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Abstract
This study presents an integrated machine-learning and HEC-RAS models for flood inundation mapping in Baro River Basin, 
Ethiopia. ANN and HEC-RAS models were integrated as a predictive hydrological and hydraulic model to generate runoff 
and the extent of flood, respectively. Daily rainfall and temperature data of 7-years (1999–2005), daily discharge (1999–2005) 
and 30 m × 30 m gridded Topographical Wetness Index (TWI) were used to train a predictive ANN hydrological model in 
RStudio. The predictive performance of the developed ANN hydrological model was evaluated in RStudio using Nash–
Sutcliffe Efficiency (NSE) values of 0.86 and 0.88 during the training period (1999–2005) and testing period (2006–2008), 
respectively, with the corresponding observed daily discharge. The validated ANN predictive hydrological model was linked 
with HEC-RAS to generate the flood extent along the river course. The HEC-RAS model result was calibrated and validated 
using the water body delineated using Normal Difference Water Index (NDWI) from LANDSAT 8 imagery based on histori-
cal flood events of 2005 and 2008. It was found that about 96% of an agreement was made between the flood-prone areas 
generated in HEC-RAS and the water body delineated using NDWI. Therefore, it is logical to conclude that the integration 
of a machine-learning approach with the HEC-RAS model has improved the spatiotemporal uncertainties in traditional flood 
forecasting methods. This integrated model is powerful tool for flood inundation mapping to warn residents of this basin.
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Introduction

Floods are the most frequent type of natural disaster happen-
ing everywhere in the world. The severity of flooding is very 
visible in a country where there is no sufficient structural 
affordability due to financial limitations (Chen et al. 2014; 
Abaya et al. 2009). Currently, river floods are a global issue 
causing a serious problem to the residents living in the riv-
erside (Cirella and Iyalomhe 2018). In Africa, the number of 
households displaced and left without shelter by this disaster 
is dramatically increasing (Thiemig et al. 2011; Moges 2007; 
Dessalegn et al. 2017) and Ethiopia is not exceptional to 

this problem. According to the report obtained from Inter-
national Disaster Data (IDD) of the 2017 and 2018 (Ababa 
2018), flooding incidents were frequently seen in many 
parts of Africa (Thiemig et al. 2011), particularly in East 
Africa. Ethiopia is one of the East African countries where 
the severity is relatively high (Haile et al. 2013; Tarekegn 
2009; Desalegn et al. 2016). The topographical conditions, 
heavy rainfall, river bank overflowing, sudden destructions 
of river banks, inadequate urban drainage systems, steep 
slope in channel design, and land use land cover change 
have made the country more vulnerable to floods (Lamich-
hane and Sharma 2018; Mosavi et al. 2018). According 
to national disaster report obtained from FDPPA (2007) 
(Mengistu et al. 2016), the historical flood events recorded 
in this river resulted in the loss of life (Imanshoar et al. 2014; 
Ho and Lee 2015; Desalegn et al. 2016), left residents of the 
area without shelter, destructed infrastructures, transmissible 
diseases, and livelihoods (Broxton et al. 2014). Flood risk is 
increasing in flood plain areas due to population growth and 
property (Abaya et al. 2009) and the problem is aggravated 
by the impact of climate change.
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To minimize the impacts of this natural disaster, different 
hydrological models (such as Physical based, Conceptual, 
Empirical, and probabilistic) are implemented for flood fore-
casting by researchers worldwide (Shibuo et al. 2016; Devia 
et al. 2015; Siccardi et al. 2005; Shamseldin and O’Connor 
2010). Based on the method implemented for explaining the 
connection between the input and output, flood forecasting 
models can be categorized as Physical based models, Con-
ceptual models, and Black-box models (Shamseldin et al. 
1999). Black-box models are purely empirical and spatial 
or physical processes (Mengistu et al. 2016; Goswami and 
O’Connor 2005) are excluded and the hydrological process 
result of this model is completely governed by the metric 
relationship between the input and output parameters. The 
other commonly used flood forecasting model is the physical 
based model (Shibuo et al. 2016), in which complex physical 
characteristics and the dynamic nature of a watershed are 
considered. This model is more appropriate when inputs for 
hydrologic processes are huge and high temporal resolution 
in the computation is required. The compound in nature of 
the hydrological process and the non-linearity characteristics 
of input parameters make it difficult to select the appropriate 
model for flood forecasting. The nature of the watershed, the 
purpose of modeling, the appropriateness of the model, and 
the quality of input parameters such as rainfall, temperature, 
humidity, land use land cover, and spatiotemporal variability 
of the inputs can affect the reliability of the flood forecasting 
model (Toth et al. 2000; Ateeq-ur-Rauf et al. 2016; Lateef 
Ahmad Dar 2017).

In recent years, Artificial Neural Networks (ANNs) have 
been developed as an alternative method to hydrological 
modeling of stream flows (Grimes et al. 2003; Chang et al. 
2007; Ateeq-ur-Rauf et al. 2016; Shamseldin, 2010). A 
neural network is a machine learning that focuses on an 
information processing algorithm to solve a non-linear 
nature of the hydrologic process (Ateeq-ur-Rauf et  al. 
2016; Shamseldin and O’Connor 2010; Campolo et al. 
2003; Barbetta et al. 2016) by linking input parameters 
with weights in the network. ANN is a data-driven model 
that has been developed in a recent year and the applica-
tion of this model in the hydrological model improved the 
uncertainty in space and time. The determination of the 
magnitude of incoming flood peak and the probable time 
of occurrence of the flood can be estimated by several mod-
els (Ligaray et al. 2015; Asadi 2013; Dogan et al. 2007) 
and the selection of a specific model and its accuracy is 
generally governed by factors such as availability of input 
parameters, the skills of the forecaster and the knowledge 
with the watershed.

The integration of different models in the areas of 
hydrologic and hydraulic models is getting global atten-
tion and has a paramount role in flood risk management 

strategies (Chang et al. 2007; Abaya 2008). Flood inun-
dation mapping is a difficult task that needs a combi-
nation of high quality and observed data to verify the 
performance of the models (Lohani et al. 2012; Seenu 
2019; Duvvuri and Narasimhan 2013). The application 
of machine learning (ANN) in areas of hydrologic pro-
cesses is a recently evolving approaches and has been 
applied in rainfall-runoff modeling (Riad et al. 2004), 
daily water supply–demand (Akhtar et al. 2009), stream-
flow computation (Veintimilla-Reyes et al. 2016; Poonia 
2018), extreme hydrologic event analysis and generation 
of the unit hydrograph (Mengistu et al. 2016). A feedfor-
ward ANN structure is commonly used in the one-way 
computation of the hydrologic process, in which inputs 
are pushed forward until the rough result is obtained. 
The main objective of this study is to generate flood-
prone areas using ANN as hydrological model and HEC-
RAS as hydraulic modeling. The two models are inte-
grated to improve the spatiotemporal uncertainties in 
traditional flood forecasting models. Thus, the improve-
ment of accuracy related to space and time is presented 
as the novelty of this integrated ANN and HEC-RAS 
models.

Materials and methods

Study area

The Baro Akobo basin is located in the southwestern part of 
Ethiopia. Geographically, it is located, between latitudes 5° 
31″ and 10° 54″ north and longitude 33° and 36° 17″ east. 
The River basin (Fig. 1) is the fourth largest basin in the 
country, covering an approximate area of 74,100 km2. The 
western, northwestern, and southwestern sides of the basin 
are bordered with South Sudan; the northern and northeast 
sides are bordered with the Abay river basin; and the east 
and southeast are bordered by the Omo-Gibe river basin. 
The River originates from the highlands in the southwest 
part of Ethiopia and flows across the low-lying plains. The 
most recent (2015) flood event occurred in the river basin 
forced eviction of around 2,000 peoples out of their homes 
(Alemayehu 2016; Thiemig et al. 2013; Woube 1999; Abaya 
2008).

Data and software used

In this study, ArcGIS (ver.10.4), RStudio, and HEC-RAS 
(ver. 5.0.1) were used to prepare an inundation map, to 
develop ANN predictive hydrological model, and to model 
the river flowing in the natural channel, respectively. All 
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packages are supported by student license and open-source 
privileges. For the predictive ANN hydrological model train-
ing, both spatial (Topographical wetness Index) and tempo-
ral (7-year daily Rainfall and Temperature) data (Table 1) 
were used. The spatial resolution of 30 × 30 m pixel size was 
implemented and all input parameters were prepared based 
on the fixed grid.

Hydrologic modeling

Feedforward artificial neural network (ANN) model

To begin with the modeling, the input parameters for hydro-
logical modeling were prepared based on spatiotemporal 
variations. Daily rainfall (R) and temperature (T) data of the 

Fig. 1   Map of rainfall stations, River gauging stations, and Baro Akobo Basin in Ethiopia

Table 1   Point rainfall and 
temperature stations in the study 
area

Station name Longitude (deg) Latitude (deg) Elevation (m) Period Annual 
rainfall 
(mm)

Abdela 36.25 8.37 1859.90 1999–2005 2009.68
Alge 35.74 8.59 1807.02 1999–2005 1828.75
Bila 35.59 9.37 1911.82 1999–2005 1945.74
Bonga 34.85 8.18 519.23 1999–2005 1186.85
Bure 35.10 8.28 1600.60 1999–2005 1706.10
Dusta 36.18 7.75 2328.71 1999–2005 1936.07
Gambela 34.59 8.25 517.49 1999–2005 1095.85
Gatira 36.24 8.05 2203.02 1999–2005 2221.12
Gecha 35.40 7.56 2203.40 1999–2005 2091.86
Gimbi 35.83 9.16 1940.37 1999–2005 1897.69
Gore 35.53 8.15 1802.98 1999–2005 2080.38
Guliso 35.48 9.17 1606.56 1999–2005 1645.91
Metu 35.59 8.30 1736.55 1999–2005 1832.52
RobGebya 34.88 8.69 1791.29 1999–2005 1652.00
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same period (1999–2005) were first distributed on the spatial 
resolution of 30 m × 30 m. Inverse Distance Weighted (IDW) 
was used to convert the point climate data (rainfall and tem-
perature) into spatial data, and with the same spatial resolution, 
the Topographical Wetness Index (TWI) was prepared. The 
prepared spatiotemporal data were normalized and squashed 
in between 0 and 1. A feedforward network is selected in this 
study based on the studies conducted by de Vos and Rientjes 
(2005), Poonia (2018), Abhishek et al. (2012), Hung et al. 
(2009), and Arun and Baskaran (2013). For this class of ANN 
architecture, R, T, and TWI were assigned to the networks 
(Dolling and Varas 2002; Tayebiyan et al. 2016). Random ini-
tial weights were generated and assigned to the ANNs between 
input and hidden nodes, hidden and output nodes. The input 
nodes labeled as 1, 2 and 3 receive the normalized (Eq. 2) input 
parameters and connected to hidden nodes labeled as 4, 5, and 
6. The synoptic links (weights) between the input and hidden 
nodes were assigned with weights labeled as the 1st, 2nd and 
3rd rows of the weight matrix in (Eq. 1), and as well as the 
weights between hidden and output nodes were assigned with 
the weights labeled as the 4th row of the matrix (Amengual 
et al. 2007). Once the input nodes receive the normalized input 
parameters (rainfall, temperature, and TWI), then the weighted 
sum of the input parameters and initial weights (Eq. 1 and 
Fig. 2) reached the hidden nodes and activated using sigmoid 
activation function (Veintimilla-Reyes et al. 2016; Napolitano 
2011; Abdulkadir et al. 2012). A sigmoid function (Arun and 
Baskaran 2013; Šimor et al. 2012; Agatonovic-Kustrin and 
Beresford 2000) (Eq. 3) is used to activate the values in the 
hidden nodes and then multiplied and summed up with the 
assigned random weights between hidden and output layers 
(labeled as 8):

(1)Weights =

⎡⎢⎢⎢⎣

w11

w21

w31

w41

w12

w22

w32

w42

w13

w23

w33

w43

w14

w24

w34

w44

⎤⎥⎥⎥⎦

Training ANN hydrologic modeling

Back propagation

In the feedforward propagation, the input parameters are 
pushed forward to get the rough solution at the output node 
and does not take any account to minimize the error between 
the result obtained from network and target output (Dar 
2017; Tayebiyan et al. 2016; Malmgren and Nordlund 1996). 
The initial weight values assigned in the feedforward pro-
cesses are just to start the modeling, and the accuracy of the 
model is very low at this stage (Shamseldin and O’Connor 
2003). The main importance of backpropagation (Fig. 3) is 
to spread the error back into the networks to minimize the 
error obtained in the feedforward process (Sattari et al. 2017; 
Timbadiya et al. 2011). The overall error obtained at the 
output layer starts to propagate back into the networks from 
the output node to the entire networks (Mai and De Smedt 
2017). Training in a sense meaning that the network learns 
from the mistakes through the built-in learning algorithm in 
ANNs (Abhishek et al. 2012; Hawkin 2014).

HEC‑RAS model

The HEC-RAS software is a computer program developed 
for modeling river flowing through open natural channels and 
used for computing water surface profile (Mapping and Field 
2017; Lamichhane and Sharma 2018; Duvvuri and Narasim-
han 2013). HEC-RAS get accepted and being used for river 
simulation by hydraulic engineers and different researchers 

(2)Normalization =
X − Xmin

Xmax − Xmin

(3)Activation function =
1

1 + ex

Fig. 2   Assigned initial weights 
in the ANNs 
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(Marimin et al. 2018) because of its capabilities and abili-
ties to simulate unsteady flow and identifies flood-prone areas 
where the surface ground level is lower than the computed 
water profile and allows the researcher to visualize the flood 
extent along a river course (Maidment 2017; Timbadiya et al. 
2011). The river geometries such as centerlines, bank lines, 
flow paths, and cross-sectional lines are the major param-
eters processed in HEC-RAS to generate flood-prone areas. 
A Digital Elevation Model (DEM) of 12.5 m × 12.5 m pixel 
resolution downloaded from https://​asf.​alaska.​edu/ (Li 2010) 
was used as input to extract the major parameters. A flood 
inundation map generated in this study is to provide informa-
tion on the spatially distributed depth of flood and prone areas 
(Parhi 2013) along the Baro River. A coupled 1D and 2D 
models were implemented in this study to generate the depth 
and prone-prone areas along the Baro River (Enea et al. 2018). 
HEC-RAS model received the result (runoff) from the tested 
ANN hydrological model as input and gave the information 
on the spatial extent and depth of flooding along the river.

Integrated ANN and HEC‑RAS models

The trained and tested ANN predictive hydrological model 
developed in this paper was to generate runoff (Dawson 
and Wilby 2010; Biragani 2016), and linked to the HEC-
RAS model to generate the flood extent along the river 
(RAJURKAR et  al. 2010). Whenever the ANN model 
receives input parameters (Rainfall, temperature and Topo-
graphical Wetness Index) and computed runoff, the HEC-
RAS is ready to accept the result (runoff) it as input to 

generate the information on spatial distribution of flood and 
prone areas along the river (Fig. 4).

The final corrected and updated values of weights in the 
ANN model are used to generate the runoff values whenever 
the input parameters are sent to the input nodes.

Model calibration and validation

ANN model evaluation

The terms calibration/training and validation/testing are 
commonly used instruments for accuracy of the model (Parhi 
2013; Desta and Lemma 2017; Chuma et al. 2013). The per-
formance of ANN hydrologic model result was trained with 
7-year (1999–2005) climate data (rainfall, and temperature), 
and Topographical Wetness Index (TWI) with the target data 
(observed daily discharge) of the same periods (1999–2005) 
and also tested with 3-year (2006–2008) observed daily 
discharge. The performances in both periods (training and 
testing) were evaluated by Nash–Sutcliffe Efficiency (NSE) 
using the following equation:

where Qo is observed discharge (m3/s), QS is simulated dis-
charge (m3/s), and Qo is mean discharge (m3/s).

However, Nash–Sutcliffe Efficiency (NSE) alone can-
not give us the information on the model bias. The fitness 
of simulated versus observed evaluated in NSE should be 

(4)NSE = 1 −

∑n

i=1
(QO − QS)

2

∑n

i=1
(QO − Qmean)

2

Fig. 3   The conceptual ANN artichitecture for feedforward and back propagation processes

https://asf.alaska.edu/


2296	 Modeling Earth Systems and Environment (2022) 8:2291–2303

1 3

supported by additional statistical error index model evalu-
ation method. Therefore, the PBIAS as statistical error index 
model evaluation method was also used to check whether 
the model result was overpredicted or underpredicted and 
the equation for this model evaluation presented in Eq. (5) 
(Ouali and Cannon, 2018; Pérez-Sánchez et al., 2019), and 
the corresponding criteria of fit for hydrological modeling 
for both model evaluation techniques is summarized in 
Table 3.

where Yi(Obs) and Yi(Sim) are observed and simulated, 
respectively.

Further, the ANN predictive hydrological model result 
was evaluated to describe the proportion of the variance 
between the observed and simulated values with the coef-
ficient of determination, R2. The general equation by which 
this coefficient is computed for the evaluation of a model 
is presented in Eq. (6) (Pérez-Sánchez et al. 2019), and the 
acceptable range for hydrological modeling is given in the 
Table 2.

HEC‑RAS model evaluation

The runoff values obtained in ANN hydrological model 
was used as input in HEC-RAS to generate f lood 

(5)PBIAS(%) =

�∑n

i=1

�
Yi(Obs) − Yi(Sim)

�
× 100

∑n

i=1

�
Yi(Obs)

�
�

inundation areas. The inundation map generated in HEC-
RAS during training (1999–2005) and testing (2006–2008) 
periods were checked with the water body delineated using 
Normalized Difference Water Index (NDWI). The flood 
events of 2005 and 2008 were detected while delineat-
ing the water body in NDWI (Ali et al. 2016; Enea et al. 
2018). NDWI (Eq. 6) uses Green (Band-2) and near infra-
red (Band-4) bands of remote sensing images to extract a 
water body in which near-infrared (NIR) and short-wave 
infrared (SWI) are used as the main input. The perfor-
mance evaluation between the inundation map generated in 
HEC-RAS and the water bodies delineated from remotely 
sensed LANDSAT 8 imagery downloaded from https://​
earth​explo​rer.​usgs.​gov/ in NDWI were compared based 
on overlapping areas (Bagherzadeh and Daneshvar, 2011).

To get the percentage of overlapping area between the 
water body delineated in NDWI and HEC-RAS software, 
the intersect tool within the Analysis toolbox in ArcGIS 
(ver.10.4) was implemented. First, the raster formats in 
both results (NDWI and HEC-RAS) were changed into 
vector (Polygons) using conversion tool (Scanlon et al. 
2005), and then the corresponding shape areas were cal-
culated using geometry calculation algorithms in the Arc-
GIS. The same geographic Coordinate system (Adindan 
UTM Zone 37 N) was adjusted for both polygons, and the 
percentage of overlapping areas is calculated as shown in 

(6)NDWI =
NIR − SWI

NIR + SWIR

Fig. 4   ANN and HEC-RAS integrated conceptual framework (Source: Author)

Table 2   Model goodness of 
fit (Pérez-Sánchez et al. 2019; 
Wang et al. 2017a, b)

S. N Goodness-of-fit NSE PBIAS (%) R2

1 Very good 0.75 < NSE > 1 PBIAS <  ± 10 R2 ≥ 0.85
2 Good 0.65 < NSE > 0.75  ± 10 ≤ PBIAS <  ± 15 0.75 < R2 ≤ 0.85
3 Satisfactory 0.5 < NSE > 0.65  ± 15 ≤ PBIAS <  ± 25 0.60 < R2 ≤ 0.75
4 Unsatisfactory NSE ≤ 0.5 PBIAS ≥  ± 25 R2 < 0.60

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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the following equation (Potential 2020; Wang et al. 2017a, 
b):

where Layer 1 is the area of the water body delineated in 
NDWI from flood events and Layer 2 is the area of the inun-
dation map generated in HEC-RAS.

Results and discussions

ANN hydrological model result

The daily stream flow (runoff) values generated in ANN 
predictive hydrological model developed in RStudio for 
the training and testing results are presented in Figs. 5 and 
6. As indicated Fig. 5, the daily runoff values computed 
in ANN model and the corresponding daily discharges 
of 7 years during the training periods (1999–2005) was 
evaluated at NSE = 0.86, and PBIAS = 8.2%, respectively, 
and whereas as we can see from Fig. 6, the NSE = 0.88, 
and PBIAS = 8.5% were found during the 3-year testing 
periods (2006–2008), and similar model evaluation agree-
ment were made by the studies conducted in Kumar et al. 

(7)Overlapping percentage(%) =
Layer1

(
Km2

)

Layer2
(
Km2

)

(2020), Tsakiri et al. (2018), and Kan et al. (2020). As 
shown the Fig. 7a–g, the ANN model results were further 
evaluated using coefficient of determination or regression 
(R2) with scatter plot for each year and values of 0.96, 
0.96, 0.93, 0.93, 0.89, 0.93 and 0.92, respectively, were 
obtained during the training periods and the results are 
very good (Kan et al. 2020).

In the Fig. 7h, the average simulated daily ANN results 
and the corresponding observed discharges of the entire 
periods with the scatter plot was demonstrated and this 
result revealed a bit better than the individual scatter plot. 
The visualized scatter plot for each year is not concen-
trated along the regression line; however, the goodness for 
fit and the performance rating scale for the R2 is very good. 
The model evaluation performed at training periods is 
poorer that the testing periods as we can see from Table 3.

The 7-year hydrological model and actual daily dis-
charge gauged at the basin outlet and the scatter plot of 
both values processed in RStudio is presented in Fig. 7g 
showing that the values were evaluated at regression 
R2 = 0.89. Similar results were obtained in Tayfur et al. 
(2018) and Pérez-Sánchez et al. (2019) that the R2 val-
ues ranging between 0.85 and 1 are a very good model. 
Artificial Neural Networks applied as hydrological mod-
eling presented in Villada et al. (2012), Lateef( 2017), 
and Dibaba et al. (2020) was acceptable with the values 
summarized in Table 3.

Fig. 5   ANN and observed 
results during the training/vali-
dation periods (1999–2005)

Fig. 6   ANN and observed 
results during the testing/valida-
tion periods (2006–2008)



2298	 Modeling Earth Systems and Environment (2022) 8:2291–2303

1 3

HEC‑RAS model result

Figures 8 and 9 present the HEC-RAS model results during 
the calibration and validation periods. The visualized inun-
dation map in HEC-RAS was further checked with historical 
flood events of 2005 and 2008 for calibration (Fig. 7) and 
validation (Fig. 8) periods. The inundated map generated 
in HEC-RAS software for the ANN hydrological results of 
7 years for the periods of (1999–2005) and the water body 
delineated in NDWI from flood event of 2005 are presented 
in Fig. 7a and b, respectively. The blue color in both figures 
is the water body in the area of interest.

The HEC-RAS result was further evaluated with the 
ANN hydrological model result obtained during the valida-
tion periods of (2006–2008), and the water body delineated 
in NDWI from the flood event of 2008 were presented in 
Fig. 8a and b, respectively. From the overlapping percentage 

areas computed in ArcGIS (ver.10.4), 94.6% and 96% of 
intersected areas were counted from the inundation map gen-
erated in HEC-RAS and water body delineated in NDWI 
during the calibration and validation periods. According 
to the studies conducted by Bagherzadeh and Daneshvar 
(2011) and Mai and De Smedt (2017), the inundation map 
was evaluated based on the overlapping areas and if more 
than 85% counted percentage of overlapped, it is considered 
as a good agreement.

Conclusion

In this study, an integrated machine-learning and HEC-
RAS models for flood inundation mapping in Baro River 
Basin (Ethiopia) is presented. ANN as a predictive hydro-
logical modeling and HEC-RAS as hydraulic modeling 

Fig. 7   The scatter plot between ANN and observed results for each year
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was integrated and accurate flood inundation areas were 
identified. Stream flow was generated in ANN model and 
flood depths were generated in HEC-RAS model. The 

performance of ANN model results for training (1999–2005) 
and testing (2006–2008) periods were evaluated with 
Nash–Sutcliffe Efficiency (NSE), PBIAS and coefficient 
of determination (R2). The NSE values of 0.86 and 0.88, 
PBIAS of 8.2% and 8.5% were obtained during training 
and testing periods, respectively. The ANN model result of 
each year (1999–2005) was further evaluated graphically 
at R2 values of 0.96, 0.96, 0.93, 0.93, 0.89, 0.93 and 0.92, 
respectively. Accordingly, the HEC-RAS model and NDWI 
results were overlapped at 94.6% and 96% during the cali-
bration and validation periods. The results of this integrated 
ANN and HEC-RAS models as the flood inundation was 
successful and it was highly recommended that this could be 
a possible alternative for flood risk strategies. Finally, it was 
concluded that an integrated machine-learning and HEC-
RAS models for flood inundation mapping is an appropriate 
tool for flood risk management and early warning systems.

Fig. 7   (continued)

Table 3   ANN model performance evaluation results (Kumar et  al. 
2020)

The asterisk sign (*) indicates the average value of each year, which 
is the average of 7 values and 3 values for training and testing peri-
ods, respectively

Evaluation methods Evaluation periods Goodness-of-fit

Training 
(1999–2005)

Testing 
(2006–2008)

NSE 0.86 0.88 Very good
PBIAS (%) 8.2 8.5 Very good
R2 0.91* 0.93* Very good



2300	 Modeling Earth Systems and Environment (2022) 8:2291–2303

1 3

Acknowledgements  The authors would like to thank Wollega Uni-
versity, for financing the study. The authors would like to extend our 
appreciation to Ethiopian Ministry of Water Resources (MWR) for 
providing us necessary data for our works.

Author contributions  HT proposed the research title, designed the 
methodology, and analyzed the data. MOD collaborated with the cor-
responding author in result interpretation and construction of the manu-
script the he brought it into the standard, and he finally read the entire 
manuscript and approved the final manuscript.

Funding  The study did not receive any external funding.

Availability of data and material  All data generated during the manu-
script analysis are included in the article. Further datasets are available 
from the corresponding author upon request.

Declarations 

Conflict of interest  The authors declare that they have no competing 
interest.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 

adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​
org/​licen​ses/​by/4.​0/.

References

Ababa A (2018) Flood Alert # 4. August
Abaya SW (2008) Floods and Health in Gambella region, Ethiopia : 

an assessment of the strength and weakness of the coping mecha-
nism. Lund University Centre for Sustainability Studies, Lund, 
pp 1–44

Abaya SW, Mandere N, Ewald G (2009) Floods and health in Gam-
bella region, Ethiopia: a qualitative assessment of the strengths 
and weaknesses of coping mechanisms. Glob Health Action 
2(1):1–10. https://​doi.​org/​10.​3402/​gha.​v2i0.​2019

Fig. 8   Trained (calibrated) 
inundation map result in HEC-
RAS (1999–2005)

Fig. 9   Tested (validated) inundation map result in HEC-RAS (2006–2008)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3402/gha.v2i0.2019


2301Modeling Earth Systems and Environment (2022) 8:2291–2303	

1 3

Abdulkadir TS, Salami AW, Kareem AG (2012) Artificial neural 
network modeling of rainfall in Ilorin, Kwara State, Nigeria. J 
Res Inf Civil Eng 9(1):108–120

Abhishek K, Kumar A, Ranjan R, Kumar S (2012) A rainfall pre-
diction model using artificial neural network. Proceed IEEE 
Control Syst Grad Res Colloq ICSGRC 1:82–87. https://​doi.​
org/​10.​1109/​ICSGRC.​2012.​62871​40

Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of arti-
ficial neural network (ANN) modeling and its application in 
pharmaceutical research. J Pharm Biomed Anal 22(5):717–727. 
https://​doi.​org/​10.​1016/​S0731-​7085(99)​00272-1

Akhtar MK, Corzo GA, van Andel SJ, Jonoski A (2009) River 
flow forecasting with artificial neural networks using satel-
lite observed precipitation pre-processed with flow length and 
travel time information: case study of the Ganges river basin. 
Hydrol Earth Syst Sci 13:1607–1618. https://​doi.​org/​10.​5194/​
hess-​13-​1607-​2009

Alemayehu T (2016) Groundwater recharge under changing landuses 
and climate variability: the case of Baro-Akobo River Basin, 
Ethiopia. IISTE 6(1):78–95

Ali MM, Anik MSBM, Khan AHN (2016) Flood inundation mapping 
on Jamuna Basin floodplain using Hec-Ras 1D / 2D coupled 
model. In: 3rd International Conference on Advances in Civil 
Engineering, pp 21–23

Amengual A, Romero R, Gómez M, Martín A, Alonso S (2007) A 
hydrometeorological modeling study of a flash-flood event over 
Catalonia, Spain. J Hydrometeorol 8(3):282–303. https://​doi.​
org/​10.​1175/​jhm577.1

Arun BS, Baskaran K (2013) Design and development of artificial 
neural networking (ANN) system using sigmoid activation 
function to predict annual rice production in Tamilnadu. Int 
J Comput Sci Eng Inf Technol 3(1):13–31. https://​doi.​org/​10.​
5121/​ijcse​it.​2013.​3102

Asadi A (2013) Application of HEC-HMS for Flood Forecasting in 
Kabkian Basin and Delibajak Subbasin in Iran. IOSR Journal of 
Engineering 03(09):10–16. https://​doi.​org/​10.​9790/​3021-​03931​
016

Ateeq-ur-Rauf et al (2016) Data driven modelling for real-time flood 
forecasting. In: 2nd International Multi-Disciplinary Confer-
ence. University of Lahore, Gujrat, Pakistan

Bagherzadeh A, Daneshvar MRM (2011) Physical land suitability 
evaluation for specific cereal crops using GIS at Mashhad Plain, 
Northeast of Iran. Front Mech Eng China 5(4):504–513. https://​
doi.​org/​10.​1007/​s11703-​011-​1102-6

Barbetta S, Coccia G, Moramarco T, Todini E (2016) Case study: a 
real-time flood forecasting system with predictive uncertainty esti-
mation for the Godavari River. India Water (switzerland). https://​
doi.​org/​10.​3390/​w8100​463

Biragani YT (2016) Flood forecasting using artificial neural networks: 
an application of multi-model data fusion technique. J Hydraul 
Struct. https://​doi.​org/​10.​22055/​jhs.​2016.​12853

Broxton P, Troch PA, Schaffner M, Unkrich C, Goodrich D (2014) AN 
all-season flash flood forecasting system for real-time operations. 
Bull Am Meteor Soc 95(3):399–407. https://​doi.​org/​10.​1175/​
BAMS-D-​12-​00212.1

Campolo M, Soldati A, Andreussi P (2003) Artificial neural network 
approach to flood forecasting in the River Arno. Hydrol Sci J 
48(3):381–398. https://​doi.​org/​10.​1623/​hysj.​48.3.​381.​45286

Chang FJ, Chiang YM, Chang LC (2007) Multi-step-ahead neural net-
works for flood forecasting. Hydrol Sci J 52(1):114–130. https://​
doi.​org/​10.​1623/​hysj.​52.1.​114

Chen YW, Tsai JP, Chang LC, Ho CC, Chen YC (2014) The develop-
ment of a real-time flooding operation model in the Tseng-Wen 
Reservoir. Hydrol Res 45(3):490–503. https://​doi.​org/​10.​2166/​
nh.​2013.​301

Chuma C, Orimoogunje OOI, Hlatywayo DJ, Akinyede JO (2013) 
Application of remote sensing and geographical information 
systems in determining the groundwater potential in the crystal-
line basement of Bulawayo metropolitan Area, Zimbabwe. Adv 
Remote Sens 02(02):149–161. https://​doi.​org/​10.​4236/​ars.​2013.​
22019

Cirella G, Iyalomhe F (2018) Flooding Conceptual Review: Sustain-
ability-Focalized Best Practices In Nigeria. Appl Sci 8(9):1558. 
https://​doi.​org/​10.​3390/​app80​91558

Dar LA (2017) Rainfall-runoff modeling using artificial neural net-
work. IRJET 171

Dawson CW, Wilby R (2010) An artificial neural network approach to 
rainfall-runoff modelling. Hydrol Sci J 43(1):47–66. https://​doi.​
org/​10.​1080/​02626​66980​94921​02

de Vos NJ, Rientjes THM (2005) Constraints of artificial neural net-
works for rainfall-runoff modelling: trade-offs in hydrological 
state representation and model evaluation. Hydrol Earth Syst Sci 
Discuss 2(1):365–415. https://​doi.​org/​10.​5194/​hessd-2-​365-​2005

Desalegn A, Demissie S, Admassu S (2016) Extreme weather and flood 
forecasting and modelling for eastern Tana Sub Basin, Upper Blue 
Nile Basin, Ethiopia. J Waste Water Treat Anal 7(3):127–136. 
https://​doi.​org/​10.​4172/​2157-​7587.​10002​57

Dessalegn TA, Moges MA, Dagnew DC, Gashaw A (2017) Applica-
bility of Galway River Flow Forecasting and Modeling System 
(GFFMS) for lake Tana Basin, Ethiopia. J Water Resour Prot 
09(12):1319–1334. https://​doi.​org/​10.​4236/​jwarp.​2017.​912084

Desta H, Lemma B (2017) SWAT based hydrological assessment and 
characterization of Lake Ziway sub-watersheds Ethiopia. J Hydrol 
13:122–137. https://​doi.​org/​10.​1016/j.​ejrh.​2017.​08.​002

Devia GK, Ganasri BP, Dwarakish GS (2015) A review on hydrologi-
cal models. Aquat Proced 4:1001–1007. https://​doi.​org/​10.​1016/j.​
aqpro.​2015.​02.​126

Dibaba WT, Demissie TA, Miegel K (2020) Watershed hydrological 
response to combined land use/land cover and climate change 
in highland ethiopia: Finchaa catchment. Water (switzerland). 
https://​doi.​org/​10.​3390/​w1206​1801

Dogan E, Isik S, Toluk T, Sandalci M (2007) Daily streamflow fore-
casting using artificial neural networks. Int Cong River Basin 
Manag. https://​doi.​org/​10.​1109/​YCICT.​2009.​53824​53

Dolling OR, Varas EA (2002) Utilisation des réseaux des neurones 
artificielles pour la prédiction des écoulements. J Hydraul Res 
40(5):547–554. https://​doi.​org/​10.​1080/​00221​68020​94998​99

Duvvuri S, Narasimhan B (2013) Flood inundation mapping of 
Thamiraparani river basin using HEC- Geo RAS and SWAT. Int 
J Eng Res Technol 2(7):1408–1420

Enea A, Alexandru U, Cuza I, Urzica A, Alexandru U, Cuza I, Alex-
andru U, Cuza I (2018) Remote sensing, GIS and HEC-RAS 
techniques, applied for flood extent validation, based on Landsat 
imagery, LiDAR and hydrological data. Case study: Baseu river, 
Romania landsat imagery, lidar and hydrological data. J Environ 
Prot Ecol 19:1091–1101

Goswami M, O’Connor KM (2005) Application of Artificial Neural 
Networks for river flow simulation in three French Catchments. 
The Fourth Inter-Celtic Colloquium on Hydrology and manage-
ment of Water Resources, Guimarães, Portugal

Grimes DIF, Coppola E, Verdecchia M, Visconti G (2003) A neural 
network approach to real-time rainfall estimation for Africa using 
satellite data. J Hydrometeorol 4(6):1119–1133. https://​doi.​org/​10.​
1175/​1525-​7541(2003)​004%​3c1119:​annatr%​3e2.0.​co;2

Haile AT, Kusters K, Wagesho N (2013) Loss and damage from flood-
ing in the Gambela region, Ethiopia. Int J Glob Warm 5(4):483–
497. https://​doi.​org/​10.​1504/​IJGW.​2013.​057290

Hawkin (2014) Intriguing properties of neural networks. In: Chris-
tian Szegedy WZ (ed) Neural networks and machine learning (pp 
1–10). Canada

https://doi.org/10.1109/ICSGRC.2012.6287140
https://doi.org/10.1109/ICSGRC.2012.6287140
https://doi.org/10.1016/S0731-7085(99)00272-1
https://doi.org/10.5194/hess-13-1607-2009
https://doi.org/10.5194/hess-13-1607-2009
https://doi.org/10.1175/jhm577.1
https://doi.org/10.1175/jhm577.1
https://doi.org/10.5121/ijcseit.2013.3102
https://doi.org/10.5121/ijcseit.2013.3102
https://doi.org/10.9790/3021-03931016
https://doi.org/10.9790/3021-03931016
https://doi.org/10.1007/s11703-011-1102-6
https://doi.org/10.1007/s11703-011-1102-6
https://doi.org/10.3390/w8100463
https://doi.org/10.3390/w8100463
https://doi.org/10.22055/jhs.2016.12853
https://doi.org/10.1175/BAMS-D-12-00212.1
https://doi.org/10.1175/BAMS-D-12-00212.1
https://doi.org/10.1623/hysj.48.3.381.45286
https://doi.org/10.1623/hysj.52.1.114
https://doi.org/10.1623/hysj.52.1.114
https://doi.org/10.2166/nh.2013.301
https://doi.org/10.2166/nh.2013.301
https://doi.org/10.4236/ars.2013.22019
https://doi.org/10.4236/ars.2013.22019
https://doi.org/10.3390/app8091558
https://doi.org/10.1080/02626669809492102
https://doi.org/10.1080/02626669809492102
https://doi.org/10.5194/hessd-2-365-2005
https://doi.org/10.4172/2157-7587.1000257
https://doi.org/10.4236/jwarp.2017.912084
https://doi.org/10.1016/j.ejrh.2017.08.002
https://doi.org/10.1016/j.aqpro.2015.02.126
https://doi.org/10.1016/j.aqpro.2015.02.126
https://doi.org/10.3390/w12061801
https://doi.org/10.1109/YCICT.2009.5382453
https://doi.org/10.1080/00221680209499899
https://doi.org/10.1175/1525-7541(2003)004%3c1119:annatr%3e2.0.co;2
https://doi.org/10.1175/1525-7541(2003)004%3c1119:annatr%3e2.0.co;2
https://doi.org/10.1504/IJGW.2013.057290


2302	 Modeling Earth Systems and Environment (2022) 8:2291–2303

1 3

Ho JY, Lee KT (2015) Grey forecast rainfall with flow updating 
algorithm for real-time flood forecasting. Water (switzerland) 
7(5):1840–1865. https://​doi.​org/​10.​3390/​w7051​840

Hung NQ, Babel MS, Weesakul S, Tripathi NK (2009) Hydrology 
and earth system sciences an artificial neural network model for 
rainfall forecasting in Bangkok Thailand. Hydrol Earth Syst Sci 
13:1413–1416

Imanshoar F, Jahangirzadeh A, Basser H, Akib S, Kamali B, Tabata-
baei MRM, Kakouei M (2014) Reservoir sedimentation based on 
uncertainty analysis. Abstr Appl Anal. https://​doi.​org/​10.​1155/​
2014/​367627

Kan G, Liang K, Yu H, Sun B, Ding L, Li J, He X, Shen C (2020) 
Hybrid machine learning hydrological model for flood forecast 
purpose, pp 813–820

Kumar V, Ashu V, Shikha J (2020) Modeling rainfall - runoff pro-
cess using artificial neural network with emphasis on parameter 
sensitivity. Model Earth Syst Environ. https://​doi.​org/​10.​1007/​
s40808-​020-​00833-7

Lamichhane N, Sharma S (2018) Effect of input data in hydraulic 
modeling for flood warning systems. Hydrol Sci J 63(6):938–956. 
https://​doi.​org/​10.​1080/​02626​667.​2018.​14641​66

Lateef AD (2017) Identification of the input vector for R-R Modelling 
Of River Jhelum catchment. Int J Eng Res 6(04):27–31. https://​
doi.​org/​10.​17577/​ijert​v6is0​40083

Li Z (2010) Application of HEC-HMS for flood forecasting in Misai 
and Wan’an catchments in China. Water Sci Eng 3(1):14–22. 
https://​doi.​org/​10.​3882/j.​issn.​1674-​2370.​2010.​01.​002

Ligaray M, Kim H, Sthiannopkao S, Lee S, Cho KH, Kim JH (2015) 
Assessment on hydrologic response by climate change in the Chao 
Phraya River basin, Thailand. Water (switzerland) 7(12):6892–
6909. https://​doi.​org/​10.​3390/​w7126​665

Lohani AK, Kumar R, Singh RD (2012) Hydrological time series mod-
eling: a comparison between adaptive neuro-fuzzy, neural network 
and autoregressive techniques. J Hydrol 442–443:23–35. https://​
doi.​org/​10.​1016/j.​jhydr​ol.​2012.​03.​031

Mai DT, De Smedt F (2017) A combined hydrological and hydraulic 
model for flood prediction in Vietnam applied to the Huong river 
basin as a test case study. Water (switzerland). https://​doi.​org/​10.​
3390/​w9110​879

Maidment DR (2017) Conceptual framework for the national flood 
interoperability experiment. J Am Water Resour Assoc 53(2):245–
257. https://​doi.​org/​10.​1111/​1752-​1688.​12474

Malmgren BA, Nordlund U (1996) Application of artificial neural net-
works to chemostratigraphy. Paleoceanography 11(4):505–512. 
https://​doi.​org/​10.​1029/​96PA0​1237

Mapping I, Field U (2017) Development of Flood Warning System and 
Flood Inundation Mapping Using Field Survey and LiDAR Data 
for the Grand River near the City of Painesville, Ohio. Hydrology. 
https://​doi.​org/​10.​3390/​hydro​logy4​020024

Marimin NA, Mohammad Razi MA, Ahmad MA, Adnan MS, Rah-
mat SN (2018) HEC-RAS hydraulic model for floodplain area in 
Sembrong River. Int J Integr Eng 10(2):151–157. https://​doi.​org/​
10.​30880/​ijie.​2018.​10.​02.​029

Mengistu DT, Moges SA, Sorteberg A (2016) Revisiting systems type 
black-box rainfall-runoff models for flow forecasting application. 
January, 65–83

Moges SA (2007) Flood forecasting and early warning system 
(FFEWS). An alternative technology for flood management sys-
tem and damage reduction in Ethiopia: a concept note, pp 36–41

Mosavi A, Ozturk P, Chau KW (2018) Flood prediction using machine 
learning models: Literature review. Water (switzerland) 10(11):1–
40. https://​doi.​org/​10.​3390/​w1011​1536

Napolitano G (2011) An exploration of neural networks for real-time 
flood forecasting. http://​ethes​es.​white​rose.​ac.​uk/​2178/

Ouali D, Cannon AJ (2018) Estimation of rainfall intensity–duration–
frequency curves at ungauged locations using quantile regression 

methods. Stoch Env Res Risk Assess 32(10):2821–2836. https://​
doi.​org/​10.​1007/​s00477-​018-​1564-7

Parhi PK (2013) HEC-RAS model for Mannnig’s roughness: a case 
study. Open J Mod Hydrol 03(03):97–101. https://​doi.​org/​10.​
4236/​ojmh.​2013.​33013

Pérez-Sánchez J, Senent-Aparicio J, Segura-Méndez F, Pulido-
Velazquez D, Srinivasan R (2019) Evaluating hydrological models 
for deriving water resources in peninsular Spain. Sustainability 
(switzerland) 11(10):1–36. https://​doi.​org/​10.​3390/​su111​02872

Poonia V (2018) Hydrological analysis by artificial neural network: a 
review. Int J Adv Res Ideas Innov Technol 4(3):265–270

Potential F (2020) Using GIS, remote sensing, and machine learning to 
highlight the correlation between the land-use/land-cover changes 
and flash-flood potential. Remote Sens 12:1422. https://​doi.​org/​
10.​3390/​rs120​91422

Rajurkar MP, Kothyari UC, Chaube UC (2010) Artificial neural 
networks for daily rainfall—runoff modelling. Hydrol Sci J 
47(6):865–877. https://​doi.​org/​10.​1080/​02626​66020​94929​96

Riad S, Mania J, Bouchaou L, Najjar Y (2004) Rainfall-runoff model 
using an artificial neural network approach. Math Comput Model 
40(7–8):839–846. https://​doi.​org/​10.​1016/j.​mcm.​2004.​10.​012

Sattari M-T, Rezazadeh-Joudi A, Kusiak A (2017) Assessment of dif-
ferent methods for estimation of missing data in precipitation 
studies. Hydrol Res 48(4):1032–1044. https://​doi.​org/​10.​2166/​
nh.​2016.​364

Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF 
(2005) Impact of land use and land cover change on groundwater 
recharge and quality in the southwestern US. Glob Change Biol 
11(10):1577–1593. https://​doi.​org/​10.​1111/j.​1365-​2486.​2005.​
01026.x

Seenu PZ (2019) Visualisation of urban flood inundation using 
SWMM and 4D GIS. Spat Inf Res. https://​doi.​org/​10.​1007/​
s41324-​019-​00306-9

Shamseldin AY (2010) Artificial neural network model for river flow 
forecasting in a developing country. J Hydroinf 12(1):22–35. 
https://​doi.​org/​10.​2166/​hydro.​2010.​027

Shamseldin AY, O’Connor KM (2003) A “consensus” real-time river 
flow forecasting model for the Blue Nile River. IAHS AISH 
Publ 281:82–89

Shamseldin AY, O’Connor KM (2010) A non-linear neural network 
technique for updating of river flow forecasts. Hydrol Earth 
Syst Sci 5(4):577–598. https://​doi.​org/​10.​5194/​hess-5-​577-​2001

Shamseldin AY, Abdo GM, Elzein AS (1999) Real-time flood fore-
casting on the blue Nile river. Water Int 24(1):39–45. https://​
doi.​org/​10.​1080/​02508​06990​86921​32

Shibuo Y, Ikoma E, Valeriano OS, Wang L, Lawford P, Kitsuregawa 
M, Koike T (2016) Implementation of real-time flood predic-
tion and its application to dam operations by data integration 
analysis system. J Disaster Res 11(6):1052–1061. https://​doi.​
org/​10.​20965/​jdr.​2016.​p1052

Siccardi F, Boni G, Ferraris L, Rudari R (2005) A hydrometeorologi-
cal approach for probabilistic flood forecast. J Geophys ResD 
110(5):1–9. https://​doi.​org/​10.​1029/​2004J​D0053​14

Šimor V, Hlavčová K, Kohnová S, Szolgay J (2012) Application of 
Artificial Neural Networks for estimating index floods. Con-
trib Geophys Geodesy 42(4):295–311. https://​doi.​org/​10.​2478/​
v10126-​012-​0014-7

Tarekegn T (2009) Two-dimensional hydrodynamic modelling of 
flooding using ASTER DEM in Ribb catchment, Ethiopia. Uni-
versity ofSouthampton, 50. http://​www.​itc.​nl/​libra​ry/​papers_​2009/​
msc/​gem/​tarek​egn.​pdf

Tayebiyan A, Mohammad TA, Ghazali AH, Mashohor S (2016) Artifi-
cial neural network for modelling rainfall-runoff. Pertanika J Sci 
Technol 24(2):319–330

https://doi.org/10.3390/w7051840
https://doi.org/10.1155/2014/367627
https://doi.org/10.1155/2014/367627
https://doi.org/10.1007/s40808-020-00833-7
https://doi.org/10.1007/s40808-020-00833-7
https://doi.org/10.1080/02626667.2018.1464166
https://doi.org/10.17577/ijertv6is040083
https://doi.org/10.17577/ijertv6is040083
https://doi.org/10.3882/j.issn.1674-2370.2010.01.002
https://doi.org/10.3390/w7126665
https://doi.org/10.1016/j.jhydrol.2012.03.031
https://doi.org/10.1016/j.jhydrol.2012.03.031
https://doi.org/10.3390/w9110879
https://doi.org/10.3390/w9110879
https://doi.org/10.1111/1752-1688.12474
https://doi.org/10.1029/96PA01237
https://doi.org/10.3390/hydrology4020024
https://doi.org/10.30880/ijie.2018.10.02.029
https://doi.org/10.30880/ijie.2018.10.02.029
https://doi.org/10.3390/w10111536
http://etheses.whiterose.ac.uk/2178/
https://doi.org/10.1007/s00477-018-1564-7
https://doi.org/10.1007/s00477-018-1564-7
https://doi.org/10.4236/ojmh.2013.33013
https://doi.org/10.4236/ojmh.2013.33013
https://doi.org/10.3390/su11102872
https://doi.org/10.3390/rs12091422
https://doi.org/10.3390/rs12091422
https://doi.org/10.1080/02626660209492996
https://doi.org/10.1016/j.mcm.2004.10.012
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.2166/nh.2016.364
https://doi.org/10.1111/j.1365-2486.2005.01026.x
https://doi.org/10.1111/j.1365-2486.2005.01026.x
https://doi.org/10.1007/s41324-019-00306-9
https://doi.org/10.1007/s41324-019-00306-9
https://doi.org/10.2166/hydro.2010.027
https://doi.org/10.5194/hess-5-577-2001
https://doi.org/10.1080/02508069908692132
https://doi.org/10.1080/02508069908692132
https://doi.org/10.20965/jdr.2016.p1052
https://doi.org/10.20965/jdr.2016.p1052
https://doi.org/10.1029/2004JD005314
https://doi.org/10.2478/v10126-012-0014-7
https://doi.org/10.2478/v10126-012-0014-7
http://www.itc.nl/library/papers_2009/msc/gem/tarekegn.pdf
http://www.itc.nl/library/papers_2009/msc/gem/tarekegn.pdf


2303Modeling Earth Systems and Environment (2022) 8:2291–2303	

1 3

Tayfur G, Singh VP, Moramarco T, Barbetta S (2018) Flood hydro-
graph prediction using machine learning methods. Water (switzer-
land) 10(8):1–13. https://​doi.​org/​10.​3390/​w1008​0968

Thiemig V, de Roo A, Gadain H (2011) Current status on flood fore-
casting and early warning in Africa. Int J River Basin Manag 
9(1):63–78. https://​doi.​org/​10.​1080/​15715​124.​2011.​555082

Thiemig V, Rojas R, Zambrano-Bigiarini M, De Roo A (2013) Hydro-
logical evaluation of satellite-based rainfall estimates over the 
Volta and Baro-Akobo Basin. J Hydrol 499:324–338. https://​doi.​
org/​10.​1016/j.​jhydr​ol.​2013.​07.​012

Timbadiya PV, Patel PL, Porey PD (2011) Calibration of HEC-RAS 
Model on Prediction of Flood for Lower Tapi River, India. J Water 
Resour Prot 03(11):805–811. https://​doi.​org/​10.​4236/​jwarp.​2011.​
311090

Toth E, Brath A, Montanari A (2000) Comparison of short-term rain-
fall prediction models for real-time flood forecasting. J Hydrol 
239(1–4):132–147. https://​doi.​org/​10.​1016/​S0022-​1694(00)​
00344-9

Tsakiri K, Marsellos A, Kapetanakis S (2018) Artificial neural network 
and multiple linear regression for flood prediction in Mohawk 
River, New York. Water (switzerland). https://​doi.​org/​10.​3390/​
w1009​1158

Veintimilla-Reyes J, Cisneros F, Vanegas P (2016) Artificial Neu-
ral Networks Applied to Flow Prediction: A Use Case for the 

Tomebamba River. Procedia Engineering 162:153–161. https://​
doi.​org/​10.​1016/j.​proeng.​2016.​11.​031

Villada F, Muñoz N, García E (2012) Application of artificial neural 
networks to price forecasting in the stock exchange market. Infn 
Technol 23(4):717–730. https://​doi.​org/​10.​4067/​S0718-​07642​
01200​04000​03

Wang Y, Liu R, Guo L, Tian J, Zhang X, Ding L, Wang C, Shang Y 
(2017a) Forecasting and providing warnings of flash floods for 
ungauged mountainous areas based on a distributed hydrological 
model. Water (switzerland). https://​doi.​org/​10.​3390/​w9100​776

Wang Y, Liu Z, Liao H (2017b) Improving the performance of GIS 
polygon overlay computation with MapReduce for spatial big data 
processing Improving the performance of GIS polygon overlay 
computation with MapReduce for spatial big data processing. 
Clust Comput. https://​doi.​org/​10.​1007/​s10586-​015-​0428-x

Woube M (1999) Flooding and sustainable land-water management 
in the lower Baro-Akobo river basin Ethiopia. Appl Geogr 
19(3):235–251. https://​doi.​org/​10.​1016/​S0143-​6228(99)​00004-1

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.3390/w10080968
https://doi.org/10.1080/15715124.2011.555082
https://doi.org/10.1016/j.jhydrol.2013.07.012
https://doi.org/10.1016/j.jhydrol.2013.07.012
https://doi.org/10.4236/jwarp.2011.311090
https://doi.org/10.4236/jwarp.2011.311090
https://doi.org/10.1016/S0022-1694(00)00344-9
https://doi.org/10.1016/S0022-1694(00)00344-9
https://doi.org/10.3390/w10091158
https://doi.org/10.3390/w10091158
https://doi.org/10.1016/j.proeng.2016.11.031
https://doi.org/10.1016/j.proeng.2016.11.031
https://doi.org/10.4067/S0718-07642012000400003
https://doi.org/10.4067/S0718-07642012000400003
https://doi.org/10.3390/w9100776
https://doi.org/10.1007/s10586-015-0428-x
https://doi.org/10.1016/S0143-6228(99)00004-1

	Machine-learning and HEC-RAS integrated models for flood inundation mapping in Baro River Basin, Ethiopia
	Abstract
	Introduction
	Materials and methods
	Study area
	Data and software used
	Hydrologic modeling
	Feedforward artificial neural network (ANN) model

	Training ANN hydrologic modeling
	Back propagation

	HEC-RAS model
	Integrated ANN and HEC-RAS models

	Model calibration and validation
	ANN model evaluation
	HEC-RAS model evaluation


	Results and discussions
	ANN hydrological model result
	HEC-RAS model result

	Conclusion
	Acknowledgements 
	References




