results for the first order energy of a scalar wave ψ. Thus, it may be possible
to replace Assumption 2 by some weaker assumption regarding the geometry of H,
that allows interesting extremal examples.4

Assumption 3 on the smallness of the ergoregion, if violated, will contradict any
decay statement for the local energy of scalar waves: On a spacetime with a spatially
compact ergoregion and no horizon, for instance, a solution ψ to �ψ = 0 with initial
T energy

∫
t=0 J Tμ (ψ)nμ = −1 will satisfy

∫
t=τ J

T
μ (ψ)nμ = −1 for all times τ ≥ 0.

This means that
∫
{t=τ}∩{ergoregion} J

T
μ (ψ)nμ = −1 for any τ ≥ 0, and hence the local

energy of ψ over any compact spatial subset containing the ergoregion will not decay
at all.

In addition to the violation of any decay statement, the presence of a large ergore-
gion could even preclude the boundedness of the energy of waves: According to the
heuristics of Friedman ([35]), in the case of a stationary, asymptotically flat spacetime
with no horizon but with non empty ergoregion, one expects no uniform boundedness
statement to hold regarding the energy of solutions to the scalar wave equation. Using
the machinery of the proof of Theorem 2.1, we were able to provide a rigorous proof
of this instability result, which will be presented in our forthcoming [51]. It is an open

4 Even in that case, however, it may be necessary to weaken Theorem 1.1 to a statement about some
degenerate energy current.
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problem, however, to understand whether Theorem 1.1 is true in the case Assumption
3 is violated but energy boundedness (namely Assumption 4) still holds.

Finally, even if one assumes the existence of a non empty horizon with positive
surface gravity and some form of smallness of the ergoregion, superradiance (i. e. the
fact that the domain of outer communications D of (M, g) admits no globally non
spacelike Killing vector field) may pose serious risks for the boundedness of the energy
of waves: Shlapentokh–Rothman (see [63]) has constructed exponentially growing
solutions to the Klein–Gordon equation �gψ − mψ = 0 on a slowly rotating Kerr
background, for arbitrarily small values of the mass m. For the case of the scalar wave
equation on Kerr, energy boundedness can also be violated if a compactly supported
real and positive potential is added; see our forthcoming [50]. These facts suggest
that Assumption 4 on the boundedness of the energy of scalar waves, which plays a
fundamental role in the proof of Theorem 1.1, can not be inferred from the rest of
the Assumptions 1–3, and thus should be indisposable if one is not willing to further
restrict the class of spacetimes under consideration.

1.5 Examples

Beyond the class of asymptotically flat Lorentzian manifolds of product type (R ×
N ,−dt2 + ḡ), which were already treated by Rodnianski and Tao in [58], there is a
large number of other interesting classes of spacetimes on which Theorem 2.1 readily
applies to give a novel logarithmic decay statement for the local energy of waves:

• The general class of asymptotically flat non-extremal black hole spacetimes with-
out ergoregion, for which a non degenerate energy boundedness statement has been
established by Dafermos and Rodnianski in Section 7 of [22]. This class includes
the spherically symmetric black hole spacetimes studied in [47], and in particu-
lar includes the black hole solutions of the SU (2) Einstein–Yang Mills equations
constructed in [65].

• When restricted to axisymmetric solutions of �gψ = 0, Theorem 2.1 also applies
on the domain of outer communications of the higher dimensional Emparan–
Reall black rings (see [33,34]) and the Elvang–Figueras black Saturn (see [32]).
Restriction to axisymmetry in this case is necessitated by the fact that no energy
boundedness statement (in the spirit of Assumption 4) for general solutions to
�gψ = 0 has been established so far on these spacetimes.

• The class of C1 perturbations of the slowly rotating Kerr spacetime exterior for
which a non degenerate energy boundedness statement was proven by Dafermos
and Rodnianski in [21]. Notice that since these perturbations are only close to Kerr
exterior in a suitable C1 norm, the structure of trapping (which would be con-
trolled by the smallness of a C2 norm) can differ substantially on these spacetimes
compared to trapping on Kerr exterior. Moreover, note that these spacetimes can
possibly contain an ergoregion.

• Keir’s class of static spherically symmetric spacetimes, including a class of ultra-
comact neutron stars (see [44]). Of course, on these spacetimes [44] has already
established a logarithmic decay bound, showing also that it is sharp. Thus, these
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spacetimes also serve to exhibit the sharpness of Theorem 2.1 on the class of space-
times under consideration.

The above examples will be discussed in more detail in Section 2.2, after a more
precise statement of Assumptions 1–4 in Section 2.1.

2 Statement of the Theorem and Sketch of the Proof

We will now proceed to rigorously state and explain the various geometric assumptions
on the class of spacetimes under consideration, and provide the precise statement of the
main result of this paper. We will then briefly sketch the proof of this result, highlighting
the important ideas involved in the detailed proof occupying the subsequent sections
of the paper.

2.1 Geometric Assumptions on the Background Spacetime

For the following, let (Md+1, g) be a smooth, time oriented, globally hyperbolic
d + 1 dimensional Lorentzian manifold for d ≥ 3. Let also � be a smooth spacelike
Cauchy hypersurface of (M, g). We will now formulate assumptions 1–4 in more
detail in terms of the geometry of (M, g). For a detailed description of the notational
conventions adopted in what follows, see Section 3.

Since in our formulation of Assumptions 1–4 we have strived to include a broad
class of globally hyperbolic Lorentzian manifolds with as little structure as possible,
we will need to perform from scratch some geometric constructions that are trivial in
many concrete examples of spacetimes that appear in the literature. To this end, the
reader who is only interested in applications of the results of this paper in specific
examples of spacetimes should feel free to skip many of the details of the explanation
of the constructions performed in the next paragraphs.

2.1.1 Assumption 1 (Asymptotic Flatness and Stationarity)

We assume that there exists a smooth Killing vector field T onM, which has complete
orbits5 and which, when restricted on �, becomes future directed and timelike outside
a compact subset of �. We will refer to T as the stationary Killing field.

We also assume that there exists a compact subset K of � such that �\K has a
finite number of connected components {Si }mi=1, and each connected component Si
of �\K can be diffeomorphically mapped to R

d\BR(0) (where BR(0) is the ball of
R
d of radius R centered at the origin). We will set

S .= �\K = ∪m
i=1Si . (2.1)

In the resulting chart (x1, x2, . . . , xd) on each of the Si ’s, we let r =√
(x1)2 + (x2)2 + . . . + (xd)2 be the pullback of the polar distance on R

d . See Sec-

5 Namely starting from any point of M we can follow the flow of T for infinite time in both directions.
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tion 3 for the (r, σ ) notation used for the polar coordinate chart on each connected
component of S.

Without loss of generality, we assume that the compact subset K was chosen large
enough so that the restriction of T on S is strictly timelike. Then the integral curves
of T would intersect S transversally. Letting Sτ be the image of S under the flow of
T for time τ, we deduce that the set

Ias .= ∪τ∈RSτ � R × S (2.2)

is an open subset of (M, g).
We define the coordinate function t : Ias → R by the relation

t |S = 0, T (t) = 1 (2.3)

and we note that if we extend the coordinate functions (r, σ ) : S → R+ × S
d−1 (see

Section 3 for the σ notation) in the whole of Ias by the conditions Tr = 0, Tσ = 0,
then (t, r, σ ) is a valid coordinate chart on each connected component of Ias . In this
chart, ∂t = T .

Quantitative asympotics for the metric: In the (t, r, σ ) coordinates oneach connected
component of Ias , there exists an a ∈ (0, 1] such that the metric g takes the asymp-
totically flat form

g = −
(

1 − 2M

r
+ h1(r, σ )

)
dt2

+
(

1 + 2M

r
+ h2(r, σ )

)
dr2 + r2 ·

(
gSd−1 + h3(r, σ )

)
+ h4(r, σ )dtdσ

(2.4)

where:

• h1, h2 are smooth O4(r−1−a) functions. See Section 3 for the Ok(·) notation.
• h4 is a smooth O4(r−a) function.
• For every r , h3(r, ·) is a smooth symmetric (0, 2)-tensor field defined on S

d−1, and
satisfies the bound h3 = O4(r−1−a).

In the above expression for the metric in the asymptotically flat region, we will refer
to the constant M as the mass of the spacetime (M, g), although it will only coincide
with the ADM mass of the spacetime if the space dimension is d = 3.

Notice that (2.4) implies that T has been normalised so that g(T, T ) → −1 as
r → ∞.6

6 One could point out that a general asymptotically flat metric should also contain a dt ·dr component, but if
this component has O4(r−1−a) asymptotics, it can always be annihilated for {r � 1} by a transformation of
the form t → t+ f (r, σ ), which would of course change our choice of Cauchy hypersurface � corresponding
to {t = 0}. The same is true for the dr · dσ terms that might possibly exist in a more general expression of

an asymptotically flat metric: If the dr ·dσ components are O5(r
1−a

2 ), then one can choose a new spherical
parametrization σnew = σnew(r, σ ), so that in (t, r, σnew) coordinates and for r � 1 the metric has the
form 2.4.
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Some special subsets of (M, g): We will define a few subsets of (M, g) which are tied
to the causal structure of the spacetime, and will be frequently referred to throughout
the paper.

We define the domain of outer communications of the asymptotically flat end S of
� to be the subset

D .= clos
(
J−(Ias) ∩ J+(Ias)

)
(2.5)

of M. Here, J+(A) denotes the causal future of the set A,7 and J−(A) the causal
past. If D is not the whole of M, then the set

H .= ∂D (2.6)

will be non empty, and we will call this set the horizon of (M, g). The horizon H can
be split naturally as the union H+ ∪ H−, where H+ .= J+(Ias) ∩ ∂

(
J−(Ias)

)
and

H− .= J−(Ias) ∩ ∂
(
J+(Ias)

)
. Note that H− lies in the past of H+.

If non empty, we will assume thatH+,H− are smooth null hypersurfaces of (M, g),
possibly with boundary H+ ∩ H−. Since T is a Killing field of M, and Ias is by
definition invariant under the flow of T , we conclude that D, H+, H−, H+ ∩H− and
H must be invariant under the flow of T . Since H+,H− were assumed to be smooth
hypersurfaces with boundary, this means that T is tangent to them, and tangent to their
boundary.

Notice also thatD might have more than one connected comonents, but it is possible
for more than one connected components of Ias to lie in the same component of D.

Requirements regarding the Cauchy hypersurface �: We will need to guarantee
that the Cauchy hypersurface � is in the right position so that we can uniquely solve
the wave equation �gψ = 0 on J+(�) ∩ D, given initial data on � ∩ D. This will
inevitably lead to a few extra hypotheses regarding the part of the Cauchy hypersurface
that does not lie in the asymptotically flat region Ias .

We assume that, by altering � if necessary (but keeping � as before in the region
{r � 1}), we can arrange so that H− ⊂ I−(� ∩ D)8. With this assumption, for any
p ∈ J+(�) ∩ D we have J−(p) ∩ � ⊆ � ∩ D (see Lemma 12.2 for a proof of this
fact), and this inclusion implies, according to the arguments of [57], that any smooth
solution to �gψ = 0 on J+(�) ∩ D is uniquely specified by (ψ, n�ψ)|�∩D, n�

denoting the future directed unit normal to �.

Transversality assumptions on the stationary vector field T: It would be convenient
for us to work in coordinate charts where T is a coordinate vector field, and for this
reason we have to state two more assumptions regarding the orbits of T .

First, we assume that T is transversal to � ∩ D.9 This implies that T points to
the future of � ∩ D,10 in the sense that following the integral curves of T for some

7 i. e. the set of points of M which can be the endpoints of future directed causal curves in M starting
from A.
8 i. e. the timelike past of � ∩ D.
9 Note that for this to be true in the Schwarzschild spacetime, for instance, we must choose � so that it
does not intersect the bifurcate sphere.
10 Note that T may fail to be timelike!
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arbitrarily small positive time, starting from apoint on � ∩D, we are led to a point in
I+(� ∩ D). 11

Therefore, the image of � ∩ D under the flow of T for positive times always lies
in J+(�) ∩ D. At this point, we also need to introduce a second assumption on T ,
namely that these images actually cover the whole of J+(�)∩D. Given this, one can
extend the function t defined before on Ias to the whole of J+(�)∩D, by demanding
as before that t |� = 0 and T (t) = 1.

By following the flow of T for negative times, t is also defined on the past images
of � ∩D under the flow of T . In this way, t will be defined only on D\H− and not on
the whole of D (this will not be a problem to us, since we will perform our analysis
only on J+(�) ∩ D). We will also denote �τ

.= {t = τ}, and with this notation we
will have �0 = � ∩ D.

With these assumptions on T , if x = (x1, x2, . . . , xd) is a local chart on a subset V
of � ∩ D, then extending its coordinates functions xi by the requirement T (xi ) = 0
one can construct a local coordinate chart (t, x1, x2, . . . , xd) on D. In such a local
chart, one has ∂t = T . We will mostly work in local charts of this form.

Implications for � ∩H: Due to our previous assumption that H− ⊂ I−(� ∩D), we
deduce that (� ∩ D) ∩ H− = ∅ and hence also (� ∩ D) ∩ (H+ ∩ H−) = ∅. This,
together with the fact that � intersects H+ transversally (since T is tangent to H+
and transversal to �) implies that � ∩ H+ is a smooth submanifold of �. Since H+
is closed (due to its definition), � ∩H+ is a closed subset of � ∩D. In fact, � ∩H+
is the boundary of the manifold-with-boundary � ∩D. Moreover, H can not intersect
the asymptotically flat region Ias ,12 and hence � ∩H+ lies in a compact subset of �.
Therefore, we conclude � ∩ H+ is a compact submanifold of �.

Since H+ is T -invariant and the future translates of � ∩ D cover J+(�) ∩ D, we
deduce that the future translates of H+ ∩ � by T cover J+(�) ∩H = J+(�) ∩H+.
Since T is transversal to � ∩ H+, this implies that J+(�) ∩ H � R × (� ∩ H+)

is a smooth submanifold of D with boundary � ∩ H+. Since H+\(H+ ∩ H−) was
assumed to be a null hypersurface, J+(�)∩H must also be a null hypersurface if non
empty.

Extension of the function r: We can extend the function r defined before on S (as the
pullback of the polar distance on R

d on each component of S) to the whole of � ∩D,
by simply demanding that it is a Morse function on � ∩D , satisfying r ≥ 0 on � ∩D
and with r = 0 only on � ∩ H+ (this is possible since we showed that � ∩ H+is
a smooth compact submanifold of �, and at the same time it is the boundary of the
manifold with boundary � ∩ D). Moreover, we demand that dr |�∩H+ �= 0, so that r
can also be used as a coordinate function close to the horizon.

11 Proof of the last claim: if this claim was false, and A ⊆ � ∩ D was the set of points of � ∩ D starting
from which the flow of T did not lead to I+(�) for small times, then ∂A �= ∅ (since A was assumed to
be non empty, but A does not contain any point in the asymptotically flat region {r � 1}). But then, due
to the smoothness of T , at the points of ∂A T should be tangent to �, which contradicts the assumption of
the transversality of D ∩ � and T .
12 Since H = ∂D and D = J−(Ias ) ∩ J+(Ias ).
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We can then extend r to the whole of D by just demanding that Tr = 0. Of course,
we might not be able to make r a coordinate function, since if � has complicated
topology, Morse theory implies that ∇r should necessarily vanish somewhere on �.

Hyperboloidal hypersurfaces terminating at I+: We will need to define a special
class of hypersurfaces that will be used frequently throughout this paper.

Let S be a spacelike hypersurface of D. We will say that S is a hyperboloidal
hypersurface terminating at I+, if in each component of the asymptotically flat region
Ias of (D, g), equipped with the coordinate chart (t, r, σ ) ∈ R × (Rd\BR), S is the
set {(t, r, σ )|t = f (r, σ )} for some function f : R

d\BR → R such that

sup
(r,σ )∈Rd\BR

(| f (r, σ ) − r − 2M log(r − 2M)|) < +∞. (2.7)

2.1.2 Assumption 2 (Killing Horizon with Positive Surface Gravity)

In the case J+(�) ∩ H+ �= ∅, we assume that there exists a non-zero vector field V
defined on J+(�)∩H+, which is parallel to the null generators of J+(�)∩H+, and
its flow preserves the induced (degenerate) metric on I+(�) ∩ H+. We also assume
that V commutes with T on J+(�) ∩ H. Moreover, we assume that there exists a T -
invariant strictly timelike vector field N on D, which, when restricted on J+(�)∩H,
satisfies

K N (ψ) ≥ cJ N
μ (ψ)Nμ (2.8)

for any ψ ∈ C∞(D), where c > 0 is independent of ψ. For the notations on currents,
see Section 3.8.

We will call the vector field N the red shift vector field. The reason for this name
is that a vector field of that form was shown to exist for a general class of Killing
horizons with positive surface gravity by Dafermos and Rodnianski in [18]. However,
here we will just assume the existence of such a vector field without specifying the
geometric orgin of it.

Note that we can modify the vector field N away from the horizon, so that in the
region r � 1 it coincides with T , and still retain the bound (2.8) on J+(�)∩H.13 We
will hence assume without loss of generality that N has been chosen so that N ≡ T
away from the horizon.

Due to the smoothness of N , there exists an r0 > 0, such that (2.8) also holds
(possibly with a smaller constant c on the right hand side) in a neighborhood of
H+\(H+ ∩H−) in D of the form {r ≤ r0}. For r � 1, of course, since N ≡ T there,
we have KT (ψ) ≡ 0. Hence, due to the T−invariance of N and the compactness of
the sets of the form {r ≤ R} ∩ �, there is also a (possibly large) constant C > 0 such
that ∣

∣K N (ψ)
∣
∣ ≤ C · J N

μ (ψ)Nμ (2.9)

everywhere on D for any ψ ∈ C∞(D).

13 The convexity of the cone of the future timelike vectors over each point of D is used in this argument.
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Without loss of generality, we also assume that r0 is small enough so that dr �= 0
on {r ≤ 3r0}. This is possible, since we have assumed that dr |�∩H+ �= 0 and that
� ∩ H+ is compact.

2.1.3 Assumption 3 (Smallness of the Ergoregion)

In the case H+ �= ∅, we assume that g(T, T ) < 0 in the region {r > r0
2 } (where r0 was

defined before so that K N (ψ) ≥ C · J N
μ (ψ)Nμ in {r ≤ r0}). Moreover, we assume

that
sup{g(T, T )} < ε (2.10)

for a fixed small positive constant ε, the value of which will be specified exactly later on
in terms of the rest of the geometry of our spacetime.14 Note that due to the asymptotic
flatness assumption, on {r ≥ 3r0

4 } the quantity g(T, T ) is uniformly bounded away
from zero.

Since {g(T, T ) > 0} in {r ≥ r0}, one could have adjusted the previous construction
of the vector field N so that it coincides with T on {r ≥ 2r0}. Hence, without loss of
generality, from now on we will assume that N ≡ T on {r ≥ 2r0}.

In the case H+ = ∅, we assume that T is everywhere timelike on D.

Remark We should remark again that, in view of Friedman’s ergospher instability
(see [35]), the existence of a non empty ergoregion in the case H+ = ∅ would lead to
a violation of Assumption 4. For a rigorous proof of this result, see our forthcoming
[51]. We should also point out that Assumption 3 poses some restrictions on the part
of the trapped set contained in the ergoregion. For instance, it does not allow for
T -orthogonal trapped null geodesics.

2.1.4 Assumption 4 (Boundedness of the Energy of Scalar Waves)

Recall that the leaves of the foliation {�t |t ≥ 0} of D ∩ J+(�) are the level sets
of the function t defined under Assumption 1. We assume that there exists a positive
constant C > 0 such that for any smooth solution ψ to the wave equation �gψ = 0
on D ∩ J+(�), and for any 0 ≤ t ≤ t ′, we can bound

∫

�t ′
J N
μ (ψ)nμ ≤ C ·

∫

�t

J N
μ (ψ)nμ, (2.11)

where nμ is the unit normal to the leaves of the foliation {�τ}τ≥0 and the integrals are
taken with respect to the volume form of the induced metric.

This assumption will be used as a “black box” in the subsequent sections, in the
sense that the mechanisms from which boundedness stems will not be addressed.
Notice that we have not included in our assumption the boundedness of the horizon

14 Informally, this means that the ergoregion is small enough so that the “red shift” effect can “protect” us
from the various difficulties tied to coping with waves inside the ergoregion, such us those stemming from
the superradiance effect.
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flux
∫
H+ J N

μ (ψ)nμ

H (for our conventions on integration over null hypersurfaces, see
section 3).

Remark While the boundedness assumption 4 was stated only for the level sets of the
function t , it actually holds for the level sets of any function of the form t + χ with
achronal level sets, χ : D → R being any function supported in r � 1 and satisfying
Tχ = 0. This fact can be easily deduced by the conservation of the J Tμ current and
the fact that T ≡ N is timelike for r � 1.

2.2 Examples of Spacetimes Satisfying Assumptions 1–4

A first example of a broad class of spacetimes satisfying Assumptions 1–4 is the class
of asymptotically flat Lorentzian manifolds of product type (R×N ,−dt2 + ḡ), which
was already treated by Rodnianski and Tao in [58].

In order to verify that Assumptions 1–4 are indeed satisfied on these spacetimes, one
has to notice that Assumption 1 on stationarity and asymptotic flatness follows read-
ily from the asymptotic flatness of the Riemannian manifold N , while Assumptions
2 and 3 are trivially satisfied by the absence of a black hole region and an ergore-
gion (g(∂t , ∂t ) being identical to −1 everywhere) on product Lorentzian manifolds.
Finally, since the vector field ∂t gives rise to the conserved positive definite energy∫
{t=const} J

∂t
μ (ψ)nμ

{t=const} for solutions ψ to the wave equation, Assumption 4 is also
satisfied for any Lorentzian manifold of product type.

In addition to the class of asymptotically flat Lorentzian manifolds of product type,
some other classes of spacetimes satisfying the assumptions of the previous Section,
and on which Theorem 2.1 readily applies to give a logarithmic decay statement for
the local energy of waves, are the following:

2.2.1 Black Hole Spacetimes Without Ergoregion

In Section 7 of [22], Dafermos and Rodnianski consider a large class of stationary
spacetimes without ergoregion, with horizons exhibiting positive surface gravity, and
with minimal further geometric and topological assumptions. For these spacetimes,
they establish a boundedness estimate for the energy of solutions to the wave equation
�gψ = 0 with respect to a timelike vector field and a suitable foliation. Therefore,
Assumption 4 on energy boundedness holds for spacetimes in this class.

Restricting our attention to the asymptotically flat spacetimes contained in this class,
namely the spacetimes satisfying Assumption 1, the reader can easily verify that they
also satisfy Assumptions 2–3 due to the non degeneracy of the horizons and the absence
of an ergoregion. Thus, Theorem 2.1 applies in this case to give a logarithmic decay
estimate for the local energy of solutions to �gψ = 0. This decay rate for the local
energy can also be upgraded to a pointwise logarithmic decay statement for ψ, using
the commutation techniques explained in [22], thus improving the results of [22] on
those spacetimes.

This class includes the spherically symmetric and asymptotically flat black hole
spacetimes studied in [47]. An example of spacetimes in the class studied by [47] are
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the black hole solutions of the SU (2) Einstein–Yang Mills equations constructed in
[65]. On these spacetimes, our Theorem 2.1 improves the qualitative results of [47].

2.2.2 Axisymmetric Waves on Black Hole Rings and Black Saturn

The topological censorship theorem, established by Friedman, Schleich and Witt
in [36], implies, through the work of Chruściel and Wald [12] and Jacobson and
Venkataramani [42], that in the realm of 3 + 1 dimensional vacuum spacetimes, spa-
tial cross sections of black hole horizons must have spherical topology. In higher
dimensions, however, horizons are allowed to become more complicated. In 4 + 1
dimensions, for instance, the intersection of the black hole horizon with a Cauchy
hypersurface in a vacuum spacetime is allowed to have components diffeomorphic to
S

1 × S
2.

The first exact solutions of the vacuum Einstein equations exhibiting horizons with
non spherical topology were the black ring solution constructed by Emparan and Reall
in [33,34]. These are 4 + 1 dimensional, stationary and axisymmetric asymptotically
flat solutions to the vacuum Einstein equations, with non degenerate horizons having
S

1 ×S
2 spatial cross sections. A variation of these spacetimes are the black hole rings

rotating in two different directions presented by Pomeransky and Sen’kov in [54].
The Emparan–Reall spacetimes necessarily possess an ergoregion, and this fact

implies that an energy boundedness statement on their domain of outer communi-
cations D can not be inferred as a corollary of the general result of Dafermos and
Rodnianski in [22], discussed in the previous paragraph. However, since in D the span
of the stationary Killing field T and the axisymmetric Killing field � always contains a
timelike vector, axisymmetric functions on these spacetimes have positive T−energy
with respect to any spacelike foliation of D. Thus, axisymmetric solutions to the wave
equation �ψ = 0 on the domain of outer communications of the aforementioned
spacetimes do not “see” the ergoregion, and for them the results of Dafermos and
Rodnianski discussed in Section 7 of [22] applies to establish a non degenerate energy
boundedness statement.

Therefore, restricting our attention only to axisymmetric waves on D, we can easily
verify that all Assumptions 1–4 (reduced, of course, to the case of axisymmetric waves)
are satisfied in this case. Furthermore, in view of the fact that � is a Killing field, the
proof of Theorem 2.1 can be restricted on the class of axisymmetric functions on D.
Thus, we infer that the local energy of axisymmetric solutions to the wave equation
�gψ = 0 on the domain of outer communications of the Emparan–Reall spacetimes
decay at least logarithmically in time (and this decay rate can also be made pointwise,
after implementing as before the commutation techniques explained in [22]).

The situation is similar on the “black Saturn” solution to the vacuum Einstein equa-
tions, constructed by Elvang and Figueras in [32]. The Elvang–Figueras spacetime is a
4+1 dimensional, stationary, axisymmetric and asymptotically flat vacuum spacetime,
possessing a black hole region with non degenerate horizon. The horizon has spatial
cross sections resembling Saturn: one component of the horizon is homeomorphic
to S

3, while the other one is homeomorphic to S
1 × S

2. Arguing exactly as before,
the results of Dafermos and Rodnianski presented in [22] establish a non degener-
ate energy boundedness statement for axisymmetric solutions to the wave equation
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�gψ = 0 on the domain of outer communications Ds of this spacetime. Assumptions
1–4 are also satisfied, therefore, in this case as before, and we deduce that axisym-
metric solutions to the wave equation �ψ = 0 on Ds decay at least logarithmically in
time.

It would be interesting to study in greater detail the axisymmetric trapping on
the Elvang–Figueras spacetime (which appears to be a more challenging task due
to the horiozn having two components), so as to infer better decay results in this
case. Moreover, we should remark that establishing an energy boundedness statement
for those of the Emparan–Reall and Elvang–Figueras spacetimes possessing a small
ergoregion (which could in principle be achieved by the strategy followed in [21] for
slowly rotating Kerr spacetimes, if supperadiance and trapping can be shown to not
“overlap”) would remove our restriction on axisymmetric waves, making Theorem
2.1 applicable to all solutions of the wave equation on these spacetimes.

2.2.3 C1 Perturbations of Slowly Rotating Kerr Spacetimes

Of special interest are also the C1 perturbations of the exterior of slowly rotating
Kerr spacetimes, discussed by Dafermos and Rodnianski in [21]. In particular, these
spacetimes (M, g) possess an atlas, in which the expression for the metric g is C1

close to the metric gM expressed on a fixed atlas on the domain of outer communica-
tions (including the horizon) of Schwarzschild spacetime (MM , gM ) with mass M . In
addition, all spacetimes (M, g) in this class are required to be stationary and axisym-
metric. These spacetimes include the exterior of very slowly rotating Kerr spacetimes
(i. e. with |a| � M).

On spacetimes belonging to the above class, it was established in [21] that solutions
to the wave equation �gψ = 0 have bounded energy with respect to a globally timelike
T−invariant vector field N (where T is the stationary Killing field of (M, g)) and a
suitable spacelike foliation. Therefore, it can be easily checked that Assumptions 1–4
are satisfied for spacetimes belonging to this class, and thus our Theorem 2.1 applies
in this case to provide a logarithmic decay rate for the local energy of waves (which,
again, can also be upgraded to a pointwise logarithmic decay rate).

It is important to remark that on this class of spacetimes, the nature of the trapped set
can be very different from the one in Schwarzschild or slowly rotating Kerr spacetimes,
because the metric g of M was required to be only C1 close to that of (MM , gM ).15

Hence, methods relying on the particular form of trapping on Schwarzschild or Kerr
exterior backgrounds would not be applicable in order to obtain quantitative decay
estimates in this class of spacetimes.

2.2.4 Keir’s Class of Spherically Symmetric Spacetimes

Another class of spacetimes which satisfy Assumptions 1–4 are the static spherically
symmetric spacetimes (including spherically symmetric ultracompact neutron stars)

15 That is to say, since it is (at least) the C2 norm of the difference of the metrics that would control the
change in trapping, and this norm is not assumed to be small, the nature of the trapped set in a spacetime
(M, g) of this class can be fundamentally different from the one in Schwarzschild spacetime.
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studied by Keir in [44]. Of course, [44] already establishes a logarithmic decay estimate
for solutions to the wave equation �gψ = 0, and thus Theorem 2.1 in this case just
recovers some of the results of [44]. Since it was shown in [44] that in this class
of spacetimes the logarithmic decay rates are optimal, this class also exhibits the
optimality of Theorem 2.1. See Section 12 for more on this.

2.3 Statement of the Decay Result

We are now able to state the main result of the current paper:

Theorem 2.1 Let (Md+1, g), d ≥ 3, be a globally hyperbolic spacetime with
a Cauchy hypersurface � satisfying Assumptions 1–4 as described in the previ-
ous section. Let D be the domain of outer communications of (M, g), and let
t : J+(�) ∩ D → [0,+∞) be the time function defined according to Assumption 1.
Assume, moreover, that, in caseH+ �= ∅, the ε > 0 appearing in (2.10) is sufficiently
small in terms of the geometry of J+(�) ∩ D\{g(T, T ) > 0}. Then for any R1 > 0,
any 0 < δ0 ≤ 1 and any m ∈ N, there exists a positive constant Cm,δ0(R1) > 0, such
that every smooth solution ψ : J+(�) ∩ D → C to the wave equation �gψ = 0
satisfies the following estimate for any τ > 0:

∫

{t=τ}∩{r≤R1}
J N
μ (ψ)nμ ≤ Cm,δ0(R1)

{log(2 + τ)}2m

⎛

⎝
m∑

j=0

∫

{t=0}
J N
μ (T jψ)nμ

⎞

⎠

+Cm(R1)

τδ0

∫

{t=0}
(1 + r)δ0 · J N

μ (ψ)nμ, (2.12)

nμ being the future directed normal to the leaves of the foliation {t = const} of
J+(�) ∩ D. See Section 3.8 for the notations on currents.

Remark Theorem 2.1 also yields a pointwise logarithmic decay estimate for ψ under
slightly stronger assumptions on (M, g). In particular, assume that the energy bound-
edness assumption 4 also holds for higher order energies of ψ, and that the following
higher order red-shift estimate holds for any k ≥ 1, τ > 0:

k∑

j=0

∫

{0≤t≤τ}∩{r≤r0}
J N
μ (N jψ)nμ �k

k∑

j=0

{∫

{0≤t≤τ}∩{r0≤r≤2r0}
J N
μ (N jψ)nμ

+
∫

{t=0}
J N
μ (N jψ)nμ

}
(2.13)

(notice that (2.13) holds on Schwarzschild exterior spacetime, see [18]). Then, the
logarithmic decay estimate (2.12) also holds for higher order local energies of ψ.
Combined with Corollary 2.2, standard elliptic estimates and the Sobolev embedding
theorem, these higher order estimates yield a pointwise logarithmic decay estimate
for ψ:
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sup
{t=τ}∩{r≤R1}

|ψ|2 ≤ Cm(R1)

{log(2 + τ)}2m

� d−1
2 �∑

i=0

(∫

{t=0}
r δ0 J N

μ (Niψ)nμ

+
m∑

j=0

∫

{t=0}
J N
μ (NiT jψ)nμ

)
. (2.14)

In view of Corollary 2.2, supSτ
|ψ|2 (where {Sτ}τ≥0 is the hyperboloidal foliation

of Corollary 2.2) is also controlled by the right hand side of (2.14), with a constant
independent of R1.

We should also remark that, replacing Assumption 4 with an energy boundedness
estimate with loss of derivatives:

∫

{t=τ}
J N
μ (ψ)nμ �

k∑

j=0

∫

{t=0}
J N
μ (N jψ)nμ, (2.15)

Theorem 2.1 still holds, with (2.12) replaced by:

∫

{t=τ}∩{r≤R1}
J N
μ (ψ)nμ ≤

k∑

i=0

{
Cm,δ0(R1)

{log(2 + τ)}2m

⎛

⎝
m∑

j=0

∫

{t=0}
J N
μ (T j N iψ)nμ

⎞

⎠

+Cm(R1)

τδ0

∫

{t=0}
(1 + r)δ0 · J N

μ (Niψ)nμ

}
. (2.16)

2.4 Corollaries of Theorem 2.1

As a first corollary of Theorem 2.1, using [52], we will upgrade the statement of
Theorem 2.1 itself to a logarithmic decay estimate for the energy of a solution ψ to
(1.1) with respect to hyperboloidal hypersurfaces terminating at I+:

Corollary 2.2 (Logarithmic decay of the energy through a hyperboloidal foliation).
Let (M, g), �, D and t be as in the statement of Theorem 2.1. Let S0 be any
smooth hyperboloidal hypersurface terminating at I+ (according to the definition
under Assumption 1), intersecting transversally H+ ∩ J+(�) (if non empty), such
that S0 ⊂ J+({t = 0}). Let also St denote the image of S0 under the flow of T for
time t > 0. Then, for any m ∈ N, there exists a positive constant Cm > 0 such that
every smooth solution ψ : J+(�) ∩ D → C to the wave equation �gψ = 0 satisfies
the following estimate for any τ > 0:

∫

Sτ

J N
μ (ψ)nμ

S ≤ Cm

{log(2 + τ)}2m

(∫

{t=0}
r δ0 J N

μ (ψ)nμ +
m∑

j=0

∫

{t=0}
J N
μ (T jψ)nμ

)
,

(2.17)
nμ
S being the future directed normal to the leaves of the foliation Sτ and nμ being the

future directed normal to the leaves of the foliation {t = const}.
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The proof of this corollary is a direct consequence of Theorem 2.1, combined with
the r p-weighted energy method of [52]. It is presented in Section 10.

The quantitative decay rate (2.17) also allows us to infer that, for solutions ψ to the
wave equation which have initial data with only finite initial J N−energy (and thus
with initial data with not necessarily enough decay in r for Theorem 2.1 to apply), the
J N−energy of ψ with respect to a foliation of hyperboloidal hypersurfaces terminating
atI+ still decays to 0, albeit in a non quantitative manner. In particular, we can establish
the following result:

Corollary 2.3 (Non-quantitative hyperboloidal decay in the energy class). Let
(M, g),�,D and t be as in the statement of Theorem 2.1. Let S0 be any smooth hyper-
boloidal hypersurface terminating atI+ (according to the definition underAssumption
1), intersecting transversallyH+∩J+(�) (if non-empty), such that S0 ⊂ J+({t = 0}).
Let also St denote the image of S0 under the flow of T for time t > 0. Then, for every
solution ψ : J+(�) ∩ D → C to the wave equation �gψ = 0 on (D, g) with∫
t=0 J N

μ (ψ)nμ < ∞, nμ being the future directed normal to the leaves of the foliation
{t = const}, the following is true:

lim
τ→+∞

∫

Sτ

J N
μ (ψ)nμ

S = 0, (2.18)

nμ
S being the future directed normal to the leaves of the foliation Sτ.
If the stationary vector field T is non spacelike in D and timelike away from the

future event horizon H+, then

lim
τ→+∞

∫

Sτ

J Tμ (ψ)nμ
S = 0 (2.19)

also holds for solutions ψ to �gψ = 0 satisfying merely
∫
t=0 J Tμ (ψ)nμ < ∞.

The proof of Corollary 2.3 is presented in Section 11.
In spacetimes (M, g) where the stationary vector field T is everywhere non space-

like on the domain of outer communications D, and timelike away from the horizon
H,16 the qualitative decay statement (2.19) for solutions to the wave equation with
finite initial J T -energy readily leads to a few interesting scattering results. Before
stating these results, we will first define the notion of the future radiation field on the
spacetimes under consideration.

Repeating the proof of Theorem 7.1 of [52] for spacetimes (M, g) satisfying
Assumption 1 on asymptotic flatness,17 any smooth solution ψ to the wave equa-
tion �gψ = 0 on D (the domain of outer communications of an asymptotically flat
end of M) with compactly supported initial data on � ∩D (� being a Cauchy hyper-
surface of M according to Assumption 1) gives rise to a well defined radiation field
�I+ on the future null infinity I+ of (D, g). The future radiation field �I+ is defined

16 In this case, the J T −energy is coercive.
17 The only difference between spacetimes satisfying Assumption 1 and the ones considered in the statement
of Theorem 7.1 of [52] is in the regularity of the metric g near I+.
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as the limit in the (u, r, σ ) coordinate system in the region {r � 1} (see Section 1
of the Appendix for how to construct this coordinate system in a spacetime with the
asymptotics (2.4) for the metric) as follows:

Definition For any smooth solution ψ to the wave equation �gψ = 0 on D with
compactly supported initial data on � ∩ D, the future radiation field �I+ on I+ is
defined as the limit (in each connected component of Ias)

�I+(u, σ ) = lim
r→+∞ r

d−1
2 ψ(u, r, σ ), (2.20)

where the convergence refers to the H1
loc(R × S

d−1, du2 + gSd−1) topology.

The J T -energy flux of ψ on I+ is then defined in the following way:

∫

I+
J Tμ (ψ)nμ

I+
.=

∑

components o f I+

∫ ∞

−∞

∫

Sd−1

(
∂u�I+(u, σ )

)2
dσdu. (2.21)

A priori, the energy (2.21) might be infinite. However, if the vector field T is
everywhere non spacelike on D, and timelike away from the horizon H, then the
conservation of the J T -current easily implies that

∫

I+
J Tμ (ψ)nμ

I+ ≤
∫

t=0
J Tμ (ψ)nμ. (2.22)

Through the conservation of the J T -current one can bound the energy flux on the
future horizon by the initial energy of ψ. In particular, one can bound:

∫

H+∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

I+
J Tμ (ψ)nμ

I+ ≤
∫

t=0
J Tμ (ψ)nμ. (2.23)

(see Section 3 on integration over null hypersurfaces).
By a standard density argument, one can define the future radiation field �I+ for

solutions ψ of �gψ = 0 satisfying merely
∫
t=0 J Tμ (ψ)nμ < ∞ as follows:

Definition For any solution ψ to the wave equation �gψ = 0 on D with H1
loc initial

data on �∩D satisfying
∫
t=0 J Tμ (ψ)nμ < ∞, the future radiation field �I+ is defined

as the limit (in the topology defined by the energy norm (2.21))

�I+ = lim
n

�n,I+ , (2.24)

where �n,I+ is the future radiation field of a sequence of smooth functions ψn solv-
ing �gψn = 0 on D with (ψn, Tψn)|�∩D compactly supported and approximating
(ψ, Tψ)|�∩D in the

∫
t=0 J Tμ (·)nμ norm as n → +∞.
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The existence and uniqueness of �I+ in this case follows by applying (2.23) for the
sequence ψn+1 − ψn .

The qualitative decay statement for the J T -energy on hyperboloids provided by
Corollary 2.3 leads to the following scattering result:

Corollary 2.4 (Asymptotic completeness for spacetimes without ergoregion) Let
(M, g), �,D and t be as in the statement of Theorem 2.1, and moreover suppose that
the stationary vector field T onD is everywhere non spacelike, and timelike away from
the horizon H. Then, for every solution ψ : J+(�) ∩ D → R to the wave equation
�gψ = 0 on (D, g) with

∫
t=0 J Tμ (ψ)nμ < ∞, nμ being the future directed normal to

the leaves of the foliation {t = const}, inequality (2.23) is actually an equality:

∫

H+∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

I+
J Tμ (ψ)nμ

I+ =
∫

t=0
J Tμ (ψ)nμ. (2.25)

Furthermore, for any scattering data set (ψ|H+ , �I+) with
∫
H+ J Tμ (ψ)nμ

H+ +∫
I+ J Tμ (ψ)nμ

I+ < ∞, one can find a solution ψ to the wave equation on D with∫
t=0 J Tμ (ψ)nμ < ∞, for which the restriction onH+ and the resulting future radiation
field coincide with the given scattering data.

Thus, any solution ψ to �gψ = 0 with
∫
t=0 J Tμ (ψ)nμ < ∞ on D ∩ J+(�) is

uniquely determined by its scattering data onH+, I+ (i. e. by ψ|H+ , �I+ ).

Remark Let (M, g) and D be as in the statement of Theorem 2.1 (now (D, g) is
allowed to have a non-empty ergoregion), and assume that (M, g) is also axisymmetric
with axisymmetric Killing field �. If the span of {T,�} is timelike everywhere on
D\H, then Corollary 2.4 is valid when restricted to the class of axisymmetric solutions
to (1.1) on (M, g).

The proof of Corollary 2.4 will be furnished in Section 11.
Let us notice that Corollary 2.4 reproves the classical asymptotic completeness

result on Schwarzschild spacetime (see [26–28,53]), and applies on a large class
of asymptotically flat spacetimes, including, for example, the black hole exterior
spacetimes constructed in Section 7 of [22], the black hole solutions of the SU (2)

Einstein-Yang Mills equations of [65] and the spherically symmetric spacetimes stud-
ied by Keir in [44]. Furthermore, restricted on the class of axisymmetric solutions of
equation (1.1) (see the remark below Corollary 2.4), it also applies on the subsextremal
Kerr exterior, the Emparan–Reall black ring (see [33,34]) and the Elvang–Figueras
black Saturn (see [32]). These spacetimes were discussed in Section 2.2.

Notice, however, that Corollary 2.4 does not apply on the general class of solutions
to (1.1) on spacetimes with an ergoregion, and, thus, it can not reprove the results
of [24] on the subextremal Kerr family (with Kerr parameters in the full subextremal
range |a| < M) without axisymmetry.

Finally, let us remark that in the asymptotically flat region of the spacetimes (M, g)
on which Corollary 2.4 applies, the long range part of the metric g (viewed as a
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perturbation of the flat Lorentzian metric η) is spherically symmetric.18 The rest of
the results of the present paper can be relaxed to apply on stationary spacetimes (M, g)
with g having a non spherically symmetric long range part; however, the proof of the
asymptotic completeness statement of Corollary 2.4 would fail to generalise in that
case.

2.5 Sketch of the Proof of Theorem 2.1

In order to make the reasoning behind the subsequent proof of Theorem 2.1 more
transparent, we will first present a sketch of this proof on a heuristic level. The final
step of the proof of Theorem 2.1 is the implementation of a frequency interpolation
scheme, similar to the one appearing already in [39].

Frequency decomposition: Given any solution ψ to the wave equation �gψ = 0 as in
the statement of Theorem 2.1, one starts by splitting it into two parts, ψ≤ω+ and ψ≥ω+ ,
where ψ≤ω+ has frequency support with respect to the t coordinate in {|ω| ≤ ω+},
and similarly ψ≥ω+ has frequency support contained in {|ω| ≥ ω+}. The parameter
ω+ > 0 will be determined later.

Since the Killing vector field T is not necessarily timelike near H+ and we have not
assumed that the red-shift vector field N satisfies some “nice” commutation properties
with the wave operator �g , the boundedness assumption for the energy of ψ alone is
not even enough to exclude the pointwise exponential growth of ψ. Thus, we will need
to perform a suitable cut-off in physical space in order for the Fourier transform of ψ

in t to make sense. Such a cut-off gives rise to well understood error terms in all the
subsequent estimates (these issues being conceptually identical to the ones appearing
in [21]), and the treatment of these terms will be carried out in a fashion similar to [21]
in Section 4.1. The boundedness assumption 4 will play a crucial role in estimating
these error terms. But for the sake of simplicity of the current sketch of the proof, let
us momentarily ignore the need for a physical space cut-off with all its corresponding
implications.

The interpolation argument: The components ψ≥ω+ and ψ≤ω+ of ψ also satisfy the
wave equation, due to the stationarity of the metric and the fact that a frequency cut-off
corresponds to convolution with a function of t in physical space. One can hence use
the boundedness assumption 4 for the high frequency part ψ≥ω+ to conclude that for
any τ > 0: ∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≥ω+

)
nμ ≤ C ·

∫

{t=0}
J N
μ (ψ)nμ. (2.26)

(Notice that the right hand side of (2.26) contains the energy of ψ and not that of ψ≥ω+ ,
which is a result of the technical issues concerning the physical space cut-off and the
frequency decomposition that we will supress in this section). Since the vector field
T is Killing, (2.26) also holds for the pair Tmψ≥ω+ , Tmψ in place of ψ≥ω+ ,ψ, and
thus, due to the fact that the frequency support of ψ≥ω+ is contained in {|ω| ≥ ω+},

18 Notice, however, that the proof of Corollary 2.4 can be adapted to include metrics g for which the long
range part in the outgoing null directions is not spherically symmetric.
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one can prove a statement of the form

∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≥ω+

)
nμ ≤ C

ω2m+

m∑

j=0

∫

{t=0}
J N
μ (T jψ)nμ. (2.27)

As for the low frequency part ψ≤ω+ , we will show that its local energy decays in
time at a slow polynomial rate:

∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≤ω+

)
nμ ≤ C · eCω+

τδ0

∫

{t=0}
J N
μ (ψ)nμ+ C

τδ0

∫

{t=0}
r δ0 ·J N

μ (ψ)nμ.

(2.28)
Notice already the exponential dependence of the constant of the first term of the right
hand side of (2.28) on ω+. Assuming for a moment that (2.28) holds, the logarithmic
decay of the local energy of ψ is deduced as follows: Combining (2.27) with (2.28),
and recalling that ψ = ψ≤ω+ + ψ≥ω+ , we obtain for any τ > 0

∫

{t=τ}∩{r≤R1}
J N
μ (ψ)nμ ≤ C · eCω+

τδ0

∫

{t=0}
J N
μ (ψ)nμ + C

τδ0

∫

{t=0}
r · J N

μ (ψ)nμ

+ C

ω2m+

m∑

j=0

∫

{t=0}
J N
μ (T jψ)nμ. (2.29)

Thus, choosing ω+ ∼ 1
2C log(2 + τ) yields (if τ ≥ 1) the desired logarithmic decay

estimate:

∫

{t=τ}∩{r≤R1}
J N
μ (ψ)nμ ≤ C

{log(2 + τ)}2m

( m∑

j=0

∫

t=0
J N
μ (T jψ)nμ

)

+ C

τδ0

∫

t=0
r δ0 · J N

μ (ψ)nμ. (2.30)

Remark In this interpolation procedure it is evident that, exactly as expected, the
“slow” log decay is caused by the high frequency part of ψ, since the low frequency
one decays polynomially. Such an interpolation scheme was also used in [39] (see also
[8]).

Thus, the proof will be complete after establishing a uniform decay statement of
the form (2.28) for the low frequency part ψ≤ω+ .

Polynomial decay forψ≤ω+ : In order to obtain an estimate of the form (2.28), we will
use the results of [52], which generalise the r p-weighted energy method of Dafermos
and Rodnianski [20] to a more general setting of asymptotically flat backgrounds.
Here, the asymptotic form of the metric (2.4) comes into play. Using the results of
[52], the problem of proving (2.28) reduces to proving an integrated local energy decay
statement of the form
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∫ ∞

0

{∫

{t=τ}∩{r≤R}
J N
μ (ψ≤ω+)nμ

}
dτ ≤ C(R) · eC(R)·ω+

∫

{t=0}
J N
μ (ψ)nμ. (2.31)

Thus, the rest of the proof is centered around establishing the estimate (2.31).
Heuristically, the reason that (2.31) can be obtained lies in the fact that ψ≤ω+ has

bounded frequency support, and hence it does not experience trapping: Its energy will
eventually “leak” (at a rate shrinking exponentially in ω+ as ω+ → ∞) to I+ or
through H+. This phenomenon is captured by a Carleman-type inequality which is
roughly of the form

∫

R(0,T )∩{r1≤r≤R}
es·ω+w

{∣
∣ψ≤ω+

∣
∣2 + J N

μ

(
ψ≤ω+

)
nμ
}

≤ C(R)
(

1 + (sω+)2
) ∫

R(0,T )∩{ r12 ≤r≤r1})
es·ω+w

{∣∣ψ≤ω+
∣
∣2 + J N

μ

(
ψ≤ω+

)
nμ
}

+C(R)
(

1 + (sω+)2
) ∫

R(0,T )∩{R≤r≤R+1})
es·ω+w

{∣∣ψ≤ω+
∣
∣2 + J N

μ

(
ψ≤ω+

)
nμ
}

+C(R) · eC(R)·sω+
∫

{t=0}
J N
μ (ψ)nμ. (2.32)

In (2.32), r1 > 0 should be considered small and R > 0 large, R(0, T ) denotes the
region {0 ≤ t ≤ T } for some arbitrary T > 0, and w is a suitable function on D which
for the purpose of this discussion can be assumed to be a strictly increasing (but not
bounded!) positive function of r . Finally, s > 0 is a large constant.

The extraction of (2.32) follows closely the derivation of a similar Carleman type
inequality in [58], using the multiplier method. The boundedness assumption 4 is used
in an essential way to control boundary terms at {t = T } appearing in this procedure.

Notice that due to the fact that w has been chosen strictly increasing in r (at least
near the horizon and near null infinity), the boundary term near the horizon in the
right hand side of (2.32) (namely the integral over r ∼ r1) carries a weight esω+·w
that is small in comparison to the weights esω+·w in the bulk integral of the left hand
side. The opposite happens with the boundary term near spacelike infinity (r ∼ R),
where the esω+w weights should be considered large in comparison to the weights in
the integral of the left hand side.

In order to attain the ILED statement (2.31), we would like to absorb the boundary
terms of the right hand side of (2.32) by the left hand side, in a process producing
error terms that can be bounded by the initial energy of ψ.

Treatment of the boundary terms near the horizon: In order to dispense with the first
term of the right hand side of (2.32), one uses the positivity properties of the red shift
vector field N near the horizon (according to Assumption 2), as well as the fact that
the weight esω+w in the r ∼ r1 region has much smaller values than in the {r � r1}
region if s is chosen sufficiently large. Let us remark at this point that Assumption
3 is also used here: The proof of the Carleman inequality (2.32) requires that the set
{r1 ≤ r ≤ R} does not intersect the ergoregion, while, in order to use Assumption 2
in order to deal with the first term of the right hand side of (2.32), it is necessary that
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r0 � r1 (where r0 is the parameter appearing in Assumption 2). Thus, it is essential in
this step that the ergoregion is contained in the set {r � r0}, and this fact is guaranteed
by Assumption 3.19

In particular, according to (2.8), the K N current is positive near the horizon and
controls the first term of the right hand side of (2.32), while it becomes non positive
only in the r0 ≤ r ≤ 2r0 region, where r1 < r0. Hence, the first term in the right hand
side of (2.32) can be bounded as:

∫

R(0,T )∩{ r12 ≤r≤r1})

(
1 + (sω+)2

)
es·ω+w

{|ψ≤ω+|2 + J N
μ

(
ψ≤ω+

)
nμ
}

≤ C ·
(

1 + (sω+)2
)(

sup
r≤r1

esω+w

)∫

R(0,T )∩{r0≤r≤2r0})
×
{∣
∣ψ≤ω+

∣
∣2 + J N

μ

(
ψ≤ω+

)
nμ
}

+C ·
(

1 + (sω+)2
)(

sup
r≤r1

esω+w

)
·
∫

{t=0}
J N
μ (ψ)nμ. (2.33)

The second term of the right hand side of (2.33) is what we would like to end up with
in the right hand side of (2.32), so we still have to dispense with the first term of (2.33).
Notice that since r1 < r0 and w is a strictly increasing function of r , we can bound

sup
r≤r1

esω+w ≤ e−c·ω+s · inf
r0≤r≤2r0

esω+w (2.34)

for some c > 0 depending on the precise choice of r1, r0. Thus, if s � 1, we can
etimate the first term of the right hand side of (2.33) by a small constant times the left
hand side of (2.32) (recall ω+ ≥ 1):

(
1 + (sω+)2

) (
sup
r≤r1

esω+w
) ∫

R(0,T )∩{r0≤r≤2r0})

{∣
∣ψ≤ω+

∣
∣2 + J N

μ

(
ψ≤ω+

)
nμ
}

≤ e−c·ω+s ·
∫

R(0,T )∩{r1≤r≤R}
es·ω+w

{
|ψ≤ω+|2 + J N

μ (ψ≤ω+)nμ
}
. (2.35)

Thus, the first term of the right hand side of (2.33) can be absorbed into the left hand
side of (2.32) if s is chosen sufficiently large in terms of the geometry of (M, g).
Thus, (2.32), (2.33) and (2.35) yield:
∫

R(0,T )∩{r≤R}
es·ω+w

{
|ψ≤ω+|2 + J N

μ (ψ≤ω+)nμ
}

≤ C(R)

∫

R(0,T )∩{R≤r≤R+1})

(
1 + (sω+)2

)
es·ω+w

{|ψ≤ω+|2 + J N
μ (ψ≤ω+)nμ

}

+C(R) · eC(R)·sω+
∫

{t=0}
J N
μ (ψ)nμ. (2.36)

19 We should also note that in the case where H+ = ∅, the first term of the right hand side of (2.32) can
be dropped, and the integral in the left hand side of (2.32) is over the whole region R(0, T ) ∩ {r ≤ R}.
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Treatment of the boundary terms near infinity: Unfortunately, the previous trick does
not apply in order to deal with the first term of the right hand side of (2.36), i. e. the
r ∼ R boundary term: In this case, the weight esω+w is now much larger in the region
r ∼ R than in the region r < R. Hence we can not hope to directly absorb the first
term of the right hand side of (2.36) into the left hand side.

In order to deal with this term, therefore, a much more delicate analysis is necessary,
and it is at this point that the results of [58] are used in a fundamental way. In particular,
we will employ an ODE lemma proven in Sections 9 and 10 of [58], and we will apply
it on a system of ordinary differential inequalities satisfied by the mass of ω and its
derivatives on the cylinders {r = ρ} (and varying eith ρ). This lemma will imply that,
if ω solves the wave equation on (D, g) and has frequency support in {|ω| ≥ ω1},
then for any large R f and for any given C2 > 0, for R taking values in any interval of
the form [R f ,C · R f ] the quantity

∫
R(0,T )∩{R≤r≤R+1})

{|ω|2 + J N
μ (ω)nμ

}
will either

decay as a function of R with a e−C2ω1R rate, or it will be bounded by C(C2) times
the initial energy of ω.

Assume, for a moment, that our solution ψ≤ω+ actually has frequency support only
in the regime |ω| ∼ ω+. Then the ODE lemma of Rodnianski and Tao would yield
that, for a suitable choice of C2 � 1, the first term in the right hand side of (2.36)
can either be absorbed by the left hand side, or can be bounded by the initial energy
of ψ (since, again, in our heuristic setting the energy of ψ≤ω+ can be bounded by the
energy of ψ). Thus, in the case where ψ≤ω+ has frequency support only in the regime
|ω| ∼ ω+, (2.36) readily implies the ILED statement:

∫

R(0,T )∩{r≤R}
es·ω+w

{
|ψ≤ω+|2+J N

μ (ψ≤ω+)nμ
}
≤C(R)·eC(R)·sω+

∫

{t=0}
J N
μ (ψ)nμ.

(2.37)
In general, however, ψ≤ω+ will not have frequency support only in the region

|ω| ∼ ω+. For this reason, we need to decompose ψ≤ω+ further into ψk pieces, which
have frequency supports in small intervals [ωk,ωk+1] with comparable endpoints,
except for ψ0, which has frequency support in a small neighborhood around 0. For
each of the frequency decomposed components ψk , for k �= 0, the previous heuristics
work exactly as presented for ψ≤ω+ , since the Carleman inequality (2.32) and the
ODE lemma of Rodnianski and Tao hold for ψk as well. Thus, after applying this
procedure and then summing the ψk’s for k �= 0, this line of arguments establishes
the integrated local energy decay statement (2.31) for ψ≤ω+ − ψ0 in place of ψ≤ω+ .

Treatment of the very low frequency component ψ0: For ψ0, a different argument
needs to be furnished in order to reach the full integrated local energy decay statement
(2.31). This is accomplished in Section 6, with the use of a special vector field current,
coupled with a locally improved Morawetz ILED statement. At this point, Assumption
3 on the smallness of the ergoregion plays a crucial role.

2.6 Remark on the Proof of Theorem 2.1

We will only be concerned with proving Theorem 2.1 in the case where future horizon
H+ is non-empty. In the case H+ = ∅, Assumption 2 can be completely dropped,
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and Assumption 3 degenerates to the condition that g(T, T ) < 0 everywhere on D.
Therefore, in the case H+ = ∅, Theorem 2.1 can be established using almost the same
arguments as in the case H+ �= ∅, and in fact the proof of the results of Sections 6
and 7 are simplified. Thus, from now on we will assume without loss of generality
that H+ �= ∅ (the differences of the proof in the cases H+ �= ∅ and H+ = ∅ will be
highlighted in the footnotes of Sections 6 and 7).

In order to avoid confusion when doing estimates in each connected component of
the asymptotically flat region Ias of D, we will assume without loss of generality that
Ias has only one connected component (i. e. that (M, g) has only one asymptotically
flat end). This assumption will simplify the derivation of the estimates in the region
{r � 1} appearing in Sections 7–8, in view of the fact that {r � 1} will be covered
by a single polar coordinate chart. In the general case where Ias has more than one
components, the same estimates will follow after repeating the same proves on each
component seperately and then adding the resulting estimates. The reader is advised
to keep in mind this simplifying assumption when reading Sections 7–8.

It will also be convenient for the proof of Theorem 2.1 to assume without loss of
generality that ψ has compact initial data. This will not pose any further restriction
for the statement of the theorem, since the full statement can then follow by a usual
density argument. However, compact initial data for ψ imply, due to the domain of
dependence property, that the restriction of ψ on any {t = const} hypersurface is
also compactly supported, and in particular, ψ must be supported in a set of the form
{r � Rsup + |t |} for some large Rsup depending on ψ.20

2.7 Outline of the Paper

The proof of Theorem 2.1 is presented in Sections 4–9. While reading these sections,
one is advised to keep in mind the above heuristics, since despite their simplicity,
the main arguments are often blurred by technicalities (mainly because of the need to
carefully perform physical space as well as frequency space cut-offs, and also because
of the very general assumptions on the geometry).

In Section 4, we carry out in detail the cut-off procedure in both physical and
frequency space, and we establish all the required lemmas regarding the behaviour of
ψ≤ω+ ,ψ≥ω+ and ψk .

In Section 5, we obtain estimates for the behaviour of ψk,ψ≤ω+ ,ψ≥ω+ in the
asymtotically flat region {r � 1}. This is achieved by applying the new method of
Dafermos and Rodnianski, originally appearing in [20], and generalised in [52] to
include a broader class of asymptotically flat manifolds. In particular, in Section 5 the
results of [52] are specialized for the case of the frequency decomposed components
ψk,ψ≤ω+ ,ψ≥ω+ of ψ.

In Section 6, we provide the proof of integrated local energy decay for the very low
frequency part ψ0.

The proof of the integrated local energy decay of ψ≤ω+ occupies Section 7. There,
we establish a Carleman type inequality for ψk , k �= 0, which is then upgraded to an

20 Of course no constant in the proof must be allowed to depend on Rsup
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integrated local energy decay statement for ψ≤ω+ with the use of a technical lemma of
[58]. With this last statement at our disposal, and with the use of the generalised version
of the r p-weighted energy hierarchy of Dafermos and Rodnianski (from Section 4.2),
we then infer in Section 8 that the local energy of ψ≤ω+ decays polynomially in time.

The proof of Theorem 2.1 is completed in Section 9, where the interpolation scheme
(2.29) is rigorously formulated.

The proof of Corollary 2.2 is presented in Section 10, while the proof of Corollaries
2.3 and 2.4 are presented in Section 11. Finally, we show that the result of Theorem
2.1 is optimal in this generality, by establishing the sharpness of the logarithmic decay
rate in Section 12.

3 Notational Conventions and Hardy Inequalities

In this paper, we will adopt the same notational conventions as we did in [52]. We will
now proceed to describe in more detail these conventions.

3.1 Constants and Parameters

We will adopt the following convention for denoting constants appearing in inequali-
ties, as is done in [21]: Capital letters (e. g. C) will be used to denote “large” constants,
typically appearing on the right hand side of inequalities. (Such constants can be
“freely” replaced by larger ones without rendering the inequality invalid.) We will
use lower case letters (e. g. c) to denote “small” constants (which can similarly freely
be replaced by smaller ones). The same characters will be frequently used to denote
different constants.

We will assume that all non-explicit constants will depend on the specific geometric
aspects of our spacetime (e. g the topology and the exact form of the metric) and we
will not keep track of this dependence, except for some very specific cases. However,
since we will need to define a plethora of parameters in the following sections, we
will always keep track of the dependence of all constants on each of these parameters.
Once a parameter is fixed (which will be clearly stated in the text), the dependence of
constants on it will be dropped.

The parameter R1, appearing in the statement of Theorem 2.1, will be considered
fixed, and hence we will drop any explicit referrence to it from constants depending on
its choice, unless there is a need to emphasize this dependence. Since we can always
increase R1without affecting the statement of Theorem 2.1, we will assume without
loss of generality that R1 is large enough so that the region {r ≥ R1} is contained in
the chart where the metric g takes the form (2.4).

3.2 Inequality Symbols

We will use the notation f1 � f2 for two real functions f1, f2 as usual to imply that
there exists some C > 0, such that f1 ≤ C · f2. This constant C might depend on
free parameters, and these parameters will be stated clearly in each case. If nothing is
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stated regarding the dependence of this constant on parameters, it should be assumed
that it only depends on the geometry of (D, g), and on the parameter R1 appearing in
the statement of Theorem 2.1.

We will write f1 ∼ f2 when we can bound f1 � f2 and f2 � f1. The nota-
tion f1 � f2 will be equivalent to the statement that | f1|

| f2| can be bounded by some
sufficiently small positive constant, the magnitude and the dependence of which on
variable parameters will be clear in each case from the context. For any function
f : M → [0,+∞), { f � 1} will denote the subset { f ≥ C} of M for some
constant C � 1.

For functions f1, f2 : [x0,+∞) → R, the notation f1 = o( f2) will mean that | f1|
| f2|

can be bounded by some continuous function h : [x0,+∞) → (0,+∞) such that
h(x) → 0 as x → +∞. This bound h might deppend on free parameters, and this
fact will be clear in each case from the context.

3.3 Coordinate Charts on D and Subsets of D Associated to t

In this paper, we will identify D\H− with R × (� ∩ D) by setting {t} × (� ∩ D) to
be equal to the image of � ∩D under the flow of the vector field T for time t (see the
remarks in Assumption 1.

When performing calculations in specific coordinate charts on regions of D\H−,
we will always pick coordinate charts of the following form: For any local coordinate
chart x = (x1, x2, . . . , xd) on an open subset V of �∩D, we will extend the functions
xi on the whole of R×V ⊂ D\H− by the requirement T (xi ) = 0, and we will use the
coordinate chart (t, x1, . . . , xd) on R × V . Notice that in such a coordinate chart we
have ∂t ≡ T . In the expression of any tensor w in such a coordinate chart, components
with indices ranging from 1 to d will correspond to the components of the tensor
associated to ∂x1 , . . . , ∂xd (or dx1, . . . , dxd ) respectively.

For any t1 ≤ t2, we will denote

R(t1, t2)
.= {t1 ≤ t ≤ t2} ⊂ D. (3.1)

Furthermore, for any t0 ∈ R, we will denote:

�t0
.= {t = t0}. (3.2)

3.4 Connections and Volume Forms

We will usually denote the natural connection of a pseudo-Riemannian manifold
(N , hN ) as ∇hN or ∇hN (or simply ∇N when there is no ambiguity about the metric
hN ). The associated volume form will be denoted as dhN . If hN is Riemannian,∣
∣ · ∣∣hN will denote the associated norm on the tensor bundle of N .

For any integer l ≥ 0,
(∇hN

)l or ∇l
hN will denote the higher order operator

∇hN · · · ∇hN︸ ︷︷ ︸
l times

. (3.3)
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We should remark that the product (3.3) is not symmetrised. We will also adopt the
convention that we will always use Latin characters to denote such powers of covariant
derivative operators. On the other hand, Greek characters will be used for the indices
of a tensor in an abstract index notation.

Let us state an example of the above convention: Let k be a (n1, n2)-tensor and
ω : (N , hN ) → C be a smooth function. Then the quantity

k
α1...αn1
β1...βn2

· (∇n1+n2
hN

)β1...βn2
α1...αn1

ϕ (3.4)

denotes the contraction of the n1 +n2 order derivative ∇n1+n2
hN ω of ω with the tensor k.

In the above, the metric hN was used to raise the first n2 indices of ∇n1+n2
hN ω. Notice

that in (3.4) we have used the abstract index notation, and hence the indices in (3.4)
are not associated to any fixed local coordinate chart.

3.5 Integration over Domains and Hypersurfaces

In the cases where we use the natural volume form ω associated to the metric g of a
Lorentzian manifold (M, g) in order to integrate over open subsets of M, the volume
form will be often dropped in the expression for the integral. Recall that in any local
coordinate chart (x0, x1, x2, . . . xd), ω is expressed as

ω = √−det (g)dx0 · · · dxd .

We will apply the same rule when integrating over any spacelike hypersurface S of
(M, g) using the natural volume form of its induced (Riemannian) metric.

In the case of a smooth null hypersurface H , the volume form with which inte-
gration will be considered will as usual depend on the choice of a future directed null
generator nH for H . For any such choice of nH , selecting an arbitrary vecor field
X on TH M such that g(X, nH ) = −1 enables the construction of a non degenerate
d-form on H : dvolnH

.= iXω, which depends on the on the precise choice of nH ,
but not on the choice for X . In that case, dvolnH will be the volume form on H
associated with nH .

3.6 Notations for Derivatives on S
d−1

Since, in the present paper, we will frequently work in polar coordinates in the asymp-
totically flat region of (D, g), we will introduce some convenient shorthand notation
regarding iterated derivatives on the unit sphere S

d−1, d ≥ 3.
The usual round metric on the sphere S

d−1 will be denoted as gSd−1 . This is simply
the induced metric on the unit sphere of R

d . We will also denote with gSd−1 the
natural extension of the round metric to an inner product on the space of tensors over
S
d−1. According to the conventions of Section 3.4, for any tensor field w on S

d−1,
|w|g

Sd−1 will denote the norm of w with respect to gSd−1 and ∇S
d−1

(or ∇Sd−1 ) will
denote the covariant derivative associated with gSd−1 . Furthermore, for any smooth
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(n1, n2)-tensor field w on S
d−1,

(∇S
d−1)k

w (or ∇k
Sd−1w) will denote the (n1, n2 + k)-

tensor field on S
d−1 obtained after applying the operator ∇S

d−1
on w k times. The

Laplace–Beltrami operator on (Sd−1, gSd−1) will be denoted as �g
Sd−1 .

Frequently, we will work on regions U of a spacetime Md+1 such that U can be
mapped diffeomorphically, through a coordinate “chart”, onto R+ × R+ × S

d−1. In
any such a coordinate “chart”, σ will denote the projection σ : U → S

d−1. We remark
that, for any x ∈ M, σ(x) is a point on S

d−1 and not just the coordinates of this point
in a coordinate chart on S

d−1. The same σ notation will also be used for the spherical
variable of a polar coordinate “chart” on codimension 1 submanifolds of M (in this
case, the range of such a “chart” will be simply R+ × S

d−1). For example, we will
use the notation (r, σ ) : {x0 = 0} → R+ × S

d−1 for the usual polar coordinate chart
on the hyperplane {x0 = 0} of R

d+1.
On a subset U of a spacetime M covered by a polar coordinate chart (u1, u2, σ ) :

U → R+ ×R+ ×S
d−1, for any function h : U → C and any β1, β2 ∈ R+, h(β1, β2, ·)

defines a function on S
d−1. Under this correspondence, the ∇S

d−1
differential operator

on S
d−1 is extended to a tangential differential operator on the hypersurfaces {u1, u2 =

const} ⊂ U . This operator is, of course, related to the specific choice of the polar
coordinate chart (u1, u2, σ ).

The following schematic notation for derivatives on S
d−1 (and the associated tan-

gential operators on the hypersurfaces {u1, u2 = const} in a (u1, u2, σ ) coordinate
chart on a spacetime M) will be frequently used in the present paper: For any function
h : S

d−1 → C and any l ∈ N, we will denote the l-th order derivative ∇l
Sd−1h as ∂ lσ h.

The norm of this tensor will be denoted as:

|∂ lσ h| .= ∣∣∇l
Sd−1h

∣
∣
Sd−1 . (3.5)

Furthermore, for any symmetric (l, 0)-tensor b on S
d−1, the following schematic

notation for the contraction of
(∇S

d−1)l
h with b will be frequently used:

b · ∂ lσ h
.= bι1...ιl (∇l

Sd−1)ι1...ιl h (3.6)

(for the notations on powers of covariant derivatives and the abstract index notation,
see Section 3.4). The same notation will be used for the contraction of the product of
derivatives of multiple functions: For any family of m functions h1, . . . , hm : S

d−1 →
C and any set ( j1, . . . jm) of non-negative integers, for any (

∑n
k=1 jk, 0)-tensor b on

S
d−1 which is symmetric in any pair of indices lying in the same one of the intervals

In =
(∑n−1

k=1 jk + 1,
∑n

k=1 jk
)

for each n ∈ {1, . . .m}, we will adopt the notation

b · ∂ j1
σ h1 · · · ∂ jm

σ hn
.= b

ι1...ι
∑m

k=1 jk · (∇ j1
Sd−1

)
ι1...ι j1

h1 · · · (∇ jm
Sd−1

)
ιm−1∑

k=1
jk+1

...ι m∑

k=1
jk

hm .

(3.7)
Notice that the tensor b used in the notation (3.7) will not necessarily be symmetric
in pairs of indices lying in seperate pairs of the In intervals.
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We will also use the same notation (i. e. (3.6) and (3.7)) when h, h1, . . . , hm are
tensor fields on S

d−1.
Notice also that, working in a polar coordinate “chart” (u1, u2, σ ) : U → R+ ×

R+ × S
d−1, the following commutation relation holds for any function h on U :

[L∂ui
∇S

d−1
,∇S

d−1
∂ui
]
h = 0, (3.8)

where ∂ui is the coordinate vector field associated to the coordinate function ui (for
i = 1, 2). Therefore, we will frequently denote

L∂ui
∇S

d−1
h

.= ∂ui ∂σ h (3.9)

and this notation will allow commuting ∂ui with ∂σ , as if ∂σ was a regular coordinate
vector field.

The notation dσ will be used in two different ways, depending on the context:
it will denote either the usual volume form on (Sd−1, gSd−1 ) or a 1-form on S

d−1

satisfying for 0 ≤ k ≤ 4 the bound
∣
∣(∇S

d−1)k
dσ
∣
∣
g
Sd−1

≤ 1. Similarly, dσdσ will

denote a symmetric (2, 0)-tensor on S
d−1 satisfying for any 0 ≤ k ≤ 4 the bound∣

∣(∇S
d−1)k

(dσdσ)
∣
∣
g
Sd−1

≤ 1.

Example For any function f and any tensor b on S
d−1 with the aforementioned

symmetries, the above notation will allow us to perform the following integration by
parts procedure:

∫

Sd−1
b · ∂σ f · ∂σ ∂σ f dσ = −1

2

∫

Sd−1
(c1∂σb + c2b) · ∂σ f · ∂σ f dσ, (3.10)

for some smooth contracting tensors c1, c2 which are bounded with bounds depending
only on the tensor type of b.

The notation (3.6) and (3.7) will be frequently used in cases where we lack an explicit
form for the contracting tensor b, but we have bounds for the norm of b and its
derivatives. This is the reason motivating our choice of a notation which apparently
loses information regarding the structure of the underlying expression.

3.7 The Ok(·) Notation

For any integer k ≥ 0 and any b ∈ R, the notation h = Ok(rb) for some smooth
function h : M → C will be used to denote that in the (t, r, σ ) polar coordinate chart
in the region {r � 1} of D (see Assumption 1):

k∑

j=0

∑

j1+ j2+ j3= j

r j1+ j2 |∂ j1
t ∂

j2
r ∂ j3

σ h| ≤ C · rb (3.11)
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for some constant C > 0 dependng on k and h. The same notation (omitting the ∂t
derivatives) will also be used for functions on regions of manifolds cover by an (r, σ )

polar coordinate chart.

3.8 Vector Field Multipliers and Currents

In the present paper, we will frequently use the language of currents and vector field
multipliers in order to establish the desired estimates. On any Lorentzian manifold

(M, g), associated to the wave operator �g = 1√−det (g)
∂μ

(√−det (g) · gμν∂ν

)
is

a (0, 2)-tensor called the energy momentum tensor T . For any smooth function ψ :
M → C, the energy momentum tensor takes the form

Tμν(ψ) = 1

2

(
∂μψ · ∂νψ̄ + ∂μψ̄ · ∂νψ

)
− 1

2

(
∂λψ · ∂λψ̄

)
gμν. (3.12)

For any continuous and piecewiseC1 vector field X onM, the following associated
currents can be defined almost everywhere:

J X
μ (ψ) = Tμν(ψ)Xμ, (3.13)

K X (ψ) = Tμν(ψ)∇μXν. (3.14)

The following divergence identity then holds almost everywhere:

∇μ J X
μ (ψ) = K X (ψ) + Re

{
(�gψ) · Xψ̄

}
. (3.15)

3.9 Hardy-Type Inequalities

Frequently throughout this paper, we will need to control the weighted L2 norm of
some function u by some weighted L2 norm of its derivative ∇u. This will always be
accomplished with the use of some variant of the following Hardy-type inequality on
R
d (which is true for d ≥ 1, although we will only need it for d ≥ 3):

Lemma 3.1 For any a > 0, there exists some Ca > 0 such that for any smooth and
compactly supported function u : R

d → C and any R > 0 we can bound

∫

Rd∩{r≥R}
r−d+a · |u|2 dx +

∫

{r=R}
R−(d−1)+a · |u|2 dg{r=R}

≤ Ca

∫

Rd∩{r≥R}
r−(d−2)+a|∂r u|2 dx (3.16)

In the above, r is the polar distance on R
d , dx is the usual volume form on R

d and
dg{r=R} is the volume form of the induced metric on the sphere {r = R} ⊂ R

d .

Proof Following the usual steps for proving a Hardy inequality, we can calculate in
polar coordinates:
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∫

Rd∩{r≥R}
r−d+a · |u|2 dx =

∫

Sd−1

( ∫ ∞

R
r−d+a · |u|2 rd−1dr

)
dgSd−1 (3.17)

=
∫

Sd−1

( ∫ ∞

R
r−1+a · |u|2 dr

)
dgSd−1

= 1

a

∫

Sd−1

( ∫ ∞

R
∂r (r

a) · |u|2 dr
)
dgSd−1

= 1

a

{
−
∫

Sd−1

(
ra · |u|2)|r=R dgSd−1

+ 2
∫

Sd−1

( ∫ ∞

R
ra · Re(∂r u · ū) dr

)
dgSd−1

}
,

where, in order to integrate by parts, we have used the fact that u was compactly
supported.

Moving the first term of the right hand side of (3.17) to the left hand side, and using
the fact that in polar coordinates dg{r=R} = Rd−1dgSd−1 and dx = rd−1drdgSd−1 ,
we obtain:

∫

Rd∩{r≥R}
r−d+a · |u|2 dx + 1

a

∫

{r=R}
R−(d−1)+a · |u|2 dg{r=R}

= 2

a

∫

Rd∩{r≥R}
r−(d−1)+a · Re(∂r u · ū) dx

≤ 2

a

(∫

Rd∩{r≥R}
r−(d−2)+a · |∂r u|2 dx

)1/2

· ×
(∫

Rd∩{r≥R}
r−d+a · |u|2 dx

)1/2

. (3.18)

The desired inequality (3.16) now readily follows after absorbing the second factor of
the right hand side of (3.18) into the left hand side.

4 Construction of the Frequency Decomposed Components of ψ

In this section, we will assume that we are given a smooth function ψ : D → C as in the
statement of Theorem 2.1 solving �gψ = 0 on J+(�)∩D with compactly supported
initial data on �. We will introduce the parameters t∗ > 0, ω+ > 1 and 0 < ω0 < 1,
and we will decompose the function ψ into components with localised frequency
support in the t variable. We will always identify D\H− with R×�0 = R× (� ∩D)

under the flow of T as explained in Section 3.3.
In order to be able to apply the Fourier transform in the time variable, we will

first need to multiply ψ with a suitable cut-off function in time, so that the resulting
function has compact support in t . This cut off procedure will be similar to the one
followed by Dafermos–Rodnianski in [21]. We will then establish various estimates
for the frequency decomposed components of (the cut-off of) ψ. We will now proceed
with the details.

123



5 Page 38 of 124 G. Moschidis

4.1 Frequency Cut-Off

Let χ1 : R+ → [0, 1] be a smooth function such that χ1 ≡ 0 on x ≤ R1 and χ1 ≡ 1
on x ≥ R1 +1, for the given R1 in the statement of Theorem 2.1. Since we can always
increase R1without affecting the statement of Theorem 2.1, whenever needed we will
assume without loss of generality that R1 is large enough in terms of the geometry of
(D, g).

We define the following “distorted” time functions on D:

t+ = t − 1

2
χ1(r)(r − R1), (4.1)

t− = t + 1

2
χ1(r)(r − R1). (4.2)

Note that the level sets of these time functions are indeed spacelike hypersurfaces
(provided R1 � 1),21 and they agree with the level sets of t on {r ≤ R1}. Moreover:

{t+ = 0} ⊂ J+({t = 0}) ⊂ J+({t− = 0}). (4.3)

The reason for introducing these distorted time functions will become apparent in the
next section, when we will need to exchange decay in time with decay in r .

We will now describe the cut off of procedure in the time variable: Let χ2 : R →
[0, 1] be a smooth function such that χ2 ≡ 1 on [1,+∞) and χ2 ≡ 0 on (−∞, 0].
Then for any given t∗ > 0, we define the smooth cut-off function ht∗ : D → [0, 1]:

ht∗ = ht∗(t, r) = χ2(t−(t, r))χ2(t
∗ − t+(t, r)). (4.4)

We observe that supp(ht∗) ⊆ {t+ ≤ t∗} ∩ {t− ≥ 0} and supp(∇ht∗) ⊆ {0 ≤ t− ≤
1} ∪ {t∗ − 1 ≤ t+ ≤ t∗}. It is also readily verified that sup |∇ht∗ |, |∇2ht∗ | ≤ C for a
constant C independent of t∗.

Given a positive real number t∗ as before, we will define the time cut-off ψt∗ of ψ

as
ψt∗ = ht∗ · ψ. (4.5)

Observe that ψt∗ satisfies the equation

�gψt∗ = F, (4.6)

where
F = ∂μht∗ · ∂μψ + (�ght∗) · ψ (4.7)

is supported in {0 ≤ t− ≤ 1} ∪ {t∗ − 1 ≤ t+ ≤ t∗}.
In view of the assumption that the initial data for ψ on {t = 0} are supported in

a set of the form {r ≤ Rsup} (see Section 2.6), we infer that ψt∗ is supported in a

21 Terminating at spacelike infinity.
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cylinder of the form {r � Rsup + t∗}. This fact will serve to show that some spacetime
integrals of ψt∗ are well defined at various points throughout the proof.

Note that for any τ ∈ [0, t∗]:
∫

t=τ

J N
μ (ψt∗)n

μ ≤ C ·
∫

t=τ

(
ht∗ J

N
μ (ψ)nμ + |∇ht∗ | · |ψ|2)

≤ C ·
(∫

t=τ

ht∗ J
N
μ (ψ)nμ +

∫

{t=τ}∩{r≤2R1}
|ψ|2

)

≤ C ·
∫

t=τ

J N
μ (ψ)nμ ≤ C ·

∫

t=0
J N
μ (ψ)nμ. (4.8)

We will also need to perform a cut-off procedure in the frequency domain: Let
ω0 > 0 be a (small) positive constant, and ω+ � ω0 a (large) positive con-
stant. We decompose the interval [ω0,ω+] into a finite number of closed intervals
{[ωk,ωk+1]}n−1

k=0 such that ωn = ω+ and 1
4ω0 < ωk+1 − ωk < 1

2ω0. Note that
n ∼ ω+

ω0
. We will also set for −n ≤ k ≤ −1: ωk = −ω−k .

Fix a smooth function χ3 : R → [0, 1] such that χ3 ≡ 1 on [−1, 1] and χ3 ≡ 0
outside (− 9

8 , 9
8 ), and define the smooth cut-off function ζ≤ω+ : R → [0, 1],

ζ≤ω+(ω) = χ3

(
ω

ω+

)
. (4.9)

We also set ζ≥ω+ = 1 − ζ≤ω+ . These two functions will be used to split ψt∗ into a
high frequency component ψ≥ω+ and a low frequency component ψ≤ω+ .

As we remarked in Section 2.5, we will need to perform a finer frequency cut-off on
the low frequency component ψ≤ω+ . To this end, we also define the following cut-off
functions on R:

ζ̃0(ω) = χ3

(
ω

ω0

)
(4.10)

and for 1 ≤ k ≤ n:

ζ̃k(ω) = χ3

(
ω − ωk−1+ωk

2
1
2 (ωk − ωk−1)

)

. (4.11)

For −n ≤ k ≤ −1, we set ζ̃k(ω)
.= ζ̃−k(−ω). Finally, for −n ≤ k ≤ n, we define the

functions

ζk(ω) = ζ̃k(ω)
∑n

i=−n ζ̃i (ω)
. (4.12)

The properties of the functions ζk that we will need are the following:

• supp(ζ≤ω+) ⊆ [− 9
8ω+, 9

8ω+], supp(ζ≥ω+) ⊆ (−∞,−ω+] ∪ [ω+,+∞)

• supp(ζ0) ⊆ [− 9
8ω0,

9
8ω0

]

• For 1 ≤ k ≤ n:
supp(ζk) ⊆ [ωk−1 − ω0

8 ,ωk + ω0
8

]

• For −n ≤ k ≤ −1:
supp(ζk) ⊆ [−ωk − ω0

8 ,−ωk−1 + ω0
8

]

• ∑n
j=−n ζ j ≡ 1 on [−ω+,ω+].
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For any smooth function � : D → C such that �(t, x) has compact support in t
for any fixed x ∈ � ∩D (having used the identification of D\H− with R × (� ∩D),
see Section 3.3), we will denote the Fourier transform of � in the t coordinate by �̂,
and the inverse Fourier transform in t with �̌.

With this notation, we define the following partition of ψt∗ (defined as (4.5)) into
frequency decomposed components:

• ψ≤ω+(t, ·) .= ∫∞
−∞ ζ≤ω+(ω) · eiωt ψ̂t∗(ω, ·) dω

• ψ≥ω+(t, ·) .= ∫∞
−∞ ζ≥ω+(ω) · eiωt ψ̂t∗(ω, ·) dω = ψt∗(t, ·) − ψ≤ω+(t, ·)

and we decompose ψ≤ω+ further:

• ψk(t, ·) .= ∫∞
−∞ ζk(ω) ·eiωt ψ̂≤ω+(ω, ·) dω = ∫∞

−∞ ζ≤ω+(ω) ·ζk(ω) ·eiωt ψ̂t∗(ω, ·)
dω for −n ≤ k ≤ n.

Note that ψ≤ω+ + ψ≥ω+ = ψt∗ and
∑n

k=−n ψk = ψ≤ω+ .
In the same way, we will decompose F (defined as (4.7)) in Fk , F≤ω+ , F≥ω+ . Due

to the linearity of the cut-off operators, we have �gψk = Fk , �gψ≤ω+ = F≤ω+ ,
�gψ≥ω+ = F≥ω+ .

Note also that since ψt∗ is supported in the cylinder {r � Rsup + t∗}, the same is
also true for the functions ψk,ψ≤ω+ ,ψ≥ω+ .

4.2 Bounds for the Frequency-Decomposed Components

In this section, we will establish some useful estimates for the energy of ψk,ψ≤ω+ ,

ψ≥ω+ (as well as for the “error” terms Fk, F≤ω+ , F≥ω+) in terms of the initial energy
of ψ.

We will start by producing some basic estimates for the projection operators
ζk, ζ≤ω+ . Since the functions ζ≤ω+ and ζk · ζ≤ω+ are smooth with compact support,
their inverse Fourier transforms h≤ω+ and hk are Schwartz functions. The following
lemma establishes some Schwartz bounds for h≤ω+ , hk . In view of the fact that

ψ≤ω+(t, ·) =
∫ ∞

−∞
h≤ω+(t − s) · ψt∗(s, ·) ds, (4.13)

and for −n ≤ k ≤ n:

ψk(t, ·) =
∫ ∞

−∞
hk(t − s) · ψt∗(s, ·) ds, (4.14)

the Schwartz bounds for h≤ω+ and hk will then be used to establish useful estimates
for the functions ψk,ψ≤ω+ ,ψ≥ω+ .

Lemma 4.1 For ω0 ≤ 1 and ω+ ≥ 1, the convolution kernels h≤ω+ and hk (for
−n ≤ k ≤ n) satisfy:

sup
t

(
ω−1+ (1 + |ω+t |)q |h≤ω+(t)|) ≤ Cq (4.15)
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and
sup
t

(
ω−1

0 (1 + |ω0t |)q |hk(t)|
) ≤ Cq . (4.16)

Proof From the definition ζ≤ω+(ω) = χ3(
ω

ω+ ), we compute that h≤ω+(t) = ω+ ·
χ̌3(ω+t), where χ̌3 is a Schwartz function being the inverse Fourier transform of the
compactly supported χ3. Hence, we can bound for each q ∈ N:

sup
t

(
ω−1+ (1 + |ω+t |)q |h≤ω+(t)|) ≤ Cq . (4.17)

Similarly, due to the definition of ζk (4.12) and the bounds 1
4ω0 < ωk+1 − ωk <

1
2ω0, we also have for each q ∈ N:

∫ ∞

−∞

∣
∣
∣
dq

dωq
{ζk · ζ≤ω+}(ω)

∣
∣
∣ dω ≤ Cq ·

q∑

i=0

∫ ∞

−∞

∣
∣
∣ζ(i)k (ω)

∣
∣
∣ ·
∣
∣
∣ζ(q−i)

≤ω+ (ω)

∣
∣
∣ dω ≤ Cqω

1−q
0 .

(4.18)
In the above, the constant Cq does not depend on k, since supω |ζ(l)≤ω+(ω)| ≤ Clω

−l+ ≤
Cl and

∫∞
−∞ |ζ(l)k (ω)| dω ≤ Cl · ω−l+1

0 .

Thus, since hk = ˇ(ζk · ζ≤ω+), we can bound for each q ∈ N, −n ≤ k ≤ n:

sup
t

|(ω0t)
q · hk(t)| ≤ C ·

∫ ∞

−∞
ω
q
0

∣
∣
∣
dq

dωq
{ζk · ζ≤ω+}(ω)

∣
∣
∣ dω ≤ Cqω

1−q+q
0 = Cqω0

and hence for any q ∈ N we obtain the desired estimate:

sup
t

(
ω−1

0 (1 + |ω0t |)q |hk(t)|
) ≤ Cq . (4.19)

Let us also state a straightforward lemma that will be used frequently throughout
this paper:

Lemma 4.2 For any q ≥ 0, there exist constants cq ,Cq, such that for any solution ψ

to the wave equation �gψ = 0 on D and any τ ∈ R we can bound

cq ·
∫

{t−=τ}
rq · J N

μ (ψ)nμ ≤
∫

{t=τ}
rq · J N

μ (ψ)nμ ≤Cq ·
∫

{t−=τ}
rq · J N

μ (ψ)nμ. (4.20)

In paticular, for q = 0 we have the identity

∫

{t−=τ}
J N
μ (ψ)nμ =

∫

{t=τ}
J N
μ (ψ)nμ. (4.21)

Proof As we remarked earlier, {t− = τ} ∩ {r ≤ R1} ≡ {t = τ} ∩ {r ≤ R1}, and
N ≡ T for r ≥ R1. Hence, since T is Killing and ψ solves the equation �gψ = 0,
the current J N

μ (ψ) = Tμν(ψ)N ν is divergence free for r ≥ R1. Integrating, therefore,
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∇μ J N
μ (ψ) = 0 in the domain bounded by {t− = τ} and {t = τ} which lies entirely in

the region {r ≥ R1}), identity (4.21) follows immediately.
In order to show (4.20), we define for l ∈ Z the intervals Il = [2l , 2l+1] ⊆ R+, for

l ≥ 1, I0 = [0, 2] for l = 0, and Il = ∅ for l < 0. We then compute that

∫

t=τ

rq · J N
μ (ψ)nμ ∼q

∞∑

l=0

2q·l ·
∫

{t=τ}∩{r∈Il }
J N
μ (ψ)nμ, (4.22)

and similarly

∫

t−=τ

rq · J N
μ (ψ)nμ ∼q

∞∑

l=0

2q·l ·
∫

{t−=τ}∩{r∈Il }
J N
μ (ψ)nμ. (4.23)

Since t− = t + 1
2
χ1(r)(r − R1), we deduce that there exists an integer Z > 0 such

that for every τ ∈ R and every l ∈ N:

J+({t− = τ} ∩ {r ∈ Il}
) ∩ {t = τ} ⊆ {t = τ} ∩

{
r ∈ ∪l+Z

i=l−Z Ii
}

(4.24)

and

J−({t = τ} ∩ {r ∈ Il}
) ∩ {t− = τ} ⊆ {t− = τ} ∩ {r ∈ ∪l+Z

i=l−Z Ii }. (4.25)

Since {t− = τ} ≡ {t = τ} for r ≤ R1 and T ≡ N for r ≥ R1, the inclusions (4.24)
and (4.25) imply, after integrating the identity ∇μ J Tμ = 0 on J−({t = τ} ∩ {r ∈
Il}
) ∩ J+({t− = τ}), that for any l:

∫

{t=τ}∩{r∈Il }
J N
μ (ψ)nμ ≤

∫

{t−=τ}∩
{
r∈∪l+Z

i=l−Z Ii
} J N

μ (ψ)nμ (4.26)

and similarly, after an integration on J+({t− = τ} ∩ {r ∈ Il}
) ∩ J−({t = τ}):

∫

{t−=τ}∩{r∈Il }
J N
μ (ψ)nμ ≤

∫

{t=τ}∩
{
r∈∪l+Z

i=l−Z Ii
} J N

μ (ψ)nμ. (4.27)

Thus, in view of (4.22), (4.23), (4.26) and (4.27) we can bound:

∫

t=τ

rq · J N
μ (ψ)nμ ≤ Cq ·

∞∑

l=0

2ql ·
∫

{t=τ}∩{r∈Il }
J N
μ (ψ)nμ (4.28)

≤ Cq ·
∞∑

l=0

2ql ·
∫

{t−=τ}∩
{
r∈∪l+Z

i=l−Z Ii
} J N

μ (ψ)nμ

≤ 2ZCq ·
∞∑

l=0

2q(l+Z+1) ·
∫

{t−=τ}∩{r∈Il }
J N
μ (ψ)nμ
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= Cq · 2Z · 2q(Z+1)
∞∑

l=0

2ql ·
∫

{t−=τ}∩{r∈Il }
J N
μ (ψ)nμ

≤ Cq ·
∫

t−=τ

rq · J N
μ (ψ)nμ

and similarly

∫

t−=τ

rq · J N
μ (ψ)nμ ≤ Cq ·

∞∑

l=0

2ql ·
∫

{t−=τ}∩{r∈Il }
J N
μ (ψ)nμ (4.29)

≤ Cq ·
∞∑

l=0

2ql ·
∫

{t=τ}∩{r∈∪l+Z
i=l−Z Ii }

J N
μ (ψ)nμ

≤ 2ZCq ·
∞∑

l=0

2q(l+Z+1) ·
∫

{t=τ}∩{r∈Il }
J N
μ (ψ)nμ

≤ Cq ·
∫

t=τ

rq · J N
μ (ψ)nμ,

thus reaching the desired inequality

cq ·
∫

t−=τ

rq · J N
μ (ψ)nμ ≤

∫

t=τ

rq · J N
μ (ψ)nμ ≤ Cq ·

∫

t−=τ

rq · J N
μ (ψ)nμ. (4.30)

��
We will now establish some estimates for the error terms Fk, F≤ω+ , F≥ω+ . Note that
from now on we will always assume without loss of generality that ω0 ≤ 1 and
ω+ ≥ 1.

Lemma 4.3 We can bound for any q, q ′ ∈ N and any 0 ≤ t1 ≤ t2 ≤ t∗:
∫

R(t1,t2)

rq |Fk |2 ≤ Cq,q ′(ω0) ·
(
(1+ t1)

−q ′ +(1+ t∗− t2)
−q ′)

∫

t=0
J N
μ (ψ)nμ (4.31)

for −n ≤ k ≤ n. The same inequality also holds for F≤ω+ , F≥ω+ in place of Fk.

Proof Since Fk(t, ·) = ∫∞
−∞ hk(t − s) · F(s, ·) ds, we can bound (dx denoting in the

next lines the dg� integration measure):

∫

R(t1,t2)
rq |Fk |2 ≤ C ·

∫

�0

∫ t2

t1
rq
∣
∣
∣
∫ ∞

−∞
hk(t − s) · F(s, x) ds

∣
∣
∣
2
dtdx (4.32)

≤ C · Rq
1 ·
(∫

�0∩{r≤R1}

∫ t2

t1

∣
∣
∣
∫ ∞

−∞
hk(t−s) · F(s, x) ds

∣
∣
∣
2
dtdx

)

+
∫

�0∩{r≥R1}
rq
∫ t2

t1

∣
∣
∣
∫ ∞

−∞
hk(t − s) · F(s, x) ds

∣
∣
∣
2
dtdx .
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Because in the region {r ≤ R1}, F = ∂μht∗ · ∂μψ + (�ght∗) · ψ is supported in
{0 ≤ t ≤ 1} ∪ {t∗ − 1 ≤ t ≤ t∗} and supt |ω−1

0 (1 + |ω0t |)q ′+1hk(t)| ≤ Cq ′+1 due to
(4.16), the first term of the right hand side of (4.32) can be bounded by

∫

�0∩{r≤R1}

∫ t2

t1

∣
∣
∣
∫ ∞

−∞
hk(t − s) · F(s, x) ds

∣
∣
∣
2
dtdx

≤
∫

�0∩{r≤R1}

∫ t2

t1

∣
∣
∣
∫

[0,1]∪[t∗−1,t∗]
Cq ′ω0

(1 + ω0|t − s|)q ′+1
· F(s, x) ds

∣
∣
∣
2
dtdx

≤ Cq ′(ω0)

∫

�0∩{r≤R1}

∫ t2

t1

{
(1 + |t |)−q ′−1

∫

[0,1]
|F(s, x)|2 ds

+(1 + |t∗ − t |)−q ′−1
∫

[t∗−1,t∗]
|F(s, x)|2 ds

}
dtdx

≤ Cq ′(ω0) · ((1 + t1)
−q ′ + (1 + t∗ − t2)

−q ′)
∫

t=0
J N
μ (ψ)nμ, (4.33)

the last inequality being a consequence of the boundedness assumption 4, the fact that
F = ∂μht∗ · ∂μψ + (�ght∗) · ψ, as well as the Hardy inequality

∫

{t=τ}∩{r≤R1}
|ψ|2 ≤ CR2

1 ·
∫

t=τ

J N
μ (ψ)nμ (4.34)

following from (3.16).
For the second term of (4.32), we will use the definition of t+, t− and the support

of F to conclude that for r ≥ R1, l ∈ N and t ∈ (t1, t2):

∫ ∞

−∞
|hk(t − s)| · |F(s, r, σ )| ds =

∫ 1− 1
2
χ1·(r−R1)

− 1
2
χ1·(r−R1)

|hk(t − s)| · |F(s, r, σ )| ds+

+
∫ t∗+ 1

2
χ1·(r−R1)

t∗−1+ 1
2
χ1·(r−R1)

|hk(t − s)| · |F(s, r, σ )| ds

≤ Cl(ω0)
( 1

(1 + |t + 1
2 (r − R1)|)l

∫ 1− 1
2
χ1·(r−R1)

− 1
2
χ1·(r−R1)

|F(s, r, σ )| ds

+ 1

(1 + |t − t∗ − 1
2 (r − R1)|)l

∫ t∗+ 1
2
χ1·(r−R1)

t∗−1+ 1
2
χ1·(r−R1))1/2

|F(s, r, σ )| ds
)
. (4.35)

Therefore, by choosing l large enough (with respect to q, q ′), we conclude

∫

�0∩{r≥R1}

∫ t2

t1
rq
∣
∣
∣
∫ ∞

−∞
hk(t − s) · F(s, x) ds

∣
∣
∣
2
dtdx

≤ Cl(ω0) ·
∫

�0∩{r≥R1}

∫ t2

t1

rq

(1 + |t + 1
2 (r − R1)|)2l
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×
(∫ 1− 1

2
χ1·(r−R1)

− 1
2
χ1·(r−R1)

|F(s, x)|2 ds
)
dtdx

+Cl(ω0) ·
∫

�0∩{r≥R1}

∫ t2

t1

rq

(1 + |t − t∗ − 1
2 (r − R1)|)2l

×
(∫ t∗+ 1

2
χ1·(r−R1)

t∗−1+ 1
2
χ1·(r−R1)

|F(s, x)|2 ds
)
dtdx

≤ Cl(ω0) ·
∫

�0∩{r≥R1}

(∫ t2

t1

rq

(1 + |t + 1
2 (r − R1)|)2l

dt

)
·

×
(∫ 1− 1

2
χ1·(r−R1)

1
2
χ1·(r−R1)

(
J N
μ (ψ)nμ + |ψ|2)(s, x) ds

)
dx

+Cl(ω0) ·
∫

�0∩{r≥R1}

(∫ t2

t1

rq

(1 + |t − t∗ − 1
2 (r − R1)|)2l

dt

)
·

×
(∫ t∗+ 1

2
χ1·(r−R1)

t∗−1+ 1
2
χ1·(r−R1)

(
J N
μ (ψ)nμ + |ψ|2)(s, x) ds

)
dx

≤ Cq,q ′(ω0) · (1 + t1)
−q ′
∫

�0∩{r≥R1}
1

1 + r4

×
(∫ 1− 1

2
χ1·(r−R1)

− 1
2
χ1·(r−R1)

(
J N
μ (ψ)nμ + |ψ|2

)
(s, x) ds

)
dx

+Cq,q ′(ω0) · (1 + t∗ − t2)
−q ′
∫

�0∩{r≥R1}
1

1 + r4

×
(∫ t∗+ 1

2
χ1·(r−R1)

t∗−1+ 1
2
χ1·(r−R1)

(
J N
μ (ψ)nμ + |ψ|2)(s, x) ds

)
dx

≤ Cq,q ′(ω0)(1 + t1)
−q ′ ·

∫ ∞

0

1

1 + τ2

×
∫

{t−=τ}∩{R1�r�R1+τ}

(
J N
μ (ψ)nμ + 1

r2 |ψ|2
)
dxdτ

+Cq,q ′(ω0)(1 + t∗ − t2)
−q ′
∫ 1

0

∫

{t−=τ}∩{r≥R1}
1

r2

(
J N
μ (ψ)nμ + 1

r2 |ψ|2
)
dxdτ

≤ Cq,q ′(ω0)
(
(1 + t1)

−q ′ + (1 + t∗ − t2)
−q ′)

∫

t=0
J N
μ (ψ)nμ, (4.36)

the last inequality being a consequence of the boundedness assumption 4 and Lemma
4.2 (and a Hardy inequality for the 1

r2 |ψ|2 term). Thus, from (4.32), (4.33) and (4.36)
we obtain the desired bound:

∫

R(t1,t2)

rq |Fk |2 ≤ Cq,q ′(ω0)
(
(1+ t1)

−q ′ + (1+ t∗ − t2)
−q ′)

∫

t=0
J N
μ (ψ)nμ. (4.37)
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In the same way, one can show the same inequality for F≤ω+ , F≥ω+ = F − F≤ω+ . ��
We will also need to bound the energy of the frequency-decomposed components of
ψ in terms of the energy of ψ itself:

Lemma 4.4 There exists a positive constant C(ω0) such that for any −n ≤ k ≤ n,
and any τ ∈ [0, t∗]:

∫

t=τ

J N
μ (ψk)n

μ ≤ C(ω0) ·
∫

t=0
J N
μ (ψ)nμ. (4.38)

The same estimate holds forψ≤ω+ ,ψ≥ω+ in place ofψk (and in that case the constant
in (4.40) does not depend on ω0).

Proof The proof will be similar to the proof of the previous lemma. Since ∇μψk(t, ·) =∫∞
−∞ hk(t − s) · ∇μψt∗(s, ·) ds, we can bound:

∫

t=τ

J N
μ (ψk)n

μ ≤ C ·
∫

t=τ

(|Tψk |2 + |∇�τψk |2gt
)
, (4.39)

where gt is the induced Riemannian metric on �τ. We can also estimate for q large
enough

∫

t=τ

|Tψk |2 =
∫

t=τ

∣
∣
∣
∣

∫ ∞

−∞
hk(t − s) · Tψt∗(s, ·) ds

∣
∣
∣
∣

2

(4.40)

≤ Cq · ω2
0

∫

t=τ

(∫ ∞

−∞
1

1 + (ω0|t − s|)q |Tψt∗(s, ·)| ds
)2

≤ Cq · ω0

∫

t=τ

(∫ ∞

−∞
1

1 + (ω0|t − s|)q |Tψt∗(s, ·)|2 ds
)

≤ Cq · ω0

∫ ∞

−∞
1

1 + (ω0|τ − s|)q
(∫

t=s
|Tψt∗ |2

)
ds.

We now recall that Tψt∗ = ht∗ · Tψ+ Tht∗ ·ψ. We note that ht∗ is supported only
in {t− ≥ 0}, and hence

∫

{t=s}
|ht∗ · Tψ|2 =

∫

{t=s}∩{t−≥0}
|ht∗ · Tψ|2. (4.41)

Therefore, for s ≥ 0, the boundedness assumption 4 implies that

∫

{t=s}
|ht∗ · Tψ|2 ≤ C ·

∫

{t=0}
J N
μ (ψ)nμ. (4.42)

For s < 0, integrating ∇μ J Tμ in the domain bounded by {t = s} ∩ {t− ≥ 0} and
{t− = 0} we obtain
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∫

{t=s}∩{t−≥0}
|ht∗ · Tψ|2 ≤ C ·

∫

t−=0
J N
μ (ψ)nμ. (4.43)

Thus, applying in this case Lemma 4.2, we deduce that for any s ∈ R we can bound

∫

t=s
|ht∗ · Tψ|2 ≤ C ·

∫

t=0
J N
μ (ψ)nμ. (4.44)

Moreover, grad(ht∗) is only supported in {0 ≤ t− ≤ 1} ∪ {t∗ − 1 ≤ t+ ≤ t∗},
and thus we can bound through a Hardy inequality (in view of the definition (4.1) and
(4.2) of t+,t−) for any s ∈ R

∫

t=s
|Tht∗ · ψ|2 ≤ C · (1 + dist{s, [0, t∗]})2 ·

∫

{t=s}∩{t−≥0}
J N
μ (ψ)nμ. (4.45)

For s ≥ 0, Assumption 4 states that
∫
t=s J

N
μ (ψ)nμ ≤ C ·∫t=0 J N

μ (ψ)nμ. For s < 0, the
conservation of the J T current in the domain bounded by {t = s}∩{t− ≥ 0} and {t− =
0} together with Lemma 4.2 imply that

∫
{t=s}∩{t−≥0} J

N
μ (ψ)nμ ≤ C · ∫t=0 J N

μ (ψ)nμ

in this case as well. Thus, (4.45) yields

∫

t=s
|Tht∗ · ψ|2 ≤ C · (1 + dist{s, [0, t∗]})2 ·

∫

t=0
J N
μ (ψ)nμ. (4.46)

Substituting (4.44) and (4.46) in 4.40, we obtain

∫

t=τ

|Tψk |2 ≤ Cq · ω0

{∫ ∞

−∞
(1 + dist{s, [0, t∗]})2

1 + (ω0|τ − s|)q ds

}∫

t=0
J N
μ (ψ)nμ (4.47)

and hence, since τ ∈ [0, t∗], if we fix q = 4 we conclude

∫

t=τ

|Tψk |2 ≤ C(ω0)

∫

t=0
J N
μ (ψ)nμ. (4.48)

In the same way, we can estimate

∫

t=τ

|∇�τψk |2 ≤ C(ω0)

∫

t=0
J N
μ (ψ)nμ, (4.49)

and thus attain (4.38) regarding ψk .
The statement about ψ≤ω+ follows in exactly the same way by considering h≤ω+

instead of hk , and using (4.15) instead of (4.16). In this case, in view of the fact that
ω+ ≥ 1, we can also make the constant appearing in (4.58) (which in the case of ψk
is ∼ ω−2

0 ) not to depend on ω0, but we have chosen to neglect this fact.
Finally, the statement for ψ≥ω+ = ψt∗ − ψ≤ω+ follows immediately, in view also

of the boundedness assumption 4 and the support of the cut-off function ht∗ , which
allow us to handle the ψt∗ term in exactly the same way as we did for ψk .
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It would seem useful to estimate the energy of ψk (and ψ≤ω+ ,ψ≥ω+as well) only
in terms of its own initial data, and not the initial data of ψ. Unfortunately, such a
bound is not obtainable. We can instead establish the following estimate:

Lemma 4.5 For any q ∈ N, there exist suitable constants C,Cq(ω0) such that for
any −n ≤ k ≤ n, any 0 ≤ tst ≤ 1

2 t
∗ and any tst ≤ t1 ≤ t2 ≤ t∗ − tst satisfying

t2 − t1 ≤ tst , the following inequality holds for any τ ∈ [t1, t2]:
∫

t=τ

J N
μ (ψk)n

μ ≤C ·
∫

t=t1
J N
μ (ψk)n

μ+Cq(ω0)(1 + tst )
−q
∫

t=0
J N
μ (ψ)nμ. (4.50)

The same also holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .

Proof Recall that ψk satisfies �gψk = Fk . Therefore, on J+({t = t1}) ∩ D we can
uniquely decompose ψk = ψk,hom + ψk,inhom , where

⎧
⎪⎨

⎪⎩

�gψk,hom = 0

ψk,hom |t=t1 = ψk |t=t1

∂tψk,hom |t=t1 = ∂tψk |t=t1

(4.51)

and ⎧
⎪⎨

⎪⎩

�gψk,inhom = Fk
ψk,inhom |t=t1 = 0

∂tψk,inhom |t=t1 = 0.

(4.52)

The boundedness assumtion 4 applies to ψk,hom and we obtain (since the initial
data on t = t1 that ψk,hom satisfies are the ones induced by ψk)

∫

t=τ

J N
μ (ψk,hom)nμ ≤ C ·

∫

t=t1
J N
μ (ψk)n

μ. (4.53)

For ψk,inhom , we will use Duhamel’s principle as follows: For s ≥ t1, let us :
J+({t = s}) ∩ D → C be the unique solution to the initial value problem �gus = 0,
us |t=s = 0, ∂t us |t=s = Fk |t=s . Then the following relation holds

ψk,inhom(t, ·) =
∫ t

t1
us(t, ·) ds. (4.54)

This can be deduced by just noting that (in view of the fact that the vector field T is
Killing), the function �(t, x) = ψk,inhom(t, x) − ∫ tt1 us(t, x) ds (for any t ∈ R and
x ∈ � ∩ D) satisfies on J+({t = t1}) ∩ D:

�g� = Fk(t, x) − Fk(t, x) = 0,

with �|t=t1 = 0, ∂t�|t=t1 = 0. Thus, � ≡ 0 on J+({t = t1}) ∩ D.
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Therefore, since the boundedness assumption 4 applies to us , yielding for τ ≥ s

∫

t=τ

J N
μ (us)n

μ ≤ C ·
∫

t=s
|Fk |2, (4.55)

we infer that:

∫

t=τ

J N
μ (ψk,inhom)nμ ≤ C ·

∫

t=0

(∫ τ

t1
|∂us(τ, ·)| ds

)2

dx≤C ·(τ−t1)·
∫

R(t1,τ)
|Fk |2.
(4.56)

In view of Lemma 4.3, and the fact that tst ≤ t1 ≤ τ ≤ t2 ≤ t∗ − tst and τ − t1 ≤
t2 − t1 ≤ tst , from (4.56) we conclude that

∫

t=τ

J N
μ (ψk,inhom)nμ ≤ Cq(ω0) · (1 + tst )

−q
∫

t=0
J N
μ (ψ)nμ. (4.57)

Since ψk = ψk,hom + ψk,inhom , adding 4.53 and 4.57 yields 4.50. The statement
about ψ≤ω+ ,ψ≥ω+ follows in exactly the same way.

We will also need to use a boundedness statement for the energy of ψk , ψ≤ω+ and
ψ≥ω+ on spacelike hypersurfaces more general than {t = const}. The following
lemma, is a straightforward generalisation of Lemma 4.5, and its proof is identical
(and will be omitted).

Lemma 4.6 Let ϑ : �0 → R be a non negative function such that tϑ = t − ϑ has
spacelike level sets. Then for any q ∈ N, there exist suitable constants C,Cq(ω0)

(depending also on the precise choice of ϑ) such that for any −n ≤ k ≤ n, any
0 ≤ tst ≤ 1

2 t
∗ and any tst ≤ t1 ≤ t2 ≤ t∗ − tst satisfying t2 − t1 ≤ tst , the following

inequality holds for any τ ∈ [t1, t2]:
∫

{tϑ=τ}∩R(0,t∗)
J N
μ (ψk)n

μ ≤ C ·
∫

{tϑ=t1}∩R(0,t∗)
J N
μ (ψk)n

μ

+Cq(ω0)(1 + tst )
−q
∫

t=0
J N
μ (ψ)nμ. (4.58)

The same estimate also holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .

We will also need to localise in time estimates of the form
∫∞
−∞ |∂tψk |2 dt ∼

ω2
k

∫∞
−∞ |ψk |2 dt . To this end, we have to introduce a few more cut off functions.

Let χ̄3 : R → [0, 1] be a smooth function that is identically 1 on [− 9
8 , 9

8 ] and
identically 0 outside (− 5

4 , 5
4 ). Then for 1 ≤ k ≤ n we will define the functions

ζ̄k = χ̄3

(
ω − ωk−1+ωk

2
1
2 (ωk − ωk−1)

)

. (4.59)

We will extend this definition for −n ≤ k ≤ −1 by setting ζ̄k(ω) = ζ̄−k(−ω).
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Note that the ζ̄k’s are smooth functions with compact support, and hence their
inverse Fourier transforms h̄k are Schwartz functions. For 1 ≤ k ≤ n, the h̄k’s are of
the form

h̄k(t) = ωk − ωk−1

2
ei

ωk+ωk−1
2 t ˇ̄χ3

(
1

2
(ωk − ωk−1)t

)
. (4.60)

Hence, due to the bound 1
4ω0 < ωk − ωk−1 < 1

2ω0, the fact that ˇ̄χ3 is a Schwartz
function implies that for any q ∈ N

sup
t

(
ω−1

0 {1 + |ω0t |q}|h̄k(t)|
) ≤ Cq and sup

t

(
ω−2

0 {1 + |ω0t |q}
∣
∣

{
∂t h̄k(t) − i

ωk + ωk−1

2
h̄k(t)

}∣∣) ≤ Cq (4.61)

for some constants depending only on the precise choice of χ̄3. The same bounds also
hold for −n ≤ k ≤ −1.

In the same way, we can define the function ζ̄0 : R → [0, 1]:

ζ̄0 = χ̄3

( |ω|
ω0

)
. (4.62)

Then its inverse Fourier transform h̄0 also satisfies

sup
t

(
ω−1

0 {1 + |ω0t |q}|h̄0(t)|
) ≤ Cq and sup

t

(
ω−2

0 {1 + |ω0t |q}|∂t h̄k(t)|
) ≤ Cq .

(4.63)
Since ζ̄k ≡ 1 on the support of ζk , we have the relation ζk · ζ̄k = ζk . This relation

implies for −n ≤ k ≤ n the following self reproducing formula for ψk :

ψk(t, ·) =
∫ ∞

−∞
h̄k(t − s) · ψk(s, ·) ds. (4.64)

For 1 ≤ |k| ≤ n, we can also establish an estimate for the anti-derivative of h̄k : The
functions ζ̃k(ω) = 1

iω ζ̄k(ω) are smooth functions of compact support, and in particular

they are identically equal to (iω)−1 on the frequency support of ψ̂k (i. e. the support
of ζk). Hence, we have the identity

ζ̃k(ω) · iωψ̂k(ω, ·) = ψ̂k(ω, ·). (4.65)

Therefore, by denoting with h̃k the inverse Fourier transform of ζ̃k , from (4.64) we
obtain the relation

ψk(t, ·) =
∫ ∞

−∞
h̃k(t − s) · Tψk(s, ·) ds. (4.66)
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Note also that for any q ∈ N we can bound

∫ ∞

−∞
|ωq

0
dq

dωq
ζ̃k(ω)| dω

≤ Cq ·
q∑

l=0

{∫ ∞

−∞
ω
q
0

∣
∣
∣
dl

dωl

( 1
ω

)
· ω

l−q
0 · χ̄(q−l)

3

(
ω − ωk−1+ωk

2
1
2 (ωk − ωk−1)

) ∣
∣
∣ dω

}

≤ Cq ·
q∑

l=0

{
ωl

0

∫ ∞

−∞
|ω|−l−1 ·

∣
∣
∣χ̄(q−l)

3

(
ω − ωk−1+ωk

2
1
2 (ωk − ωk−1)

) ∣
∣
∣ dω

}
≤

≤ Cq · ω−1
k−1 · ω0. (4.67)

However, from the definition of the inverse Fourier transform, for any q ∈ N we have

sup
t

{|ω0t |q · |h̃k(t)|} ≤ C ·
∫ ∞

−∞

∣
∣
∣ωq

0
dq

dωq
ζ̃k(ω)

∣
∣
∣ dω (4.68)

and hence, (4.67) implies:

sup
t

{ω−1
0 {1 + |ω0t |q} · |h̃k(t)|} ≤ Cq · ω−1

k−1. (4.69)

The same statement obviously also holds for −n ≤ k ≤ −1.
We can now establish the following lemma:

Lemma 4.7 For any 1 ≤ |k| ≤ n, any 0 ≤ t1 ≤ t2 ≤ t∗ and any R ≥ 0, we can
bound

c · ω2
k−1

{∫

R(t1,t2)∩{r≤R}
|ψk |2 − C(ω0) ·

∫

t=0
J N
μ (ψ)nμ

}
≤
∫

R(t1,t2)∩{r≤R}
|Tψk |2

≤ C · ω2
k

∫

R(t1,t2)∩{r≤R}
|ψk |2 + ω2

kC(ω0)R
2
∫

t=0
J N
μ (ψ)nμ,

(4.70)

and similarly for k = 0:

∫

R(t1,t2)∩{r≤R}
|Tψ0|2 ≤ C · ω2

0

∫

R(t1,t2)∩{r≤R}
|ψ0|2 + C(ω0)R

2 ·
∫

t=0
J N
μ (ψ)nμ.

(4.71)

Remark Notice that the constant multiplying the error term in the right hand side of
(4.70) depends on R, while this is not the case in the left hand side. Notice also that
the constants in front of the ψk terms in (4.70) do not depend on ω0.

Proof We will just prove the inequality for 1 ≤ k ≤ n, since the cases −n ≤ k ≤ −1
and k = 0 follow in exactly the same way. The proof relies on manipulating the
formulas (4.64) and (4.66), together with the bounds (4.61), (4.63) and (4.69).
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By differentiating (4.64) with respect to t , we readily deduce as in [21] (using
(4.61)) that

|∂tψk(t, ·)| ≤
∫ ∞

−∞
|∂t h̄k(t − s)| · |ψk(s, ·)| ds ≤ (4.72)

≤ Cpω0

(
ωk + ωk+1

2
+ ω0

)
·
∫ ∞

−∞
(1 + ω0|t − s|)−p · |ψk(s, ·)| ds

≤ Cpω0ωk

∫ ∞

−∞
(1 + ω0|t − s|)−p · |ψk(s, ·)| ds.

Applying a Hölder inequality, and provided that p > 1 so that
( ∫∞

−∞(1 +
|ω0s|)−p d(ω0s)

)1/2 ≤ Cp < ∞, (4.72) yields:

|∂tψk(t, ·)| ≤ Cpω0ωk

∫ ∞

−∞
(1 + ω0|t − s|)−p · |ψk(s, ·)| ds (4.73)

≤ Cpωkω
1/2
0 ·

(∫ ∞

−∞
(1 + ω0|t − s|)−p · |ψk(s, ·)|2 ds

)1/2

≤ Cpωkω
1/2
0

( ∞∑

l=−∞
(1 + |l|)−p ·

∫ t+ω−1
0 (l+1)

t+ω−1
0 l

|ψk(s, ·)|2 ds
)1/2

.

Hence
∫ t2

t1
|∂tψk(t, ·)|2 dt ≤ Cpω

2
kω0

∫ t2

t1

×
( ∞∑

l=−∞
(1 + |l|)−p ·

(∫ t+ω−1
0 (l+1)

t+ω−1
0 l

|ψk(s, ·)|2 ds
))

dt (4.74)

≤ Cpω
2
kω0

∞∑

l=−∞
(1 + |l|)−p ·

(∫ t2

t1

∫ t+ω−1
0 (l+1)

t+ω−1
0 l

|ψk(s, ·)|2 dsdt
)

≤ Cpω
2
kω0

∞∑

l=−∞
(1 + |l|)−p ·

(∫ t2

t1

∫ ω−1
0 (l+1)

ω−1
0 l

|ψk(s + t, ·)|2 dsdt
)

≤ Cpω
2
k

∞∑

l=−∞
(1 + |l|)−p ·

(∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

|ψk(t, ·)|2 dt
)

≤ Cpω
2
k

(∫ t2

t1
|ψk(t, ·)|2 dt

)
+ Cpω

2
k

∞∑

l=−∞
(1 + |l|)−p

· ×
(∫ t2+ω−1

0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|ψk(t, ·)|2 dt
)

,

where χ[t1,t2] is the characteristic function of {t1 ≤ t ≤ t2}.
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Integrating (4.74) over {r ≤ R}, we obtain

∫

R(t1,t2)∩{r≤R}
|Tψk |2 ≤ Cpω

2
k

∫

R(t1,t2)∩{r≤R}
|ψk |2+ (4.75)

+ Cpω
2
k

∞∑

l=−∞
(1 + |l|)−p

· ×
( ∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|ψk(t, x)|2 dtdx
)
.

For the second term of the right hand side of (4.75), we estimate:

−1∑

l=−∞
(1 + |l|)−p

(∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|ψk(t, x)|2 dtdx
)

≤
−1∑

l=−∞
(1 + |l|)−p

(∫

{r≤R}

∫ t1

t1+ω−1
0 l

|ψk(t, x)|2 dtdx
)

.

(4.76)

Notice that for any q ∈ N we can bound

|ψk(t, ·)|≤
∫ ∞

−∞
|hk(t−s)|·|ψt∗(s, ·)| ds≤Cq ·ω0

∫ ∞

−∞
(1+ω0|t−s|)−q ·|ψt∗(s, ·)| ds

(4.77)
due to (4.16), and hence (for q > 1)

|ψk(t, ·)|2 ≤ Cq(ω0) ·
∫ ∞

−∞
(1 + ω0|t − s|)−q · |ψt∗(s, ·)|2 ds. (4.78)

Therefore, substituting in (4.76) we infer:

∫

{r≤R}

∫ t1

t1+ω−1
0 l

|ψk(t, x)|2 dtdx ≤ Cq(ω0)

∫ t1

t1+ω−1
0 l

∫ ∞

−∞
(1 + ω0|t − s|)−q

·
(∫

{r≤R}∩{t=s}
|ψt∗ |2

)
dsdt. (4.79)

Using a Hardy inequality (such as (3.16)), we can bound:

∫

{t=s}∩{r≤R}
|ψt∗ |2 =

∫

{t=s}∩{r≤R}
|ht∗ |2|ψ|2 ≤

∫

{t=s}∩{t−≥0}∩{r≤R}
|ψ|2

≤ C · R2
∫

{t=s}∩{t−≥0}
J N
μ (ψ)nμ (4.80)

for any s ∈ R. Moreover, as we did in the proofs of the previous lemmas, using
the boundedness assumption 4 for s ≥ 0, and the conservation of the J T current
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and Lemma 4.2 for s < 0, we can bound for any s ∈ R:
∫
{t=s}∩{t−≥0} J

N
μ (ψ)nμ ≤

∫
t=0 J N

μ (ψ)nμ. Thus, inequality (4.80) yields

∫

{t=s}∩{r≤R}
|ψt∗ |2 ≤ C · R2

∫

t=0
J N
μ (ψ)nμ. (4.81)

Hence, returning to (4.79), we have:

∫

{r≤R}

∫ t1

t1+ω−1
0 l

|ψk(t, x)|2 dtdx

≤ Cq(ω0)R
2
{∫ t1

t1+ω−1
0 l

∫ ∞

−∞
(1 + ω0(t − s))−q dsdt

}
·
∫

{t=0}
J N
μ (ψ)nμ

≤ Cq(ω0) · |l| · R2
∫

{t=0}
J N
μ (ψ)nμ. (4.82)

Substituting (4.82) in 4.76, and fixing p, q large enough, we infer the desired bound

−1∑

l=−∞
(1 + |l|)−p

(∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|ψk(t, x)|2 dtdx
)

≤ C(ω0)R
2
∫

{t=0}
J N
μ (ψ)nμ. (4.83)

In the same way, we can bound

∞∑

l=0

(1 + |l|)−p
(∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|ψk(t, x)|2 dtdx
)

≤ C(ω0)R
2
∫

{t=0}
J N
μ (ψ)nμ. (4.84)

Returning to (4.75), in view of (4.83) and (4.84) we obtain

∫

R(t1,t2)∩{r≤R}
|Tψk |2 ≤ Cω2

k

∫

R(t1,t2)∩{r≤R}
|ψk |2 +C(ω0)ω

2
k · R2

∫

{t=0}
J N
μ (ψ)nμ.

(4.85)
Hence, we have established the right “half” of inequality (4.70).

The left “half” is proved in exactly the same way, but with the use of (4.66) instead
of (4.64). That is, in exactly the same way as before (using now (4.69) instead of
(4.61)), we obtain

|ψk(t, ·)| ≤
∫ ∞

−∞
|h̃k(t − s)| · |Tψk(s, ·)| ds (4.86)

≤ Cp · ω−1
k−1ω0 ·

∫ ∞

−∞
(1 + ω0|t − s|)−p · |Tψk(s, ·)| ds
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≤ Cpω
−1
k−1ω

1/2
0

(∫ ∞

−∞
(1 + ω0|t − s|)−p · |Tψk(s, ·)|2 ds

)1/2

and hence (working exactly as before)

∫ t2

t1
|ψk(t, ·)|2 dt ≤ Cpω

−2
k−1

(∫ t2

t1
|Tψk(t, ·)|2 dt

)
(4.87)

+ Cpω
−2
k−1

∞∑

l=−∞
(1 + |l|)−p ·

(∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|Tψk(t, ·)|2 dt
)

.

After integrating (4.87) over {r ≤ R}, we obtain:

∫

R(t1,t2)∩{r≤R}
|Tψk |2 ≥ cp · ω2

k−1

∫

R(t1,t2)∩{r≤R}
|ψk |2 − Cp

∞∑

l=−∞
(1 + |l|)−p

·
(∫

r≤R

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|Tψk(t, x)|2 dtdx
)

.

(4.88)

For the last term of the right hand side of (4.88), we work similarly as before: For
the part of the infinte sum for l ≤ −1, we can estimate:

−1∑

l=−∞
(1 + |l|)−p

(∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|Tψk(t, x)|2 dtdx
)

≤
−1∑

l=−∞
(1 + |l|)−p

(∫ t1

t1+ω−1
0 l

{
∫

{t=τ}
|Tψk |2} dτ

)
. (4.89)

In order to estimate the second term of the right hand side of (4.89), we proceed as
follows: Starting from the bound

|Tψk(t, ·)| ≤
∫ ∞

−∞
|hk(t − s)| · |Tψt∗(s, ·)| ds

≤ Cq(ω0)

∫ ∞

−∞
(1 + ω0|t − s|)−q · |Tψt∗(s, ·)| ds (4.90)

for q > 1, we can control:

|Tψk(t, ·)|2 ≤ Cq(ω0)

∫ ∞

−∞
(1 + ω0|t − s|)−q · |Tψt∗(s, ·)|2 ds. (4.91)
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Thus, we have

∫

{t=τ}
|Tψk |2 ≤ Cq(ω0)

∫ ∞

−∞
(1 + ω0|τ − s|)−q ·

(∫

{t=s}
|Tψt∗ |2

)
ds. (4.92)

We can also bound

|Tψt∗ |2 � |Tht∗ |2|ψ|2 + |ht∗ |2 · |Tψ|2. (4.93)

Since Tht∗ is supported in the region {0 ≤ t− ≤ 1} ∪ {t∗ − 1 ≤ t+ ≤ t∗}, while ht∗
is supported in {t− ≥ 0}, we obtain:

∫

t=s
|ht∗ · Tψ|2 =

∫

{t=s}∩{t−≥0}
|Tψ|2 ≤ C ·

∫

{t=0}
J N
μ (ψ)nμ (4.94)

for any s ∈ R. Since {t = s} ∩ {0 ≤ t− ≤ 1} ∪ {t∗ − 1 ≤ t+ ≤ t∗} ⊂ {t = s} ∩ {r ≤
R1 + 1 + 2s}, we also obtain for any s ∈ R through a Hardy inequality:

∫

{t=s}
|Tht∗ |2|ψ|2 =

∫

{t=s}∩{0≤t−≤1}∪{t∗−1≤t+≤t∗}
|ψ|2

≤ C · (1 + dist{s, [0, t∗]})2
∫

{t=s}∩{t−≥0}
J N
μ (ψ)nμ

≤ C · (1 + dist{s, [0, t∗]})2
∫

t=0
J N
μ (ψ)nμ. (4.95)

Hence, we deduce for q > 3 from 4.92, (4.94) and (4.95):

∫ t1

t1+ω−1
0 l

{∫

{t=τ}
|Tψk |2} dτ ≤ Cq(ω0)

{∫ t1

t1+ω−1
0 l

∫ ∞

−∞
(1 + ω0|τ − s|)−q · (1 + dist{s, [0, t∗]})2 dsdτ

}∫

t=0
J N
μ (ψ)nμ

≤ Cq(ω0)(1 + |l|3)
∫

t=0
J N
μ (ψ)nμ

}
. (4.96)

From 4.89 and (4.96), we conclude for p, q large enough

−1∑

l=−∞
(1 + |l|)−p

(∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|Tψk(t, x)|2 dtdx
)

≤ C(ω0)

∫

t=0
J N
μ (ψ)nμ. (4.97)

123



Logarithmic Local Energy Decay for Scalar Waves... Page 57 of 124 5

Similarly, we can also bound:

∞∑

l=0

(1 + |l|)−p
(∫

{r≤R}

∫ t2+ω−1
0 (l+1)

t1+ω−1
0 l

(1 − χ[t1,t2])|Tψk(t, x)|2 dtdx
)

≤ C(ω0)

∫

t=0
J N
μ (ψ)nμ. (4.98)

Hence, we conclude from 4.88, (4.97) and (4.98):

∫

R(t1,t2)∩{r≤R}
|Tψk |2 ≥ cp · ω2

k−1

∫

R(t1,t2)∩{r≤R}
|ψk |2 − C(ω0)

∫

t=0
J N
μ (ψ)nμ,

(4.99)
thus completing the proof of the Lemma. ��
We can also establish the following variant of the previous lemma in exactly the same
way as before - hence the proof will be omitted:

Lemma 4.8 For any continuous function χ : D → [0,+∞) which satisfies the
relation Tχ = 0, for any 1 ≤ |k| ≤ n and any 0 ≤ t1 ≤ t2 ≤ t∗, R ≥ 0 we can
bound:

c · ω2
k−1

{∫

R(t1,t2)∩{r≤R}
χ|ψk |2 − C(ω0,χ) ·

∫

t=0
J N
μ (ψ)nμ

}

≤
∫

R(t1,t2)∩{r≤R}
χ|Tψk |2

≤ C · ω2
k

∫

R(t1,t2)∩{r≤R}
χ|ψk |2 + ω2

kC(ω0,χ)R2
∫

t=0
J N
μ (ψ)nμ, (4.100)

and similarly for k = 0

∫

R(t1,t2)∩{r≤R}
χ|Tψ0|2 ≤ C · ω2

0

∫

R(t1,t2)∩{r≤R}
χ|ψ0|2

+C(ω0,χ)R2 ·
∫

t=0
J N
μ (ψ)nμ. (4.101)

Finally, we will need the following bounds for the energy of the high frequency
part ψ≤ω+ in terms of the initial energy of higher derivatives of ψ:

Lemma 4.9 For any τ ∈ R and any m ∈ N, there exists a positive constant Cm such
that ∫

{t=τ}∩{r≤R1}
J N
μ (ψ≥ω+)nμ ≤ Cm

ω2m+

m∑

j=0

∫

t=0
J N
μ (T jψ)nμ. (4.102)

Proof We can assume without loss of generality that m ≥ 1, since the m = 0 case is
a direct consequence of Lemma (4.4).
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Recall that we have defined χ3 : R → [0, 1] to be a smooth function which is
identically 1 on [−1, 1] and identically 0 outside of (− 9

8 , 9
8 ). We define, in terms of

χ3, the function χc
3

.= 1 − χ3, which vanishes in [−1, 1] and is identically 1 outside
of (− 9

8 , 9
8 ). Then, for any m ∈ N, m ≥ 1, the function ξm : R → C,

ξm(y) = 1

(iy)m
χc

3(y) (4.103)

is smooth, vanishing in [−1, 1] and equal to 1
(iy)m for |y| ≥ 9

8 .

We will need the inverse Fourier transform of ξm , namely ξ̌m(ρ) = ∫∞
−∞ eiρy ·

ξm(y) dy, defined in the sense of tempered distributions. Due to the fact that

∣
∣
∣
∫ +∞

1

1

y
ei λ dy

∣
∣
∣ ≤ C · (| log(λ)| + 1

)
(4.104)

for any λ > 0, the 1
(iy)m asymptotics of ξm imply that ξ̌m is actually a measurable

function, satisfying for almost all y ∈ R the estimate

|ξ̌m(ρ)| ≤ C · (∣∣ log |ρ|∣∣+ 1
)
. (4.105)

Of course, in the case m > 1, when 1
ym is integrable away from 0, the

∣
∣ log |ρ|∣∣

summand can be removed from (4.105).
Moreover, in view of the fact that d

dy
χc

3 is smooth and compactly supported and
∫∞

1
1

ym+1 dy ≤ C for anym ∈ N,m ≥ 1, we deduce that |ρξ̌m(ρ)| = |( ˇd
dρξm

)
(ρ)| ≤ C

and hence |ξ̌m(ρ)| ≤ C
|ρ| . Thus, by an induction argument we infer for any q ∈ N,

q ≥ 1:
|ξ̌m(ρ)| ≤ Cq,m · |ρ|−q . (4.106)

Hence, combining 4.105 and 4.106 we obtain for any q ∈ N, q ≥ 1:

|ξ̌m(ρ)| ≤ Cq,m ·
∣
∣ log |ρ|∣∣+ 1

1 + |ρ|q . (4.107)

Due to the fact that ψ̂≥ω+(·, x) is supported in {|ω| ≥ ω+}, the following identity
holds trivially for all ω ∈ R:

ψ̂≥ω+(ω, ·) = χc
3

(
2ω

ω+

)
· ψ̂≥ω+(ω, ·). (4.108)

In view of the definition (4.103) of ξm , we infer that for any m ∈ N, m ≥ 1:

ψ̂≥ω+(ω, ·) = (ω+
2

)−m · ξm

(
2ω

ω+

)
· ˆTmψ≥ω+(ω, ·). (4.109)
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Thus, applying the inverse Fourier transform we obtain:

ψ≥ω+(t, ·) = 2m−1ω−m+1+ ·
∫ ∞

−∞
ξ̌m

(
1

2
ω+(t − s)

)
· Tmψ≥ω+(s, ·) ds. (4.110)

This formula is also valid for the derivatives of ψ≥ω+ :

dψ≥ω+(t, ·) = 2m−1ω−m+1+ ·
∫ ∞

−∞
ξ̌m

(
1

2
ω+(t − s)

)
· d(Tmψ≥ω+

)
(s, ·) ds.

(4.111)
In view of the fact that

∫∞
−∞ |ξ̌m( 1

2ω+t)| dt ≤ Cm · ω−1+ , we compute from (4.111)
after contracting with T that:

|Tψ≥ω+(t, ·)|2 = 22m−2ω−2m+2+ ·
∣
∣
∣
∣

∫ ∞

−∞
ξ̌m

(
1

2
ω+(t − s)

)
· Tm+1ψ≥ω+(s, ·) ds

∣
∣
∣
∣

2

(4.112)

≤ 22m−2ω−2m+2+ ·
{∫ ∞

−∞

∣
∣
∣
∣ξ̌m

(
1

2
ω+(t − s)

) ∣∣
∣
∣ ds
}

·
{∫ ∞

−∞
|ξ̌m

(
1

2
ω+(t − s)

)
| · |Tm+1ψ≥ω+(s, ·)|2 ds

}

≤ Cm · ω−2m+1+ ·
{∫ ∞

−∞
|ξ̌m

(
1

2
ω+(t − s)

)
| · |Tm+1ψ≥ω+(s, ·)|2 ds

}

and, after applying (4.107), we obtain:

|Tψ≥ω+(t, ·)|2 ≤ Cm,q · ω−2m+1+

·
{∫ ∞

−∞

∣
∣
∣
∣
| log

(
ω+(t − s)

)| + 1

1 + |ω+(t − s)|q
∣
∣
∣
∣ ·
∣
∣
∣
∣T

m+1ψ≥ω+(s, ·)
∣
∣
∣
∣

2

ds

}
. (4.113)

Hence, for 0 ≤ τ ≤ t∗ we can bound

∫

{t=τ}∩{r≤R1}
|Tψ≥ω+|2 ≤ Cm,q · ω−2m+1+

·
{∫ ∞

−∞

∣
∣
∣
∣
| log

(
ω+(τ − s)

)|+1

1+|ω+(τ − s)|q
∣
∣
∣
∣ ·
{∫

{t=s}∩{r≤R1}
|Tm+1ψ≥ω+|2

}
ds

}
. (4.114)

Using (4.15) for some q ′ > 1 and the fact that ψ≥ω+(t, ·) = ∫∞
−∞ h≥ω+(t −

s)ψt∗(s) ds, we compute after an application of Hölder’s inequality that

|Tm+1ψ≥ω+(t, ·)|2 ≤ Cm,q ′ · ω+
∫ ∞

−∞
1

1 + |ω+(t − s)|q ′ · |Tm+1ψt∗(s, ·)|2 ds,
(4.115)
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which after an integration over {r ≤ R1} gives us for any τ ∈ R:

∫

{t=τ}∩{r≤R1}
|Tm+1ψ≥ω+|2 ≤ Cm,q ′ · ω+

∫ ∞

−∞
1

1 + |ω+(τ − s)|q ′

·
{∫

{t=s}∩{r≤R1}
|Tm+1ψt∗ |2

}
ds. (4.116)

Similarly, repeating the same procedure after contracting (4.111) with T invariant
vector fields tangential to the foliations �τ, we can also bound

∫

{t=τ}∩{r≤R1}
|∇�(Tmψ≥ω+)|2g�

≤ Cm,q ′ · ω+
∫ ∞

−∞
1

1 + |ω+(τ − s)|q ′

·
{∫

{t=s}∩{r≤R1}
|∇�(Tmψt∗)|2g�

}
ds. (4.117)

Recall that ψt∗ = ht∗ ·ψ, and in {r ≤ R1} ht∗ is non zero only for {0 ≤ t ≤ t∗}. Thus,
(4.116) and (4.117) for q ′ = 2 yield, in view of the Hardy inequality

∫

{t=s}∩{r≤R1}
|ψ|2 ≤ C(R1) ·

∫

{t=s}
J N
μ (ψ)nμ (4.118)

and the boundedness assumption 4, that

∫

{t=τ}∩{r≤R1}
J N
μ (Tmψ≥ω+)nμ ≤ Cm

m∑

j=0

∫

t=0
J N
μ (T jψ)nμ. (4.119)

Using (4.119) and (4.114) for q = 2 we infer the desired inequality for any τ ∈ R:

∫

{t=τ}∩{r≤R1}
J N
μ (ψ≥ω+)nμ ≤ Cm

ω2m+

m∑

j=0

∫

t=0
J N
μ (T jψ)nμ. (4.120)

5 Estimates for ψk in the Asymptotically Flat Region

In this section, we will specialise some of the estimates established in [52] for general
asymptotically flat spacetimes to our setting. As we did in Section (4), we will assume
that we are given a smooth function ψ : D → C solving �gψ = 0 on J+(�)∩D with
compactly supported initial data on �, together with a set of parameters t∗,ω0,ω+,
leading to the construction of the functions ψt∗ , ψ≤ω+ , ψ≥ω+ and ψk (as performed
in Section 4). We will derive estimates for the functions ψk , ψ≤ω+ and ψ≥ω+ in the
asymptotically flat region {r � 1} of D

We will make use of the fact that there exists a function u in the region {r � 1}
(see the Appendix) such that in the (u, r, σ ) coordinate system the metric g has the
form:
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g = −4
(
1 − 2M

r
+ O3(r

−1−a)
)
du2 − 4

(
1 + O3(r

−1−a)
)
dudr + r2(gSd−1

+ O3(r
−1−a)) + O3(r

−a)dudσ + O3(r
−a)drdσ. (5.1)

We will also introduce the function v = u + r , noting that in the (u, v, σ ) coordinate
chart the metric g takes the form:

g = −
(

4 + O3(r
−1−a)

)
dvdu + r2 ·

(
gSd−1 + O3(r

−1−a)
)

+ O3(r
−a)dudσ

+ O3(r
−a)dvdσ + 4

(
− 2M

r
+ O3(r

−1−a)
)
du2. (5.2)

Let us remark that most of the results of [52] were stated under the requirement
that the metric g in the asymptotic region is of the form

g = −
(

4 + Om(r−1−a)
)
dvdu + r2 ·

(
gSd−1 + Om(r−1−a)

)
+ Om(r−a)dudσ

+ Om(r−a)dvdσ + 4
(

− 2M

r
+ Om(r−1−a)

)
du2 (5.3)

for some large enough integer m, i. e. it was assumed in [52] that g is smoother on
I+ than what is assumed in the present paper (actually, in [52] the metrics considered
where of more general form than (5.3), but this fact is not relevant for the present
paper).However, the results of [52] that we will make use of in this section can be
established also for a metric with the rougher asymptotics (5.1) (as can be readily
verified by an inspection of their proof).

5.1 Some ∂r -Morawetz Type Estimates

We will establish the following Lemma:

Lemma 5.1 For any given 0 < η < a, there exists an R = R(η) > 0 and
C(η), C(ω0,η) > 0 such that for any −n ≤ k ≤ n and any smooth cut-off function
χ : D → [0, 1] supported in {r ≥ R}, we can bound:

∫

R(0,t∗)
χ ·
(
r−1−η

(
|∂tψk |2 + |∂rψk |2

)
+ r−1|r−1∂σ ψk |2 + r−3−η|ψk |2

)

≤ C(η) ·
∫

{supp(∂χ)}∩R(0,t∗)
|∂χ| · J N

μ (ψk)n
μ + C(ω0,η) ·

∫

t=0
J N
μ (ψ)nμ.

(5.4)

The same estimate holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .

Remark We have used the notation |∂h|2 = |∂t h|2 + |∂r h|2 + | 1
r ∂σ h|2.
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Proof From Lemma 4.2 of [52], we can bound for any smooth function ω : D → C

with compact support in space (in the (u, v, σ ) coordinate system constructed in the
Appendix on the region {r � 1}):

∫

R(0,t∗)
χ ·
(
r−1−η

(
|∂uω|2 + |∂vω|2

)
+ r−1|r−1∂σ ω|2 + r−3−η|ω|2

)

≤ Cη

∫

R(0,t∗)
|∂χ| · (|∂ω|2 + r−2|ω|2)

+ Cη

∫

{t=0}∩{r≥R}
J Tμ (ω)nμ + Cη

∫

{t=t∗}∩{r≥R}
J Tμ (ω)nμ

+
∫

R(0,t∗)
χ · Re{(Oη(1)(∂v − ∂u)ω̄ + Oη(r−1)ω̄

) · �gω
}
.

(5.5)

In view of Lemmas (4.3) and (4.4) (as well as the properties of the functions
u, v), inequality (5.4) follows readily from (5.5) after substituting ψk (or ψ≤ω+ ,ψ≥ω+
respectively) in place of ω (and using a Cauchy–Schwarz inequality for the last term
of the right hand side).22

We can also present the previous estimate expressed in a more refined form in terms
of the “boundary” terms of the right hand side:

Lemma 5.2 For any given 0 < η < a and any R > 0 large enough in terms of η,
there exist C(η), C(ω0,η) > 0 such that for any −n ≤ k ≤ n we can bound:

∫

{r≥2R}∩R(0,t∗)

(
r−1−η

(
|∂tψk |2 + |∂rψk |2

)
+ r−1|r−1∂σ ψk |2 + r−3−η|ψk |2

)

≤ C(η) ·
∫

{R≤r≤2R}∩R(0,t∗)

(
R−1 J N

μ (ψk)n
μ + R−3|ψk |2

)

+C(ω0,η)

∫

t=0
J N
μ (ψ)nμ. (5.6)

The same estimate also holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .

Proof Inequality (5.6) can be proven by fixing a smooth cut-off ξ : [0,+∞) → [0, 1]
such that ξ ≡ 0 for r ≤ 1 and ξ ≡ 1 for r ≥ 2, and defining χ = χR : D →
[0, 1], χR = ξ ◦ ( r

R ) for any R > 0. We easily calculate that there exists a constant
C > 0 depending on the precise choice of ξ, such that |∂χR | ≤ C · R−1. Moreover,
supp(∂χR) ⊆ {R ≤ r ≤ 2R}. The result then follows by using χR as a cut-off
function in the statement of the previous lemma (5.1), for any R > 0 sufficiently large
in terms of η.

We will also need a variant of the previous lemma, that provides improved control
of the spacetime integral of the energy of ψk,ψ≤ω+ ,ψ≥ω+ over compact subsets. We

22 Notice that here we have used the fact that the functions ψk , ψ≤ω+ , ψ≥ω+ have compact support in
space, since they are supported in a cylinder {r � Rsup + t∗}.
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we will only need to use it in the case of ψ0, but we can state it for all the components
ψk,ψ≤ω+ ,ψ≥ω+ of ψ:

Lemma 5.3 For any given 0 < η < a, any R > 0 sufficiently large in terms of η,
there exists some C(η) > 0 such that for any Rc ≥ 2R and any −n ≤ k ≤ n we can
bound

∫

{2R≤r≤Rc}∩R(0,t∗)

(
r−η
(
|∂tψk |2 + |∂rψk |2 + |r−1∂σ ψk |2

)
+ r−2−η|ψk |2

)

≤ C(η) ·
∫

{R≤r≤2R}∩R(0,t∗)

(
J N
μ (ψk)n

μ + R−2|ψk |2
)

+C(ω0, Rc,η)

∫

t=0
J N
μ (ψ)nμ. (5.7)

The same estimate also holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .

Remark Notice that the constant in front of the {R ≤ r ≤ 2R} terms does not depend
on Rc.

Proof This is an immediate corollary of Lemma 4.4 of [52] for ψk in place of ω,
which yields

∫

R(0,t∗)∩{r≤Rc}
χ ·
((|∂uψk |2 + |∂vψk |2

)+ |r−1∂σ ψk |2 + r−2|ψk |2
)

≤ C(η) ·
∫

R(0,t∗)
|∂χ| · r · (|∂ψk |2 + r−2|ψk |2

)

+ C(η, Rc) ·
∫

{t=0}∩{r≥R}
|∂ψk |2 + C(η, Rc) ·

∫

{t=t∗}∩{r≥R}
|∂ψk |2

+
∫

R(0,t∗)
χ · Re{(ORc,η(1)(∂v − ∂u)ψ̄k + ORc,η(r

−1)ψ̄k
) · �gψk

}
,

(5.8)

combined with Lemmas 4.3 and 4.4. Similarly for ψ≤ω+ ,ψ≥ω+ . ��

5.2 Some r p-Weighted Energy Estimates

The following r p-weighted energy estimate can be established as a Corollary of Theo-
rem 5.3 of [52] (notice that (v, σ ) defines a regular polar coordinate map in the region
{r � 1} of the hypersurfaces {t = const}):
Lemma 5.4 For any 0 < p ≤ 2, any 0 < η < a, any 0 < δ < 1 and any R > 0
large enough in terms of p,η, δ, the following inequality holds for any −n ≤ k ≤ n,
any 0 ≤ t1 ≤ t2 ≤ t∗ and any smooth cut-off χR : D → [0, 1] supported in {r ≥ R}
so that χR ≡ 1 on {r ≥ 2R}: (we also set �k

.= r
d−1

2 · ψk)

∫

{t=t2}
χR ·

(
r p|∂v�k |2+r p|r−1∂σ �k |2+((d − 3)r p−2+min{r p−2, r−δ})|�k |2

)
dvdσ
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+
∫

R(t1,t2)

χR ·
(
pr p−1

∣
∣∂v�k

∣
∣2 + {((2 − p)r p−1 + r p−1−δ

)∣∣r−1∂σ �k
∣
∣2

+((2 − p)(d − 3)r p−3 + min{r p−3, r−1−δ})∣∣�k
∣
∣2}+ r−1−η|∂u�k |2

)
dudvdσ

≤ C(p,η, δ) ·
∫

R(t1,t2)

|∂χR | · (r p|∂�k |2 + r p−2|�k |2
)
dudvdσ

+C(ω0, p,η, R,χR, δ) ·
∫

{t=0}
(1 + r p) · J N

μ (ψ)nμ. (5.9)

The same estimate also holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .

Proof We will establish the result only for ψk , since the proof for the cases of
ψ≤ω+ ,ψ≥ω+ is identical.

We will set
�k

.= r
d−1

2 ψk . (5.10)

In view of Theorem 5.3 of [52] (with ψk in place of ω), using also of the fact that in
the region {r � 1} in the (u, v, σ ) coordinate system we have the relation

det (g) = −4r2(d−1)
(
1 + O3(r

−1)
)
, (5.11)

we can bound:
∫

{t=t2}
χR ·

(
r p |∂v�k |2 + r p |r−1∂σ �k |2 + ((d − 3)r p−2 + min{r p−2, r−δ})|�k |2

)
dvdσ

+
∫

R(t1,t2)

χR ·
(
pr p−1∣∣∂v�k

∣
∣2 + {((2 − p)r p−1 + r p−1−δ

)∣∣r−1∂σ �k
∣
∣2

+ ((2 − p)(d − 3)r p−3 + min{r p−3, r−1−δ})∣∣�k
∣
∣2}+ r−1−η|∂u�k |2

)
dudvdσ �p,δ

�p,η,δ

∫

{t=t1}
χR ·

(
r p |∂v�k |2 + r p |r−1∂σ �k |2 + ((d − 3)r p−2 + min{r p−2, r−δ})|�k |2

)
dvdσ

+
∫

{t=t1}
χR J

T
μ (ψk )n

μ +
∫

R(t1,t2)
|∂χR | · (r p |∂ψk |2 + r p−2 · |ψk |2

)

+
∫

R(t1,t2)

χR ·
(
r p+1 + r1+η

)
· |Fk |2 	2dudvdσ.

(5.12)
Thus, in view also of Lemmas 4.3 and 4.4, in order to reach (5.9) it suffices to prove
that ∫

{t=t1}
χR ·

(
r p|∂v�k |2 + r p|r−1∂σ �k |2 + ((d − 3)r p−2

+ min{r p−2, r−δ})|�k |2
)
dvdσ

≤ C(ω0, R, p,χR) ·
∫

{t=0}
(1 + r p) · J N

μ (ψ)nμ.

(5.13)

Inequality (5.13) will be established in the way that Lemma 4.4 was proven, the
only difference being that instead of the boundedness assumption 4 for ψ, we will
mainly use the following estimate for ψ (obtained by applying Theorem 5.3 of [52],
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after repeating the proof in the region {t ≤ s} ∩ {t− ≥ 0} for any s ∈ R): setting

� = r
d−1

2 ψ, we can bound for any s ∈ R

∫

{t=s}∩{t−≥0}
χR ·

(
r p|∂v�|2 + r p|r−1∂σ �|2 +

(
(d − 3)r p−2

+ min
{
r p−2, r−δ

})∣∣�
∣
∣2
)
dvdσ

+
∫

{t−≥0}∩{t≤s}
χR ·

(
pr p−1

∣
∣∂v�

∣
∣2 +

{(
(2 − p)r p−1 + r p−1−δ

)∣∣r−1∂σ �
∣
∣2

+ ((2− p)(d−3)r p−3 + min
{
r p−3, r−1−δ

})∣∣�
∣
∣2
}

+ r−1−η|∂u�|2
)
dudvdσ �p,δ

�p,η,δ

∫

{t−=0}∩{t≤s}
χR ·

(
r p|∂v�|2 + r p|r−1∂σ �|2

+
(
(d − 3)r p−2 + min

{
r p−2, r−δ

})|�|2
)
dvdσ +

∫

{t−=0}∩{t≤s}
χR J

T
μ (ψ)nμ

+
∫

{t−≥0}∩{t≤s}
|∂χR | · (r p|∂ψ|2 + r p−2 · |ψ|2).

(5.14)
Using the boundedness assumption 4 for s ≥ 0, and the conservation of the J T

current in the region {t− ≥ 0} ∩ {t ≤ s} for s < 0, as well as Lemma 4.2, we can
bound ∫

{t−=0}∩{t≤s}
J N
μ (ψ)nμ ≤ C ·

∫

{t=0}
J N
μ (ψ)nμ. (5.15)

Using Lemma 4.2 and a Hardy inequality

∫

{t−=0}∩{t≤s}
r p−2|ψ|2 ≤ C(p) ·

∫

{t−=0}∩{t≤s}
r p J N

μ (ψ)nμ (5.16)

we can also bound:
∫

{t−=0}∩{t≤s}
χR

·
(
r p|∂v�|2 + r p|r−1∂σ �|2 + ((d − 3)r p−2 + min

{
r p−2, r−δ

})|�|2
)
dvdσ

≤ C(p) ·
∫

t=0
(1 + r p) · J N

μ (ψ)nμ. (5.17)

Therefore, returning to (5.14) we obtain:
∫

{t=s}∩{t−≥0}
χR ·

(
r p|∂v�|2

+r p|r−1∂σ �|2 + ((d − 3)r p−2 + min
{
r p−2, r−δ

})|�|2
)
dvdσ

+
∫

{t−≥0}∩{t≤s}
χR ·

(
pr p−1

∣
∣∂v�

∣
∣2 +

{(
(2 − p)r p−1 + r p−1−δ

)∣∣r−1∂σ �
∣
∣2
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+
(
(2− p)(d−3)r p−3 + min

{
r p−3, r−1−δ

})∣∣�
∣
∣2
}

+ r−1−η|∂u�|2
)
dudvdσ �p,δ

�p,η,δ

∫

t=0
(1 + r p) · J N

μ (ψ)nμ +
∫

{t−≥0}∩{t≤s}
|∂χR | · (r p|∂ψ|2 + r p−2 · |ψ|2).

(5.18)

We recall that

ψk(t, ·) =
∫ +∞

−∞
hk(t − s) · ψt∗(s, ·) ds, (5.19)

where hk satisfies (4.16). Hence, we can estimate for q large enough (the precise value
of which will be specified exactly later in the proof ):

∫

{t=t1}
χR · r p|∂v�k |2 dvdσ

=
∫

{t=t1}
r pχR ·

∣
∣
∣
∣

∫ ∞

−∞
hk(t1 − s) · ∂v

(
r

d−1
2 ψt∗

)
(s, x) ds

∣
∣
∣
∣

2

dvdσ (5.20)

≤
∫

{t=t1}
r pχR ·

(∫ ∞

−∞
Cq(ω0)

1 + |t1 − s|q
∣
∣
∣∂v

(
r

d−1
2 ψt∗

)
(s, x)

∣
∣
∣ ds
)2

dvdσ

≤ Cq(ω0)

∫

{t=t1}
r pχR ·

(∫ ∞

−∞
1

1 + |t1 − s|q
∣
∣
∣∂v

(
r

d−1
2 ψt∗

)
(s, x)

∣
∣
∣
2
ds

)
dvdσ

≤ Cq(ω0)

∫ ∞

−∞
1

1 + |t1 − s|q
(∫

{t=s}
r pχR ·

∣
∣
∣∂v

(
r

d−1
2 ψt∗

)∣∣
∣
2
dvdσ

)
ds,

and similarly

∫

{t=t1}
χR ·

(
r p
∣
∣r−1∂σ �k

∣
∣2 +

(
(d − 3)r p−2 + min

{
r p−2, r−δ

})|�k |2
)
dvdσ

≤ Cq(ω0)

∫ ∞

−∞
1

1 + |t1 − s|q
{∫

{t=s}
χR ·

(
r p
∣
∣
∣r−1∂σ

(
r

d−1
2 ψt∗

)∣∣
∣
2

+
(
(d − 3)r p−2 + min

{
r p−2, r−δ

})∣∣
∣r

d−1
2 ψt∗

∣
∣
∣
2)

dvdσ

}
ds. (5.21)

In view of the fact that ψt∗ = ht∗ · ψ, from (5.20) and (5.21) we obtain:

∫

{t=t1}
χR ·

(
r p|∂v�k |2 + r p|r−1∂σ �k |2 + ((d − 3)r p−2

+ min
{
r p−2, r−δ

})|�k |2
)
dvdσ

≤ Cq(ω0)

∫ ∞

−∞
1

1 + |t1 − s|q

×
(∫

{t=s}
χR · h2

t∗
(
r p|∂v�|2 + r p|r−1∂σ �|2 + ((d − 3)r p−2
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+ min
{
r p−2, r−δ

})|�|2) dvdσ

)
ds

+ Cq(ω0)

∫ ∞

−∞
1

1 + |t1 − s|q
(∫

{t=s}
χR · |∂ht∗ |2r p|�|2 dvdσ

)
ds. (5.22)

Since ht∗ is supported only in {t− ≥ 0}, due to (5.18), we can estimate for any
s ∈ R:

∫

{t=s}
r pχR · h2

t∗

(
r p|∂v�|2 + r p|r−1∂σ �|2 +

(
(d − 3)r p−2

+ min
{
r p−2, r−δ

})|�|2
)
dvdσ (5.23)

≤ C(p)
∫

t=0
(1 + r p)J N

μ (ψ)nμ

+ C(p) ·
∫

{supp(∂χR)}∩{0− 1
2
χ1·(r−R1)≤t≤s}

|∂χR | · (r p J N
μ (ψ)nμ + r p−2|ψ|2).

In view of the inclusion supp(∂χR) ⊆ {R ≤ r ≤ 2R}, we can also bound

∫

{supp(∂χR)}∩{0− 1
2
χ1·(r−R1)≤t≤s}

|∂χR | · (r p J N
μ (ψ)nμ + r p−2|ψ|2)

≤ C(χR) · (R + max{s, 0}) ·
∫

t=0
(1 + r p) · J N

μ (ψ)nμ, (5.24)

and hence, from (5.23) we obtain:

∫

{t=s}
r pχR · h2

t∗

(
r p|∂v�|2 + r p|r−1∂σ �|2 +

(
(d − 3)r p−2

+ min
{
r p−2, r−δ

})|�|2
)
dvdσ (5.25)

≤ C(R, p,χR) · (1 + |s|) ·
∫

t=0
(1 + r p)J N

μ (ψ)nμ.

Since supp(∂ht∗) ⊆ {0 ≤ t− ≤ 1} ∪ {t∗ − 1 ≤ t+ ≤ t∗}, the following inclusion

{t = s} ∩ supp(∂ht∗) ⊆ {r ≤ R1 + C · |s|}

holds for some C � 1. We can therefore bound through a Hardy inequality

∫

{t=s}
r pχR · |∂ht∗ |2 · |�|2 dvdσ ≤ C ·

∫

{t=s}∩supp(∂ht∗ )∩{r≥R}
r p+2 · J N

μ (ψ)nμ

(5.26)
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≤ C · (1 + |s|)p+2 ·
∫

{t=s}∩supp(∂ht∗ )∩{r≥R}
J N
μ (ψ)nμ

≤ C · (1 + |s|)p+2 ·
∫

{t=0}
J N
μ (ψ)nμ.

Returning to (5.21) and using (5.25) and (5.26), we can finally estimate (fixing
q = 6 > (p + 2) + 2)

∫

{t=t1}
χR · (r p∣∣r−1∂σ �k

∣
∣2 +

(
(d − 3)r p−2 + min

{
r p−2, r−δ

})|�k |2
)
dvdσ

≤ Cq(ω0, R, p,χR) ·
{∫ ∞

−∞
1 + |s|p+2

1 + |s|q ds

}
·
∫

t=0
(1 + r p)J N

μ (ψ)nμ

≤ C(ω0, R, p,χR) ·
∫

t=0
(1 + r p)J N

μ (ψ)nμ.

(5.27)
Thus, in view of (5.12) and Lemmas 4.3 and 4.4, from (5.27) we infer the required

estimate (5.9):

∫

{t=t2}
χR ·

(
r p|∂v�k |2 + r p|r−1∂σ �k |2 +

(
(d − 3)r p−2

+ min
{
r p−2, r−δ

})|�k |2
)
dvdσ

+
∫

R(t1,t2)
χR ·

(
pr p−1

∣
∣∂v�k

∣
∣2 +

{(
(2 − p)r p−1 + r p−1−δ

)∣∣r−1∂σ �k
∣
∣2

+ ((2− p)(d−3)r p−3+min
{
r p−3, r−1−δ

})∣∣�k
∣
∣2}+ r−1−η|∂u�k |2

)
dudvdσ

≤ C(p,η, δ) ·
∫

R(t1,t2)
|∂χR | · (r p|∂�k |2 + r p−2|�k |2

)
dudvdσ+

+ C(ω0, p,η, R,χR, δ) ·
∫

{t=0}
(1 + r p) · J N

μ (ψ)nμ.

(5.28)
The same estimate for ψ≤ω+ ,ψ≥ω+ in place of ψk follows in exactly the same way.

Hence, the proof of the lemma is complete

Finally, let us note that we will need to use Lemma 5.4 in order to estimate the energy
of ψk on the leaves of a hyperboloidal foliation restricted on R(0, t∗). Namely, we
will consider the energy of ψk on S̃τ ∩R(0, t∗), where the hyperboloids S̃τ are defined
as follows:

Definition For a fixed η′ < 1 + 2a, we define function ũη′ : {r � 1} → R as

ũη′ .= u − 1

1 + rη′ . (5.29)
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We also define for any τ ∈ R the hypersurface S̃τ ⊂ {r � 1} as

S̃τ
.= {ũη′ = τ}. (5.30)

Notice that the level sets of S̃τ are indeed spacelike hypersurfaces for r large enough
depending on the chosen η’. This follows from the computation:

gμν∂μũη′ · ∂νũη′ = gμν∂μu · ∂νu + 2gμν∂μu · ∂ν

( −1

1 + rη′

)

+ gμν∂μ

( −1

1 + rη′

)
· ∂ν

( −1

1 + rη′

)

= −2η′r−1−η′ + Oη′
(
r−2−a + r−2−η′)

< 0.

for r large enough in terms of η′. Moreover, |ũη′ − u| ≤ 1, and hence S̃τ are spacelike
hypersurfaces terminating at future null infinity, according to the definition (2.7).

In view of (5.29), for any smooth function ω : {r � 1} → C the following estimate
is true:

J N
μ (ω)ñμ ∼ 1

r1+η′ |∂uω|2 + |∂vω|2 +
∣
∣
∣
1

r
∂σ ω

∣
∣
∣
2
, (5.31)

where ñ denotes the future directed unit normal to {S̃τ}τ∈R
We can now infer the following Lemma:

Lemma 5.5 Assume that R � 1 is large enough in terms of the fixed value of η′.
Then for any τ ∈ R and any −n ≤ k ≤ n, the following inequality is true:

∫ ∞

0

{∫

S̃τ∩R(0,t∗)∩{r≥R+1}
J N
μ (ψk)ñ

μ

}
dτ

≤ C(R)

∫

{R≤r≤R+1}∩R(0,t∗)

(
J N
μ (ψk)n

μ

+|ψk |2
)

+ C(ω0, R)

∫

t=0
(1 + r)J N

μ (ψ)nμ. (5.32)

The same estimate also holds for ψ≤ω+ ,ψ≥ω+ in place of ψk .
Moreover, for any t1 ≤ t2 the following estimate for ψ holds:

∫ t2

t1

{∫

S̃τ∩{r≥R}
J N
μ (ψ)ñμ

}
dτ ≤ C(R) ·

∫

{R≤r≤R+1}∩R(t1,t2)

(
J N
μ (ψ)nμ + |ψ|2)

+C ·
∫

{t=t1}
(1 + r)J N

μ (ψ)ñμ. (5.33)

Proof In view of (5.31), fixing some smooth cut-off function χR : D → [0, 1] such
that χR ≡ 0 on {r ≤ R} and χR ≡ 1 on {r ≥ R + 1}, choosing some 0 < η <

min{a,η′} and 0 < δ < 1 and setting p = 1 in Lemma 5.4, we can readily bound for
any −n ≤ k ≤ n:
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∫ ∞

0

{∫

S̃τ∩R(0,t∗)∩{r≥R+1}
J N
μ (ψk)ñ

μ

}
dτ

≤ C(R)

∫

{R≤r≤R+1}∩R(0,t∗)

(
J N
μ (ψk)n

μ + |ψk |2
)

+C(ω0, R)

∫

t=0
(1 + r)J N

μ (ψ)nμ. (5.34)

The same is also true for ψ≤ω+ , ψ≥ω+ in place of ψk .
The estimate (5.33) follows by applying Theorem 5.1 of [52] for ψ, adapting the

proof in the region spanned by S̃t2 and �t1 (instead of the region spanned by S̃t2 and
S̃t1 , as is the case in the original theorem).

6 Integrated Local Energy Decay for ψ0

As we explained in our sketch of the proof of Theorem 2.1 in Section 2.5, the treatment
of the very low frequency component ψ0 of ψ differs substantially from the treatment
of the rest of ψk , 1 ≤ |k| ≤ n. In this section, we will prove an integrated local
energy decay statement for ψ0, as described in the proposition that follows. It is in
this section that the parameter ω0 will be fixed. Moreover, in the proof of Proposition
6.1 it is specified how small the value of ε = sup{g(T, T ) should be in the statement
of Theorem 2.1.

Proposition 6.1 Suppose that ε = sup{g(T, T )} (defined in Assumption 3 regarding
the smallness of the ergoregion; recall that, in view of our remark in Section 2.6, we
have assumed that H+ �= ∅) is small enough in terms of the geometry of the region
{r > r0

2 } (i. e. the geometry of a subset of (D, g) not containing the ergoregion). Then
for any R > 0 , there exists a δ = δ(R) > 0, such that if ω0 < δ, we can bound:

∫

{r≤R}∩R(0,t∗)

(
J N
μ (ψ0)n

μ + |ψ0|2
)

≤ C(R,ω0) ·
∫

t=0
J N
μ (ψ)nμ (6.1)

Proof It suffices to establish (6.1) for Re(ψ0) and Im(ψ0) in place of ψ0, since then
by adding the two inequalities one arrives immediately at the statement for ψ0. Hence,
we can assume without loss of generality that ψ0 is real valued.

Without loss of generality, we can also assume that R is large enough in terms of
the geometry of (D, g), since we can always choose an even larger R than the one
given in the statement.

We will need to fix a C1 and piecewise C2 function h : [0,+∞) → [0, 1] with the
following properties for some l > 2:

1. For {r ≤ 1}: h ≡ 1
2. For {1 < r < 2}: h′′ < 0 and h′ < 0
3. For {2 ≤ r ≤ l − c}: h(r) = 3

2r for some 0 < c � 1
4. For {l − c < r < l + c}: h′′ < 0, h′ < 0
5. For {l + c < r < 2l}: h(r) = 3

2l3
(r − 2l)2

6. For {r ≥ 2l}: h ≡ 0
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The existence of such a function is established as follows: First of all, the existence of
a function satisfying the three first assumptions on [0, l − c] and moreover satisfying
h(r) = 3

2r on the whole of {2 ≤ r ≤ l} is obvious, since the only obstruction posed
by the conditions h′′ < 0 on (1, 2) and h′(1) = 0, h′(2) = − 3

8 is

h′(2) · (2 − 1) < h(2) − h(1).

And this condition is indeed verified, since − 3
8 < − 1

4 . Extending h on the whole of
[0, 2l] by the expression h(r) = 3

2l3
(r − 2l)2 on (l, 2l], we infer that

lim
r→l+

h(r) = 3

2l
= lim

r→l−
h(r)

and

lim
r→l+

h′(r) = − 3

l2
< − 3

2l2
= lim

r→l−
h′(r).

Thus, we conclude that h can be mollified around r = l so that it is C1 and concave
around this point, and moreover h′ < 0 in the region of the mollification. Finally, the
construction of h is completed by extending h to be identically 0 on [2l,+∞) (notice
that h remains C1 under this extension, since h(2l) = h′(2l) = 0)

We can now define the function hR : D → [0, 1] through the composition hR
.=

h ◦ ( r
R ). Using this function, we can then define the current

Jμ = e · Tμν(ψ0)N
ν + hRψ0∂μψ0 − 1

2
∂μhR · ψ2

0 (6.2)

for a small parameter e > 0 to be specified later.23 Since ψ0 satisfies the equation
�gψ0 = F0, we compute (using the abstract index notation):

∇μ Jμ = e·K N (ψ0)+e·F0·Nψ0+hR ·∂μψ0·∂μψ0−1

2
(�ghR)ψ2

0+hR ·ψ0·F0. (6.3)

We will integrate (6.3) over R(0, t∗). Since ψ0 is supported in some cylinder of
the form {r � Rsup + t∗} (see the remark in Section (2.6)), we need not worry about
boundary terms occuring near spacelike infinty when applying the divergence theorem
in R(0, t∗). After applying the divergence theorem on R(0, t∗), we obtain:

∫

H+∩R(0,t∗)
Jμn

μ

H+ +
∫

{t=t∗}
Jμn

μ + e
∫

R(0,t∗)
K N (ψ0)

+
∫

R(0,t∗)
hR∂μψ0 · ∂μψ0 − 1

2

∫

R(0,t∗)
(�ghR)ψ2

0

23 Let us remark that in the case where H+ = ∅, the proof would follow by using the current Jμ =
hRψ0∂μψ0 − 1

2 ∂μhR · ψ2
0.
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=
∫

{t=0}
Jμn

μ − e
∫

R(0,t∗)
F0 · Nψ0 −

∫

R(0,t∗)
hR · ψ0 · F0, (6.4)

where nμ

H+ denotes a future directed T -invariant generator of H+\(H+ ∩H−) which
coincides with the horizon Killing fieldV onH∩J+(�). For the volume form involved
in this integration, see Section 3 for our conventions regarding integration over null
hypersurfaces.

Before proceeding to the extraction of an inequality from identity (6.4), we should
note the following: Having identified D\H− with R × (� ∩ D) through the flow of
T (see Section 3.3), the inverse g−1 of the metric g (that is to say, g−1 is the induced
metric on the cotangent bundle T ∗M) splits as

g−1 = a · T ⊗ T + T ⊗ b + b ⊗ T + C, (6.5)

where, due to our assumption 3 on the smallness of the ergoregion, the following
conditions are satisfied on {t ≥ 0} ⊂ D:

• a is a real bounded function.
• b is a vector field tangential to the hypersurfaces �τ and uniformly bounded with

respect to the induced Riemannian metric g� on these hypersurfaces.
• C is a symmetric (0, 2)-tensor on the hypersurfaces �τ, uniformly bounded when

measured with g� , satisfying the lower bound C ≥ −C ε ·g−1
� in the region {r ≤

3r0
4 }and C ≥ c · g−1

� in the region {r ≥ 3r0
4 } for some C, c > 0 (here we have used

the notation that A ≥ B for two symmetric (0, 2)-tensors if A(ω,ω) ≥ B(ω,ω)

for all 1-forms ω).

Since K N (·) � J N
μ (·)nμ on {r ≤ r0} (in view of Assumption 2), we can bound

from below on �t ∩ {r ≤ r0} for any t ≥ 0 and any smooth function v on {t ≥ 0}
provided e is chosen (independently of t) so that e � ε:

e · K N (v) + C(∂v, ∂v) ≥ 0. (6.6)

Moreover, since K N (·) � J N
μ (·)nμ on {r0 ≤ r ≤ 2r0} and K N vanishes anywhere

else, we can bound on �t ∩ {r ≥ r0}:

e · K N (v) + C(∂v, ∂v) + (T v)2 ≥ 0 (6.7)

provided e is chosen sufficiently small depending only on the geometric aspects of our
spacetime for {r ≥ r0}. This assumption is compatible with the assumption ε � e that
we imposed for (6.6) to hold, provided that ε is small enough in terms of the geometry
of the spacetime region {r ≥ r0}.

All in all, if ε is small enough in terms of the geometry of {r ≥ r0}, we infer that
we can choose a suitable e such that for any smooth function v on {t ≥ 0} we can
bound (from (6.6) and (6.7)):

e · K N (v) + C(∂v, ∂v) + (T v)2 ≥ c(e) · J N
μ (v)nμ
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everywhere on {t ≥ 0}. This inequality implies, due to (6.5), that for some constant
C > 0 depending on the bounds for a, b in (6.5) we can estimate from below (using
the abstract index notation):

e · K N (v) + gμν∂μv · ∂νv + C · (T v)2 ≥ c(e) · J N
μ (v)nμ (6.8)

everywhere on {t ≥ 0}. Therefore, from now on we can assume that that the parameter
e has been fixed.

Since hR ≡ 1 near H+ and hR ≥ 0 everywhere (and K N vanishes for r ≥ 2r0),
we can bound due to (6.8) (denoting with ∇�ψ0 the gradient of ψ0 on the (�t , g�)

hypersurfaces):

eK N (ψ0) + hR∂μψ0 · ∂μψ0 ≥ c · hR |∇�ψ0|2g�
− C · hR |Tψ0|2. (6.9)

Returning to the identity (6.4), in view of (6.9) we can bound:

∫

H+∩R(0,t∗)
Jμn

μ

H+ +
∫

R(0,t∗)
hR · |∇�ψ0|2g�

− C ·
∫

R(0,t∗)
hR · |Tψ0|2

−1

2

∫

R(0,t∗)
(�ghR)ψ2

0

≤ −e
∫

R(0,t∗)
F0 · Nψ0 −

∫

R(0,t∗)
hR · ψ0 · F0 +

∫

t=0
Jμn

μ −
∫

t=t∗
Jμn

μ.

(6.10)

Along H+, the current Jμ takes the form

Jμ = e · Tμν(ψ0)N
ν + ψ0 · ∂μψ0 = e · J N

μ (ψ0) + 1

2
∂μ(ψ2

0). (6.11)

Therefore, we compute

−
∫

H+∩R(0,t∗)
Jμn

μ

H+ = −e
∫

H+∩{0≤t≤t∗}
J N
μ (ψ0)n

μ

H+ − 1

2

∫

H+∩{0≤t≤t∗}
nH+(ψ2

0)

≤ −1

2

∫

H+∩{0≤t≤t∗}
nH+(ψ2

0)

= 1

2

(∫

H+∩{t=0}
ψ2

0 −
∫

H+∩{t=t∗}
ψ2

0

)
, (6.12)

the last equality following from the definition of the volume element on H+ with
respect to nH+ , combined with the fact that nH+ was assumed to coincide with the
horizon Killing field V on H+ ∩ J+(�). Due to a trace theorem, a Hardy inequality
and Lemma 4.4, the following estimate holds for each τ ∈ [0, t∗]:
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∫

{t=τ}∩H+
ψ2

0 ≤ C ·
∫

{t=τ}∩{r≤1}

(
ψ2

0 + |∇�ψ0|2g�

)

≤ C ·
∫

t=τ

J N
μ (ψ0)n

μ ≤ C(ω0) ·
∫

t=0
J N
μ (ψ)nμ. (6.13)

Hence, we can bound in view of (6.12):

−
∫

H+∩R(0,t∗)
Jμn

μ

H+ ≤ C(ω0) ·
∫

t=0
J N
μ (ψ)nμ. (6.14)

We will now estimate the boundary terms at {t = 0, t∗} of (6.10). Due to Lemma
4.4 (using also a Hardy inequalty for the 0-th order terms, since hR and ∂hR decay
faster than C(R) · r−2), we can bound:

∫

{t=const}
Jμ(ψ0)n

μ ≤ C(ω0, R)

∫

{t=0}
J N
μ (ψ)nμ. (6.15)

By substituting estimates (6.14) and (6.15) into (6.10), we infer:

∫

R(0,t∗)
hR |∇�ψ0|2g�

− 1

2

∫

R(0,t∗)
(�ghR) · ψ2

0 �
∫

R(0,t∗)
hR · |Tψ0|2

− e
∫

R(0,t∗)
F0 · Nψ0 −

∫

R(0,t∗)
hR · ψ0 · F0 + C(ω0, R)

∫

t=0
J N
μ (ψ)nμ.

(6.16)

We will now proceed to estimate the term
∫
R(0,t∗)(�ghR) · ψ2

0 in (6.16). Due to
the properties of h, we have �ghR ≡ 0 for r ≤ R. We can assume without loss of
generality that R ≥ R1. Then, in view of the expression (2.4) of g in the (t, r, σ )

coordinate chart for r ≥ R1, we compute:

�ghR = 1√−det (g)
∂r
(
grr ·√−det (g)∂r hR

)

= (1 + O(r−1))
(
∂2
r hR + d − 1

r
∂r hR

)
+ O(r−1−a) · ∂r hR . (6.17)

Thus, we can estimate in {R < r < 2R} (in view again of the properties of the
constructed function h):

�ghR < −c · R−2,

provided R � 1. For 2R < r < l R − c we calculate

�ghR = 3

2

{(
1+O

(
r−1)

)(
2Rr−3− d − 1

r
Rr−2

)
+O

(
r−1−a)·R ·r−2

}
≤ C · R

r3+a
.

(6.18)
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Similarly, for {l R − c < r < l R + c} we can readily bound

�ghR ≤ 0, (6.19)

while for {l R + c < r < 2l R} we can estimate (provided again that R � 1)

�ghR ≤ C

l3R2 . (6.20)

Since r ∼ l · R in this interval, we can estimate for any given (fixed) 0 < β < 1:

�ghR ≤ C ·
(

(l R)β

l

)
r−2−β. (6.21)

It is at this point that we will determine the value of m in terms of R: We set

l = R
β

1−β , and with this choice we have (l R)β

l = 1. With this choice, therefore, for
l R + c < r < 2l R we can estimate from (6.21):

�ghR ≤ C · r−2−β. (6.22)

Of course, for r > 2l we have
�ghR ≡ 0. (6.23)

Returning to (6.16) and using the above estimates for �hR , we can bound

∫

R(0,t∗)
hR |∇�ψ0|2g�

+ c ·
∫

R(0,t∗)∩{R≤r≤2R}
ψ2

0

R2 ≤

≤ C ·
∫

R(0,t∗)
hR · |Tψ0|2

+C ·
∫

R(0,t∗)∩{2R≤r≤l R}
R

r3+a
ψ2

0 + C
∫

R(0,t∗)∩{l R≤r≤2l R}
ψ2

0

r2+β

+C

∣
∣
∣
∣

∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣
∣+ C ·

∣
∣
∣
∣

∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣
∣

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ, (6.24)

or, after adding a multiple of
∫
R(0,t∗) hR · |Tψ0|2 on both sides:

∫

R(0,t∗)
hR J

N
μ (ψ0)n

μ + c ·
∫

R(0,t∗)∩{R≤r≤2R}
ψ2

0

R2

≤ C ·
∫

R(0,t∗)
hR · |Tψ0|2 + C ·

∫

R(0,t∗)∩{2R≤r≤l R}
R

r3+a
ψ2

0

+ C
∫

R(0,t∗)∩{l R≤r≤2l R}
ψ2

0

r2+β
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+ C

∣
∣
∣
∣

∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣
∣+ C

∣
∣
∣
∣

∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣
∣

+ C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.25)

We will dispense with the third term of the right hand side of (6.25) using Lemma

5.3. According to 5.3 for η = min{ 1
2β, a} and Rc = 2l R = 2R

1
1−β , we can bound

provided R � 1:

∫

R(0,t∗)∩{l R≤r≤2l R}
ψ2

0

r2+ 1
2 β

≤ C
∫

R(0,t∗)∩{R≤r≤2R}

(
J N
μ (ψ0)n

μ + R−2|ψ0|2
)

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.26)

Substituting (6.26) in (6.25) we have:

∫

R(0,t∗)
hR J

N
μ (ψ0)n

μ + c ·
∫

R(0,t∗)∩{R≤r≤2R}
ψ2

0

R2

≤ C ·
∫

R(0,t∗)
hR · |Tψ0|2 + C ·

∫

R(0,t∗)∩{2R≤r≤l R}
R

r3+a
ψ2

0

+ CR− β
2

∫

{R≤r≤2R}∩R(0,t∗)

(
J N
μ (ψ0)n

μ + R−2ψ2
0

)

+ C

∣
∣
∣
∣

∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣
∣+C ·

∣
∣
∣
∣

∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣
∣+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ.

(6.27)
Thus, since hR ≥ 1

2 on {r ≤ 2R}, if R is large enough, the third term of the right hand
side of (6.32) can be absorbed by the left hand side, yielding

∫

R(0,t∗)
hR J

N
μ (ψ0)n

μ + c ·
∫

R(0,t∗)∩{R≤r≤2R}
ψ2

0

R2

≤ C ·
∫

R(0,t∗)
hR · |Tψ0|2 + C ·

∫

R(0,t∗)∩{2R≤r≤l R}
R

r3+a
ψ2

0

+ C

∣
∣
∣
∣

∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣
∣+C ·

∣
∣
∣
∣

∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣
∣+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ.

(6.28)
We will now absorb the second term of the righ hand side of (6.28) by the left

hand side through the use of Lemma 5.2 if R � 1. According to Lemma 5.2 for any
0 < η < α, (if R � 1):

∫

R(0,t∗)∩{r≥2R}
1

r3+η
ψ2

0 ≤ C(η) ·
∫

R(0,t∗)∩{R≤r≤2R}
{

1

R
J N
μ (ψ0)n

μ + 1

R3 |ψ0|2
}

+ C(η,ω0)

∫

t=0
J N
μ (ψ)nμ, (6.29)
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and hence

∫

R(0,t∗)∩{2R≤r≤l R}
R

r3+a
ψ2

0 ≤ C ·
∫

R(0,t∗)∩{r≥2R}
R1−a+η

r3+η
ψ2

0

≤ C ·
∫

R(0,t∗)∩{R≤r≤2R}
{
R−a+η J N

μ (ψ0)n
μ + R−2−a+η|ψ0|2

}

+ C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.30)

Thus, from (6.28) and (6.30) for η = a
2 we deduce that:

∫

R(0,t∗)
hR J

N
μ (ψ0)n

μ + c ·
∫

R(0,t∗)∩{R≤r≤2R}
R−2ψ2

0

≤ C ·
∫

R(0,t∗)
hR · |Tψ0|2+C ·

∫

R(0,t∗)∩{R≤r≤2R}
(
R− a

2 J N
μ (ψ0)n

μ + R−2− a
2 ψ2

0

)

+ C

∣
∣
∣
∣

∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣
∣+ C ·

∣
∣
∣
∣

∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣
∣+ C(ω0, R)

∫

t=0
J N
μ (ψ)nμ,

(6.31)
which, after absorbing the second term of the right hand side into the left hand side,
yields:

∫

R(0,t∗)
hR · J N

μ (ψ0)n
μ + c ·

∫

R(0,t∗)∩{R≤r≤2R}
R−2ψ2

0 ≤ C ·
∫

R(0,t∗)
hR · |Tψ0|2

+C

∣
∣
∣
∣

∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣
∣+ C ·

∣
∣
∣
∣

∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣
∣+ C(ω0, R)

∫

t=0
J N
μ (ψ)nμ.

(6.32)

Fixing a smooth χ : [0,+∞) → [0, 1] such that χ ≡ 1 on r ≤ 1 and χ ≡ 0 on r ≥ 2,
by applying a Poincare inequality for the compactly supported function (χ◦ ( r

R )) ·ψ0
we obtain
∫

R(0,t∗)∩{r≤R}
ψ2

0 ≤ C · R2
∫

R(0,t∗)∩{r≤2R}

∣
∣
∣∇�

{
ψ0 ·

(
χ ◦

( r
R

)) }∣∣
∣
2

g�

≤ (6.33)

≤ C(R)

(∫

R(0,t∗)∩{r≤2R}
|∇�ψ0|2g�

+
∫

R(0,t∗)∩{R≤r≤2R}
|ψ0|2

)
.

Therefore, (6.32) can be upgraded to:

∫

R(0,t∗)
hR · J N

μ (ψ0)n
μ +

∫

R(0,t∗)∩{r≤2R}
ψ2

0 ≤ C(R) ·
∫

R(0,t∗)
hR · |Tψ0|2

+C(R)

∣
∣
∣
∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣+ C(R) ·

∣
∣
∣
∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.34)
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We will now absorb the first term of the right hand side of (6.34) by the left hand
side under the condition that ω0 is small in terms of R. Recall that, due to Lemma 4.8,
we can bound24:
∫

R(0,t∗)
hR ·|Tψ0|2 ≤ C ·ω2

0

∫

R(0,t∗)∩{r≤2l R}
ψ2

0+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.35)

Since, due to Lemma 5.2, we can bound

∫

R(0,t∗)∩{2R≤r≤2l R}
ψ2

0 ≤ C(R) ·
∫

R(0,t∗)∩{R≤r≤2R}
(J N

μ (ψ0)n
μ + ψ2

0)

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ, (6.36)

the inequality (6.35) yields

∫

R(0,t∗)
hR · |∂tψ0|2 ≤ C(R) · ω2

0

∫

R(0,t∗)∩{r≤2R}

(
J N
μ (ψ0)n

μ + ψ2
0

)

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.37)

Substituting (6.38) in (6.34), we obtain:

∫

R(0,t∗)
hR · J N

μ (ψ0)n
μ +

∫

R(0,t∗)∩{r≤2R}
ψ2

0

≤ C(R) · ω2
0

∫

R(0,t∗)∩{r≤2R}

(
J N
μ (ψ0)n

μ + ψ2
0

)

+C(R)

∣
∣
∣
∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣+ C(R) ·

∣
∣
∣
∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.38)

Hence, if δ in the statement of the current Proposition (and thus ω0) is small enough
in terms of the given R, the first term of the right hand side of (6.38) can be absorbed
into the left hand side (since hR ≥ c > 0 on {r ≤ 2R}). Thus, we deduce:

∫

R(0,t∗)
hR · J N

μ (ψ0)n
μ +

∫

R(0,t∗)∩{r≤2R}
ψ2

0

≤ C(R)

∣
∣
∣
∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣+ C(R) ·

∣
∣
∣
∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.39)

24 Note that supp(hR) ⊆ {r ≤ 2l R} = {r ≤ 2R
1

1−β }.
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Finally, as we noted before, we can bound due to Lemma 5.2:

∫

R(0,t∗)∩{r≥2R}
r−2|Nψ0|2 + r−4ψ2

0

C ·
∫

R(0,t∗)∩{R≤r≤2R}

(
J N
μ (ψ0)n

μ+ψ2
0

)
+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ (6.40)

and thus we can estimate

∫

R(0,t∗)
(1 + r)−2|Nψ0|2 + (1 + r)−4ψ2

0

≤ C ·
∫

R(0,t∗)∩{r≤2R}

(
J N
μ (ψ0)n

μ + ψ2
0

)
+ C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.41)

Therefore, by a Cauchy–Schwarz inequality and an application of Lemma 4.3, we can
bound

C(R)

∣
∣
∣
∫

R(0,t∗)
F0 · Nψ0

∣
∣
∣+ C(R) ·

∣
∣
∣
∫

R(0,t∗)
hR · ψ0 · F0

∣
∣
∣

≤
{
C ·
∫

R(0,t∗)∩{r≤2R}
(J N

μ (ψ0)n
μ + ψ2

0)

+C(ω0, R)

∫

t=0
J N
μ (ψ)nμ

}1/2 ·
{
C(ω0, R)

∫

t=0
J N
μ (ψ)nμ

}1/2
. (6.42)

Substituting in (6.39) and absorbing the J N
μ (ψ0)n

μ + ψ2
0 term of the first factor in

(6.42) into the left hand side of (6.39), we conclude:

∫

R(0,t∗)
hR J

N
μ (ψ0)n

μ +
∫

R(0,t∗)∩{r≤2R}
ψ2

0

≤ C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (6.43)

Thus, the proof of the Proposition is complete.

7 Integrated Local Energy Decay for ψ≤ω+

In this section, we will establish an integrated local energy decay estimate for the low
frequency part ψ≤ω+ of ψ. This will be accomplished by using of a suitable Carleman
type inequality and an ODE lemma appearing in [58]. Of course we only have to obtain
an integrated local energy decay for ψk with 1 ≤ |k| ≤ n, since the related estimate
for the very low frequency part ψ0 was obtained in Section 6.
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7.1 A Carleman-Type Estimate for ψk, 1 ≤ |k| ≤ n

We will need to establish a Carleman type inequality for the functions ψk , 1 ≤ |k| ≤ n,
that will be necessary for proving the full integrated local energy decay statement for
ψ≤ω+ in the next section. The main ideas contained in the proof of the following
lemma have already been presented and used in [58].

Lemma 7.1 There exist functions w,w′ : D → [0, 1], satisfying T (w) = T (w′) = 0
and which for r ≥ R1 are both equal and strictly increasing functions of the variable
r , such that for any R > 0 , any 0 < ω0 � 1, any ω+ > 1 and any 1 ≤ |k| ≤ n the
following bound holds (setting s = C(ω0, R) · ωk for some large constant C(ω0, R)

depending only on ω0 and R):

∫

R(0,t∗)∩{r≤R}

(
e2sw + e2sw′) ·

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C(ω0, R) ·
∫

R(0,t∗)∩{R≤r≤R+1})
(1 + s2)e2sw ·

(
J N
μ (ψk)n

μ + |ψk |2
)

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (7.1)

Proof We will assume without loss of generality that R is large enough in terms of
the geometry of (D, g), since we can always pick a larger R if necessary. Recall that
we have assumed without loss of generality that H+ �= ∅ (see Section 2.6). The proof
of (7.1) in the case where H+ = ∅ is almost identical, and we will explain in the
footnotes the differences of the proof in the two cases.

For any smooth function w : D → R and some real number s ∈ R to be fixed more
precisely later on (it will eventually agree with the parameter s in the statement of the
lemma), we define, in accordance with [58], the following current for any 1 ≤ |k| ≤ n
using the abstract index notation:

Jμ = ∂ν(e2sw)Tμν(ψk) + 1

2
�ge

2sw · Re{ψ̄k · ∂μψk
}

+1

2
s
{
(∂μw)(�ge

2sw) − (∂μ�gw)e2sw
}
|ψk |2. (7.2)

The divergence of (7.2) takes the form:

∇μ Jμ =
{
s2(�gw)2 + 4s3∂μw · ∂μw · (�gw) + 4s2∇2

μνw · ∂μw · ∂νw

+ 4s4(∂μw · ∂μw)2 − 1

2
s�2

gw
}
e2sw|ψk |2

+ {4s2∂μw · �gw+4s2∇2
μνw · ∂νw+8s3∂νw · ∂νw · ∂μw

}
e2swRe

{
ψ̄k · ∂μψk

}

+ {2s∇2
μνw + 4s2∂μw · ∂νw

}
e2sw∂μψ̄k∂

νψk

+ 1

2
(�ge

2sw)Re
{
ψ̄k · Fk

}+ ∂μe2sw · Re{∂μψ̄k · Fk
}
. (7.3)
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Proceeding as in [58], after completion of the square, (7.3) becomes:

∇μ Jμ = e2sw
∣
∣
∣2s∂μw · ∂μψk +

(
2s2∂μw · ∂μw + s · �gw

)
· ψk

∣
∣
∣
2

+ 2s∇2
μνw · ∂μ

(
eswψ̄k

) · ∂ν
(
eswψk

)

+ 2s3∇2
μνw · ∂μw · ∂νw · e2sw|ψk |2 − 1

2
s
(
�2

gw
) · e2sw|ψk |2

+ 1

2

(
�ge

2sw)Re
{
ψ̄k · Fk

}+ ∂μe2sw · Re{∂μψ̄k · Fk
}
. (7.4)

Let χ(x) : � → [0, 1] be a smooth cut-off function to be defined more precisely
later on, with compact support away fromH+∩�. We extend it to the whole ofD\H−
by the condition Tχ = 0. Then the divergence identity yields:

∫

R(0,t∗)
χ · ∇μ Jμ =

∫

{t=t∗}
χ · Jμnμ −

∫

{t=0}
χ · Jμnμ −

∫

R(0,t∗)
∂μχ · Jμ. (7.5)

Substituting (7.4) in (7.5) and setting (for convenience)

Uk
.= esw

(
2s∂μw · ∂μψk + (2s2∂μw · ∂μw + s · �gw

) · ψk

)
, (7.6)

we obtain the following Carleman identity (in accordance with the Riemannian setting
in [58]):

∫

R(0,t∗)
χ · |Uk |2 + 2s

∫

R(0,t∗)
χ∇2

μνw · ∂μ
(
eswψ̄k

) · ∂ν
(
eswψk

)

+ 2s3
∫

R(0,t∗)
χ∇2

μνw · ∂μw · ∂νw · e2sw|ψk |2

= 1

2
s
∫

R(0,t∗)
χ
(
�2

gw
) · e2sw|ψk |2 +

∫

R(0,t∗)
χRe

{
eswUk · F̄k

}

+
∫

{t=t∗}
χ · Jμnμ −

∫

{t=0}
χ · Jμnμ −

∫

R(0,t∗)
∂μχ · Jμ. (7.7)

Using a Cauchy–Schwarz inequality

∫

R(0,t∗)
χRe

{
eswUk · F̄k

} ≤
(∫

R(0,t∗)
χe2sw|Fk |2

)1/2(∫

R(0,t∗)
χ|Uk |2

)1/2

,

after absorbing the term
∫
R(0,t∗) χ|Uk |2 into the corresponding term on the left hand

side of (7.7) and then dropping once and for all the positive
∫
R(0,t∗) χ|Uk |2 term from

the left hand side, we obtain the following inequality:

2s
∫

R(0,t∗)
χHessμν(w) · ∂μ(eswψ̄k) · ∂ν(eswψk)
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+2s3
∫

R(0,t∗)
χ∇2

μνw · ∂μw · ∂νw · e2sw|ψk |2 ≤

≤ 1

2
s
∫

R(0,t∗)
χ
(
�2

gw
) · e2sw|ψk |2 + C ·

∫

R(0,t∗)
χe2sw|Fk |2

+
∫

{t=t∗}
χ · Jμnμ −

∫

{t=0}
χ · Jμnμ −

∫

R(0,t∗)
∂μχ · Jμ. (7.8)

We will now proceed to define more precisely the function w. In order to be able
to control the boundary terms in the above inequality, we will impose the condition
Tw = 0, and thus w will be uniquely determined by its restriction on �∩D = {t = 0}.

If it were possible to construct a geodesically convex function w (that is, one
with positive definite Hessian), inequality (7.8) would readily yield the desired local
integrated decay statement for ψk . However, in general the construction of such a
function w is not possible for the class of manifolds under consideration, as, for
example, even the existence of a single geodesic of D contained in a subset of the form
{r ≤ R} would exclude the existence of such a w. See also the relevant comments in
[58]. For this reason, we will construct the function w so that it is geodesically convex
along the gradient direction (thus guaranteeing the positivity of the second term of the
left hand side of (7.8)), at least away from the ergoregion, and away from a discrete
set of points which will be the necessary local extrema of w, which are necessitated
by the lack of serious restrictions on the topology of �. This approach was originally
adopted in the Carleman-type estimates established in [58].

According to [58] (see also [8]), we can construct a Morse function ω : � → R,
such that ϕ has no local minima in �, and such that moreover ω ≡ r for

({r ≤
2r0} ∪ {r ≥ R1}

) ∩ �. For instance, ω can be obtained by first solving the Dirichlet
problem ⎧

⎪⎨

⎪⎩

�ω̄ = −1 on {2r0 < r < R1} ∩ �

ω̄ = 2r0 on r = 2r0

ω̄ = R1 on r = R1,

(7.9)

where � is the Laplacian of the induced Riemannian metric on �. Such a function ω̄

is smooth on {2r0 ≤ r ≤ R1} ∩ �, and has no local minima in {2r0 < r < R1} ∩ �,
since if such a local minimum existed then we should have �ω̄ ≥ 0 there. The set of
Morse functions is dense in the C2 topology, and thus we can approximate ω̄ in C2

by a Morse function ω on {2r0 ≤ r ≤ R1} ∩ �. In view of the maximum principle
and Hopf’s lemma, we must have

2r0 < ω̄ < R1 on {2r0 < r < R1} ∩ �

and

∂r ω̄|{r=2r0}∩�, ∂r ω̄|{r=R1}∩� > 0.

Note that dr �= 0 in {r ≤ 3r0}, and hence the expression ∂r ω̄|{r=2r0}∩� > 0 makes
sense in any local chart around the horizon where r is a coordinate function; similarly
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for the expression ∂r ω̄|{r=R1}∩� > 0. Hence, if ω was chosen close enough to ω̄,
ω can be mollified around

({r = 2r0} ∪ {r = R1}
) ∩ �, so that it can be smoothly

extended as a Morse function equal to r on
({r ≤ 2r0} ∪ {r ≥ R1}

) ∩ �. In this way,
we obtain a Morse function ω with no local minima in � and such that ω ≡ r for({r ≤ 2r0} ∪ {r ≥ R1}

) ∩ �.25

Since ω is a Morse function, it only has a finite number of critical points {x j }nj=1,
all lying in the region{2r0 ≤ r ≤ R1} ∩ �, and there exist positive numbers {ε̄ j }nj=1
such that the balls {B(x j , ε̄ j )}nj=1 are disjoint (the balls considered with respect to the
induced Riemannian metric g� on �).

We will also need to construct a second Morse function ω′ with the same properties
as ω, but with a different set of points of local extrema. Due to the construction of ω

none of the x j ’s are points of local minima, and thus there exist points y j ∈ B(x j ,
1
2 ε̄ j )

such that ω(y j ) > ω(x j ). We can find a diffeomorphism ζ : � → � which is equal to
the identity outside ∪n

j=1B(x j ,
1
2 ε̄ j ), and which interchanges x j with y j . Considering,

hence, the function
ω′ = ω ◦ ζ, (7.10)

we infer that ω ≡ ω′ on �\∪n
j=1 B(x j ,

1
2 ε̄ j ), and the only critical points of ω′ are y j .

Moreover there exist positive numbers {ε j }nj=1 such that ω < ω′ on ∪n
j=1B(x j , ε j )

and ω′ < ω on ∪n
j=1B(y j , ε j ), with ∪n

j=1B(x j , ε j ) and ∪n
j=1B(y j , ε j ) being disjoint.

Extending ω to the whole ofD\H− by the condition Tω = 0, and setting w = eλ ω,
for some λ > 0 to be determined later, we compute

∇2
μνw · ∂μw∂νw =

{ 2
λ(∂μω · ∂μω)2 + λHessμν(ω)∂μω · ∂νω

}
e3 λ ω. (7.11)

Moreover, for any vector field X ∈ 
(T�), we calculate

∇2
μνw · XμXν =

{ 2
λ(Xω)2 + λ Hessμν(ω)XμXν

}
eλ ω. (7.12)

Notice that ∂μω · ∂μω �= 0 on the spacetime region {r > 1
2r0}\

(
R × ∪n

j=1{x j }
)
.26

This is due to the fact that outside the ergoregion, the level sets of ω will always
contain the timelike tangent vector T , and hence their normal will never be a null
vector. Thus, ∂μω · ∂μω �= 0 whenever ∂μω is non zero in {r > 1

2r0}. Hence, for any
R � 1, there exists a large enough λ = λ(R) such that in the region { 3r0

4 ≤ r ≤
R + 1}\(R × ∪n

j=1B(x j ,
1
4 ε j )

)
:

∇2
μνw · ∂μw∂νw ≥ 1 > 0. (7.13)

After fixing an auxiliary Riemannian metric h on D which is T invariant and equal
to the Euclidean metric inherited by the chart we have fixed near the asymptotically

25 In the case where H+ = ∅, a similar construction yields a Morse function ω such that ω ≡ r on
{r ≥ R1} ∩ �.
26 Recall that we have identified D\H− with R × (� ∩ D).
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flat end (i. e. the chart (t, r, σ ) chart where g takes the form (2.4)), we can also bound
in the region { 3r0

4 ≤ r ≤ R + 1}\(R × ∪n
j=1B(x j ,

1
4 ε j )

)
due to (7.12) for any fixed

small c0 > 0 (having chosen λ = λ(R, c0) large enough):

∇2
μνw · XμXν ≥ −c0 ·

(
∇2

μνw
∂μw · ∂νw

|∂w|2h

)
|X |2h . (7.14)

That is, the negative part of the Hessian of w can be controlled by the value of the
Hessian in the gradient direction.27

We will denote for simplicity the Hessian in the gradient direction as

∇2
nnw

.= ∇2
μνw

∂μw · ∂νw

|∂w|2h
. (7.15)

Then, (7.14) and a Cauchy–Schwarz inequality imply that:

∇2
μνw · ∂μ(eswψ̄k) · ∂ν(eswψk) ≥ −2c0∇2

μνwe2sw(s2|∂w|2h |ψk |2 + |∂ψk |2h
)
. (7.16)

We will now fix the cut-off function χ appearing in (7.8). Fixing a smooth function
χ = χR : � → [0, 1] such that χR ≡ 0 on {r ≤ 3r0

4 } ∪ {r ≥ R + 1} ∪n
j=1

B(x j ,
1
4 ε j ) and χR ≡ 1 on { 7r0

8 ≤ r ≤ R}\ ∪n
j=1 B(x j ,

1
2 ε j ), extending it on D\H−

by the condition TχR = 0, we deduce from (7.8), in view also of (7.13), (7.14) and
(7.16):

(1 − 2c0) · s3
∫

R(0,t∗)
χR∇2

nnw · |∂w|2he2sw|ψk |2

≤ C · s
∫

R(0,t∗)
χR
(
�2

gw
) · e2sw|ψk |2

+ 2c0s ·
∫

R(0,t∗)
χR∇2

nnw · e2sw|∂ψk |2h+

+
∫

R(0,t∗)
χRe

2sw|Fk |2 +
∫

{t=t∗}
χR · Jμnμ

−
∫

{t=0}
χR · Jμnμ −

∫

R(0,t∗)
∂μχR · Jμ. (7.17)

In view of Lemmas 4.3 and 4.4 (using also some Hardy-type inequality to control
the 0-th order terms on the slices t = 0, t∗), we obtain from 7.17 after dividing with
(1 − 2c0) (provided c0 was chosen so that c0 ≤ 1

4 ):

27 In the case where H+ = ∅, in view of the fact that in this case g(T, T ) < 0 everywhere on D
according to Assumption 3, we can similarly arrange so that (7.13) and (7.14) hold on the whole of
{r ≤ R + 1}\(R × ∪n

j=1B(x j ,
1
4 ε j )

)
.

123



Logarithmic Local Energy Decay for Scalar Waves... Page 85 of 124 5

s3
∫

R(0,t∗)
χR∇2

nnw · |∂w|2he2sw|ψk |2

≤ C · s
∫

R(0,t∗)
χR
(
�2

gw
) · e2sw|ψk |2

+ 2c0

1 − 2c0
· s ·

∫

R(0,t∗)
χR∇2

nnw · e2sw|∂ψk |2h
}

+ C(R) ·
∫

R(0,t∗)∩{supp(∂χ)}
(1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+ eC(R)·s · C(ω0, R) ·
∫

t=0
J N
μ (ψ)nμ.

(7.18)

We will now proceed to absorb the first two terms of the righ hand side of (7.18)
into the left hand side after choosing s sufficirently large. We will use the auxiliary
current

Jauxμ = ∇2
nnw · e2sw · Re{ψ̄k · ∂μψk} − 1

2
∂μ

{
∇2
nnw · e2sw

}
|ψk |2, (7.19)

for which the divergence theorem yields

∫

R(0,t∗)
χR ·

(
∇2
nnw · e2sw · ∂μψ̄k · ∂μψk − 1

2
�g
{∇2

nnw · e2sw} · |ψk |2
)

= −
∫

R(0,t∗)
∇2
nnw · e2sw · Re{ψ̄k · Fk

}−
∫

t=t∗
χR · Jauxμ nμ

+
∫

t=0
χR · Jauxμ nμ −

∫

R(0,t∗)
∂μχR · Jauxμ . (7.20)

Therefore, from (7.20) we obtain the following Langrangean identity:

∫

R(0,t∗)
χR · ∇2

nnw · e2sw · ∂μψ̄k · ∂μψk

= 1

2

∫

R(0,t∗)
χR · �g

{
∇2
nnw · e2sw

}
· |ψk |2

−
∫

R(0,t∗)
∇2
nnw · e2sw · Re{ψ̄k · Fk

}−
∫

t=t∗
χR · Jauxμ nμ

+
∫

t=0
χR · Jauxμ nμ −

∫

R(0,t∗)
∂μχR · Jauxμ . (7.21)

In order to estimate the second term of the right hand side of (7.18), we will use
the trivial bound

|∂ψk |2h ≤ C1 · ∂μψ̄k · ∂μψk + C2|Tψk |2. (7.22)

After using Lemmas 4.3 and 4.4 to deal with the Fk-terms and the boundary terms
in (7.21) (as we did in the derivation of (7.18)), from (7.18), (7.21) and Lemma 4.8
(which allows us to bound |Tψk |2 bulk terms by ω2

k |ψk |2) terms we obtain:
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s3
∫

R(0,t∗)
χR · ∇2

nnw · |∂w|2he2sw|ψk |2 ≤ C · s
∫

R(0,t∗)
χR · (�2

gw
) · e2sw|ψk |2

+ C(ω0) · s · ω2
k

∫

R(0,t∗)
χR∇2

nnw · e2sw|ψk |2

+ C · 2c0

1 − 2c0
· s ·

∫

R(0,t∗)
χR · �g

{∇2
nnw · e2sw} · |ψk |2

+ C(ω0, R)

∫

R(0,t∗)∩{supp(∂χR)}
(1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (7.23)

In view of the fact that in the support of χR we can bound ∇2
nnw · |∂w|2h ≥ 1 (due

to (7.13)), the third term of the right hand side of (7.23) can be bounded as follows:

C · 2c0

1 − 2c0
· s ·

∫

R(0,t∗)
χR · �g

{∇2
nnw · e2sw} · |ψk |2

≤ C(R) · 2c0

1 − 2c0
· (s + s3) ·

∫

R(0,t∗)
χR · ∇2

nnw · |∂w|2he2sw|ψk |2. (7.24)

Thus, if c0 is small enough in terms of R (which due to (7.14) corresponds to λ

having been chosen large enough in terms of R), the third term of the right hand of
(7.23) can be absorbed into the left hand side. Moreover, if we set s = C · ωk , where
C = C(R,ω0) > 0 is large enough in terms of R, ω0, the left hand side of (7.23) can
also absorb the first two terms of the right hand side, yielding the following Carleman
type inequality:

s3
∫

R(0,t∗)
χRe

2sw|ψk |2 ≤ C(ω0, R) ·
∫

R(0,t∗)∩{supp(∂χ)}
(1+s2)e2sw{|∂ψk |2h+|ψk |2

}

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (7.25)

In view of the Lagrangean identity (7.21), we can also upgrade inequality 7.25 to:

s3
∫

R(0,t∗)
χRe

2sw|ψk |2 + c(ω0, R) · s
∫

R(0,t∗)
χRe

2sw|∂ψk |2h

≤ C(ω0, R)

∫

R(0,t∗)∩{supp(∂χR)}

(
1 + s2

)
e2sw{|∂ψk |2h + |ψk |2

}

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ (7.26)

for some constant c(ω0, R) small in terms of ω0, R.
The support of ∂χR in D\H− breaks into three pieces: The part contained in

R × (∪n
j=1B(x j , ε j )), the part contained in { 3r0

4 ≤ r ≤ 7r0
8 } and the part contained in
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{R ≤ r ≤ R + 1}. Thus, the first term of the right hand side of (7.26) naturally splits
into three summands (corresponding to the aforementioned partition of supp(∂χR)):

∫

R(0,t∗)∩{supp(∂χR)}

(
1 + s2

)
e2sw{|∂ψk |2h + |ψk |2

}

=
∫

R(0,t∗)∩{supp(∂χR)}∩
(
R×(∪n

j=1B(x j ,ε j ))
)
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+
∫

R(0,t∗)∩{supp(∂χR)}∩{ 3r0
4 ≤r≤ 7r0

8 }
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+
∫

R(0,t∗)∩{supp(∂χR)}∩{R≤r≤R+1}
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}
. (7.27)

Therefore, in order to reach a statement close to (7.1), we have to dispense with the
first two summands of the right hand side of (7.27).28 We will accomplish this task in
two steps.
1. In order to deal with the first term of the right hand side of (7.27), we will make use
of the second Morse function function ω′ defined as (7.10).

By defining w′ = eλ ω′
and χ′

R = χR◦ζ, and repeating the same procedure as before
(leading to (7.26)) with w′ and χ′

R in place of w and χR , we obtain the inequality

s3
∫

R(0,t∗)
χ′
Re

2sw′ |ψk |2 + c(ω0, R)

∫

R(0,t∗)
χ′
Re

2sw′ |∂ψk |2h

≤ C(ω0, R)

∫

R(0,t∗)∩{supp(∂χ′
R)}

(
1 + s2

)
e2sw′{|∂ψk |2h + |ψk |2

}

+eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (7.28)

Recall that ϕ < ϕ′ on ∪n
j=1B(x j , ε j ) and ω′ < ω on ∪n

j=1B(y j , ε j ), with
∪n

j=1B(x j , ε j ) and ∪n
j=1B(y j , ε j ) being disjoint. This condition guarantees that if

the constant C(ω0, R) in the definition s = C(ω0, R) · ωk is chosen large enough,
then the term

∫

R(0,t∗)∩{supp(∂χR)}∩
(
R×(∪n

j=1B(x j ,ε j ))
)
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

of (7.26) can be controlled by the left hand side of (7.28), while the term

∫

R(0,t∗)∩{supp(∂χ′
R)}∩
(
R×(∪n

j=1B(y j ,ε j ))
)
(
1 + s2)e2sw′{|∂ψk |2h + |ψk |2

}

28 Notice that the same steps apply in the case where H+ = ∅, the only difference being that in that case
the second term of the right hand side of (7.27) can be dropped.
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of (7.28) can be controlled by the left hand side of 7.26. Therefore, recalling that
w = w′ on the complement of R × ∪n

j=1B(x j ,
1
2 ε̄ j ), and redefining χR to be equal to

the maximum of the previous two cut-offs χR,χ′
R

29, we obtain after adding (7.26)
and (7.28):

∫

R(0,t∗)
χR ·

(
e2sw + e2sw′)|ψk |2 +

∫

R(0,t∗)
χR ·

(
e2sw + e2sw′)|∂ψk |2h

≤ C(ω0, R)

∫

R(0,t∗)∩
({

3r0
4 ≤r≤ 7r0

8

}
∪
{
R≤r≤R+1

})
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (7.29)

2. In order to deal with the first term of the right hand side of (7.29), we will use the
red shift current K N , which is positive definite near the horizon (see Assumption 2).
This will also help us extend our control of the inegral of |ψk |2 +|∂ψk |2h on the whole
of {r ≤ R}.30

Setting χ̃R = max(1{0≤r≤r0},χR) (note that χ̃R ≡ 1 on {r ≤ R}), we compute
using the divergence theorem:

∫

R(0,t∗)
χ̃RK

N (ψk) = −
∫

t=t∗
χ̃R J

N
μ (ψk)n

μ

−
∫

H+∩R(0,t∗)
χ̃R J

N
μ (ψk)n

μ +
∫

t=0
χ̃R J

N
μ (ψk)n

μ

−
∫

R(0,t∗)
∂μχ̃R · J N

μ (ψk) −
∫

R(0,t∗)
χ̃R Re

{
N ψ̄k · Fk

}
. (7.30)

Hence, in view of (2.8), Lemmas 4.3 and 4.4, and a Cauchy–Schwarz inequality for
the term

∫
R(0,t∗) χ̃R Re{N ψ̄k · Fk}, we obtain from (7.30) for any small δ > 0:

∫

R(0,t∗)∩{r≤ 7
8 r0}

|∂ψk |2h ≤ C ·
∫

R(0,t∗)∩{r0≤r≤2r0}
|∂ψk |2h + δ ·

∫

R(0,t∗)
χR |∂ψk |2h

+C(ω0)δ
−1
∫

t=0
J N
μ (ψk)n

μ + C(R) ·
∫

R(0,t∗)∩{R≤r≤R+1}
{|∂ψk |2h + |ψk |2}.

(7.31)

Hence, after adding (7.31) multiplied by sup{r≤7r0/8} e2sw to (7.29) for some δ small
enough in terms of ω0, R, we infer:

29 Note that in this way, we have χR ≡ 1 on the whole of { 7r0
8 ≤ r ≤ R}.

30 Notice that this step is unnecessary in the case where H+ = ∅, as in that case the second term of the
right hand side of (7.27) can be dropped.
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∫

R(0,t∗)∩{ 7r0
8 ≤r≤R}

(
e2sw + e2sw′)|ψk |2 +

∫

R(0,t∗)∩{r≤R}

(
e2sw + e2sw′)|∂ψk |2h

≤ C(ω0, R) ·
(

sup
{r≤7r0/8}

e2sw
)∫

R(0,t∗)∩{r0≤r≤2r0}
|∂ψk |2h

+ C(ω0, R)

∫

R(0,t∗)∩{R≤r≤R+1})

(
1 + s2

)
e2sw{|∂ψk |2h + |ψk |2

}

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ.

(7.32)
Since, due to the construction of ω, we have

sup
{r≤7r0/8}

w < inf{r0≤r≤2r0} w, (7.33)

for s = C(ω0, R) · ωk large enough the first term of the right hand side of (7.32) can
be absorbed into the second term of the left hand side, yielding:

∫

R(0,t∗)∩
{

7r0
8 ≤r≤R

}
(
e2sw + e2sw′) · |ψk |2+

∫

R(0,t∗)∩{r≤R}

(
e2sw+e2sw′) · |∂ψk |2h

≤ C(ω0, R)

∫

R(0,t∗)∩{R≤r≤R+1})
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ (7.34)

Estimating through a Hardy-type inequality

∫

R(0,t∗)∩{r≤ 7
8 r0}

|ψk |2 =
∫

R(0,t∗)∩{r≤ 7
8 r0}

|χ̃Rψk |2

≤ C(R)

∫

R(0,t∗)
χ̃R |∂ψk |2h + C(R)

∫

R(0,t∗)
|∂χ̃R |2h |ψk |2

≤ C(R)

∫

R(0,t∗)∩{r≤R}
|∂ψk |2h

+ C(R)

∫

R(0,t∗)∩{R≤r≤R+1}
{|∂ψk |2h + |ψk |2

}
, (7.35)

after adding (7.35) and (7.34) we obtain the desired inequality:

∫

R(0,t∗)∩{r≤R}

(
e2sw + e2sw′) ·

(
|ψk |2 + |∂ψk |2h

)

≤ C(ω0, R)

∫

R(0,t∗)∩{R≤r≤R+1})
(
1 + s2)e2sw{|∂ψk |2h + |ψk |2

}

+ eC(R)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ. (7.36)
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7.2 Integrated Local Energy Decay for ψ≤ω+

In this section, we will remove the first term of the right hand side of (7.1) from
Lemma 7.1, in order to obtain a genuine integrated local energy decay statement for
ψk , 1 ≤ |k| ≤ n.

The main argument involved in the proof of Proposition 7.2 originates in [58]. In
particular, we will use an ODE Lemma stated and proven in Sections 9 and 10 of [58].
We will mainly work in the region {r � 1}, where in the (t, r, σ ) coordinate chart,
according to Assumption 1 (see also Section 2.6 on our simplifying assumption that
this region has a single connected component), the metric takes the form

g = −
(

1 − 2M

r
+ O4

(
r−1−a)

)
dt2 +

(
1 + 2M

r
+ O4

(
r−1−a)

)
dr2

+ r2
(
gSd−1 + O4

(
r−1−a)

)
+ O4(r

−a)dtdσ. (7.37)

We will first establish the following Proposition:

Proposition 7.2 For any R > 0 and 0 < ω0 � 1, there exists a positive constant
C = C(R,ω0) such that for any smooth solutionψ to thewave equation on J+(�)∩D
with compactly supported initial data on {t = 0}, any ω+ > 1 and any 1 ≤ |k| ≤ n
we can bound:
∫

{r≤R}∩R(0,t∗)

{
J N
μ (ψk)n

μ + |ψk |2
} ≤ C(R,ω0) · eC(R,ω0)·ω+

∫

t=0
J N
μ (ψ)nμ.

(7.38)

Proof We will assume without loss of generality that 1 ≤ k ≤ n, since the case
−n ≤ k ≤ −1 follows in exactly the same way. We will also assume without loss of
generality that ψk is real valued (since otherwise we can first establish (7.38) first for
Re(ψk) and Im(ψk) and then add the resulting inequalities).

The proof of the estimate (7.38) will follow from a number of auxilliary lemmas
that aim to provide us with control over the boundary term near r ∼ R in the right
hand side of (7.1). To this end, we introduce a large constant C1 = C1(R,ω0), the
magnitude of which will be defined more precisely later in the proof. We will examine
the behavior of

∫
{r=ρ}∩R(0,t∗) |ψk |2 in the region ρ ≥ C1.

We will make the following normalization, so that our notations are in agreement
with [58]: We will set (provided, of course, ψk is not identically 0 on R(0, t∗), in
which case (7.38) would follow immediately)

ψ̃k =
(∫

R(0,t∗)
(1 + r)−2|ψk |2

)−1/2

ψk (7.39)

and

F̃k =
(∫

R(0,t∗)
(1 + r)−2|ψk |2

)−1/2

Fk . (7.40)

Notice that ψ̃k solves �gψ̃k = F̃k .

123



Logarithmic Local Energy Decay for Scalar Waves... Page 91 of 124 5

We will also set, in order to stay close to the notations of [58]:

D
.=
(∫

R(0,t∗)
r−2|ψk |2

)−1 ∫

t=0
J N
μ (ψ)nμ. (7.41)

Notice that all the previous quantities (7.39), (7.40) and (7.41) are finite, since, in view
of the fact that the initial data for ψ on {t = 0} were assumed to be supported in a set
of the form {r ≤ Rsup}, ψt∗ and ψk,ψ≤ω+ ,ψ≥ω+ are all supported in the cylinder
{r � Rsup + t∗}.31

Under the above normalizations, we compute that

∫

R(0,t∗)
(1 + r)−2|ψ̃k |2 = 1,

and Lemma 4.3 implies that for any q ∈ N:

∫

R(0,t∗)
rq F̃k ≤ Cq(ω0) · D.

Moreover, in case D ≥ 1, the desired integrated local energy decay statement (7.38)
for ψk would readily follow: In this case, D ≥ 1 immediately yields

∫

R(0,t∗)
(1 + r)−2|ψk |2 ≤

∫

t=0
J N
μ (ψ)nμ. (7.42)

Using the Lagrangean inequality

∫

R(0,t∗)
χ · J N

μ (ψk)n
μ ≤ C(ω0,χ) · (1 + ω2

k

) ·
∫

R(0,t∗)∩supp(χ)

|ψk |2

+C(ω0,χ) ·
∫

t=0
J N
μ (ψ)nμ, (7.43)

which holds for any compactly supported cut-off χ and is easily obtained by using
the current Jμ = χ · Re{ψk · ∂μψ̄k

} − (∂μχ) · |ψk |2 (similarly with the extraction
of (7.21)), as well as Lemmas 4.3, 4.4 and 4.8 (the latter enabling us to bound any
|Tψk |2 bulk terms by ω2

k |ψk |2 terms), one easily infers (7.38). Therefore, we will
assume without loss of generality that

D < 1. (7.44)

We will also set
�̃k = D · ψ̃k, (7.45)

31 Of course, as we remarked in Section 4.1, no constant in what follows will be allowed to depend on
Rsup, t∗.
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where
D

.= (√−det (g) · grr ) 1
2 = r

d−1
2
(
1 + O4

(
r−1)). (7.46)

The factor D was chosen so that �̃k satisfies in the region {r ≥ C1} an equation of the
form

D · F̃k = −(1 + att
)
∂2
t �̃k + (1 + arr

)
∂2
r �̃k

+ r−2 ·
(
�g

Sd−1+O4(r−1−a) − (d − 1)(d − 3)

4

)
�̃k (7.47)

+ atσ · ∂t∂σ �̃k + aσ · ∂σ �̃k + at · ∂t �̃k + a · �̃k,

where

• att = 2M
r + O4(r−1−a),

• arr = − 2M
r + O4(r−1−a),

• atσ = O4(r−2−a),
• aσ = O3(r−3−a),
• at = O3(r−1−a) and
• a = O2(r−2−a).

Note that the ∂r derivatives appear only in the ∂2
r �̃k term in this expression (owing to

the normal form of the metric (2.4)).
Let us define for r ≥ C1 the following spherical energies (see [58]):

• M (ρ)
.= ∫{r=ρ}∩R(0,t∗)

∣
∣�̃k
∣
∣2 dgSd−1dt.

• F (ρ)
.= ∫{r=ρ}∩R(0,t∗) �̃k · ∂r �̃k dgSd−1dt.

• R(ρ)
.= ∫{r=ρ}∩R(0,t∗)

∣
∣∂r �̃k

∣
∣2 dgSd−1dt.

• A (ρ)
.= ∫{r=ρ}∩R(0,t∗)

∣
∣ 1
r ∂σ �̃k

∣
∣2 dgSd−1dt.

Notice that the measure of integration used is not the geometric one, but rather the
“coordinate” one.

We will also need the following Pohozaev-type flux P , which is defined as

P(ρ) =
∫

{r=ρ}∩R(0,t∗}

{∣
∣∂r �̃k

∣
∣2 + (1 + att )(1 + arr )

−1
∣
∣∂t �̃k

∣
∣2

−(1 + arr )
−1r−2

(∣
∣∂σ �̃k

∣
∣2 + (d − 1)(d − 3)

4

∣
∣�̃k
∣
∣2
)

+

−(1 + arr )
−1atσ ∂t �̃k∂σ �̃k + ((1 + arr )

−1aσ

−r−2∂σ (1 + arr )
−1) · �̃k∂σ �̃k + at �̃k∂t �̃k + a · |�̃k |2

}
dgSd−1dt.

(7.48)

The above integrand can be obtained from (7.47) by applying multiplying the right
hand side of equation (7.47) with (1+arr )−1�̃k and then formally integrating by parts
in all second order terms schematically as: a · ∂2�̃k · �̃k → −∂�̃k · ∂(a · �̃k), after
first multiplying the the ∂2

r term with −1.
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Notice that if C1 � 1, then

P+2A +r−2−a ·M ≥ c·
∫

{r=ρ}∩R(0,t∗)

(∣
∣∂t �̃k

∣
∣2+∣∣∂r �̃k

∣
∣2+∣∣r−1∂σ �̃k

∣
∣2
)
dgSd−1dt.

(7.49)
We will denote with G any function G : [0,+∞) → R defined in terms of �̃k ,

such that there exist r1 ≥ 0 and C(ω0, R) > 0 for which we can bound

∫ ∞

r1

|G(r)| dr ≤ C(ω0, R) · D, (7.50)

with the constant C(ω0, R) depending only on ω0, R (and thus independent of
ψ,ψk, t

∗ etc.)
It readily follows from the definitions that

M ,A ,R ≥ 0. (7.51)

Furthermore, using a Cauchy–Schwarz inequality, we can bound:

|F | ≤ (M )1/2 · (R)1/2. (7.52)

Finally, since ψk is supported in the cylinder {r � Rsup + t∗}, we have:

lim
r→∞

1

r

∫ 2r

r

{
M (ρ) + R(ρ) + A (ρ) + |P(ρ)|} dρ = 0. (7.53)

The main result of this section (i. e. (7.38)) is a consequence of the fact that the
spherical energies obey a particular system of equations of motion (see also [58]):

Lemma 7.3 The spherical energies satisfy the following system of ODE’s:

⎧
⎪⎨

⎪⎩

d
drM = 2F
d
drF = 2R − P + G + O

(
r−3
) · M

d
drP = 2

rA + O
(
r−3−a

) · M + O
(
r−1−a

){P + 2A } + G.

(7.54)

The constants in the Big O notation are allowed to depend on ω0, R.

Proof The first equation of (7.54) follows readily due to the particular choice of
measure on {r = const} ∩R(0, t∗) slices, which makes it invariant under the flow of
∂r . Namely,

d

dρ

(∫

{r=ρ}∩R(0,t∗)
|�̃k |2 dgSd−1dt

)
= 2

∫

{r=ρ}∩R(0,t∗)
∂r �̃k · �̃k dgSd−1dt. (7.55)

In order to extract the second equation of (7.54), we must use the fact that �̃k

satisfies equation (7.47). In particular, we compute
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d

dρ

(∫

{r=ρ}∩R(0,t∗)
∂r �̃k · �̃k dgSd−1dt

)

=
∫

{r=ρ}∩R(0,t∗)

(
|∂r �̃k |2 + �̃k · ∂2

r �̃k

)
dgSd−1dt. (7.56)

Since we can use equation (7.47) to replace ∂2
r �̃k with

(1 + arr )
−1
{
D · F̃k + (1 + att )∂

2
t �̃k − r−2

(
�g

Sd−1+O4(r−1−a)�̃k

− (d − 1)(d − 3)

4
�̃k

)

− atσ ∂t∂σ �̃k − aσ ∂σ �̃k − at∂t �̃k − a · �̃k

}
, (7.57)

we calculate from (7.56) that:

d

dρ

(∫

{r=ρ}∩R(0,t∗)
∂r �̃k · �̃k dgSd−1dt

)

=
∫

{r=ρ}∩R(0,t∗)

(∣
∣∂r �̃k

∣
∣2 + (1 + arr )

−1�̃k ·
{
D · F̃k + (1 + att )∂

2
t �̃k

− r−2
(
�g

Sd−1+O4(r−1−a)�̃k − (d − 1)(d − 3)

4
�̃k

)
− atσ ∂t∂σ �̃k − aσ ∂σ �̃k

− at∂t �̃k − a · �̃k

})
dgSd−1dt.

(7.58)
Hence, after integrating by parts in t and σ in order to we eliminate the second order
derivatives, we conclude in view of (7.48) Lemma 4.432 that:

d

dρ

( ∫

{r=ρ}∩R(0,t∗)
∂r �̃k · �̃k dgSd−1dt

)

= 2R − P + G +
∫

{r=ρ}∩R(0,t∗)
D · |F̃k | · |�̃k | dgSd−1dt. (7.59)

The second equation of (7.54) now follows from (7.59), after applying a Cauchy–
Schwarz inequality for the last term of the right hand side and using Lemma 4.3 to
show that

∫
{r=ρ}∩R(0,t∗) r

3D2|F̃k |2 dgSd−1dt is a G-type function in ρ.
For the extraction of the third equation of (7.54), we work in a similar way. We

calculate from the expression (7.48) for P(ρ) that

32 Which shows with the boundary terms that result from integration by parts in t sum up to a G-type
function of r .
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d

dρ
P(ρ)=

∫

{r=ρ}∩R(0,t∗}
2r−3

(
1+O(r−1)

)(
|∂σ �̃k |2+ (d−1)(d−3)

4
|�̃k |2

)
dgS2dt

(7.60)

+
∫

{r=ρ}∩R(0,t∗}

{
2∂2

r �̃k · ∂r �̃k + 2(1 + att )(1 + arr )
−1∂r∂t �̃k · ∂t �̃k

− 2(1+arr )
−1r−2

(
gSd−1

(∇S
d−1

∂r �̃k,∇S
d−1

�̃k
)+ (d−1)(d−3)

4
∂r �̃k · �̃k

)

− (1 + arr )
−1atσ ∂r∂t �̃k · ∂σ �̃k − (1 + arr )

−1atσ ∂t �̃k · ∂r∂σ �̃k

+ ((1 + arr )
−1aσ − r−2∂σ (1 + arr )

−1)�̃k · ∂r∂σ �̃k + at �̃k · ∂r∂t �̃k

+ O
(
r−3−a)∂r �̃k · ∂σ �̃k + O

(
r−1−a)∂r �̃k · ∂t �̃k + O

(
r−2−a)∂r �̃k · �̃k

+ O
(
r−2−a)|∂t �̃k |2 + O

(
r−3−a)∂t �̃k · ∂σ �̃k + O

(
r−4−a)�̃k · ∂σ �̃k

+ O
(
r−2−a)�̃k · ∂t �̃k + O

(
r−3−a)|�̃k |2

}
dgSd−1dt. (7.61)

Using equation (7.47) to replace ∂2
r �̃k with (7.57) in (7.60) and then integrating by

parts in t and σ in the highest order terms, then all the second order derivatives of �̃k

and �̃k in (7.60) cancel out. Thus, the third equation of (7.54) readily follows, after,
of course, treating the boundary terms resulting from the integration by parts, as well
as the F̃k terms, using Lemmas 4.4 and 4.3.

Lemma 7.4 The Pohozaev flux P satisfies in {r ≥ C1} for C1 suitably large:

P � D + O(r−2−a) · M . (7.62)

Proof If we set P∗ .= P −C0r−2−aM , for a positive constant C0 to be determined,
we calculate from (7.54):

d

dr
P∗ =2

r
A + O

(
r−3−a)M + O

(
r−1−a){P∗ + C0r

−2−aM + 2A } + G

+ (2 + a)C0r
−3−aM − 2C0r

−2−aF + C0O
(
r−4−2a)M . (7.63)

By bounding

|F | ≤ r−1M + rR≤r−1(1 + C0 · O(r−a)
)
M + Cr

(
1 + O(r−a)

)
A + CrP∗

(7.64)

and substituting in (7.63), we obtain

d

dr
P∗ ≥ 2

r

{
1 + O(r−a) − C0

(
r−a + O(r−2a)

)}
A

+
(
C0r

−3−a
(

1 + O(r−1)
)

+ O
(
r−3−a

)
+ C0 · O

(
r−3−2a

))
M (7.65)

+ C0 · O(r−1−a)P∗ + G.
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Hence, if C0 is chosen sufficiently large, and C1 (and thus r ) is large enough, both
in terms of the geometry of (D, g), the coefficients in front of the M and A terms in
(7.65) will be positive, resulting in the inequality

d

dr
P∗ ≥ O(r−1−a)P∗ + G, (7.66)

from which (7.62) follows by an application of Gronwall’s inequality (in view of the
initial conditions (7.53) at infinity, as well as the definition of P∗).

In view of Lemma 4.7 (notice that we can allow R → ∞ in the statement of that
lemma, since at this point we only care about the left hand side of (4.70) which is
independent of R), we can bound from below

∫

{r=ρ}∩R(0,t∗)
|∂t �̃k |2 dgS2dt ≥ c · ω2

k−1M + G. (7.67)

Hence, from (7.48) we can bound from below:

A ≥
(

1 + O
(
r−1)

)
(R − P) + c · ω2

k−1M + O
(
r−2−a

)
M . (7.68)

Moreover, in view of (7.52), we can eliminate the quantity R from (7.54) through
the estimate

R ≥ F 2

M
. (7.69)

Hence, substituting (7.68) and (7.69) in (7.54), we obtain the following system of
differential inequalities:
⎧
⎪⎪⎨

⎪⎪⎩

d
drM = 2F
d
drF ≥ 2F 2

M − P + G + O(r−3)M
d
drP ≥ 2

r

(
1+O

(
r−1
)) ·

(
F 2

M −P+c · ω2
k−1M

)
+O

(
r−3−a

)
M +O

(
r−1−a

)
P+G.

(7.70)
Note that in the third equation of (7.70), the last term of the right hand side can also
be replaced for free by O(r−1 + ωk−1) · G, since we have ω0 ≤ ωk−1 and we allow
the constants in the big O notation to depend on ω0. Therefore, we see that we can
immediately apply on the above system of differential inequalities the ODE lemma
from Section 10 in [58], which can be stated as follows:

Lemma 7.5 (Rodnianski–Tao) Let M ,F ,P : [C1,+∞) → (0,+∞) satisfy
(7.53), (7.62) and (7.70). Then, provided C1 is large enough (independently of ωk−1),
for any positive constant C2 � C1 (again with magnitude independent of ωk−1) there
exists another positive constant C(C1,C2) such that one of the following scenarios
holds:

1. Boundedness Scenario: There exists an R0 with C1 < R0 < C(C1,C2) such that

M (r) ≤ C(C1,C2)
(
ω

−2C(C1,C2)
k−1 + 1)D (7.71)

for all r ∈ [ 1
2 R0, 4R0]
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2. Exponential growth from infinity Scenario: For all C1 ≤ r ≤ 10C1 we can bound

d

dr
M (r) ≤ −C2(1 + ωk−1)M (r). (7.72)

Using Lemma 7.5 we will suitably absorb the first term of the right hand side of (7.1),
thus obtaining the desired integrated local energy decay statement (7.38).

We first fix C1 = R, assuming of course without loss of generality that R was large
enough in terms of the geometry of (D, g). We then choose C2 = C2(C1,ω0) large
enough in terms of C1 and ω0 so that

C2 �ω0,R C(ω0, R) · sup
C1≤r≤10C1

w, (7.73)

where C(ω0, R) is the constant appearing in the s parameter in inequality (7.1). In
this way, we can also bound (since s = C · ωk in (7.1), and ωk ≤ ωk−1 + 1):

C2 · (1 + ωk−1) − s · sup
C1≤r≤10C1

w �ω0,R ωk−1 (7.74)

In view of Lemma 7.5, there are only two possible scenarios for M :

Case 1. Assume that the boundedness scenario in Lemma 7.5 holds, that is (7.71) is
true. From (7.1) we obtain (replacing R in (7.1) by the value R0 which is
provided by the boundedness scenario):

∫

R(0,t∗)∩{r≤R0}

(
e2sw + e2sw′) ·

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C(ω0, R0)

∫

R(0,t∗)∩{R0≤r≤2R0})
(
1 + s2)e2sw

{
J N
μ (ψk)n

μ + |ψk |2
}

+ eC(R0)·s · C(ω0, R0)

∫

t=0
J N
μ (ψ)nμ. (7.75)

Furthermore, applying (as we did earlier) the divergence identity for the
current Jμ = χ ·ψk · ∂μψk − (∂μχ) · |ψk |2, combined with Lemmas 4.3 and
4.4, as well the bounded frequency estimate 4.8 (serving to bound |∂tψk |2 bulk
terms by ω2

k |ψk |2 terms), we obtain the following Lagrangean inequality:

∫

R(0,t∗)
χ · J N

μ (ψk)n
μ ≤ C(ω0,χ) · (1 + ω2

k

) ·
∫

R(0,t∗)∩supp(χ)

|ψk |2

+C(ω0,χ) ·
∫

t=0
J N
μ (ψ)nμ. (7.76)

Therefore, using (7.76) for a cut off χ supported in { 1
2 R0 ≤ r ≤ 4R0} and

being equal to 1 in {R0 ≤ r ≤ 2R0}, combined with (7.71), we can readily
bound:
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∫

R(0,t∗)∩{R0≤r≤2R0})
(
1 + s2)e2sw{J N

μ (ψk)n
μ + |ψk |2

}

≤ C(R,ω0)e
C(R,ω0)ω+

∫

t=0
J N
μ (ψ)nμ. (7.77)

Hence, since R = C1 < R0 < C2(R,ω0), in this case we can estimate from
(7.75) and (7.77):

∫

{r≤R}∩R(0,t∗)

{
J N
μ (ψk)n

μ + |ψk |2
} ≤ C(R,ω0)e

C(R,ω0)ω+
∫

t=0
J N
μ (ψ)nμ.

(7.78)
Case 2. Assume that the exponential growth scenario in Lemma 7.5 holds, that is

(7.72) is true. Then a simple application of Gronwall’s inequality on (7.72)
yields:

∫

{5C1≤r≤10C1}
M (r) dr ≤ C3 · e−C2(1+ωk−1)

∫

{2C1≤r≤4C1}
M (r) dr. (7.79)

Applying (7.1) (for 6C1 in place of R), we obtain

∫

R(0,t∗)∩{r≤6C1}

(
e2sw + e2sw′) ·

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C(ω0, R)

∫

R(0,t∗)∩{6C1≤r≤7C1})
(
1 + s2)e2sw

(
J N
μ (ψk)n

μ + |ψk |2
)
+

+ eC(C1)·s · C(ω0, R)

∫

t=0
J N
μ (ψ)nμ.

(7.80)
In view of (7.76) applied for a cut off χ supported in 5C1 ≤ r ≤ 8C1 and
being equal to 1 in 6C1 ≤ r ≤ 7C1, we can also bound

∫

R(0,t∗)∩{6C1≤r≤7C1})
(
1 + s2)e2sw

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C(R,ω0)
(
1 + ω2

k

)
es·supC1≤r≤10C1

w

∫

{5C1≤r≤8C1}
M (r) dr+

+ C(R,ω0)e
C(R,ω0)ωk

∫

t=0
J N
μ (ψ)nμ.

(7.81)

From (7.81) and (7.79)we infer:

∫

R(0,t∗)∩{6C1≤r≤7C1})
(
1 + s2)e2sw

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C(R,ω0)
(
1 + ω2

k

)
es·supC1≤r≤10C1

w−C2ωk−1

∫

{2C1≤r≤4C1}
M (r) dr

+ C(R,ω0)e
C(R,ω0)ωk

∫

t=0
J N
μ (ψ)nμ.

(7.82)
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Therefore, since in view of (7.74) the first term of the right hand side of (7.82)
can be absorbed into the left hand side of (7.80), we conclude from (7.80):

∫

{r≤R}∩R(0,t∗)

{
J N
μ (ψk)n

μ + |ψk |2
} ≤ C(R,ω0)e

C(R,ω0)ω+
∫

t=0
J N
μ (ψ)nμ.

(7.83)

Thus, the proof of Proposition 7.2 is complete. ��
As a corollary of Propositions 7.2 and 6.1, we will obtain an integrated local energy

decay statement for the ψ≤ω+ component of ψ. This will be the final result of this
section.

Corollary 7.6 For any R > 0 there exists a δ = δ(R) > 0, such that for any smooth
solution ψ to the wave equation on J+(�) ∩D with compactly supported initial data
on �, any 0 < ω0 < δ and any ω+ > 1 we can bound:

∫

{r≤R}∩R(0,t∗)

{
J N
μ (ψ≤ω+)nμ +|ψ≤ω+|2

}
≤ C(R,ω0) · eC(R,ω0)ω+

∫

t=0
J N
μ (ψ)nμ.

(7.84)

Proof Proposition 6.1 for the zero frequency part ψ0 of ψ provides an integrated local
energy decay statement for ψ0:

∫

{r≤R}∩R(0,t∗)

(
J N
μ (ψ0)n

μ + |ψ0|2
)

≤ C(R,ω0) ·
∫

t=0
J N
μ (ψ)nμ.

Adding (6.1) and (7.38) for all 1 ≤ |k| ≤ n, and recalling that n ∼ ω+
ω0

, we obtain:

n∑

k=−n

{∫

{r≤R}∩R(0,t∗)

(
J N
μ (ψk)n

μ + |ψk |2
)}

≤ C(R,ω0) · ω+ · eC(R,ω0)·ω+
∫

t=0
J N
μ (ψ)nμ.

The result now follows readily from the fact that ψ≤ω+ =∑n
k=−n ψk :

∫

{r≤R}∩R(0,t∗)

(
J N
μ

(
ψ≤ω+

)
nμ + |ψ≤ω+|2

)

≤
∫

{r≤R}∩R(0,t∗)
2n ·

n∑

k=−n

(
J N
μ (ψk)n

μ + |ψk |2
)

≤ C(R,ω0) · ω2+ · eC(R,ω0)·ω+
∫

t=0
J N
μ (ψ)nμ

≤ C(R,ω0) · eC(R)·ω+
∫

t=0
J N
μ (ψ)nμ. (7.85)
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8 Polynomial Decay of the Local Energy of ψ≤ω+

In this Section, we will establish a polynomial decay rate for the local energy of
ψ≤ω+ , using the integrated local energy decay estimate of Corollary 7.6, together
with the generalisation of the r p-weighted energy method of Dafermos and Rodnianski
established in [52].

We will thus examine the energy of ψ≤ω+ on a foliation of spacelike hypersurfaces
terminating at null infinity.33 In the r � 1 region, such a foliation has been constructed
in terms of the level sets of the function ũη′ , see (5.29). We will extend ũη′ to a function
defined on the whole of D\H−, with everywhere spacelike level sets, such that it
coincides with the time function t in the region r � 1:

Definition For any fixed η′ ∈ (0, 1 + 2a) and any constant R3 � 1 large in terms of
the geometry of (D, g), we will define the function t̄ : D\H− → R,

t̄ = t + χR3(r) · (ũη′ − t), (8.1)

where uη′ is defined as (5.29) and χR3 : R → [0, 1] is a smooth cut-off function
equal to 0 for r ≤ R3 and equal to 1 for r ≥ R3 + 1. We will also denote with Sτ the
hyperboloids {t̄ = τ}, which for {r ≥ R3} coincide with S̃τ.

We will establish the following proposition:

Proposition 8.1 There exists a positive constant C, depending only on the geometry
of (D, g), such that for any smooth solution ψ to the wave equation on J+(�) ∩ D
with compactly supported initial data on �, any 0 ≤ δ0 ≤ 1, any ω+ > 1 and any
τ ∈ [ 1

4 t
∗, 3

4 t
∗] we can bound:

∫

Sτ∩R(0,t∗)
J N
μ

(
ψ≤ω+

)
nμ
Sτ

≤ C
(
τ − 1

4 t
∗)δ0

·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
(1 + r)δ0 J N

μ (ψ)nμ

}
. (8.2)

Proof Let us fix R = R3, assuming, of course, without loss of generality that R3 has
been chosen sufficiently large in terms of the geometry of (D, g). We will also fix a
value ω0 = ω0(R), so that according to Corollary 7.6 we can estimate:

∫

{r≤R}∩R(0,t∗)

{
J N
μ (ψ≤ω+)nμ + |ψ≤ω+|2

}
≤ C · eCω+

∫

t=0
J N
μ (ψ)nμ. (8.3)

In view of (5.34), we can bound:

∫ ∞

0

{ ∫

St∩R(0,t∗)∩{r≥R}
J N
μ

(
ψ≤ω+

)
nμ
St

}
dt

33 Since the energy of ψ≤ω+ on the �t hypersurfaces can not be expected to decay in t .
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≤ C
∫

{R−1≤r≤R}∩R(0,t∗)

(
J N
μ (ψ≤ω+)nμ + |ψ≤ω+|2

)
+ C

∫

t=0
(1 + r)J N

μ (ψ)nμ,

(8.4)

where nSt is the future directed unit normal of the foliation St .
From (8.4) and (8.3) we thus conclude

∫ ∞

0

{∫

Sτ∩R(0,t∗)
J N
μ (ψ≤ω+)nμ

Sτ

}
dτ≤C ·

{
eCω+

∫

t=0
J N
μ (ψ)nμ+

∫

t=0
r J N

μ (ψ)nμ

}
.

(8.5)
In order to simplify the expressions in the next few lines, we will set:

f (τ)
.=
∫

Sτ∩R(0,t∗)
J N
μ (ψ≤ω+)nμ

Sτ
. (8.6)

Then (8.5) reads

∫ ∞

0
f (τ) dτ ≤ C ·

{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r J N

μ (ψ)nμ

}
. (8.7)

Due to Lemma 4.6 for q = 2, for any τ1 ≤ τ2 in the interval [ 1
4 t

∗, 3
4 t

∗], setting
tst = 1

4 t
∗ in (4.58) (notice that this implies that tst ∼ t1 ∼ t2 − t1), the following

boundedness statement holds for f :

f (τ2) ≤ C · f (τ1) + Cτ2
2

∫

t=0
J N
μ (ψ)nμ. (8.8)

Hence, we infer from (8.7) and (8.8) for any τ ∈ [ 1
4 t

∗, 3
4 t

∗]:

C ·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r J N

μ (ψ)nμ

}
≥
∫ ∞

0
f (s) ds ≥

∫ τ

1
4 t

∗
f (s) ds

≥
∫ τ

1
4 t

∗

(
f (τ)

C
− 1

τ2

∫

t=0
J N
μ (ψ)nμ

)
ds

≥ c ·
(
τ − t∗

4

)
f (τ) − C ·

∫

t=0
J N
μ (ψ)nμ. (8.9)

From (8.9) it readily follows that forany τ ∈ [ 1
4 t

∗, 3
4 t

∗] we can bound:

∫

Sτ∩R(0,t∗)
J N
μ (ψ≤ω+)nμ

Sτ
≤ C

τ − 1
4 t

∗ ·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r J N

μ (ψ)nμ

}
.

(8.10)
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Interpolating (using Lemma 12.3 of the Appendix) between (8.10) and the bounded-
ness estimate (following from Lemmas 4.4 and 4.6)

∫

Sτ∩R(0,t∗)
J N
μ

(
ψ≤ω+

)
nμ
Sτ

≤ C
∫

t=0
J N
μ (ψ)nμ, (8.11)

we readily obtain the desired estimate:
∫

Sτ∩R(0,t∗)
J N
μ

(
ψ≤ω+

)
nμ
Sτ

≤ C
(
τ − 1

4 t
∗)δ0

·
{
eCω+

∫

t=0
J N
μ (ψ)nμ+

∫

t=0
r δ0 J N

μ (ψ)nμ
}
.

(8.12)
��

9 The Frequency Interpolation Argument

In this section, we will fix t∗, ω0 and ω+, and we will complete the proof of Theorem
2.1.

Let ψ : D → C be a smooth function as in the statement of Theorem 2.1, with
compactly supported initial data on � ∩ D. For any given τ > 0, let t∗ = 2τ. Of
course, we can safely asume without loss of generality that τ � 1. Let us introduce a
parameter ω+ > 1, and define ψt∗ ,ψ≤ω+and ψ≥ω+ as in Section 4.

Due to the fact that ψt∗ = ψ≤ω+ + ψ≥ω+ , we can bound:
∫

{t=τ}∩{r≤R1}
J N
μ (ψ) =

∫

{t=τ}∩{r≤R1}
J N
μ

(
ψt∗
)

� (9.1)

�
∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≤ω+

)+
∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≥ω+

)
.

In view of Lemma 4.9, we can estimate for the high frequency part:

∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≥ω+

)
nμ ≤ Cm

ω2m+

m∑

j=0

∫

t=0
J N
μ (T jψ)nμ. (9.2)

In view of Proposition 8.1, we can estimate for the low frequency part:
∫

{t=τ}∩{r≤R1}
J N
μ

(
ψ≤ω+

) ≤ C
1

τδ0
·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r δ0 J N

μ (ψ)nμ

}
.

(9.3)
From (9.1), (9.3) and (9.2), we thus deduce:
∫

{t=τ}∩{r≤R1}
J N
μ (ψ)nμ ≤ C

1
τδ0

·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r δ0 J N

μ (ψ)nμ

}
+

+ Cm

ω2m+

m∑

j=0

∫

t=0
J N
μ (T jψ)nμ. (9.4)
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It is at this point that we will choose a suitable value for ω+. Choosing ω+ =
log(2+τ)

2C in (9.4), we conclude:

∫

{t=τ}∩{r≤R1}
J N
μ (ψ)nμ ≤ Cm

{log(2 + τ)}2m

( m∑

j=0

∫

t=0
J N
μ (T jψ)nμ

)

+ C

τδ0

∫

t=0
(1 + r)δ0 J N

μ (ψ)nμ (9.5)

and hence Theorem 2.12 has been established. ��

10 Proof of Corollary 2.2

In view of the boundedness assumption 4 and the conservation of the J T flux, it suffices
to prove Corollary 2.2 for Sτ being the level sets {t̄ = τ} of the function t̄ defined in
Section 8.

Fix an R1 � 1 in the statement of Theorem 2.1. According to Theorem 2.12, for
any m ∈ N and any l > 0 (that will be fixed later), there exists a constant Cm(l) > 0
(depending also on R1) such that:

∫

{t=τ}∩{r≤l·R1}
J N
μ (ψ)nμ ≤ Cm(l)

{log(2 + τ)}2m

( m∑

j=0

∫

t=0
J N
μ (T jψ)nμ

)

+Cm(l)

τδ0

∫

{t=0}
(1 + r)δ0 · J N

μ (ψ)nμ. (10.1)

Applying (5.33), we obtain for any 0 ≤ t ′ ≤ t ′′: 34

∫ t ′′

t ′

{∫

Ss∩{r≥R1}
J N
μ (ψ)nμ

S

}
ds ≤ C ·

∫

R(t ′,t ′′)∩{R1≤r≤R1+1}
(
J N
μ (ψ)nμ + |ψ|2)

+C
∫

{t=0}
(1 + r)δ0 J N

μ (ψ)nμ. (10.2)

Using a Hardy inequality on Sτ (a corollary of (3.16)), we can bound:

∫

St∩{R1≤r≤R1+1}
|ψ|2 ≤ C ·

∫

St∩{R1≤r}
r−2− 1

2 |ψ|2

≤ C ·
∫

St∩{R1≤r}
r− 1

2 J N
μ (ψ)nμ

S . (10.3)

Thus, for any ε > 0, if l = l(ε) is chosen sufficiently large (independently of t), there
exists a C = C(ε) > 0 such that

34 Recall that St and S̃t coincide for {r ≥ R1} if R1 � 1.
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∫

St∩{R1≤r≤R1+1}
|ψ|2 ≤ ε ·

∫

St∩{r≥R1}
J N
μ (ψ)nμ

S + C(ε)

∫

St∩{r≤l R1}
J N
μ (ψ)nμ

S .

(10.4)
Returning to (10.2), in view of (10.4) we have for any ε > 0:

∫ t ′′

t ′

{∫

Ss∩{r≥R1}
J N
μ (ψ)nμ

S

}
ds ≤ C ε ·

∫ t ′′

t ′

{∫

Ss∩{r≥R1}
J N
μ (ψ)nμ

S

}
ds (10.5)

+ C(ε)

∫ t ′′

t ′

{∫

St∩{r≤l·R1}
J N
μ (ψ)nμ

S

}
ds + C

∫

{t=0}
(1 + r)δ0 J N

μ (ψ)nμ,

or, after absorbing the first term of the right hand side into the left hand side:

∫ t ′′

t ′

{∫

Ss∩{r≥R1}
J N
μ (ψ)nμ

S

}
ds ≤ C(ε) ·

∫ t ′′

t ′

{∫

St∩{r≤l·R1}
J N
μ (ψ)nμ

S

}
ds

+C
∫

{t=0}
(1 + r)δ0 J N

μ (ψ)nμ. (10.6)

From now on, ε and hence l will be considered fixed.
To make the notations a little simpler, let us for a moment denote

f (t)
.=
∫

St∩{r≥R1}
J N
μ (ψ)nμ

S (10.7)

for t ≥ 0. We will also need the initial data quantities

A
.=

m∑

j=0

∫

t=0
J N
μ (T jψ)nμ (10.8)

and

B
.=
∫

{t=0}
(1 + r)δ0 J N

μ (ψ)nμ.

In view of (10.1), inequality (10.6) becomes (assuming without loss of generality
that t ′ ≥ 1)

∫ t ′′

t ′
f (s) ds ≤ Cm · A ·

∫ t ′′

t ′
1

{log(s + 2)}2m ds + Cm · B
∫ t ′′

t ′
1

s
ds

≤ Cm · (A + B) ·
∫ t ′′

t ′
1

{log(s + 2)}2m ds. (10.9)

Inequality (10.9), combined with an application of the pigeonhole principle, implies
that there exists an infinite dyadic sequence 0 < t1 < ... < tk < ... of positive numbers
with tk+1 ∈ [2tk, 4tk],35 such that ∀ j ∈ N :

35 Thus t j −→ +∞ as j → +∞.
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f (t j ) ≤ 2Cm · (A + B) · 1

{log(t j + 2)}2m . (10.10)

It is important that in this case, Cm is the same constant as the one appearing in (10.9).
The existence of such a dyadic sequence follows by contradiction: If such a sequence

did not exist, that would mean that for any t1 > 0, there should exist a tc = tc(t1) ≥ t1,
such that for all t ∈ [2tc, 4tc]:

f (t) > 2Cm · (A + B) · 1

{log(t + 2)}2m . (10.11)

But this would lead to a contradiction, since in this case due to (10.9) and (10.11) we
could bound:

1 ≥ lim sup
t1→+∞

∫ 4tc
2tc

f (s) ds

Cm · (A + B) · ∫ 4tc
2tc

1
{log(s+2)}2m ds

> lim sup
t1→+∞

2Cm · (A + B) · ∫ 4tc
2tc

1
{log(s+2)}2m ds

Cm · (A + B) · ∫ 4tc
2tc

1
{log(s+2)}2m ds

= 2. (10.12)

We also note that due to the boundedness assumption 4,36 there exists a constantC > 0
(independent, of course, of ψ) such that for any t in any interval [t j , t j+1] defined by
the previous dyadic sequence, we can bound

f (t) ≤ C · f (t j ). (10.13)

Thus, since the sequence {t j } j∈N satisfied t j+1 ∈ [2t j , 4t j ], we conclude that for any
t ≥ 0:

f (t) ≤ 2Cm · (A + B) · 1

{log(t + 2)}2m , (10.14)

and thus Corollary 2.2 has been established. ��

11 Proof of Corollaries 2.3 and 2.4

In this Section, we will establish Corollaries 2.3 and 2.4 using Corollary 2.2.

11.1 Proof of Corollary 2.3

In order to show that limτ→+∞
∫
Sτ

J N
μ (ψ)nμ

S = 0, it suffices to show that for any

given ε > 0, there exists some τ0 > 0 such that for any τ ≥ τ0:
∫
Sτ

J N
μ (ψ)nμ

S < ε.

36 Notice the remark following assumption 4.
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Since
∫
t=0 J N

μ (ψ)nμ < ∞, using the standard density arguments we can find

smooth and compactly supported initial data (ψ̃, ∂t ψ̃) on t = 0, with the property that∫
t=0 J N

μ (ψ − ψ̃)nμ < 0.

Let ψ̃ be the unique solution of �gψ̃ = 0 onD with initial data (ψ̃, ∂t ψ̃)|t=0. Then,
due to the linearity of the wave operator, ψ − ψ̃ will also solve �g(ψ − ψ̃) = 0. Due
to the boundedness assumption 4 and the conservation of the J T -flux, we can then
bound

∫

Sτ

J N
μ (ψ − ψ̃)nμ

S < C ·
∫

t=0
J N
μ (ψ − ψ̃)nμ << C · ε . (11.1)

Moreover, since (ψ̃, ∂t ψ̃)|t=0 is smooth and compactly supported and thus has finite∫
t=0 r · J N

μ (ψ̃)nμ and
∫
t=0 J N

μ (T ψ̃)nμ norms, Corollary 2.2 applies to show that

∫

Sτ

J N
μ (ψ̃)nμ

S ≤ C(ψ̃)

{log(2 + τ)}2 . (11.2)

Thus, there exists some τ0 depending on ψ̃ itself such that for τ ≥ τ0:
∫

Sτ

J N
μ (ψ̃)nμ

S < ε . (11.3)

Combining (11.1) and (11.3), and using a triangle inequality, we thus obtain the
required estimate: ∫

Sτ

J N
μ (ψ)nμ

S < C · ε . (11.4)

The claim that limτ→+∞
∫
Sτ

J Tμ (ψ)nμ
S = 0 if

∫
t=0 J Tμ (ψ)nμ < ∞ in the case the

J T -energy is coercive follows in exactly the same way, using the conservation of the
J T -current in place of the boundedness of the J N -energy. ��

11.2 Proof of Corollary 2.4

Assume that (D, g) satisfies the assumptions of Corollary 2.4. We will also assume
without loss of generality that Ias has only one connected component (see also Section
2.6).

We will first show the first part of Corollary 2.4, that is to say, the statement that
for any solution ψ to the wave equation �gψ = 0 on D with

∫

t=0
J Tμ (ψ)nμ < ∞, (11.5)

the following equality holds:
∫

H+∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

I+
J Tμ (ψ)nμ

I+ =
∫

t=0
J Tμ (ψ)nμ. (11.6)
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Let {Sτ}τ∈R be the level sets of the function t̄ constructed in Section 8. We can
assume without loss of generality (after setting t̄ → t̄ + c) that S0 ⊂ J+({t = 0}).
Moreover, in view of the definition of the future radiation field on I+ for solutions
to (1.1) with merely finite initial energy norm (see the remarks above the statement
of Corollary 2.25), we will assume without loss of generality that ψ is smooth and
induces compactly supported initial data on � ∩ D.

The conservation of the J Tμ (ψ) current in the region bounded by {t = 0}, Sτ,H+
and a null hyperurface I+

n,τ of M of the form

I+
n,τ

.= ∂ J−(Sτ ∩ {r ≤ Rn})\H+ (11.7)

for a sequence Rn → +∞ yields:
∫

{t=0}∩J−(Sτ∩{r≤Rn})
J Tμ (ψ)=

∫

H+∩J−(Sτ)∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

Sτ∩{r≤Rn}
J Tμ (ψ)nμ

S+

+
∫

I+
n,τ∩J−(Sτ)

J Tμ (ψ)nμ

I+
n,τ

. (11.8)

The identity (11.8) implies that

sup
n

∫

I+
n,τ∩J−(Sτ)

J Tμ (ψ)nμ

I+
n,τ

≤
∫

t=0
J Tμ (ψ)nμ < +∞. (11.9)

Moreover, since ψ was assumed to induce compactly supported initial data on {t = 0},
there exist R0 � 1 and u0 ∈ R such that (in view of the domain of dependence property
for the wave equation)

supp(ψ) ∩ {r ≥ R0} ⊂ {u ≥ u0} (11.10)

(where the function u is constructed in the Appendix). Therefore, in view of (11.9),

(11.10) and the fact that r
d−1

2 ψ(u, r, σ ) → �I+(u, σ ) in the H1
loc(R × S

d−1, du2 +
gSd−1) norm (see the remarks above the statement of Corollary 2.4), the dominated
convergence theorem implies that

∫

I+
n

J Tμ (ψ)nμ

I+
n

→
∫

I+∩J−(Sτ)

J Tμ (ψ)nμ

I+ , (11.11)

and thus (11.8) readily implies for any τ ≥ 0 (in the limit n → +∞):
∫

t=0
J Tμ (ψ) =

∫

H+∩J−(Sτ)∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

Sτ

J Tμ (ψ)nμ
S+

+
∫

I+∩J−(Sτ)

J Tμ (ψ)nμ

I+ , (11.12)

where
∫
I+∩J−(Sτ)

J Tμ (ψ)nμ

I+ is defined as (2.21).
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According to Corollary 2.3, since
∫
t=0 J Tμ (ψ)nμ < ∞ we also have:

lim
τ→∞

∫

Sτ

J Tμ (ψ)nμ
S = 0. (11.13)

Thus, in the limit τ → +∞, the relation (11.12) yields the desired identity (11.6).
In order to complete the proof of Corollary 2.4, it remains to show that for any

pair (ψ|H+ , �I+) with finite J T -energy, there exists an H1
loc solution ψ to the wave

equation �gψ = 0 on D with
∫
t=0 J Tμ (ψ)nμ < ∞, which gives rise to the scattering

data pair (ψ|H+ , �I+). To this end, let us define Hilbert spaceE0 of finite energy initial
data on {t = 0} consisting of the completion of the spaceC∞

0 ({t = 0})×C∞
0 ({t = 0})

with the J T−norm:
||(ψ0,ψ1)||J T .=

∫

t=0
J Tμ (ψ)nμ, (11.14)

where ψ is the unique function defined on {t ≥ 0} ∩ D such that ψ|t=0 = ψ0 and
Tψ|t=0 = ψ1. Let us also define the Hilbert space Esc of finite energy scattering data
as the completion of the spaceC∞

0 (H+∩{t ≥ 0})×C∞
0 (I+) (where I+ � R×S

d−1)
with the norm

∣
∣
∣
∣(ψ|H+∩{t≥0}, �I+

)∣∣
∣
∣
Esc

.=
∫

H+∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

I+
J Tμ (ψ)nμ

I+ . (11.15)

We will also define the scattering map Scatt : E0 → Esc, which maps any pair of initial
data (ψ0,ψ1) to the scattering data (ψ|H+∩{t≥0}, �I+), induced by the solution ψ to
�gψ = 0 with initial data ψ|t=0 = ψ0 and Tψ|t=0 = ψ1, according to the remark
above the statement of Corollary 2.4.

With these notations, in order to complete the proof of Corollary 2.4, we have to
show that the scattering map Scatt is onto. In view of (11.6), Scatt is an isometric
embedding. Thus, it suffices to show that its image is dense in Esc. In particular, we
will show that for any scattering data pair (ψ|H+∩{t≥0}, �I+) which are smooth and
compactly supported and any ε > 0, there exists a solution ψ̃ to the wave equation
�ψ̃ = 0 on {t ≥ 0} ∩ D with

∫
t=0 J Tμ (ψ̃)nμ < +∞, such that

∣
∣
∣
∣(ψ̃|H+∩{t≥0}, �̃I+

)− (ψ|H+∩{t≥0}, �I+
)∣∣
∣
∣
Esc

< ε, (11.16)

where �̃I+ is the future radiation field of ψ̃.
We will assume without loss of generality that the scattering data pair (ψ|H+∩{t≥0},

�I+) is real valued. Since (ψ|H+∩{t≥0}, �I+)was assumed to be compactly supported,
there exists some t f > 0 such that ψ|H+∩{t≥t f } ≡ 0 and �I+|{u≥t f } ≡ 0. Moreover,
there exists some tin < 0 such that �I+|{u≤tin} ≡ 0.

Let us also introduce the C1 optical function v̄ : {r ≥ R f ar } ∩ {t̄ ≤ t f } → R such
that the level sets of v̄ are the hypersurfaces

I+
R

.= ∂(J−(St f ∩ {r ≤ R})\H+ (11.17)

and satifying T v̄ = 1.
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In the region {t̄ ≤ t f } ∩ {v̄ ≥ v0} ⊂ D for some v0 � 1, we will introduce the flat
metric associated to the (u, v, σ ) coordinate chart there:

g f l = −4dudv + r2gSd−1 . (11.18)

In this region, we can construct a solution ψ f l to the flat wave equation by solving
the following scattering problem:

⎧
⎪⎨

⎪⎩

�g f lψ f l = 0 on {t̄ ≤ t f } ∩ {v̄ ≥ v0}
(ψ f l , Tψ f l)|St f ∩{v̄≥v0} = 0

limv→+∞ r
d−1

2 ψ f l(u, v, σ ) = �I+(u, σ ).

(11.19)

Notice that the scattering problem (11.19) is a scattering problem on Minkowski
spacetime, and the existence and uniqueness of a solution ψ f l to (11.19) follows
readily by using the confromal compactification method and solving (backwards) a
regular mixed characteristic-initial value problem for the conformal wave equation (in
the setup of [11]). Alternatively, one can use the r p-weighted energy method of [20],
see Section 9.6 of [24]. Following either way of proof, one obtains a unique smooth
solution ψ f l to (11.19) satisfying the following qualititative bound

k∑

j=0

∑

j1+ j2+ j3= j

∫

{t≥0}∩{t̄≤t f }∩{v̄≥v0}
r−1−δ·∣∣r j1∂ j1

v ∂ j2
σ ∂

j3
u (r

d−1
2 ψ f l)

∣
∣2 dudvdσ < +∞

(11.20)
for any k ∈ N and any δ > 0.

In view of (11.20), for any C0 > 0 (to be fixed later), there exists a vε � v0
(depending on ε, δ,C0 and the function ψ f l itself) such that

3∑

j=0

∑

j1+ j2+ j3= j

∫

{t≥0}∩{t̄≤t f }∩{v̄≥vε}
r−1−δ · ∣∣r j1∂ j1

v ∂ j2
σ ∂

j3
u (r

d−1
2 ψ f l)

∣
∣2 dudvdσ <C−1

0 ε .

(11.21)
Let Rε > 1 be fixed so that {t̄ = t f } ∩ {v̄ = vε} ⊂ {Rε − 1 ≤ r ≤ Rε}. Then, there
exists a smooth spacelike hypersurface S̄ε of (D, g) (depending again on ε, δ,C0 and
ψ f l ) such that S̄ε ≡ {t = Rε + 2vε} in the region {r ≥ Rε + 1} and S̄ε ≡ St f in
the region {r ≤ Rε}. Notice that the domain of dependence of S̄ε ∪ (H+ ∩ {t ≥ 0})
contains the whole of {t ≥ 0}.

We will construct the solution ψ̃ to �gψ̃ = 0 on {t ≥ 0} with initial-characteristic
data on S̄ε ∪ (H+ ∩ {t ≥ 0} as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�gψ̃ = 0 on J+(�) ∩ D
(ψ̃, T ψ̃)|S̄ε∩{r≤Rε−1} = (0, 0)

(ψ̃, T ψ̃)|S̄ε∩{r≥Rε−1} = (ψ f l , Tψ f l)|S̄ε∩{r≥Rε−1}
ψ̃|H+∩{t≥0} = ψ|H+∩{t≥0}.

(11.22)
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Notice that the initial data for ψ̃ on S̄ε are smooth, in view of the fact that
(ψ f l , Tψ f l)|St f ∩{v̄≥v0} = 0. Hence, ψ̃ is a smooth function on {t ≥ 0}.

We will now show that the radiation field of ψ̃ on I+ exists in the H1
loc norm and is

actually ε-close to �I+ in the
∫
I+ J Tμ (·)nμ

I+ norm. Notice that for any smooth function
ω on {t̄ ≤ t f } ∩ {v̄ ≥ v0} we can estimate

r
d−1

2 �gω = r
d−1

2 � f lω + O3
(
r−2−a)∂2

u

(
r

d−1
2 ω
)+ O3

(
r−1)∂2

v

(
r

d−1
2 ω

)

+ O3
(
r−2−a)∂u∂σ

(
r

d−1
2 ω
)+ O3

(
r−2)∂v∂σ

(
r

d−1
2 ω

)
(11.23)

+ O2
(
r−3−a)∂σ ∂σ

(
r

d−1
2 ω

)+ O2
(
r−2−a)∂u

(
r

d−1
2 ω
)

+ O2
(
r−1−a)∂v

(
r

d−1
2 ω

)+ O2
(
r−2−a)∂σ

(
r

d−1
2 ω
)+ O1

(
r−3)(r

d−1
2 ω

)
.

Remark Notice that the precise decay rate in r of the coefficients in (11.23) reflects
the fact that the long range part of the metric g (viewed as a perturbation of the flat
metric g f l ) is spherically symmetric.

In view of (11.19), (11.22) and (11.23) for ψ f l in place of ω, the difference ψ̃ − ψ f l

solves the following initial value problem on {t̄ ≤ t f } ∩ J+(S̄ε):

{
�g(ψ̃ − ψ f l) = Ff l on {t̄ ≤ t f } ∩ J+(S̄ε)(
ψ̃ − ψ f l , T (ψ̃ − ψ f l)

)∣∣{t̄≤t f }∩S̄ε
= 0,

(11.24)

where, in view of (11.23) and (11.21) we can estimate (for some δ0 > 0 small in terms
of δ, a)

1∑

j=0

∑

j1+ j2+ j3= j

∫

{t̄≤t f }∩J+(S̄ε)

r1+δ0

∣
∣
∣r j1∂ j1

v ∂ j2
σ ∂

j3
u (r

d−1
2 Ff l)

∣
∣
∣
2
dudvdσ ≤ C · C−1

0 ε .

(11.25)
Repeating the proof of Theorem 7.1 of [52] for ψ̃ − ψ f l in the region {t̄ ≤ t f } ∩

J+(S̄ε), (11.24) and (11.25) imply that for any increasing sequence {vn}n∈N with

vn → +∞, the sequence r
d−1

2 (ψ̃−ψ f l)(u, vn, σ ) converges in the H1
loc norm. Since

by construction of the function ψ f l the sequence r
d−1

2 ψ f l(u, vn, σ ) converges in the

H1
loc topology, we also deduce that the sequence r

d−1
2 ψ̃(u, vn, σ ) converges in the

H1
loc norm, and we set

�̃I+(u, σ )
.= lim

v→+∞
(
r

d−1
2 ψ̃(u, v, σ )

)
. (11.26)

Furthermore, by applying the energy identity for the T vector field on the region
{t̄ ≤ t f } ∩ J+(S̄ε), we infer from (11.24) and (11.25) that:

∫

I+∩{t̄≤t f }
J Tμ
(
ψ̃ − ψ f l

)
nμ

I+ ≤ C · C−1
0 ε . (11.27)
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Since the function ψ f l solves

�gψ f l = −Ff l (11.28)

and satisfies (11.19), by applying the energy identity for the T vector field on the
region {t̄ ≤ t f } ∩ J+(S̄ε) in the backward evolution (notice that S̄ε ∩ {t̄ ≤ t f } lies in
the domain of dependence of {t̄ = t f } ∪ (I+ ∩ {u ≤ t f }), we can bound (in view of
(11.25)): ∫

S̄ε∩{t̄≤t f }
J Tμ (ψ f l)n

μ ≤
∫

I+
J Tμ (ψ)nμ

I+ + C · C−1
0 ε . (11.29)

Thus, since
(ψ̃, T ψ̃)|S̄ε∩{r≥Rε−1} = (ψ f l , Tψ f l)|S̄ε∩{r≥Rε−1} (11.30)

and
(ψ̃, T ψ̃)|S̄ε∩{r≤Rε−1} = (0, 0), (11.31)

(11.29) immediately yields:

∫

S̄ε

J Tμ (ψ̃)nμ

S̄ε
≤
∫

I+
J Tμ (ψ)nμ + C · C−1

0 ε, (11.32)

where nS̄ε
is the future directed unit normal of the hypersurface S̄ε. Therefore, in view

of the fact that ψ̃|H+∩{t≥0} = ψ|H+∩{t≥0}, by applying once more the energy identity
for the T vector field in the region boundd by {t = 0}, H+ and S̄ε, we obtain (using
(11.32)):

∫

t=0
J Tμ (ψ̃)nμ ≤

∫

H+∩{t≥0}
J Tμ (ψ)nμ

H+ +
∫

I+
J Tμ (ψ)nμ

I+ + C · C−1
0 ε . (11.33)

Since
∫
t=0 J Tμ (ψ̃)nμ < +∞ (in view of (11.33)), according to the definition above

the statement of Corollary 2.4 the radiation field �̃I+ of ψ̃ on I+ exists in the Hilbert
space defined by the

∫
I+ J Tμ (·)nμ

I+ norm, and its restriction onI+∩{u ≤ t f } coincides

with the limit (11.26). In view of (2.23), which also applies for ψ̃, we can bound:

∫

H+∩{t≥0}
J Tμ (ψ̃)nμ

H+ +
∫

I+
J Tμ (ψ̃)nμ

I+ ≤
∫

t=0
J Tμ (ψ̃)nμ. (11.34)

Thus, from (11.33) and (11.34) (using also the fact that ψ̃|H+∩{t≥0} = ψ|H+∩{t≥0})
we infer: ∫

I+
J Tμ (ψ̃)nμ

I+ ≤
∫

I+
J Tμ (ψ)nμ

I+ + C · C−1
0 ε . (11.35)

From (11.27) and the fact that �I+ was assumed to be supported on {u ≤ t f }, we
obtain: ∫

I+∩{u≤t f }
J Tμ (ψ̃)nμ

I+ ≥
∫

I+
J Tμ (ψ)nμ

I+ − C · C−1
0 ε . (11.36)

123



5 Page 112 of 124 G. Moschidis

Therefore, from (11.35) and (11.36) (as well as the fact that �I+ ≡ 0 on {u ≥ t f } we
deduce:

∫

I+∩{u≥t f }
J Tμ
(
ψ̃ − ψ

)
nμ

I+ =
∫

I+∩{u≥t f }
J Tμ
(
ψ̃
)
nμ

I+ ≤ 2C · C−1
0 ε, (11.37)

which, after adding (11.27) and assuming C0 was chosen large enough in terms of the
geometry of (D, g), yields:

∫

I+
J Tμ
(
ψ̃ − ψ

)
nμ

I+ ≤ ε . (11.38)

Combining (11.38) with the fact that ψ̃
∣
∣H+∩{t≥0} = ψ

∣
∣H+∩{t≥0}, we immediately

infer the desired estimate (11.16). Thus, the proof of Corllary 2.4 is complete. ��

12 Sharpness of the Logarithmic Decay Statement

In this section, we will construct a spacetime (M, g) satisfying all four assumptions 1,
2, 3 and 4, for which the logarithmic decay rate of Theorem 2.1 is optimal. This example
is a modification of a counterexample provided by Rodnianski and Tao in [58], in the
context of their proof of effective limiting absorption principles for asymptotically
conic Riemannian manifolds, which in our setting correspond to ultrastatic spacetimes
(namely static spacetimes with g(T, T ) ≡ −1).

We should notice, however, that a more realistic class of spacetimes exhibiting the
optimality of Theorem 2.1 has been investigated by Keir in the recent [44]. This class
includes the family of spherically symmetric ultracompact neutron stars. The absence
of a horizon and an ergoregion, as well as the consrvation of a positive definite energy
makes these spacetimes valid backgrounds on which Theorem 2.1 holds.

The construction of a simple spacetime (M, g) exhibiting the optimality of The-
orem 2.1 proceeds as follows: We consider R

3 equipped with a smooth Riemannian
metric g0 with the following behaviour: In the usual polar coordinate system (r,ϑ,ω),
we assume that g0 takes the folowing form:

g0 = dr2 + f (r) · (dϑ
2 + sin2

ϑ · dω2), (12.1)

where f : [0,+∞) → [0,+∞) is a smooth function such that

• f (r) = sin2 r for 0 ≤ r ≤ 7 π
8 ,

• f (r) = r2 for r ≥ π and
• f (r) > 0 for 7 π

8 ≤ r ≤ π .

That is to say, g0 coincides with the usual Euclidean metric for r ≥ π, while the region
r ≤ 7 π

8 equipped with g0 is isometric to S
3 (with the usual metric) with an open ball

around one of the poles removed.
Note that {r = π

2 } corresponds to an equator of S
3, and hence this is a surface

ruled by stably trapped geodesics. It is the presence of this stable trapping that will
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eventually lead to the desired slow logarithmic decay rate for waves, in accordance
also with the results on ultracompact neutron stars of [44]

We set M .= R × R
3, and we construct the Lorentzian metric g on M so that in

the coordinate system (t, r,ϑ,ω),37 g takes the form

g = −dt2 + dr2 + f (r) · (dϑ
2 + sin2

ϑ · dω2). (12.2)

Hence, for any coordinate chart (x1, x2, x3) on R
3 we have

g = −dt2 + (g0)μνdxμdxν. (12.3)

We readily verify that (M, g) satisfies assumptions 1, 2, 3 and 4:

• (M, g) is a stationary spacetime (with Killing vector field T
.= ∂t ), with Cauchy

hypersurface �0
.= {t = 0}, which is asymptotically flat with one end (since outside

{r ≤ π} g is the usual Minkowski metric, and the �0 has Euclidean induced metric
and vanishing second fundamental form). Hence, Assumption 1 is satisfied.

• There is no event horizon in (M, g), since any point of M communicates with the
flat region {r ≥ π} with both future directed and past directed timelike curves: For
any p ∈ M and any smooth curve δ : [0, 1] → R

3 such that δ(0) = p̃ ( p̃ being
the projection of p on the second factor of M = R × R

3) and δ(1) ∈ {r ≥ π},38

we construct the smooth curve 
 : [0, 1] → M, 
(λ)
.= (t (p) + C · λ, δ(λ)), for

some C � 1. We see that 
(0) = p, 
(1) ∈ {r ≥ π} and, if C � 1 is sufficiently
large, due to 12.2, 
 is timelike future oriented. Similarly, if we had instead chosen
C � −1, 
 would have been timelike past directed. Thus, assumption Assumption
2 is satisfied.

• There is no ergoregion, since g(T, T ) ≡ −1, and thus assumption 3 holds trivially.
• The boundedness of the energy of solutions to the wave equation holds trivially,

since T is globally timelike and
∫
t=τ J

T
μ (ψ)nμ is constant (and hence bounded) for

any smooth solution ψ to the wave equation �gψ = 0 on (M, g). So Assumption
4 is also true.

The fact that Theorem 2.1 is optimal for the spacetime (M, g) is a consequence of
the following proposition:

Proposition 12.1 For any function h : [0,+∞) → [0,+∞) forwhich h(t)·{log2(2+
t)} → 0 as t → +∞, there exists a t0 > 0 so that for any τ > t0, one can construct
a smooth solution ψ (depending on τ) to the wave equation on (M, g) with finite
T -energy on the {t = const} hypersurfaces such that

∫

{t=τ}∩{r≤ 3 π
4 }

J Tμ (ψ)nμ > h(τ) ·
(∫

t=0
(1 + r) · J Tμ (ψ)nμ +

∫

t=0
J Tμ (Tψ)nμ

)
.

37 t denoting the projection on the first factor of R × R
3, while (r, ϑ, ω) are as before the usual polar

coordinates on R
3.

38 Such a curve always exist, it can be e.g. a straight line in R
3.
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Proof This is accomplished through the quasimode construction performed by Rod-
nianski and Tao in [58] in the following way:

We first note that on S
3, equipped with the usual coordinate system (ϑ1,ϑ2,ϑ3)

in which the metric takes the form gS3 = dϑ2
1 + sin2ϑ1 · (dϑ2

2 + sin2 ϑ2 · dϑ2
3), the

Laplacian takes the form

�S3 = ∂2
ϑ1

+ 2c cot ϑ1 · ∂ϑ1 + 1

sin2 ϑ1
�S2 (12.4)

(�S2 being the Laplace–Beltrami of the usual metric of S
2 in the coordinates (ϑ2,ϑ3)).

For any integer l ≥ 0, we will denote with Yl = Yl(ϑ2,ϑ3) a spherical harmonic
on S

2 of order l, that is a function satisfying �S2Yl + l2Yl = 0, normalised so that∫
S2 |Yl |2 = 1. Then, the function ul : S

3 → C defined by ul(ϑ1,ϑ2,ϑ3) = sinl(ϑ1) ·
cos(ϑ1) · Yl(ϑ2,ϑ3) satisfies the equation

�S3ul + 2
λ ul = 0, (12.5)

where λ2 .= (l + 1) · (l + 3) (and hence λ ∼ l if l � 1)
It is easy (see [58]) to obtain the following estimates for ul , which are in fact

quantitative expressions of the fact that the ul ’s become more and more concentrated
around ϑ1 = π

2 as l → ∞ (which can be also deduced in view of the l exponent in
sinl(ϑ1) in the definition of ul ):

∫

|ϑ1− π
2 |≤ π

4

|ul |2 ∼ −1
λ ∼ l−1 ,

∫

|ϑ1− π
2 |≤ π

4

|∇ul |2 ∼ 1 as l → ∞, (12.6)

as well as ∫

|ϑ1− π
2 |> π

4

(
|ul |2 + |∇ul |2

)
= O(e−c λ) (12.7)

for some c > 0.
We now fix a smooth cut-off function χ : S

3 → [0, 1] such that χ ≡ 1 for ϑ1 ≤ 3 π
4

and χ ≡ 0 for ϑ1 ≥ 7 π
8 . We define

ũl
.= χ · ul , (12.8)

and we note that the ũl ’s are supported in {ϑ1 ≤ 7 π
8 }. Due to this fact, as well

as the fact we can isometrically identify {r ≤ 7 π
8 } ⊆ R

3 (equipped with g0) with
(S3\{ϑ1 > 7 π

8 }, gS3) through relabelling our coordinate maps r → ϑ1, ϑ → ϑ2,
ω → ϑ3, we can consider ũl as having been defined on R

3 and satisfying:

�g0 ũl + λ
2ũl = 2∂ iχ · ∂i ul + (�g0

χ) · ul , (12.9)

where we raise indices using g0. Note that the right hand side of (12.9) is supported
in { 3 π

4 ≤ r ≤ 7 π
8 }.
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Finally, we define ψ̃l : M → C,

ψ̃l(t, x)
.= ei λ t · ũl(x) (12.10)

(t ∈ R, x ∈ R
3). Note that ψ̃l is supported in {r ≤ 7 π

8 }, and, due to (12.9) and (12.2),
it satisfies the equation

�ψ̃l = Fl , (12.11)

where
Fl(t, x) = ei λ t{2∂ iχ(x) · ∂i ul(x) + (�g0

χ(x)) · ul(x)
}

(12.12)

is supported in { 3 π
4 ≤ r ≤ 7 π

8 }.
Due to (12.6) and (12.7), for any τ ≥ 0 we can estimate (as l → ∞):

∫

t=0
J Tμ
(
ψ̃l
)
nμ ∼ 1, (12.13)

∫

t=0
J Tμ
(
T ψ̃l

)
nμ ∼ l2, (12.14)

∫

{t=τ}∩{r≤ 3 π
4 }

J Tμ
(
ψ̃l
)
nμ =

∫

{t=0}∩{r≤ 3 π
4 }

J Tμ
(
ψ̃l
)
nμ ∼ 1 (12.15)

and ∫ τ

0

(∫

{t=s}
|Fl |2

)1/2

ds = τ · O(e−cl). (12.16)

If we denote with ψl the unique solution to the wave equation �ψl = 0 on (M, g),
with initial data on {t = 0} being the induced initial data there by ψ̃l , then we have

∫

t=0
J Tμ (ψl)n

μ =
∫

t=0
J Tμ
(
ψ̃l
)
nμ ∼ 1. (12.17)

Moreover, since �g = −∂2
t + �g0 , we calculate

T 2ψl

∣
∣
∣
t=0

=�g0ψl

∣
∣
∣
∣
∣
∣
t=0

=�g0ψ̃l

∣
∣
∣
t=0

= T 2ψ̃l

∣
∣
∣
t=0

+�gψ̃l

∣
∣
∣
t=0

= T 2ψ̃l

∣
∣
∣
t=0

+Fl
∣
∣
∣
t=0

.

(12.18)
Due to the fact that for any spatial derivative ∂xi we have ∂xi ∂tψl |t=0 = ∂xi ∂t ψ̃l |t=0,39

we can estimate in view of (12.18):

∣
∣
∣
∫

t=0
J Tμ (Tψl)n

μ
∣
∣
∣ ≤

∫

t=0
J Tμ (T ψ̃l)n

μ +
∫

t=0

∣
∣
∣Fl
∣
∣
∣
2 ∼ l2 + O(e−cl) ∼ l2. (12.19)

39 Since ∂tψl and ∂t ψ̃l are identical on {t = 0}.
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By an application of Duhamel’s principle on ψl−ψ̃l (which satisfies �g(ψl−ψ̃l) =
−Fl and has vanishing initial data on {t = 0}), we infer that for any τ ≥ 0:

(∫

t=τ

J Tμ (ψl − ψ̃l)n
μ

)1/2

≤ C ·
∫ τ

0

(∫

{t=s}

∣
∣
∣Fl
∣
∣
∣
2
)1/2

ds ≤ τ · O(e−cl) (12.20)

and thus in view of (12.15) and (12.20):

∫

{t=τ}∩
{
r≤ 3 π

4

} J Tμ (ψl)n
μ ≥

∫

{t=τ}∩
{
r≤ 3 π

4

} J Tμ
(
ψ̃l
)
nμ −

∫

t=τ

J Tμ
(
ψl − ψ̃l

)
nμ

≥ 1 − Cτ · e−cl . (12.21)

Finally, since ψl |t=0 and Tψl |t=0 are supported in {r ≤ 7 π
8 }, we readily see that

∫

t=0
(1 + r)J Tμ (ψl)n

μ ∼
∫

t=0
J Tμ (ψl)n

μ ∼ 1. (12.22)

From (12.17), (12.19), (12.21) and (12.22) we conclude that there exists a constant
b > 0 such that for all l � 1 and for any given τ > 0:

∫

{t=τ}∩{r≤ 3 π
4 }

J Tμ (ψl)n
μ > b · l−2

{
1 − Cτ · e−cl

}

·
(∫

t=0
(1 + r) · J Tμ (ψl)n

μ +
∫

t=0
J Tμ (Tψl)n

μ

)
. (12.23)

Thus, for any given function h(t) = o(log−2(t + 2)) (as t → ∞), we can find a large
enough t0 � 1, such that for any given τ > t0, after picking l ∼ 2

c log(τ + 2) we can
bound from (12.23):

∫

{t=τ}∩{r≤ 3 π
4 }

J Tμ (ψl)n
μ·

> b

{
c2

4{log(τ + 2)}2 − Cτ · τ−2
}

·
(∫

t=0
(1 + r) · J Tμ (ψl)n

μ +
∫

t=0
J Tμ (Tψl)n

μ

)

(12.24)

> h(t) ·
(∫

t=0
(1 + r) · J Tμ (ψl)n

μ +
∫

t=0
J Tμ (Tψl)n

μ

)
.
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A Construction of the (u, r, σ ) Coordinate Chart

Assume that an open subset U of a spacetime (M, g) admits a polar coordinate chart
(t, r, σ ) for {r ≥ R > 0}, where, for some integer m ≥ 1, the metric g has the
expression:

g = −
(

1 − 2M

r
+ Om

(
r−1−a)

)
dt2 +

(
1 + 2M

r
+ Om

(
r−1−a)

)
dr2

+r2
(
gSd−1 + Om

(
r−1−a)

)
+ Om

(
r−a)dtdσ, (12.25)

where M ∈ R and no metric coefficient depends on the t coordinate; this means that
the vector field T = ∂t is Killing. In the above, the Om(rb) notation is used to denote
functions or tensors h on S

d−1 depending on (r, σ ) and satisfying the bound:

m∑

j=0

⎛

⎝
∑

j1+ j2= j

r j1
∣
∣
∣
∣
∣
∣∂ j1

r ∂ j2
σ h(r, σ )

∣
∣
∣
∣
∣
∣
g
Sd−1

⎞

⎠ ≤ C · rb. (12.26)

We will show that we can find a new coordinate chart (u, r, σ ) on U in which g will
take the form:

g = − 4

(
1 − 2M

r
+ Om−1

(
r−1−a

))
du2 − 4

(
1 + Om−1

(
r−1−a)

)
dudr (12.27)

+ r2
(
gSd−1 + Om−1

(
r−1−a)

)
+ Om−1

(
r−a)dudσ + Om−1

(
r−a)drdσ.

In order to construct the required coordinate function u, we first introduce an auxil-
iary coordinate function r∗ = r∗(r, σ ) , the analogue of the Regge-Wheeler coordinate
function for the Schwarzschild spacetime. The main identity that we will need to hold
is gr∗r∗ = −gtt in the (t, r∗, σ ) coordinate system. From the expression of the met-

ric (12.25), we see that
√

− grr
gtt

= (1 − 2M
r )−1 + h(r, σ ), for a smooth function

h(r, σ ) = Om(r−1−a). Therefore, we have to define:

r∗(r, σ )
.= r + 2M · log(r − 2M) −

∫ +∞

r
h(ρ, σ ) dρ.

Due to the fact that h = Om(r−1−a), r∗ is a continuous function of (r, σ ) satisfying
∂r∗
∂r = (1 − 2M

r )−1 + h(r, σ ) as desired. Moreover

∂σ r
∗(r, σ ) = −

∫ +∞

r
∂σ h(ρ, σ ) dρ = Om−1(r

−a). (12.28)

Hence, in the coordinate system (t, r∗, σ ) (which is indeed a coordinate system for
r � 1 due to the form of r∗) we can compute that the metric takes the following form:
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g =
(

1 − 2M

r
+ Om−1

(
r−1−a)

)(
− dt2 + (dr∗)2

)
+ r2

(
gSd−1 + Om−1

(
r−1−a)

)

(12.29)

+ Om−1
(
r−a)dr∗dσ + Om−1

(
r−a)dtdσ.

We can now introduce the function u = 1
2 (t − r∗). In the (u, r∗, σ ) coordinates,

the metric takes the form:

g=− 4

(
1 − 2M

r
+ Om−1

(
r−1−a)

)
(
du2 + dudr∗)+r2

(
gSd−1 + Om−1

(
r−1−a)

)

(12.30)

+ Om−1(r
−a)dudσ + Om−1(r

−a)dr∗dσ.

Thus, switching finally to the (u, r, σ ) coordinate system, since ∂r r∗ = 1 + 2M
r +

Om−1(r−1−a), we deduce that the metric has the required expression:

g = − 4

(
1 − 2M

r
+ Om−1

(
r−1−a)

)
du2 − 4

(
1 + Om−1

(
r−1−a))dudr (12.31)

+ r2(gSd−1 + Om−1
(
r−1−a)) + Om−1(r

−a)dudσ + Om−1
(
r−a)drdσ.

B Proof of the Inclusion J−( p) ∩ � ⊆ � ∩ D for p ∈ J+(�) ∩ D
Let (Md+1, g), d ≥ 3 be a globally hyperbolic spacetime with a Cauchy hypersurface
�. Let � be asymptotically flat (in the sense of Assumption 1), and letD be the domain
of outer communications associated to one asymptotically flat region Ias of (M, g)
(see Assumption 1 for the relevant definitions). We also define

H .= ∂D,

and we set

H+ .= J+(Ias) ∩ ∂
(
J−(Ias)

)

and

H− .= J−(Ias) ∩ ∂
(
J+(Ias)

)
.

We will establish the following inclusion:

Lemma 12.2 With�,D,H+ andH− as above, under the additional assumption that
H− ⊂ I−(� ∩ D), the following inclusion holds:

J−(p) ∩ � ⊆ � ∩ D (12.32)

for any p ∈ J+(�) ∩ D.
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Proof The proof will follow by contradiction: if

J−(p) ∩ � � � ∩ D, (12.33)

then there exists a past directed causal curve δ : [0, 1) → Mwhich is past inextendible
with δ(0) = p, and for which δ ∩(� ∩ D) = ∅. But then,

δ ⊆ J−(Ias) (12.34)

since p ∈ D ⊆ J−(Ias). Furthermore, δ ∩� �= ∅, since � is a Cauchy hypersurface
of (M, g). Thus, we have

δ ∩(� ∩ J−(Ias)) �= ∅. (12.35)

If, in addition to (12.34), δ is entirely contained also in J+(Ias), then we would
deduce from (12.35) that (δ ∩J+(Ias)) ∩ (� ∩ J−(Ias)) �= ∅, or equivalently (since
D = J+(Ias) ∩ J−(Ias)) that δ ∩(D ∩ �) �= ∅, which is the required contradiction.

If, on the other hand, δ is not entirely contained in J+(Ias), then δ∩∂ J+(Ias)
should be non empty, which implies that

δ ∩H− �= ∅ (12.36)

because of (12.34) and the fact that H− = J−(Ias) ∩ ∂ J+(Ias). Therefore, let

λ
0

= inf
{
λ ∈ [0, 1) : δ(λ) ∈ H−}. (12.37)

Since H− is closed by definition, δ(λ0) ∈ H−, and due to the definition of λ0, we
have

δ([0,λ
0
]) ⊂ J+(Ias) ∩ J−(Ias) = D. (12.38)

In view of our assumption that H− ⊂ J−(� ∩D) ⊆ J−(� ∩ J−(Ias)) and the facts
that δ(λ0) ∈ H− and δ is causal and past directed,

δ

(
(λ

0
, 1)
)

∩ (� ∩ J−(Ias)) = ∅. (12.39)

can not intersect � ∩ J−(Ias). However, in view of (12.35), there exists some λ1 ∈
[0, 1) such that δ(λ1) ∈ � ∩ J−(Ias). Thus, from (12.39) we infer that λ1 ∈ [0,λ0].
But since δ([0,λ0]) ⊂ D, we obtain that δ ∩(� ∩D) �= ∅, which again is the required
contradiction.

Hence, we conclude that for any p ∈ J+(�) ∩ D we have J−(p) ∩ � ⊆ � ∩ D.

C Interpolation for r-Weighted Energy Bounds

Lemma 12.3 With the notations as in Section 8, if for any smooth solution ψ to
�gψ = 0 on J+(�)∩D with compactly supported initial data on � ∩D and for any
τ ∈ [ 1

4 t
∗, 3

4 t
∗] we can bound
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∫

Sτ∩R(0,t∗)
J N
μ

(
ψ≤ω+

)
nμ
Sτ

≤ C

τ − 1
4 t

∗ ·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r J N

μ (ψ)nμ

}

(12.40)
and ∫

Sτ∩R(0,t∗)
J N
μ

(
ψ≤ω+

)
nμ
Sτ

≤ C
∫

t=0
J N
μ (ψ)nμ, (12.41)

then for any δ0 ∈ [0, 1] and any τ ∈ [ 1
4 t

∗, 3
4 t

∗] we can also bound

∫

Sτ∩R(0,t∗)
J N
μ

(
ψ≤ω+

)
nμ
Sτ

≤ C
(
τ− 1

4 t
∗)δ0

·
{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r δ0 J N

μ (ψ)nμ

}
.

(12.42)

Proof For any τ ∈ [ 1
4 t

∗, 3
4 t

∗], we will define the following energy norm on the smooth
and compactly supported pairs of functions (ω0,ω1) on the hypersurface Sτ∩R(0, t∗):

||(ω0,ω1)||H1
en,τ

.=
∫

Sτ∩R(0,t∗)
J N
μ (ω)nμ

Sτ
, (12.43)

where ω is the unique solution on J+(Sτ) ∩ R(0, t∗) with ω|Sτ∩R(0,t∗) = ω0 and
Nω|Sτ∩R(0,t∗) = ω1. We will also denote with || · ||H−1

en,τ
the dual norm of || · ||H1

en,τ

on the space of smooth and compactly supported pairs on Sτ ∩R(0, t∗), that is to say:

||(ω0,ω1)||H−1
en,τ

= sup
{(w0,w1): ||(w0,w1)||H1

en,τ
=1}

∫

Sτ∩R(0,t∗)
Re
{
ω0w̄0 + ω1w̄1

}
.

(12.44)
For any complex number s in the strip {0 ≤ Re(s) ≤ 1}, we define the function

ψ(s) : D(�0) → C (where D(�0) is the domain of dependence of �0) as the unique
solution of the following initial value problem

⎧
⎪⎨

⎪⎩

�ψ(s) = 0

ψ(s)|�0 = (1 + r)
s
2 (δ0−1)+ (1−s)

2 δ0ψ|�0 ,

Nψ(s)|�0 = N
(
(1 + r)

s
2 (δ0−1)+ (1−s)

2 δ0ψ
)|�0 .

(12.45)

Notice that ψ(δ0) ≡ ψ. For any pair w = (w0, w1) of smooth and compactly supported
functions on Sτ∩R(0, t∗)with ||w||H−1

en,τ
= 1, we also introduce the following function

Fw[ψ](s) .=
∫

Sτ

Re

{(
τ− 1

4
t∗
) s

2
ψ

(s)
≤ω+ ·w̄0 +

(
τ− 1

4
t∗
) s

2
N
(
ψ

(s)
≤ω+

)
·w̄1

}
, (12.46)

which is holomorhic in s in the strip {0 ≤ Re(s) ≤ 1}. When s = 0 + ρi with ρ ∈ R,
an application of (12.41) for ψ(ρi) in place of ψ readily yields (after also applying a
Cauchy–Schwarz inequality on (12.46), in view of the fact that ||w||H−1

en,τ
= 1) that

123



Logarithmic Local Energy Decay for Scalar Waves... Page 121 of 124 5

|Fw[ψ](iρ)| ≤ C
∫

t=0

(
(1 + r)δ0 J N

μ (ψ)nμ + (1 + r)δ0−2|ψ|2
)

≤ C
∫

t=0
(1 + r)δ0 J N

μ (ψ)nμ (12.47)

(the second line following from the first after an application of a Hardy-type inequal-
ity). When s = 1 + ρi with ρ ∈ R, an application of (12.40) for ψ(1+ρi) in place of ψ

yields (after applying again a Cauchy–Schwarz inequality on (12.46), in view of the
fact that ||w||H−1

en,τ
= 1), that

|Fw[ψ](1 + iρ)| ≤ C

{
eCω+

∫

t=0

(
(1 + r)δ0−1 J N

μ (ψ)nμ

+ (1+r)δ0−3|ψ|2
)
+
∫

t=0

(
(1+r)δ0 J N

μ (ψ)nμ+(1 + r)δ0−2|ψ|2
)}

≤ C

{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r δ0 J N

μ (ψ)nμ

}
. (12.48)

By applying the Phragmen–Lindelöf maximum principle on the function Fw[ψ](s)
on the strip {0 ≤ Re(s) ≤ 1} and using (12.47) and (12.48) we obtain

|Fw[ψ](δ0)| ≤ C

{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r δ0 J N

μ (ψ)nμ

}
, (12.49)

that is to say
∣
∣
∣
∣

∫

Sτ

Re
{
τ

δ0
2 ψ≤ω+ · w̄0 + τ

δ0
2 N (ψ≤ω+) · w̄1

}∣∣
∣
∣

≤ C

{
eCω+

∫

t=0
J N
μ (ψ)nμ +

∫

t=0
r δ0 J N

μ (ψ)nμ

}
. (12.50)

Since (12.50) holds for all pairs w = (w0, w1) with ||w||H−1
en,τ

= 1, from (12.50) and

the definition (12.43) of the H1
en,τ norm, we finally obtain (12.42).
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