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Abstract
Up to now, similitude methods have been used in order to overcome the typical drawbacks of experimental testing and
numerical simulations by reconstructing the full-scale model behavior from that of the scaled model. The novelty of this
work is the application of similitude theory not as a tool for predicting the prototype dynamic response, but for supporting,
and eventually validating, experimental measurements polluted by noise. Two Aluminium Foam Sandwich (AFS) plates are
analyzed with Digital Image Correlation (DIC) cameras. First, an algorithm for blind source separation problems is used
to extract information about the excitation; then, SAMSARA (Similitude and Asymptotic Models for Structural-Acoustic
Research Applications) similitude method is applied to both the force spectra and velocity responses of prototype and model.
The reconstruction of force and velocity curves demonstrates that the similitude results are coherent with the quality of the
experimental measurements: when the spatial pattern in resonance is recognizable, then the curves overlap. Instead, when the
displacement field of just one model is not well identified, the reconstruction exhibits discrepancies. Therefore, similitude
methods reveal to be an interesting tool for understanding if a set of measurements is reliable or not and their application
should not be underestimated, especially in the light of the expanding range of approaches which can extract important
information from noisy observations.
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Introduction

The increasing complexity of modern engineering systems
makes uneasy to carry out all types of analyses, may they
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be analytical, numerical or experimental, especially in struc-
tural dynamics. In fact, on the one hand, laboratory exper-
iments may be expensive, time consuming, as well as hard
to setup when the test article has too large (or too small)
dimensions. On the other hand, analytical and numerical
simulations may be computationally prohibitive.

In recent years, similitude theory has provided interesting
tools, the similitude methods, which allow to derive the condi-
tions to design a scaled-up or down model of the full-scale
prototype, and the scaling laws to reconstruct the behavior
of the prototype from that of the model (or vice versa) at
best. Therefore, applying these sets of conditions and scal-
ing laws, one can assemble a specimen much easier to test,
as well as move towards analytical or numerical domains
which resolution is computationally more efficient.

There are many reviews on similitude theory [8, 12,
35, 39] that may be useful to the interested reader. These
works highlight that there are some well-established meth-
ods that have been used up to now. The most important
is DA (Dimensional Analysis), based on Buckingham’s �

Theorem, introduced in engineering field by Goodier and
Thomson [20]. The method allows to derive dimensionless
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groups made of the parameters governing the phenomenon
under investigation. Then, STAGE (Similitude Theory
Applied to Governing Equations), introduced by Kline
[24], which derives similitude conditions and scaling laws
by directly inserting the scale factors into the governing
equations. It is widely applied by Simitses and Rezaeepaz-
hand to composite plates [34] and cylinders [30], expanding
the type of structural configurations and loading conditions
in successive works. The versatility of STAGE is demon-
strated with applications to other structural configurations
and engineering problems, for example to investigate the
dynamic response [3, 4] and the strain field [2] of lam-
inated beams, as well as the dynamic behavior stiffened
cylinders [36].

A change of paradigm is introduced with the energy
methods. The first, up to Kasivitamnuay and Singhatandigd
[23], is based on the principle of energy conservation. Suc-
cessively, De Rosa et al. [16] address the computational
problems, associated to FEA (Finite Element Analysis),
with ASMA (Asymptotical Modal Scaled Analysis), which
aims at reducing the extension of the geometrical parame-
ters not involved into energy transmission in order to retain
the original finite element mesh and increase the computa-
tional efficiency of FEM (Finite Element Method). Then,
De Rosa et al. [15] lay the bases for SAMSARA, a general-
ization of the modal approach used in ASMA, which allows
to enlarge the number of parameters to investigate the simil-
itude of acoustic-structural systems. Recently, Casaburo
et al. [9] have investigated the potentialities of machine
learning methods in similitude field by applying artificial
neural networks to SAMSARA framework.

Finally, last years have seen the introduction of SA
(Sensitivity Analysis) into similitude field. The first to
introduce it are Luo et al. [26], which couple the application
of STAGE with a set of principles, based on sensitivity
analysis. Then, Adams et al. [1] apply SA to derive
sensitivity-based scaling laws, as opposed to similitude-
based scaling laws. By doing so, the authors can derive the
scaling laws without a previous knowledge of the scaling
behavior of the system under analysis.

The main objective of these works is to obtain a very
good prediction of the prototype behavior by re-scaling the
response of a model, properly designed. Some of them,
like Simitses and Rezaeepazhand [34], investigate different
combinations of scale factors to find the distorted model
which returns the best prototype prediction, or to get
distorted scaling laws giving satisfactory predictions with
a value of discrepancy fixed a priori [26]. These analyses
become mandatory because not always the experimental
facilities can house the models, as well as some similitude
conditions may require the development of geometrical
dimensions beyond the capabilities of today’s technology.
Also manufacturing errors play an important role in this

regard. However, even in these cases, both the approach and
the results are addressed towards the final comparison with
the prototype results.

When the similitude conditions are satisfied, it is
expected that the prototype curve and the model scaled
curve almost overlap. The reconstruction of the prototype
curve from that of the model through the scale factors and
scaling laws is called remodulation. Therefore, as already
noted in the work by Franco et al. [19], dedicated to
the investigation of plates in similitude excited by TBL
(Turbulent Boundary Layer), similitude theory may provide
information about the quality of the experimental test,
typically affected by uncertainties, random noise and errors
due to other sources, by observing the quality of the
remodulation process.

Following this idea, similitude methods can be applied
for other purposes than the typical ones reported in litera-
ture (namely, predict the behavior of the full-scale model).
The fact that the curves of two models are bound to overlap,
when certain conditions are fulfilled, can be used to support
experimental measurements polluted by uncertainties, pro-
vide a criterion to decide whether a laboratory experiment is
acceptable or not, and understand to which extent noisy or
missing data affects the remodulation.

For example, a campaign of experimental tests on a
particular structure may turn out to be polluted by noise.
Before proceeding to another experimental campaign (with
its own financial and temporal costs) or, more generally,
taking decisions or drawing conclusions on the behavior
of the structure on the basis of these results, it would be
useful to perform a remodulation, by means of scaling laws,
and compare them with a set of reference measurements,
considered reliable, executed on a structure of the same type
but different dimensions. The level of discrepancy between
the reference curves and the remodulated ones may help
to take a final decision concerning the non-acceptance of
the results. The approach may be even more useful when
alternative validation procedures, like analytical solutions
or numerical simulations, are missing or take too much
time, since the remodulation process can be executed in few
seconds.

Therefore, SAMSARA method is herein applied to cor-
roborate the measurements obtained by means of a DIC
test on two metallic foam sandwich panels, in complete
similitude, excited by a shaker. The main objective of this
investigation is, by comparing the experimental measure-
ments of systems in similitude with different levels of noise,
to demonstrate that it is possible to establish whether a set
of measurements is reliable or not. The reconstruction of the
response, as well as the validation of measurements in pres-
ence of noise, have been widely investigated in literature.
Two works worth of mention are the one by Chen et al. [11],
who propose a method for expanding the dynamic response
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from a sparse set of points to a much larger set without uti-
lizing a finite element model, and the article by Chen et
al. [10], in which the authors propose a function to check
the consistencies of measurements to all of the data of the
entire set.

The investigation of structural stress and vibrations is
widely executed with DIC cameras. In fact, they allow to
collect quite quickly high-density spatial information from
structures remotely. This is an advantage in all those cases
in which contact sensors may induce mass-loading effects
(like lightweight structures), or the large scale of the test
article implies long sessions of intensive human work and
result time consuming. Sarrafi et al. [31] apply Phase-
based Motion Estimation (PME) and video magnification
to execute an operational modal analysis on turbine
blades aiming at executing vibration-based SHM (Structural
Health Monitoring). Recently, [38] have combined DIC and
Element-free Falerkin (EFG) to characterize the strain field
and extracting the stress intensity factor of a surface crack.

DIC measurements are bounded by intrinsic limitations,
that are the sources of errors and uncertainties, such as the
precision of the cameras and the errors. Camera precision
is linked to the pixel dimension: the displacement of a
point can be registered only if it crosses the borders of
the pixel. Regarding the errors, there are two types [32,
33]: correlation and calibration errors. The latter impacts
the reconstruction of the 3D coordinates of the points. The
former can be divided into two contributions: statistical and
systematical errors. The analysis and reduction of errors are
the main topic of many works. For example, Jones et al.
[22] propose X-ray imaging in place of optical imaging
when the refraction of visible light, due to density gradients
between DIC cameras and the test article (generated by
smoke, flame, heated object, shock waves due to explosions,
etc.) generates a substantial error that can invalidate the
measurement itself. The work by Li et al. [25] concerns the
discrepancy between the order of the real deformation and
that of the applied mapping function in experimental tests
involving DIC cameras.

However, in general not all the error sources present in
image correlation techniques are under the control of the
analyzer: not all the results directly provided by the cameras
can be used, therefore they needed some post-processing
to reconstruct the vibrational responses. These responses
are directly extracted from the experimental measurements
provided by the DIC camera or with the aid of a SOBI
(Second-Order Blind Identification) algorithm [21].

This work is set in a wider framework aiming at
the analysis of metallic foam sandwich configurations in
similitude. The sandwich plates tested in this work are
manufactured and sold by the Austrian company Mepura
Metallpulver GmbH and have commercial name Alulight®.
The material properties are defined by D’Alessandro et al.

[14], while the vibroacoustic properties are investigated by
Petrone et al. [28]. Up to now, these plates have never been
analysed in the context of similitude theory.

The article is organized as follows. Section “Theoretical
Framework” summarizes the theoretical framework. First,
the SAMSARA method is applied to derive the similitude
conditions and natural frequencies of both simply supported
isotropic and AFS plates. Then, the scaling law of the
velocity response and the mobility are derived. Finally, the
steps of the SOBI algorithm are listed. In Section “Results”,
SOBI algorithm and SAMSARA are applied to numerical
plates to understand to which extent the noise affects the
performances of the methods. Then, SOBI algorithm is
used on experimental data to reconstruct the spectra of the
excitation forces and to estimate the scale factor of force
amplitude. Finally, SAMSARA is used as validation method
of DIC measurements by overlapping the prototype and
proportional sides curves. Final remarks are summarized in
the last Section, “Conclusions and Further Research”.

Theoretical Framework

In this section, the similitude method is first explained.
Then, the tools necessary for the analytical reconstruction
of the FRF (Frequency Response Function) are briefly
explained. Finally, the scheme of the SOBI algorithm is listed.

SimilitudeMethod

The similitude method herein used is SAMSARA, which
details can be found in De Rosa et al. [17]. For any
parameter of the system (prototype), g, it is possible to
define a scale factor

rg = ĝ

g
, (1)

where the hat symbol characterizes the model parameters.
In the successive sections, the similitude conditions and
scaling laws of natural frequencies and velocity response
are derived for both isotropic and aluminium foam sandwich
plates with simply supported boundary conditions.

Isotropic plate

The equation of natural frequencies of the prototype
isotropic simply supported plate is [7]

ωmn = π2

√

Eh2

12ρ(1 − ν2)

[

(m

a

)2 +
(n

b

)2
]

. (2)

The parameters a and b are the length and the width of the
panel, respectively, h the thickness, E the Young’s modulus,
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ρ the mass density per unit volume, and ν the Poisson’s
ratio. Finally, m and n are the number of half waves in x

and y directions, characterizing the mode order and, thus,
the spatial pattern at the considered frequency.

The behavior of scaled-up or down models are described
by the same equations characterizing the prototype;
therefore equation (2) holds for models, too. By expliciting
the model parameters in terms of scale factor and prototype
parameter, according to equation (1), the natural frequencies
of the model can be written as

rωωmn = π2

√

rEEr2hh2

12rρρ(1 − ν2)

[

(

m

raa

)2

+
(

n

rbb

)2
]

, (3)

in which it is assumed that the Poisson’s ratio does not
change (rν = 1) and that, when considering natural
frequencies of the same order, neither the number of half
waves change.

Equations (2) and (3) are the same if

rω =
√

rE

rρ

rh

r2a
=

√

rE

rρ

rh

r2b

. (4)

The equalities reported in equation (4) are true at the
same time if, and only if,

ra = rb. (5)

Equation (5) is the similitude condition for the complete
similitude of isotropic plates, according to which the length
and the width must scale in the same way. Equivalently,
the aspect ratio of the panel must not change. Fulfilling
equation (5) leads to a true model - or proportional sides
model - which allows an accurate reconstruction of the
prototype response by applying the univocal scaling law

rω =
√

rE

rρ

rh

r2L

, (6)

where rL = ra = rb. Equation (6) descends directly from
equation (4) when equation (5) is fulfilled, and provides
the scale factor to use for predicting the natural frequencies
of the prototype from those of the model. Moreover,
equation (6) shows that material properties and thickness are
free (or unconstrained) parameters, because their values are
not constrained by any similitude condition.

Sandwich plate

The equation of the natural frequencies of the full-scale
simply supported sandwich plate is provided by Vinson [37]

ωmn = π2

a2

√

D

ρS

√

m4 + 2m2n2
(a

b

)2 + n4
(a

b

)4
, (7)

where D is the bending stiffness and ρS is the mass density
per unit area. The other symbols have the same meaning
previously described.

The bending stiffness needs characterization for a
sandwich configuration. According to Powell and Stephens,
[29], if the sandwich plate has both facings and core made of
isotropic material, then the bending stiffness can be divided
into two contributes: one associated with the face sheets, the
other to the core:

D = Ef (h3 − h3c)

12(1 − ν2f )
+ Ech

3
c

12(1 − ν2c )
, (8)

where the subscripts f and c refer to facing and core, respec-
tively.

Applying the procedure of the previous subsection,
expliciting the mass density per unit area but not the bending
stiffness, then the equation of natural frequencies of any
model is given by

rωωmn= π2

r2a a2

√

rDDraarbb

rMM

√

m4+2m2n2
(

raa

rbb

)2

+n4
(

raa

rbb

)4

,

(9)

with M being the total mass of the plate.
Once more, equations (7) and (9) are the same if

rω = 1

r2a

√

rDrarb

rM
= 1

rarb

√

rDrarb

rM
= 1

r2b

√

rDrarb

rM
, (10)

fromwhich it is straightforward to deduce that the similitude
condition for sandwich plates in complete similitude is the
same of isotropic plates, reported in equation (5): ra = rb.
The univocal scaling law of natural frequencies shall take
the form

rω = 1

rL

√

rD

rM
, (11)

in which possible changes in material properties are
automatically taken into account by the bending stiffness
scale factor, rD .

Velocity response

According to the modal approach, the velocity response
of a linear system is the sum of its vibration modes [13];
therefore, the prototype velocity is given by

V (xF , xR; ω)=jωF(ω)

∞
∑

m=1

∞
∑

n=1

φmn(xF )φmn(xR)

μmn[ω2
mn−ω2+jηω2

mn]
.

(12)

In equation (12), xF and xR are the dimensionless excita-
tion and measurement points, respectively, j the imaginary
unit, φmn is the mode shape of order (m, n), F(ω) is the
harmonic force acting in xF , and η the damping loss factor.
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The term μmn is the generalized mass that, for any simply
supported plate, can be written as

μmn = ρh

∫ a

0

∫ b

0
φ2

mn(x, y)dxdy = M

4
. (13)

Therefore, all the mode shapes are associated to the same
generalized mass.

Considering that the generalized mass scale factor can
be written in terms of mass scale factor (because of
equation (13)), and assuming unchaged damping (rη = 1),
the model velocity response can be written as

rV V (xF , xR; rωω)

= jrωωrF F (rωω)

rMμmn

∞
∑

m=1

∞
∑

n=1

φmn(xF )φmn(xR)

r2ω(ω2
mn − ω2 + jηω2

mn)
, (14)

from which, the velocity scales according to the law

V (xR, xF ; ω) = rMrω

rF
̂V (xR, xF ; rωω). (15)

Thus, it is possible to conclude that equation (12) does
not generate any similitude condition, only the scaling law
given by equation (15).

First of all, in equation (14) the mode shapes do
not need scaling, being dimensionless and normalized
representations of the same vibration patterns. For the
same reason, neither the dimensionless excitation and
measurement points, xF and xR , scale. Equation (15),
instead, shows that the prediction of the velocity from one
model to another is carried out in two steps. Firstly, the
velocity amplitude is scaled by the term rMrω

rF
. Then, the

resonance peaks are aligned in frequency by means of the
term rωω. Thus, there is, first, a remodulation in amplitude,
then in frequency.

If, instead of velocity, mobility is considered,

Y = V (xF , xR; ω)

F(ω)

= jω

∞
∑

m=1

∞
∑

n=1

φmn(xF )φmn(xR)

μmn[ω2
mn − ω2 + jηω2

mn]
, (16)

it is straightforward to demonstrate that the mobility scales
as

rY = 1

rMrω
. (17)

Equation (17) directly descends from equations (15) and
(16), therefore the same considerations hold.

The actual analysis has considered simply-supported
boundary conditions. According to the proposed modal
approach, the above relationships are still valid if the pro-
totype and the model have the same boundary conditions,
indipendently from their specific characteristics (clamped,
pinned, etc.).

SOBI Algorithm

In some experimental set-ups, even though force transducers
are used, the spectra of the excitation load can be unknown.
This may happen for several reasons, such as uncertainties
on the measurements, impossibility to measure the exciting
load, etc. Under these circumstances, an alternative way
would be to identify the dynamic loads indirectly by the
measured structural dynamic responses.

In the present work, the spectra of the exciting forces are
determined by means of a SOBI algorithm. This class of
algorithms are typically used to solve BSS (Blind Source
Separation) problems, in which a series of independent
source signals are recovered from a set of mixed signals,
without any prior knowledge about the source signals. The
SOBI algorithm herein used is proposed by Jia et al. [21],
which is an extension to the prediction of random dynamic
loads of the algorithm due to McNeill and Zimmerman [27].
Providing the analytical details of the algorithm is outside
the aims of this work, however the computational steps are
further listed to give an idea of the involved parameters:

1. Obtain the structural response (time history of points
displacements).

2. Evaluation of the PSD (Power Spectral Density) matrix
of the structural response.

3. Estimation of the modal matrix, modal damping ratio,
and natural frequencies.

4. Calculation of the PSD matrix of modal responses.
5. Evaluation of theZφ(ω) and modal loads PSDmatrices.
6. Estimation of the random dynamic load PSD matrix.

The matrixZφ(ω) is a diagonal matrix which i-th element
is

Zi = μi(ω
2
i − ω2 + jηiω

2
i ), i = 1, 2, ..., N (18)

being N the total number of degrees of freedom. Equa-
tion (18) can be easily recognized as the denominator of the
transfer function.

Results

In this section, the results provided by similitude theory
are reported. The core of this work is summarized in the
flowchart of Fig. 1, in which the rectangular red frames
are assigned to experimental procedures and results, while
those rounded blue are associated to numerical/analytical
procedures and results.

The experimental displacement time histories, provided
by the DIC measurements, along with the natural fre-
quencies experimentally determined by means of previous
accelerometric tests, are given as input to the SOBI algo-
rithm described in “Similitude Method”, which extracts the
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Fig. 1 Work flowchart

spectra of the excitation forces. In this way, it is possible
to understand whether the input information is coherently
retained into noisy data and derive the force amplitude scale
factor, used further to calculate the velocity scale factor.
This scale factor allows the remodulation in both frequency
and amplitude of the velocity curves, analytically evaluated
starting from the displacement fields provided by DIC cam-
eras and the experimental natural frequencies, according to
equation (12). Therefore, it is possible to determine if the
experimental estimation of the displacements for each mode
is acceptable or not. Finally, the same operation is executed
with the mobility (equation (16)), then compared with the
accelerometric observations, in order to understand if all the
analytical calculations carried out are, generally, correct and
coherent.

In the next sections, the proposed approach is initially
applied to results numerically derived for sake of complete-
ness and clarity. In particular, data is polluted with random
Gaussian noise to investigate the effect of uncertainties on
the results. Successively, the procedure is applied to a real,
more complex, laboratory case.

Numerical Plates

Two simply supported isotropic aluminium plates are
numerically investigated: a prototype (P) and a proportional
sides model (PS). Their geometrical details and the mass
of each plate are listed in Table 1, while the material
properties, which do not change between the models, are
summarized in Table 2. Table 3 reports the scale factor
necessary for the analysis, obtained from the geometrical
and material properties of the models, as well as from the
application of equations (6) and (15). It is assumed that both
the Poisson’s ratio and the damping do not change, which is

Table 1 Geometrical characteristics and mass of the prototype and the
proportional sides model

a [m] b [m] t[m] M [kg]

P 0.656 0.476 0.003 2.53

PS 0.558 0.405 0.003 1.83
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Table 2 Material properties

Young’s modulus, E 71 GPa

Mass density, ρ 2700 kg/m3

Poisson’s ratio, ν 0.33

Structural loss factor, η 0.001

an acceptable hypothesis if the material properties and the
boundary conditions are the same between the models.

The numerical models are made with PSHELL property
and QUAD elements. The numerical mesh presents 88
points (11 along the x direction, 8 along the y direction), as
shown in Fig. 2.

Both the plates are excited with several sinusoidal forces,
applied once at time, with frequencies equal to the natural
frequencies of the test articles. The prototype and the model
are subjected to forces with amplitudes equal to 2 N and
1 N, respectively. Therefore, the scale factors of the force
amplitude and the PSD are rF = 0.5 and rSFF

= 0.25.
The SOBI algorithm introduced in “Similitude Method”

is herein used to derive the force PSD from the plates
displacements. If the PSD curves remodulate according to
the scale factor, then the similitude holds and the algorithm
is reliable. It is reasonable to assume that the procedure can
be applied even for cases in which not all the information
about the excitation is known.

In this regard, the force PSD associated to the first two
modes are evaluated. For each mode, the time history of
the displacement of each point is polluted with random
Gaussian noise having 1%, 5%, and 10% of standard
deviation σ , in order to investigate the behavior of the
algorithm in presence of increasing levels of uncertainties.

With reference to the list in “Similitude Method”, the
structural responses needed in step 1 are numerically
derived, then polluted with noise. The evaluation of the
modal matrix in step 3 is carried out with the JAD (Joint
Approximated Diagonalization) method of the whitened
response covariance matrix. The algorithm to perform this
operation is provided by Belouchrani et al. [6].

Fig. 3 shows the force PSD remodulation when the
excitation frequency is equal to the first natural frequency.
In each figure, three curves are plotted. The blue curve

Table 3 Scale factors of the proportional sides model

Length, ra 0.85

Width, rb 0.85

Thickness, rh 1.00

Mass, rM 0.72

Natural frequency, rω 1.38

Velocity, rV 1.01

represents the force PSD of the prototype, the red curve
the force PSD of the proportional sides, and the yellow
curve the force PSD of the proportional sides remodulated
in frequency and amplitude. Each figure displays a small
box which focuses on the peaks. All the figures demonstrate
that the amplitude remodulations carried out with the scale
factors predicted are accurate. However, passing from 1%
(Fig. 3(a)) to 10% (Fig. 3(c)) of standard deviation, there is a
sensitive decrease of PSD amplitude. Therefore, the loss of
information due to noise exhibits in terms of underestimated
amplitude. Nonetheless, the scaling procedure is still valid.

The results of Fig. 3 make clear that the SOBI algorithm
allows to derive coherent excitation information even
though the measurements are noisy. The input frequency
is set on the basis of the natural frequencies of the plates,
thus the remodulations generate curves that are accurately
aligned in frequency because the models are in complete
similitude. The relevant information of these plots is not
so much the overlap itself, which is expected, but the
fact that the overlapping curves are reconstructed by noisy
measurements and that, although polluted by uncertainties,
they scale accordingly to the same scale factor. This implies
that the input information is kept and it is not distorted.

For sake of completeness, the same procedure is carried
out when the excitation frequency is equal to the second
natural frequency. The results are shown in Fig. 4 and
confirm the previous ones: the presence of noise leads to
underestimated amplitudes, but the remodulation process
still works fine.

Therefore, the outcomes exhibited in Figs. 3 and 4
demonstrate that the SOBI algorithm can extract the
excitation signal from a set of noisy ones. On the one hand,
the presence of noise affects the reconstruction of the force
amplitude; on the other hand, the information extracted is
coherent enough to follow the scaling procedure.

Equation (12) is then used to evaluate the velocity
response. The mode shapes φmn are polluted with random
Gaussian noise with three different values of standard
deviation (1%, 5%, and 10%) to analyze the impact
of uncertainties on the reconstruction of the frequency
response. Also in this case, the final objective is to verify
the overlap of velocity curves after the scaling procedure.
According to equation (15), the velocity scale factor is rV =
0.5.

Fig. 5 summarizes the results obtained at the first res-
onance frequency. When the level of noise is low, the
remodulation is accurate (Fig. 5(a)). However, the more
data becomes polluted, the more discrepancies in amplitude
begin to appear (Fig. 5(b)), increasing significantly when
the noise is high (Fig. 5(c)).

These outcomes are corroborated by applying the same
procedure to the second mode, as shown in Fig. 6. The effect
of noise pollution is clearly noticeable also in this case.
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Fig. 2 Numerical mesh. The red circle indicates the excitation point

Thus, in comparison with the reconstruction of excitation
force spectra, the presence of noise affects much more
the evaluation of velocity response, impairing the scaling
process if the uncertainty level is too high.

Experimental Setup

Two aluminium foam sandwich plates are tested with
simply supported boundary conditions. Their geometrical
characteristics and the masses are summarized in Table 4.
The material properties of the skins are the same of those
listed in Table 2, while Table 5 reports the core properties
(provided by D’Alessandro et al. [14]) obtained by means
of Ashby’s laws. It is important to underline that the foam
core is not homogeneous because of the random distribution
of voids, which generates an inhomogenous distribution of
mass and stiffness. However, the material properties listed
in Table 5 refer to the equivalent, uniform material having
relative density equal to 0.222. Therefore, during the scaling
procedure, the core is treated as an isotropic, homogeneous
material, simply described by Young’s modulus, mass
density per unit volume and Poisson’s ratio. The scale
factors are summarized in Table 3 also for the sandwich
plates.

Fig. 7 illustrates the experimental setup; the test articles
are shown in Fig. 8. The displacements are captured by
two high-speed synchronized cameras connected to DIC
software, all corresponding to the Q450 high-speed DIC

system by Dantec Dynamics. The cameras have a maximum
acquisition frequency of 7530 frames per second at a
resolution of 1 MP; the displacement precision is of the
order of 0.02 pixels. Each acquisition consists of 1000
samples. No averaging is adopted. The frequency range
covers up to 31,400 rad/s (already considering Nyquist
Theorem, therefore the bandwidth of interest is 0–15,700
rad/s). Arranging the DIC cameras in a stereoscopic
configuration, each point of the plate is focused on a specific
pixel in the image plane of each camera. By applying a
stochastic texture to both prototype and proportional sides,
the plates surfaces result as an indistinguishable intensity
pattern to both cameras. The image of the first camera
is subdivided into several subimages, called facets, used
by a correlation algorithm which determines a suitable
transformation of each facet, matching the homologous area
in the second camera image. Executing this procedure for
every loading step of the object under test, it is possible
to follow the facet deformation during all the experiment
[32, 33].

The excitation waveform is given by means of a signal
generator, linked to an amplifier and an electrodynamic
shaker which excites the plate.

The points of measurement are determined by overlap-
ping a virtual grid to the image of the test article, contained
into a frame, called mask, which separates the specimen
from the background and indicating which part of the field
of view must undergo the measurement procedure. The
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Fig. 3 Remodulation of the spatially averaged force PSD, first natural frequency (P: 303.45 rad/s; PS: 424.59 rad/s); noise standard deviation
equal to 1% (a), 5% (b), and 10% (c)

dimensions of the grid points and facets are determined on
the basis of a trade-off among several matters [5, 33].

Firstly, the more dense the grid is, the better is the
spatial representation of the variable under investigation (the
displacement, in this case); however, this would imply more
grid points to process, therefore an increasing computational
effort and memory space are required. Reducing the number
of points would ease the computational and memory burden,
at the cost of a more coarse spatial description of the
displacements.

Then, the statistical error previously introduced is
directly linked to the facet size. In fact, as the facet dimen-
sion increases, this error reduces with the square root of the
number of facet pixels. However, the results of the mea-
surement are evaluated as mean values for each facet. Thus,

increasing their dimension leads to a decrease of spatial
resolution, too.

Taking into account these aspects, the resulting trade-off
leads to choose, for both prototype and proportional sides
model, a virtual grid made of 30x44 square elements, with a
total of 1345 grid points. The dimensions of the grid element
and the facet of the prototype are, respectively, 20x20 and
23x23. Being fundamental to compare the displacements
of homologous points, the grid spacing of the proportional
sides is scaled down with scale factor 0.85 (that is, the same
of length and width of the plate), so that the grid elements
have dimensions 17x17. The facet is set to 21x21.

The simply supported plates are excited in one point,
having nondimensional coordinates (0.2000, 0.2875), with
a sinusoidal force at a specific frequency (for each natural
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Fig. 4 Remodulation of the spatially averaged force PSD, second natural frequency (P: 602.88 rad/s; PS: 852.89 rad/s); noise standard deviation
equal to 1% (a), 5% (b), and 10% (c)

frequency of the plate previously evaluated by an exper-
imental modal analysis). The prototype and proportional
sides are excited with the same waveform but with different
and unquantified amplifier gain.

Fig. 9 gives an example of the measured displacement.
The plot shows a noticeable noise. This can be due not
only to the contactless characteristic of the measurement
procedure itself, but also to the precision of the DIC
cameras. In fact, the sandwich panels are characterized by
an high stiffness-to-weight ratio, and the simply supported
boundary conditions adds an artificial stiffness. Moreover,
the displacement amplitude of each point decreases as the
modal order increases. All these elements lead to very small
displacements with values assessing below the DIC camera
precision, especially when frequency increases. Adding

to all these contributions the sources of statistical errors
previously described, leads to results with a noticeable level
of noise. Therefore, for this test it is not possible to use
the measurements as they are carried out but they needed
post-processing.

Reconstruction of Excitation Spectra

With the exception of the sinusoidal waveform, no other
information is known about the force in terms of amplitude,
being the gain of the amplifier unknown. Therefore,
the SOBI algorithm is used to determine the spectra
of the input forces. The results in “Numerical Plates”
demonstrate that the input information, contained into the
measured displacement time histories, is kept and such
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Fig. 5 Remodulation of the spatially averaged velocity, first natural frequency (P: 303.45 rad/s; PS: 424.59 rad/s); noise standard deviation equal
to 1% (a), 5% (b), and 10% (c)

an information is coherent enough to follow the scaling
procedure. Therefore, it would be possible, as a rule of
thumb, to derive the scale factor of both force PSD and
amplitude by overlapping the curve of the prototype and the
curve of the model (after frequency remodulation).

Always with reference to the list in “Similitude Method”,
this time the experimental structural responses required
in step 1 are provided by the DIC measurements. The
structural loss factor is set to 0.02.

The spatially averaged PSD of the excitation force (and
the zoom on the peaks) is shown in Fig. 10 for the first three
excitation frequencies. The proportional sides curves (the
red ones) are first remodulated only in frequency, so that
the values of force PSD could be compared at homologous

points in frequency and determine the scale factor. For
this purpose, 30 points are selected for each curve (mainly
clustered around the resonance peak), then the scale factor
for each point is evaluated. The mean value, obtained by
averaging on all the points and all the excitation frequencies,
of force PSD scale factor is rSFF

= 0.67, which returns very
good amplitude scaling, as the remodulated (yellow) curves
illustrate.

The results of Fig. 10 show that the SOBI algorithm
is still capable of returning coherent information about
the excitation even though the sources of experimental
uncertainties.

The inhomogeneity of the foam leads to slight discrep-
ancies in frequency between the prototype and the model
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Fig. 6 Remodulation of the spatially averaged velocity, second natural frequency (P: 602.88 rad/s; PS: 852.89 rad/s); noise standard deviation
equal to 1% (a), 5% (b), and 10% (c)

remodulated curve. These discrepancies are noticeable since
the fourth resonance. For this reason, the force scale factor
is evaluated considering only the first three modes shown in
Fig. 10. In fact, the missing overlap would have prevented
the direct comparison of homologous points in frequency.
Furthermore, it will be illustrated further that these modes

Table 4 Geometrical characteristics and mass of the prototype and
proportional sides sandwich plates

a [m] b [m] tf [m] tc [m] M [kg]

P 0.656 0.476 0.001 0.008 3.2

PS 0.558 0.405 0.001 0.008 2.34

are the only ones well identified for both prototype and pro-
portional sides, therefore they are considered as the most
reliable for extracting the input scaling characteristics.

Fig 10 also shows that the amplitude of the PSDs
decreases in frequency, even though the excitation ampli-
tude is the same for each model. A likely reason may lie

Table 5 Aluminium foam core material properties

Young’s modulus, Ec 6.48 GPa

Mass density, ρc 600 kg/m3

Poisson’s ratio, ν 0.31

Relative density, ρr 0.222
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Fig. 7 Experimental setup

into the decreasing value of displacements, when moving to
further modes, which become less recognizable to the DIC
cameras.

Reconstruction of Velocity Response

The force spectra determined in the previous section are
reliable enough to be used in equation (12) and reconstruct,
analytically, the velocity response. All the parameters in this
equation are known: modal mass (equation (13)), natural
frequencies, and the mode shapes φmn, the latter provided
by DIC measurements in terms of displacement field.

From the force PSD scale factor, the force amplitude
scale factor rF = 0.82 is deduced. This value is inserted into
equation (15), which returns a velocity scale factor rV =
0.81. This is the velocity amplitude scale factor needed to
scale the velocity response of the proportional sides back to
that of the prototype.

Fig 11 shows the displacement fields of both prototype
(Fig. 11(a)) and proportional sides (Fig. 11(b)), and the
reconstruction and remodulation of the velocity curves
(Fig. 11(c)). Both the displacement fields give a good
representation of the first mode shape. Inserting the
normalized values of these displacements into equation (12)

Fig. 8 Experimental plates with
speckle patterns for DIC analysis

93Exp Tech (2022) 46:81–102



Fig. 9 Prototype displacement of point no. 100, mode 1 (1350 rad/s)

Fig. 10 Remodulation of the force PSD for mode 1 (a), 2 (b), and 3 (c)

leads to the velocity curves of Fig. 11(c), that can be
read as the force curves previously showed. As before, the
frequency remodulation is a consequence of SAMSARA
that does not give any information on the experimental
result. What is important, instead, is the amplitude level
of the prototype, which is reconstructed accurately. This
happens because the mode shapes are not only well
reconstructed, but also because the normalized values of
displacements are coherent between the prototype and the
proportional sides. Therefore, just by looking at the velocity
curves, one may say that the experimental information is
reliable and that the measurement is executed succesfully.

These conclusions are strenghtened by the results
obtained with the second mode, and shown in Fig. 12. The
remodulated curve matches accurately the prototype curve
(Fig.12(c)) in amplitude. Again, this happens because the
mode shapes of the protoype (Fig. 12(a)) and proportional
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Fig. 11 Mode shapes and velocity remodulation of the first mode (P: 1350 rad/s; PS: 1645 rad/s)

sides (Fig. 12(b)) not only are still recognizable, but also the
normalized values of local displacements are coherent.

The amplitude remodulation show some discrepancies
when the modes begin to be less recognizable, like in the
case of the fourth mode. In fact, while the prototype mode
shape (Fig. 13(a)) is quite clear, the proportional sides
one is not (Fig. 13(b)), except for the right side of the
displacement map, which exhibits some peak values that
may be associated with the right lobe of the mode. However,
the scaling procedure highlights the lack of an identifiable
spatial pattern and the consequent absence of coherence
between the local displacements.

About the frequency remodulation, it is noticeable a
slight shift of the resonance peaks. As previously specified,
this phenomenon is independent of the quality of the
measurements and the similitude method. It is due to the
inhomogneous distribution of mass and stiffness of the foam
core.

The results are more dramatic when the mode shapes are
not identified at all. An example of this case is the sixth
mode, shown in Fig. 14. The velocity values of the scaled
curves (Fig. 14(c)) are totally different, more than one
order of magnitude, as the mode shapes of both prototype
(Fig. 14(a)) and proportional sides (Fig. 14(b)) are not
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Fig. 12 Mode shapes and
velocity remodulation of the
second mode (P: 2562 rad/s; PS:
3845 rad/s)

Fig. 13 Mode shapes and
velocity remodulation of the
fourth mode (P: 4477 rad/s; PS:
6355 rad/s)
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Fig. 14 Mode shapes and velocity remodulation of the sixth mode (P: 6707 rad/s; PS: 9124 rad/s)

identified at all. The plate displacements become smaller as
the frequency increases, confusing with the noise. Thus, the
displacement field exhibits totally uncorrelated values.

These results prove that, provided a reference test
article - the prototype - which behavior is known, if a
model fulfilling the similitude conditions is tested, then
the similitude theory helps to understand the quality of an
experiment polluted by noise and to validate it.

Reconstruction of Mobility

As done with the velocity, the mobility can be reconstructed
analogously with equiation (16), according to which the

mobility scale factor is rY = 0.99. In this way, the dynamic
response of the plates is derived without directly involving
the force spectra obtained with the SOBI algorithm.

Fig. 15 gathers the curve remodulations of the same
modes previously examined. All the plots confirm the
results shown up to now: the similitude is able to indicate
which modes are well reconstructed and which not.

The curves in Fig. 15 may appear as a simple reproposi-
tion of those in Figs. 10, 11, 12 and 13, however they can
be overlapped to the results of the experimental campaign
made with accelerometric measurements and check the
quality of the data post-processed from DIC measurements.
The results are shown in Fig. 16(a)–(b).
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Fig. 15 Mobility remodulation curves of the first (a), second (b), fourth (c), and sixth (d) mode

Fig. 16 Comparisons between the accelerometric and DIC measurements of spatially averaged mobility
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With reference to Fig. 17, which illustrate the experi-
mental displacement field of the third and fifth modes (not
yet shown until now), the prototpye curves in Fig. 16(a)
exhibit a very good match between the accelerometric and
DIC measurements. The first five modes are well pre-
dicted, as the spatial patterns are reasonably reconstructed
(Fig. 17(a)–(b)), and this is in agreement with the fact
that these mode shapes are well recognized by DIC cam-
eras. The sixth mode, instead, is not well identified, and
the mobility evaluation leads to a seriously underestimated
resonance peak.

These considerations are validated by the comparisons
between the accelerometric and DIC measurements of the
proportional sides (Fig. 16(b)). The good evaluation of
the first three resonance peaks is in agreement with the

identification of the associated mode shapes. From the
fourth mode on, instead, the peaks are underestimated.

For sake of completeness, the correlation between the
experimental mode shapes of prototype and proportional
sides is shown in Fig. 18, which displays the Modal
Assurance Criterion (MAC) ([18]). The bars reported
confirm the results obtained. The first modes of prototype
and proportional sides exhibit the higher correlation,
upholding that the DIC system captures this mode
satisfactorily. The second and third mode shapes follow in
order of decreasing correlation, since the cameras roughly
identify the form of the mode, but noise becomes noticeable.
There is no correlation between the fourth, fifth and
sixth modes because, even though some shapes are well
identified in one model (for example, the fourth and fifth

Fig. 17 Spatial patterns of the third and fifth mode shapes of both prototype and proportional sides
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Fig. 18 MAC between the
experimental mode shapes of
prototype and proportional sides

modes of the prototype), they are not in the other. The
remaining comparisons return MAC values equal to zero,
except for the 4th-1st and 5th-4th couples of prototype
and proportional sides. However, these values of correlation
are comprised about in the range 10%-0%, and can be
considered as outcomes due to noise.

Conclusions and Further Research

This work has dealt with the investigation of similitude
methods as a mean to support noisy experimental measure-
ments. For this purpose, the dynamic response of two AFS
plates in complete similitude is observed with two DIC cam-
eras. As the measured data is strongly polluted by noise,
the response must be reconstructed analytically, using the
displacement field as experimental data.

Firstly, the time response of each point is used as input
for a SOBI algorithm which returns the spectra of the input
excitations. In this way, it is possible to:

1. reconstruct the input information,
2. check whether such an information is coherent, and
3. evaluate a unique force scale factor, needed for the

velocity response.

Then, by remodulating the velocity response for each
mode, it is demonstrated that the curves overlapped accu-
rately when the DIC measurements are able to recognize
the spatial pattern in resonance. When the mode of just one
of the models is not well identified, then the remodulation
exhibits noticeable discrepancies.

These results are obtained also by considering the mobil-
ity, which is then overlapped to accelerometric measure-
ments to demonstrate that the analytical reconstruction is
consistent. Of course, the comparison between accelero-
metric and DIC measurements is acceptable only for the
resonances corresponding to the identified modes. In the
other cases, the peak values are seriously underestimated.

In conclusion, it is demonstrated that the similitude
results are coherent with the quality of the experimental
measurements, and the comparison between the accelero-
metric and DIC measurements show that the analytical
reconstruction, on which the remodulation is based, are
consistent. Therefore, similitude methods reveal to be an
interesting tool for understanding if a set of measurements is
reliable or not, especially in the light of an expanding range
of approaches (classical modal analysis, but also machine
learning techniques for noisy or missing data, as well as
the SOBI algorithm herein used) which allow to extrapo-
late important information from observations polluted by
random uncertainties, as expected.

Up to now, the main obstacle which may prevent a wider
application of similitude as validation tool is that the model
must be in complete similitude. Thus, more research should
be dedicated to similitude methods and the way in which
the similitude conditions are derived, in order to reduce the
range of possible distorted models. The scaling procedures
involving the structural wavenumber, representative of the
mode shape, seems to be a promising direction. In fact,
it would allow to consider one mode at time, instead of
the whole succession of modes, which would also fit the
single-mode approach with DIC cameras herein used.
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