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Abstract Examples can play a critical role in the exploration of conjectures and in the
subsequent development of proofs. Although proof has been an object of extensive study,
there is more to learn about the precise ways in which mathematicians leverage examples as
they formulate proofs. In this paper, we present results from surveys and interviews with
mathematicians that targets the role of examples in mathematicians’ proof-related activity.
Their responses shed light on specific example-related activity (including strategic example
selection and use) and on the overarching ways in which they engage in such activity
(including a focus on generalization and metacognition). We share illustrative excerpts from
the surveys and interviews and discuss educational implications of the results.
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Introduction

Proof is a perennial topic in mathematics education, and although many cases have
been made for its importance across age levels (e.g., Ball et al. 2002; Knuth 2002a, b;
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Sowder and Harel 1998; Yackel and Hanna 2003; CCSS 2010; NCTM 2000), students’
difficulties with proof persist (Kloosterman and Lester 2004). Some researchers have
suggested that students’ struggles with understanding the nature of evidence and
justification may be due, in part, to their views concerning the role and status of
examples. In particular, students tend to be overly reliant on examples and often infer
that a (universal) mathematical statement is true on the basis of checking a number of
examples that satisfy the statement (e.g., Healy and Hoyles 2000; Knuth et al. 2009;
Porteous 1990). Much of the current literature on teaching proof in school mathematics
underscores the goal of helping students understand the limits of such example-based
reasoning (e.g., Harel and Sowder 1998; Stylianides and Stylianides 2009; Zaslavsky
et al. 2012) and typically characterizes example-based reasoning strategies as obstacles
to overcome.

Although this line of research has yielded important findings, research on mathe-
maticians’ abilities to leverage examples to support conjecturing and proving suggests
that example-based reasoning strategies should not be positioned only as barriers to
negotiate. Indeed, the field may benefit from a deeper understanding of the ways in
which those who are adept at proof, such as mathematicians, critically analyze and
leverage examples in order to support their proof-related thinking and activity. The goal
of this paper is to characterize expert mathematicians’ example-related activity in the
context of exploring and proving mathematical conjectures. We report on findings that
arose during surveys and clinical interviews, examining the nature of mathematicians’
example use while investigating conjectures and developing proofs, and we discuss
potential implications for the teaching and learning of proof. First, we describe the
example-related activities with which mathematicians engaged in the context of proof,
which includes descriptions of ways in which mathematicians a) strategically select
examples, and b) strategically use examples. Second, we describe the mathematicians’
overarching purposefil engagement with such activities, which includes ways in which
mathematicians flexibly focus on generalization and demonstrate metacognitive aware-
ness of the role of examples in their overall proving activity.

Theoretical Framework and Relevant Literature
Defining Key Terms

We begin by clarifying how we define examples and proof. We follow Bills and
Watson (2008) in defining an example broadly, as “any mathematics object from which
it is expected to generalize” (p. 78). We also agree with Goldenberg and Mason (2008)
who characterize examples as cultural mediating tools between learners and mathemat-
ics concepts, theorems, and techniques, noting that examples are a major means of
mathematical communication, either with oneself or with others. From this perspective,
examples are situated within the learner’s understanding; a mathematical object is
therefore only an example when the learner perceives it to be an example of something:
“The fundamental construct is the act of seeing something as an example of some
‘thing’” (Goldenberg and Mason 2008, p. 184, emphasis in the original).

We draw on Harel and Sowder’s (1998) definition of proving, which is “the process
employed by an individual to remove or create doubts about the truth of an

@ Springer



Int. J. Res. Undergrad. Math. Ed. (2016) 2:165-196 167

observation” (p. 241). Harel and Sowder further distinguish between two kinds of
activity associated with proving — ascertaining, which they define as “the process an
individual employs to remove her or his own doubts about the truth of an observation”
(p. 241), and persuading, which is “the process an individual employs to remove
others’ doubts about the truth of an observation” (p. 241). We consider proving as
encompassing both kinds of activities."

Background Literature on Examples

It is generally accepted that students’ justifications are expected to progress from
empirical arguments to proofs (e.g., Simon and Blume 1996). However, in this progres-
sion, caution must be made so that students do not view examples as constituting a proof
or as being a valid substitution for a proof. There is a trend in the literature toward
helping K-12 students and pre-service teachers understand the limitations of examples
as a means of justification and thus recognize the need for a proof (e.g., Sowder and
Harel 1998; Stylianides and Stylianides 2009; Zaslavsky et al. 2012). There is also
growing evidence, however, that some students do recognize the limitations of examples
as sufficient for proof. For instance, Weber (2010) found that undergraduate mathemat-
ics majors did not find empirical arguments to meet the standards of proof, and that
participants’ difficulties with proof did not stem from a propensity to be convinced by
empirical arguments. Weber’s findings suggest that improving students’ comprehension
of, and ability to produce, deductive justifications will require going beyond merely
helping them see the limitations of empirical arguments. One route of investigation we
consider promising is to better understand the ways in which people can actually use
examples productively in order to form or make sense of conjectures and to develop
general ideas that can support the production of a deductive proof.

Recent years have seen an increased attention on example use in the mathematics
education literature. Researchers have identified and categorized types of examples
(Buchbinder and Zaslavsky 2009; Mason and Watson 2008; Michener 1978; Tsamir
et al. 2008; Zazkis and Leikin 2008), investigated people’s thinking with and use of
examples (Antonini 2006; Balacheff 1987; Bills and Rowland 1999; Buchbinder and
Zaslavsky 2011; Goldenberg and Mason 2008; Watson and Mason 2005; Watson and
Shipman 2008; Zodik and Zaslavsky 2008), and studied the relationships between
example use and proof (Antonini 2003; Alcock and Inglis 2008; Chazan 1993; lannone
et al. 2011; Pedemonte and Buchbinder 2012; Rowland 2001; Sandefur et al. 2013).
This body of research as a whole reveals the richness and variety of the types of
examples learners are able to produce, examine, and leverage as they make sense of
new ideas, consider and formulate conjectures, and develop deductive arguments.

Literature Framing Our Study

Research on mathematicians’ conjecturing and proving activity suggests that example
use plays a critical role both in the development of and exploration of conjectures, as

! We use inductive and empirical interchangeably to refer to example-based arguments, and we use deductive
and proof interchangeably to refer to arguments comprised of a series of logically connected assertions that
one makes to justify a mathematical claim.
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well as in the subsequent construction of proofs of those conjectures. Epstein and Levy
(1995) contend that “Most mathematicians spend a lot of time thinking about and
analyzing particular examples,” and they go on to note that “It is probably the case that
most significant advances in mathematics have arisen from experimentation with
examples” (p. 6). Several researchers have accordingly examined various aspects of
the interplay between example-based reasoning activities and proof activities among
both mathematicians and mathematics students (e.g., Alcock and Inglis 2008; Antonini
2006; Buchbinder and Zaslavsky 2009; lannone et al. 2011; Harel 2008; Knuth et al.
2009; Weber 2008, 2010; Weber et al. 2014). For instance, Alcock and Inglis (2008)
constructed case studies of two participants engaged in example use while evaluating
conjectures and constructing proofs. They found that the student who was able to
produce robust and logically consistent justifications also made use of a variety of
examples for multiple purposes, including developing understanding, inductive testing
of conjectures, checking arguments, and generating counterexamples. Other researchers
have similarly identified ways in which example use can be an effective tool to support
proof construction (e.g., Antonini 2003; Buchbinder and Zaslavsky 2011; Pedemonte
and Buchbinder 2012; Rowland 2001) and to determine an argument’s validity (Weber
2008). For instance, Antonini (2003) found that the generation of non-examples can
lead to indirect argumentation and proof by contraction, and Pedemonte and
Buchbinder (2012) found that examples appear to be particularly helpful for proof
development when they allow cognitive unity and structural continuity between argu-
mentation and proof.

We build on two existing studies that have categorized example-related activity.
First, Antonini (2006) interviewed advanced graduate students, asking them to generate
examples with specific mathematical properties. His work yielded an initial categori-
zation scheme for strategies used to produce examples, which include trial and error,
transformation, and analysis. Although our study differs in emphasis, Antonini’s
categorization of advanced graduate students’ strategies provides a starting point for
developing our themes. He points out that

Further research is also needed to study how the identified strategies are
intertwined with processes enacted in different situations where subjects produce
examples. We also believe that these strategies may be useful to observe pro-
cesses of production of examples in tasks involving a careful exploration in order
to produce conjectures and proofs (p. 63).

Second, building on Antonini’s (2006) framework, lannone et al. (2011) catego-
rized undergraduate students’ strategies in example generation. lannone et al. found
that simply generating examples when asked to do so did not improve participants’
abilities to write proofs more than examining provided examples. These findings
suggest that example generation alone may not be sufficient to support productive
proof activities; rather, it is the ways in which learners can effectively leverage
examples that matters in serving as a bridge to appropriate deductive argumentation.
Iannone and colleagues’ work underscores the complexity of studying examples, and
they suggest that “There is clearly a need for further empirical research in this area if
we are to determine whether and how example generation tasks can lead to significant
learning gains” (p. 11).
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In the study reported in this paper, we carefully examine the example-related activity
of mathematicians, whom we take to be experienced provers. Our work extends the
body of research by systematically investigating the role of examples for expert
mathematicians as they explore and attempt to prove mathematical conjectures. By
studying mathematicians’ thinking, we seek to better understand how they leverage
examples in their conjecturing and proving activities. It is important to note that studies
of expert thinking should not be applied uncritically to novice instruction. However, we
agree with Weber et al. (2014) that even if there are inconsistencies between mathe-
maticians’ practices and what is taught in classrooms,

Recognizing such inconsistencies requires having an accurate understanding of
mathematical practice. Even if it is not problematic for students to be ignorant of
mathematical practice, it does not follow that it is acceptable for teachers,
researchers, or curriculum designers to be similarly unaware (p. 38).

We thus work under the assumption that gaining insights into the ways in which
mathematicians productively work with examples can provide us with a better under-
standing of potential ways to leverage examples for proof.

Methods

There are two types of data reported in this study: 1) mathematicians’ open-ended
responses to a large-scale survey, and 2) individual interviews in which mathematicians
explored conjectures. These two forms of data are meant to be complementary, and the
interviews served to elaborate and refine the initial results from the survey. We describe
the methods of the data collection and analysis for each of these forms of data separately.

Surveys

The survey data presented in this paper are one aspect of a larger survey given to
mathematicians. The surveys were sent to the mathematics departments at 39 universities
across the United States. The goal was to gather a large number of responses to the broader
survey, and so we targeted universities with large mathematics departments. Included in the
39 universities were 16 private universities and 23 public universities, all of which were
PhD granting research universities. Although the survey primarily included questions about
typicality and similarity among examples (as part of a separate line of inquiry), the data
discussed in this paper consisted of 220 mathematician responses to one open-response
prompt: If you sometimes use examples when exploring a new mathematical conjecture,
how do you choose the specific examples you select in order to test or explore the
conjecture? What explicit strategies or example characteristics, if any, do you use or
consider? Approximately 55 % of the mathematicians who filled out the survey were
completing PhD’s in mathematics, 31 % had PhD’s in mathematics (in a variety of different
mathematical areas), and 13 % had advanced degrees in other STEM-related fields; 66 %
were male. In total, 291 mathematicians responded to the survey, and 220 of these
responded to this prompt. The survey data consist of these expert mathematicians’ self-
reported responses about their work with examples.
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Analysis of the survey data consisted of examining the data for emergent themes and
categories, using the constant comparison method (e.g., Strauss and Corbin 1998).
Specifically, two members of the research team independently examined the survey
responses with the intent of identifying the various types of examples the mathemati-
cians reported. These codes were informed by initial categorizations (such as in
Antonini 2006), and we were aware of the kinds of activity that we might observe
(considering work by Epstein and Levy 1995 and Weber 2010). With such previous
work in mind we attempted to code the responses according to emergent phenomena
that we encountered. We coded both #ypes and uses of examples that mathematicians
worked with, as well as their strategies for including examples in their work (such as
intentionally building up a progression of examples). After codes for types, uses, and
strategies emerged, two members of the research team re-coded all of the responses;
any discrepancies were resolved through discussion with the research team. The
research team then discussed overall themes that we observed in the survey data.

As an example of the coding process, we consider two survey responses. The first
response was, “The examples I try ofien tend to be of extremal nature (sort of a worst or
best case scenario). I also choose examples with which I am already most familiar, since I
should be able to resolve move quickly whether the conjecture is true in these cases.” This
kind of response gave us insight into both the #ypes of examples that mathematicians chose,
and also a potential use for a chosen example. This mathematician reported choosing
examples of “extremal nature,” which we coded as a boundary case because we interpreted
the extreme nature of an example to be testing the boundary of a conjecture or situation.
The mathematician also reported choosing examples “with which I am already most
familiar,” which was coded as a familiar/known case. In addition, because the mathema-
tician said “the examples I try” and “I should be able to resolve more quickly whether the
conjecture is true,” we coded the example use as check the conjecture, by which we mean
that examples are used to check or test whether the conjecture is true.

As a comparison, another response was “I first do examples that are easiest to test. If
those are consistent with the conjecture, I try more general examples, focusing on those
for which the conjecture might fail for.” Here again we gain insight into both types and
uses of examples. For types, the language “easiest to test” suggests that the mathema-
tician tests examples that are easy to compute, which was a type that emerged
repeatedly. In addition, the statement “I try more general examples, focusing on those
for which the conjecture might fail for” offers two additional types: general/generic
and conjecture-breaking. In terms of uses, the “easiest to test” language suggested a use
code of check the conjecture, while the emphasis on examples for which the conjecture
might fail led to a use code of break the conjecture, because the mathematician seemed
to use examples with the goal of potentially breaking the conjecture. This response also
highlights a strategy that we coded, which was a progression of examples: increasing in
generality. We coded this strategy because the mathematician articulated a multi-stage
progression from easy to more general examples.

Interviews
After the surveys were collected and analyzed, we conducted two sets of semi-
structured, task-based interviews. We followed the surveys with interviews for two

reasons. First, because the surveys yielded self-reported data, we wanted to see whether
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similar findings emerged as mathematicians actually explored and proved conjectures
in practice. Additionally, because the surveys did not allow for interaction or follow-up
questions, we wanted to have the opportunity to engage with mathematicians and to ask
deeper questions that might better illuminate their thinking and perspectives. The
interviews allowed us to investigate the extent to which the reported categories in the
framework actually aligned with what mathematicians do in practice. Although the
interviews were not completely authentic proving situations for mathematicians, the
mathematicians were at least put in situations in which they were asked to prove, not
just reflect about proving.

Data Collection

For the interview recruitment, we sent emails to mathematicians within the surveyed
mathematics departments, inviting any interested mathematician to participate. We are
not aware of whether or not the mathematicians who were interviewed were also survey
respondents (the survey responses were anonymous and we did not gather contact
information). In collecting interview data, we first interviewed six mathematicians as
they explored and attempted to prove three mathematical conjectures (we will call this
IS1, for Interview Set 1), and then we interviewed 13 different mathematicians as they
explored one or two tasks (IS2, for Interview Set 2). The rationale for conducting the
second set of interviews was to support findings from the surveys and the first set of
interviews and to attempt to saturate the data. In addition, after IS1, in which mathe-
maticians were given a limited amount of time to explore three conjectures, we felt
more could be learned from giving mathematicians more time to work. We thus
structured IS2 to allow for more time on a task, so we might gain new insight into
their work when they had fewer time constraints. The three sets of data (the surveys and
both sets of interviews) together paint a vivid picture of mathematicians’ example-
related activity as they explore and prove conjectures.

Figure 1 below shows Conjectures 1 through 4, which were used in IS1. Figure 2
shows Tasks 1 and 2, which were used in IS2. Conjectures 1-3 and Task 2 were taken
from Putnam exams, Conjecture 4 was adapted from tasks in Alcock and Inglis (2008),
and Task 1 was taken from Andreescu et al. (2007). For both interview sets, we chose
these problems with two primary criteria in mind. First, the conjectures were accessible
to the mathematicians (regardless of their area of expertise) but were not so clearly
obvious that they could be proven immediately. Second, the conjectures were accessi-
ble to the interviewers (also the first and third authors), allowing them to follow the
mathematicians’ work and to ask meaningful follow-up questions.

In IS1, five of the mathematicians hold PhDs in mathematics, and one holds a PhD
in mathematics education; all IS1 mathematicians are faculty in university mathematics
departments. The IS1 interviews were individual, videotaped, and lasted approximately
60 min. All of the IS1 mathematicians were given Conjectures 1 and 2, and three each
did Conjectures 3 and 4, which were randomly assigned. After each task, we asked the
mathematicians clarifying questions about their work. At the end of the interview they
answered reflective questions about their example-related activity, both in the work
they had done in the interview, and more generally in their own personal work. The
mathematicians had approximately 15-20 min to explore each conjecture; although
typically they were not able to complete proofs for each of the conjectures in the time
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Let S be a finite set of integers, each greater than 1. Suppose that for each integer n there is some
s€ S such that ged(s,n)=1 or ged(s,n)=s.
Prove or disprove: There exist s,7€ S such that ged(s, ¢) is prime.

Conjecture 2

Let n be an even positive integer. Write the numbers 1, 2, ..., n” in the squares of an 7 x 7 grid so
that the kth row, from left to right, is (k— Dn + 1, (k— D)n+2, ..., (k— )n + n.

Color the squares of the grid so that half of the squares in each row and in each column are red
and the other half are black.

Prove or disprove: For each coloring, the sum of the numbers on the red squares is equal to the
sum of the numbers on the black squares.

Conjecture 3
Let S denote the set of rational numbers different from {-1, 0, 1}. Define a function f:S— §

by f(x)=x——.
X

Prove or disprove: mf‘”) (S)= @, where £ denotes f composed with itself # times.

n=1

Conjecture 4

All the numbers below should be assumed to be positive integers.

Definition. An abundant number is an integer n whose divisors add up to more than 2n.
Definition. A perfect number is an integer » whose divisors add up to exactly 2n.
Definition. A deficient number is an integer n whose divisors add up to less than 2n.

Conjecture 4a. A number is abundant if and only if it is a multiple of 6.
Conjecture 4b. If n is deficient, then every divisor of n is deficient.
Conjecture 4c. If n and m are abundant, then n + m is abundant.
Conjecture 4d. If n and m are abundant, then nm is abundant.

Fig. 1 Conjectures presented during IS1

allotted, they were able to make progress toward that end. These interviews were
videotaped and transcribed.

In IS2, twelve of the mathematicians hold PhDs in mathematics, and one holds a
PhD in computer science. All thirteen IS2 mathematicians work in a university
mathematics department, six as professors, three as postdoctoral scholars, three as
academic staff, and one as an emeritus professor. The IS2 interviews were individual,
audiotaped via Livescribe pens, and lasted approximately 60 min. The Livescribe pens
have technology that simultaneously records what participants say and write, enabling
researchers to review what is said and written in real time. All of the IS2 mathemati-
cians worked on Task 1, and seven also worked on Task 2. During the interviews, the
mathematicians were given time to work on the tasks on their own and were asked to
think aloud; generally, the interviewer did not interrupt except to ask clarifying
questions or to answer questions from the mathematicians. These interviews were not
videotaped, but the mathematicians used Livescribe pens during the interviews, and the
interviews were transcribed.

Task 1

Most positive integers can be expressed as a sum of two or more consecutive integers.
For examples, 24 = 7+8+9 and 51 = 25 + 26. A positive integer that cannot be
expressed as the sum of two or more consecutive positive integers is therefore
interesting. What are all the interesting numbers?

Task 2
Define a selfish set to be a set which has its own cardinality as an element. Find, with
proof, the number of subsets of {1, 2, ..., n} which are minimal selfish sets, that is,

selfish sets none of whose proper subsets is selfish.

Fig. 2 Tasks presented during IS2
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Interview Data Analysis

A member of the research team analyzed the IS1 transcripts using types, uses, and
strategies that had been identified in the surveys. The process involved coding both
mathematicians’ observable example-related activity and their reflections about exam-
ples, and as with the surveys, the literature broadly served as a starting point for the
coding. In some cases, the entire research group reviewed data excerpts that were
difficult to code. These codes served to refine the initial framework, and the organizing
of the codes in turn resulted in a number of themes about mathematicians’ example-
related activity in exploring and proving conjectures (Strauss and Corbin 1998). Then,
two of the authors together reviewed the IS2 data, again identifying emergent themes
and phenomena and reaching a consensus via discussion. We present these phenomena
as the major result of this study, as they shed light on how people who are adept at
proof interact with examples as they consider conjectures.

Results

In this section, we report on specific mechanisms by which examples helped mathe-
maticians move their thinking forward as they explored mathematical conjectures, and
we provide the results in two parts. First, we describe the example-related activities
with which mathematicians engaged in the context of proof, which includes descrip-
tions of ways in which mathematicians a) strategically select examples and b) strate-
gically use examples. Second, we report on how mathematicians carry out these
activities, or the mathematicians’ overarching purposeful engagement with such activ-
ities. This includes ways in which mathematicians flexibly a) focus on generalization,
and b) demonstrate metacognitive awareness of the role of examples in their overall
proving activity. We present and discuss these findings below, drawing upon represen-
tative excerpts from both the surveys and the interviews to exemplify each theme.
These findings highlight the strategic and thoughtful nature of mathematicians’ exam-
ple choice and use. We do not simply present a categorization of what mathematicians
do. Instead, we highlight the ways in which examples serve as a site for learning,
identifying how they can be leveraged in powerful and strategic ways.

Table 1 serves as an overall organization of the ways in which mathematicians
selected and used examples. The categorizations both convey insight into mathemati-
cians’ example-related activity and show the rich variety of beneficial purposes for
which mathematicians productively work with examples. In the subsequent sections we
will explicate each category, providing excerpts from interviews and surveys to exem-
plify our points.

Choosing and Using Examples: Example-Related Activities
with Which Mathematicians Engaged

Through our analysis we observed two broad kinds of example-related activity. These
activities are interrelated, and there is some overlap between the activity types.
However, we distinguish them because it illuminates two powerful ways in which
mathematicians interact with examples in their proving activity. First, mathematicians
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Table 1 Example-related activities and purposeful engagement

Results Part 1 Example-related Activities
Strategic Example Choice Strategic Example Usage
Select sets of examples that increase Use examples to check a conjecture or
in generality and/or complexity ascertain whether a conjecture is true
or false
Select examples that serve as extremal Use examples to better understand the
(or boundary) cases statement of the conjecture (or the
conjecture itself)
Select examples based on the mathematical Use examples to gain insight into the
properties of those examples proof of the conjecture
Select examples based on their familiarity Use examples to search for potential
with the domain at hand counterexamples to break the
conjecture
Results Part 2 Purposeful Engagement in Example-
related Activities
Focus on generalization in single examples Demonstrate metacognitive awareness
and sets of examples of their activity

strategically selected examples as they explored conjectures and developed proofs.
Second, mathematicians strategically used examples for a number of different purposes.
Brief descriptions of categories for each of these activities are presented in Part 1 of
Table 1.

Strategic Example Choice

In their strategic choice of examples, mathematicians intentionally put thought into
which examples they would consider during their exploration of a mathematical
conjecture. This stands in contrast to less sophisticated ways of selecting examples
sometimes observed among secondary students (e.g., Ellis et al. 2012), in which
students simply select an example with little thought or because it was the first one
to came to mind. Below we discuss four ways in which the mathematicians strategically
selected examples.

Mathematicians Select Sets of Examples that Increase in Complexity and/or
Generality We observed that the mathematicians described selecting examples that
would be increasingly complex or increasingly general. In the interviews, one instance
of this is seen in Dr. Aldridge’s work described in “Interview Example 17, as he builds up
from a very basic case, progresses to more complex cases, and ultimately to a more
general case.

Another instance of this is seen in Dr. Chu’s work on Task 1 in IS2 (for a description
of the solution see “Interview Example 2”). After working on this task for some time,
Dr. Chu developed a conjecture that the interesting numbers are the powers of 2. To
prove his conjecture, he attempted to prove the contrapositive statement (non-powers of
2 are non-interesting) by showing that every integer with an odd factor greater than 1
can be written as the sum of 2 or more consecutive positive integers. He got stuck on
the case where a number with an odd factor was divisible by 4 but not by 8. His initial
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idea was that these numbers could always be written as the sum of 8 consecutive
positive integers, which he checked with some examples.

Dr. Chu: Let’s try 4 times 5; that’s 20. Maybe that would be easier. Uh... so
again, if I suspect that it can be written — No, it wouldn’t work. It would be too
small. But on the other hand, if I try something larger, like 4 times 9, that’s 36.
Um, well that’s a multiple of 3, so I know one way to write it as a sum of three
consecutive integers. But what if I try to write it as a sum of eight consecutive
integers as well? So 36 divided by 8 is 4.5. So that would work, right? So that
would be 1 plus 2 plus 3 plus 4 plus 5 plus 6 plus 7 plus 8. Yeah, but [20 and 28]
are too small for this technique. Uh... Hmm, this is interesting... And see,
beyond it, uh, so if [ have a number that is divisible by 4 by not by 8 and it’s
bigger than this, then I can use this.

Dr. Chu started with an example he considered to be easier (4*5) and found that his
method did not work because it was too small. He then considered a more complex
example (4*9) and found that his method worked. The more complex example enabled
Dr. Chu to see that his method would work for 4*k whenever £ is any odd number
greater than or equal to 9, and this is an instance of a progression toward “large,” or
more complex, examples.

An example of a survey response that demonstrates this activity is: “Easy ones! Start
with toy cases and slowly build up the complexity. Hopefully it’s obvious why what
you’re looking for is true in the easiest case. You can then see if that reason
generalizes.” There seem to be a couple of reasons why mathematicians begin with
easy cases, including developing an understanding of the statement of the conjecture (“/
use simple examples first, so I understand what the conjecture says and then build up to
more complicated ones™) or to determine quickly whether a conjecture is obviously
false, (“Start with easy cases to save time in case it’s false. Go from special to general,
and from smaller to bigger examples (i.e. more dimensions, more nodes, more ele-
ments, or whatever the appropriate measure of complexity is”). These responses
suggest that the mathematicians are aware of what even simple initial examples can
do for them, and that they may gain insights into the conjecture by building toward
more complex or generic examples.

In another survey response, a mathematician remarked:

I would typically start with whatever I felt the most quintessential or simple
example of the type of object under consideration was — for example small
integers, simply-connected topological spaces, finite abelian groups, etc. If these
felt too trivial to get a sense of what is going on and why something might or
might not have to be true, I’d move to the simplest interesting example — two-
digit composite numbers, a torus, the symmetric group, whatever. Basically move
from simplest to more complicated gradually until I got some insight into what
might be important in making the conjecture true or false.

In this response, we see that (in the italicized portion in particular) the move from
simple to more complicated and interesting examples is a strategic one. Here the

mathematician suggests that the decision to select a progression of examples helps

@ Springer



176 Int. J. Res. Undergrad. Math. Ed. (2016) 2:165-196

determine not only whether, but also why the conjecture might be true or false; indeed,
the progression of examples can potentially yield some insight about the conjecture
itself. We thus see in these responses that mathematicians sometimes select a strategi-
cally chosen progression of examples in their work with mathematical conjectures.

Mathematicians Select Examples that Serve as Extreme (or Boundary) Cases The
mathematicians also noted that sometimes the search for a set of examples is connected
to seeking a counterexample or breaking a conjecture. To this end, they sometimes
chose extreme examples that pushed the limits of some property or that were at the
edge between properties (some call these boundary cases). There are two ways in which
mathematicians selected such examples. First, they chose examples that pushed the
limits of a particular property or category. In the survey response below, the mathema-
tician notes that he is considering extreme cases, “The examples I try often tend to be of
extremal nature (sort of a worst or best case scenario).” Another survey response
suggests that the mathematician intentionally tries to test particular values or parameters
that might provide insight into the conjecture:

I try to test extremes. For example, if I conjecture that throwing a ball off a
building of height 5 meters follows the equation exp(—t)+4 for t being time, then
I'would look at t going to infinity and my intuition tells me the object needs to hit
the ground at some point but, clearly the formula tends to 4 and not 0 so
something is wrong. If the conjecture passes this test then it’s worthwhile to
explore further.

In the interviews, there were examples of mathematicians intentionally selecting and
leveraging boundary cases in exploring and proving conjectures. Dr. Aldridge’s work
on the deficient number conjecture (described in detail in “Interview Example 17) is an
illustration of this phenomenon from the interviews.

Second, the mathematicians chose extreme cases as potential counterexamples. In
IS1, Dr. Barton provides a nice reflection on this search for counterexamples and how
that can be an important aspect of working toward a proof of a conjecture.

Dr. Barton: You’re trying to prove something and you go ahead and you try to
prove it. And you realize that you’re stuck at some point...Here’s this gap. I start
saying let’s try, out of that gap, to build a counterexample...Then you spend some
time trying to build that object. And if you can’t, then you try to sort of distill why
can’t you? And do the reasons why you can’t build that, does that now fill in the
gap in your proof? If it does, great. You’ve now pushed your proof further or
maybe you’ve completed the proof entirely. And if it doesn’t, then it refines
what...the counter-example would have to look like...And so it’s this sort of
back and forth trying to use that. You know, build a counterexample, and the
failure or success of that to go back and look at what that says about your proof.
And that dynamic back and forth can sometimes bear some fruit.

For Dr. Barton, this search for a counterexample seems to be a significant and
common aspect of his proving practice.
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The survey responses also reflect that mathematicians view the search for a coun-
terexample as valuable. For example, the mathematician with the following response
notes that he first looks at simple cases to better understand the conjecture, and then he
considers potential counterexamples:

First test for the most simple cases, also to understand the conjecture a little better.
Then once I’'m more comfortable with it, try it with some example I regard as less
likely to verify the conjecture and keep looking for a counterexample. Eventually,
if I figure out the conjecture is true for all the examples tested, the search for a
counterexample should have given me some insight in how to prove it.

Another survey responder said:

I try to “break” the conjecture; that is, I choose examples that are likely to show
the conjecture is not true. For number-based conjectures, I choose 0, numbers
close to 0 (both positive and negative), very large and very small numbers, for
examples, both integers and non-integers.

This response highlights the fact that the selection of extreme cases can be closely
related to a use of breaking a conjecture, but here we highlight the kind of example
being chosen. This response reveals a mathematician considering potential examples
that are extremes in some way — unusual numbers, or very large or small numbers.
Searching for and selecting such examples can play an important role in shedding light
on how to prove the conjecture at hand. We follow up with this finding in the section
“Mathematicians Use Examples to Flexibly Leverage a Dynamic, Back and Forth
Relationship Between Examples (and Proof) and Counterexamples (and Disproof)”,
which further addresses mathematicians’ attention to the back and forth relationship
between proving and a search for counterexamples.

Mathematicians Select Examples Based on the Mathematical Properties of Those
Examples The mathematicians were keenly aware of the mathematical properties of
their examples, and they capitalized on their understanding of such properties in order
to select certain types of desired examples. This supports related findings by Weber
(2008), who reports that some mathematicians drew upon mathematical properties as
they validated proofs. In the interviews, the mathematicians’ domain-specific exper-
tise was apparent as they spoke about the mathematical features of their examples, such
as choosing a number with many factors or creating a set with no primes. This
emphasis on properties appeared most frequently with Conjecture 1 in IS1, as the
mathematicians drew upon their knowledge of mathematical concepts such as prime-
ness, common divisors, and the fundamental theorem of arithmetic to consider exam-
ples or counterexamples. As an example, Dr. Leonard constructed a set {4, 8, 12,20} in
an attempt to derive a counterexample. He had recognized that a counterexample must
not have primes in it, and the excerpt below highlights his consideration of specific
mathematical properties as he attempted to construct a possible counterexample and
proceed with the problem. Dr. Leonard displays knowledge of elementary number
theory as he carefully selects four numbers that are not prime and that all have a
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composite number as a greatest common divisor. Facility with specific mathematical
properties enabled him to make sophisticated decisions in constructing an example.

Dr. Leonard: The greatest common divisor between the two of them [looking at
the statement of the conclusion] is not prime...Okay, it would have to be some set
like 4 [writes {4, 8, 12, 20}]. That would be...their greatest common divisor is
not prime.

We observed this same phenomenon in the surveys as well. In the following survey
response, the mathematician was attuned to properties such as sign, rationality, identi-
ties, and number of factors in trying to test the conjecture:

I’ll test different types of numbers — is it true for both positive and negative
integers? Is it true for rational and irrational numbers? Complex numbers? Does it
work for the identity (different depending on the problem at hand)? I might also
look at extremes (If I'm testing an idea with 4-digit numbers, I’ll test high and
low extremes). I tend to try with “nice” numbers first to make my life easier. I
work in number theory so I’ll test manageable numbers with many factors (12 is a
favourite).

In this response, specific mathematical features affect example choice and genera-
tion, and the mathematician seems aware that selecting different examples with differ-
ent properties can reap respective benefits. For instance, by trying “nice” numbers,
which might satisfy some set of properties, she might gain easier access to the
conjecture. Here she specifies that choosing a dissimilar set of numbers to test might
involve numbers with widely different properties. In sum, we see mathematicians
drawing upon their knowledge of various mathematical properties as they choose
examples. This phenomenon demonstrates that they are conscious about the mathe-
matical properties that might make an example interesting or worthwhile to consider in
a particular context.

Mathematicians Select Examples Based on Their Familiarity with the Domain at
Hand Mathematicians’ extensive domain knowledge also appears to play a critical role
in how they chose examples. The notion of domain knowledge affecting mathematical
practice is brought up by a number of researchers. For example, in his discussion of
problem solving resources, Schoenfeld (1985) notes “the successful implementation of
heuristic strategies in any particular domain often depends heavily on the possession of
specific subject matter knowledge” (p. 92). Within proof, Weber (2008) found that
“some participants’ validation standards and strategies were dependent on their famil-
iarity with the domain that they were investigating” (p. 447). Regarding examples,
Rittle-Johnson et al. (2009) indicate that prior knowledge was an important factor for
middle school students as they compared examples, and a number of other researchers
(e.g., Sandefur, et al. 2013; Stylianides and Stylianides 2009) argue for the importance
of familiarity and domain in examples via Watson and Mason’s (2005) notion of
students’ personal example space. In terms of domain knowledge, the mathemati-
cians noted that context and familiarity have a direct effect on their selection of
examples, often enabling them to make well-informed choices. Some of the interview
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participants indicated that if they were working in a domain they knew well, they
would regularly draw upon familiar, or “stock,” examples. For instance, for Conjecture
4a, Dr. Hickson used his familiarity with the fact that 6 is a perfect number to make
progress on that task, as seen in the exchange below.

Dr: Hickson: Conjecture 4a: A number is abundant if and only if it is a multiple of
six. Hmm, okay. So an example immediately comes to mind. Six is a perfect
number, and so that’s going to be false if you are allowed to take a trivial multiple
of six. So [...]

Interviewer: Okay. And that you knew six was a perfect number from experience.
Dr. Hickson: Yeah, that one I just happen to know.

The following survey response suggests a reason for selecting such familiar exam-
ples. One mathematician noted, “First, I try something I know a lot about - a space or
function that I have worked with a lot and know lots of properties of. Next, I try
something slightly more obscure, and eventually I get into a general case.” This
response indicates that by selecting a familiar space or function, the mathematician
has at her disposal rich information about certain features and properties of that
example. Presumably, such information can contribute to more meaningful work with
that example in the context of the conjecture.

The mathematicians were also aware that the particular mathematical context of the
conjecture could determine whether examples might be accessible or useful. For
instance, the following response suggests awareness that context matters, “/t depends
on the subject as well. In geometry I think examples are useful (somehow it is relatively
easy to see what the ‘generic case’ is). Whereas in graph theory I find that looking at
simple examples is typically misleading.” Mathematicians also indicated that in some
cases examples were very difficult to construct, and that sometimes it was not trivial (or
even possible) to construct an example in their field of study. One mathematician
stated, “In my work...the invariants I work with are incredibly hard to compute...,”
and another noted that, “I/n my mathematical experience, the trick is to FIND
examples.” It is noteworthy that this difficulty may set the work of expert mathema-
ticians apart from the work of other populations. In middle or high school mathematics,
for instance, the intrinsic nature of the mathematics involved does not pose as much of
a challenge to finding examples.

Strategic Example Use

We also found that mathematicians used examples for a variety of different
reasons, and these uses reflected intentional courses of action that were aimed at
contributing to their exploration and proof of the conjecture. That is, the mathe-
maticians demonstrated that they thought carefully about different ways to leverage
examples in their work. Again this kind of activity reveals more intentionality than
is commonly seen among students, who tend to use examples in more limited
capacities in their proof-related activity. Below we discuss four different ways in
which the participants used examples.
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Mathematicians Use Examples to Check a Conjecture, Both for Reasonability and
to Ascertain Whether or not a Conjecture Might be True We first saw that
mathematicians would use examples simply to check the conjecture, often to see if
the conjecture was even reasonable. For instance, in IS1 Dr. Hickson explored a couple
of small examples while working on Conjecture 3. The following exchange (particu-
larly the italicized section) demonstrates this tendency to check. Dr. Hickson selected a
simple example with the intent of using that example to check what it might mean for
an example to satisfy the conjecture.

Interviewer: 1 think you mentioned at one point, I think you called your first
example a toy example?

Dr. Hickson: Mm-hmm. The one with the two?
Interviewer: Well what do you mean by that?

Dr. Hickson: Ah, well just in the sense that I don’t think there’s any reason to
expect that that’s the only kind of example out there. But it’s something I can run
through the wording, and see whether or not it [the example] satisfies it [the
conjecture].

Many survey responses also indicated that examples were commonly used to
check the conjecture. For example, the following survey response suggests that
a first step when exploring a conjecture is simply to check that conjecture with
an easy example. Then, if it works, she could continue with less trivial
examples: “I would start with an example that is easy to check. If that example
works out and agrees with the conjecture I would check a less trivial example
then.” Another mathematician indicated that examples can serve the purpose of
ensuring that the conjecture is at least reasonable: “Simple examples that are
easy to test and expected to work out, to check that the conjecture is not
completely wrong.” These responses highlight the strong degree of intersection
between example choice and example use.

The mathematicians also used examples to decide whether they should try to prove
or disprove a conjecture. Harel and Sowder (1998) refer to this as ascertaining. Below,
in his work on Conjecture 2, Dr. Wells concludes that coming up with a particular
example that satisfied the conjecture suggested that he should attempt to prove (as
opposed to disprove) the conjecture.

Dr. Wells: Well, first I was trying to make sense of the hypothesis, to make sure
the hypothesis was even possible...And then once I convinced myself that the
hypothesis was possible, in the example of the set being two... Then I was able to
use that example to show that in the case of that example, the conjecture worked.
And so that convinced me to try to prove the conjecture rather than to disprove it.

In the following survey response, the mathematician indicates that in instances when
he is unsure of whether or not the conjecture is true, he tries to find simple examples to

work with computationally.
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Any conjecture that is not obviously true is hard. Hence I try to come up with
situations which are simple enough that I can make explicit calculations (eg. most
facts about complex geometry, I will test on the Riemann sphere/CP*1, or a
complex torus, since doing explicit calculations on other manifolds is very
difficult). If these examples fail to illuminate anything new (because they are
too low dimensional for example), I try the conjecture on a 4 dimensional ball, or
CP”2, then CP”3, and then CP”n; then I try it on bigger spaces like
Grassmannians. If it works in these examples, then I would guess it is true.

The last line of this response shows that he uses examples to gain insight into
whether the conjecture might in fact be true. Thus we see that mathematicians use
examples to check the reasonability of conjectures and to help them ascertain whether a
conjecture might be true or false.

Mathematicians Use Examples to Better Understand the Conjecture The mathe-
maticians also use examples in an effort to better understand a conjecture. Often this
means that they will explore a concrete example as a means to develop an understand-
ing of what a conjecture is stating. As an example of this, in IS1 Dr. Hickson was
working on Conjecture 2. He spent time considering some small examples, and the
interviewer questioned him about his work. His response highlights the fact that he
explored small examples in order to better understand what the conjecture was saying,
especially because the conjecture was difficult for him to parse initially.

Dr. Hickson: This is a hard assumption to, for me, anyway, to process. Like
there’s some quantifiers in there. And there’s a weird kind of combination of there
exists something relatively prime to it, so I had to restate it a few times. I wanted
just to check it on some numbers just to see it play out.

In the surveys, we see the mathematicians using examples to “understand the
conjecture a little better,” as one response put it. The following survey response
highlights this use of examples in more detail. He describes how examples can be
used as a way to confirm that one understands the statement of the conjecture. Even
more, the response suggests that the examples (and even the search for examples) can
serve to clarify the conjecture and its hypotheses:

I first try to choose trivial examples to make sure I understand the statement of the
conjecture and to possibly identify aspects of the conjecture that are non-trivial
(sometimes even trying to identify such examples helps me in this). Then I try to
find the simplest non-trivial example I can, and I try to understand these in light of the
conjecture. If I don’t know much about the history of the conjecture it is often difficult
for me to find explicit examples, even simple ones. If this is the case I just try to find
examples that satisfy some of the hypotheses, but possibly not others, and then try to
understand why such examples are not included in the statement of the conjecture.

Mathematicians Use Examples to Gain Insight into How a Proof Might
Develop Many of the mathematicians discussed using examples in order to make

@ Springer



182 Int. J. Res. Undergrad. Math. Ed. (2016) 2:165-196

significant steps toward a proof. In Task 1 in IS2, Dr. Chu conjectured that the
interesting numbers were exactly the powers of 2 (he is correct; see “Interview
Example 2” for a solution). He was attempting to prove one direction of his conjecture,
that if a number is not interesting, then it is not a power of 2, when he had the following
insight:

Dr. Chu: Hmm. .. Well clearly, if it can be written as a sum of an odd number of
consecutive integers, then it cannot be a power of 2.

Interviewer: Why is that?

Dr. Chu: Well, ‘cause — take this one [points to 20]. Right? That’s...2 plus 3 plus
4 plus 5 plus 6. And it’s a sum of an odd number... of consecutive integers.
Right? So that means that you can write it as the middle number times 5.

Dr. Chu went on to make a similar argument for the sum of an even number of
numbers, using 36 as his example.

Dr. Chu: Now if it can be written as the sum of an even number of consecutive
integers... ah, yes. So for example, the 36. Oh, it can be written as the sum of
eight consecutive integers. Right? If you find the mean, then you will get 4.5.

Interviewer: Right.

Dr. Chu: Now, you have eight of them, so you can take the 2 from 8, and you
would multiply that to 4.5, and that would give you an odd factor.

The numbers 20 and 36 served as generic examples for Dr. Chu, allowing him
to explain why the sum of any number of consecutive numbers has an odd factor.
He chose 20 and 36 because they had the properties of being the sums of an odd
and even number of consecutive numbers, respectively, and he used these exam-
ples to formulate an argument about what kinds of numbers might be interesting.
In his explanations, he called upon the property of sets of numbers that the sum of
a set of numbers is equal to the mean of that set times the number of numbers. He
then connected his explanations back to his conjecture using the fact that powers
of 2 have no odd factors other than 1. Altogether, Dr. Chu’s use of examples led
to a proof of one part of his conjecture, demonstrating the role of examples as a
key part of his proof development.

The surveys revealed a number of responses in which mathematicians
reflected that they would choose and select examples in order to gain insight
into how they might formulate a proof for the conjecture. For example, one
mathematician said:

I typically begin with what I believe to be the simplest example. I then try to
prove the conjecture for this example. If I succeed, I then try proving it for harder
examples. If ’m able to prove a statement directly for every example I can think
of, I can usually then see how to write a general proof. If I fail in proving the
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conjecture but am unable to show it is false, I analyze why it is I'm having trouble
proving the conjecture and try to find a different example where I might not run
into this difficulty (emphasis added).

The italicized portion in particular highlights that mathematicians are aware that
examining their examples can lead to insights into how to construct a more general proof.

Mathematicians Use Examples to Flexibly Leverage a Dynamic, Back and Forth
Relationship Between Examples (and Proof) and Counterexamples (and
Disproof) The mathematicians also reported a complementary relationship between
proving and disproving, which is intrinsically connected to a search for counterexamples.
Here we see that a search for counterexamples and a search for a proof are closely related,
and mathematicians tend to leverage that relationship in their proof-related activity.

In the interviews, a number of the mathematicians discussed the role of counterexam-
ples in their proving process, noting that as they attempt to develop a proof, they engage in
a back and forth process of formulating a proof and considering counterexamples. They
described starting out by attempting to prove a conjecture, but then may get stuck, stop,
and search for a counterexample. This search for (or inability to find) a counterexample
might then provide insight into the development of the proof. As an example of this, we
recall Dr. Barton’s reflection about his work with examples (in IS1). He had previously
articulated this relationship in his discussion of counterexamples, and he says, “And so it’s
this sort of back and forth trying to use that. You know build a counter example and the
failure or success of that to go back and look at what that says about your proof. And that
dynamic back and forth can sometimes bear some fruit.”

In reflecting on the role of examples at the end of his interview, Dr. Hickson said the
following, which highlights the back and forth process that a mathematician may go through:

Dr. Hickson: You know the height of folly is to assume you know the answer
when you don’t. So you should always give some effort to both sides of the
problem. And so I try to go back and forth. I’'m like any other person though. I'm
going to avoid work when I can. I’'m going to pursue the easier option first...if |
run out of gas then I'm going to reluctantly try the other one.

In the survey data, several mathematicians indicated that maneuvering this back and
forth process was an integral part of their example-related activity. One mathematician
responded to the prompt by saying:

First test the ecasiest cases. (E.g., for integers, test 2, 3, 4, 5, 10) Then test
something that is qualitatively different from the easiest cases. If it still works,
make a first attempt at a proof. If you can’t prove it, try to cook up counter-
examples that exploit the holes in your “proof.” If you can’t make counter-
examples, use what you learned from the failed counter-examples to fix the holes
in the proof. Go back and forth between proof and disproof, using the failures of
each side of the argument to build up your attempt on the other side.

This response highlights the mathematician’s awareness of how counterexamples in
particular can serve to provide insight into what a proof might involve. He indicates that
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trying to construct counterexamples can be an enlightening process, and that even a failed
search for counterexamples can bolster a proof attempt. Another survey response highlights
the “hand in hand” nature of the simultaneous proof for a proof and counterexamples:

First step usually is to think of simple examples in case there is an easy
counterexample. After that the search for a proof of the conjecture and counter-
examples typically go hand in hand. That is, a proof often depends on a series of
lemmas, and each of those lemmas reduces the complexity of the conjecture and
typically makes finding a proof or counterexample easier. Of course the failure of
a lemma does not usually eliminate the conjecture, but it at least eliminates one
path to a possible proof. Often in parallel one also thinks of corollaries to the
conjecture, since that also can help find counterexamples.

This mathematician’s response focuses on counterexamples, and he suggests that
counterexamples can be effective ways of eliminating potential paths to a proof. By
focusing on proving lemmas, which might be easier to disprove via counterexamples,
the mathematician can try to hone in on a proof. These examples from the surveys
suggest that some mathematicians are keenly aware of exactly how useful examples and
counterexamples can be in the proving process, and that the proving and disproving
processes are each closely linked to the generation of (or attempts to generate) examples.

How Mathematicians Work with Examples — the Purposeful Engagement that
Guides Mathematicians’ Example-Related Activity

There were two aspects of mathematicians’ exploration and proving of conjectures that
guided and directed their example-related activities of selecting and using examples.
This purposeful engagement included a) focusing on generalization via leveraging
structure in a particular example or set of examples, and b) displaying an overall
metacognitive awareness of their proofs and how examples related to their proofs. In
this section, rather than providing interview and survey excerpts for each of these types
of purposeful engagement, we first briefly describe and provide survey responses for
each type. We then provide two in-depth interview excerpts and discuss how the
purposeful engagement is demonstrated by these lengthier episodes.

Mathematicians Focus on (and Leverage) Structure Among Particular Examples
or Sets of Examples by Searching for Patterns that Might Lead to Generalization

On several occasions mathematicians used specific features of an example in order to
make significant steps toward a proof. In these instances, the mathematicians grounded
their thinking in a particular example, and by manipulating that example they developed
an idea for how a more general proof might develop. A number of researchers have
suggested that proofs can emerge from work with examples (e.g., Sandefur et al. 2013;
Weber 2008), and more specifically in terms of a generic example (e.g., Pedemonte and
Buchbinder 2012). One survey response demonstrates that this mathematician can move
toward generalization based on observations from basic examples: “I might also look for
simpler examples that contain enough structure to be generalized. Or I look at ““building
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block” types of examples. If I can show a conjecture for “building blocks,” it may help me
show it in general. This picture would suggest patterns or sub-conjectures that I could
prove.” Here the mathematician specifically discussed the fact that he might be able to
identify structure in a simple example that might help facilitate generalization.

Regarding the identification of structure among a set of examples, Harel (2008)
discussed patterns in his presentation of DNR-based? instruction of mathematical
induction, and Weber (2008) reported a handful of instances in which mathematicians
accepted a statement as valid based on a pattern that emerged from several examples. More
specifically, Harel differentiated between result pattern generalization, which is “a way of
thinking in which one’s proving is based solely on regularity in the result” (p. 491), and
process pattern generalization, which is “a way of thinking in which one’s proving is based
on regularity in the process” (p. 491). Depending on the situation or the nature of the
conjecture, we see evidence among the mathematicians of both of these ways of thinking.

To exemplify this phenomenon of using patterning to facilitate generalization, we
highlight a couple of survey responses in which mathematicians expressed attention to
patterns. One noted that:

Typically, when testing conjectures I have to find a compromise point between
“general enough” (say, an ideal generated by randomly generated homogeneous
ideals of degree n) vs. something computationally feasible (three such generators,
or all generators of degree 3, or all generators powers of linear forms, or
monomial ideals, etc.).

This mathematician went on to say: “If the “general” case is too computationally
infeasible, I'll enumerate every possible example of low degreeldimension to see what
the numerics there look like, then attempt to find a general pattern.” The latter portion of
this response suggests that identifying a pattern in many simple examples can facilitate
the formation of a general case that might otherwise be unattainable. Here the pattern-
seeking activity seems to play a particular role in helping to generate a general case, and
we take this to be representative of Harel’s (2001) result pattern generalization, as the
mathematician seems to be attuned to the actual “numerics” of the pattern. Another
mathematician noted that in one part of her work with examples, she would:

Look for the simplest possible example first (2 by 2 matrix, for example, or group
with 2 or 3 elements), gradually do more complicated ones if the simple one didn’t
give enough information. Look for patterns that hold for 2 or more examples, and that
seem like they’re susceptible to induction or similar arguments. Look for character-
istics that are slightly different between two examples, and try to figure out why.

Here, the development of multiple examples is not simply meant to provide a set of
examples, but there is an intentional aim of selecting examples with the development of
a pattern in mind. The mathematician seems aware that the patterns that hold for at least
two examples might give her some idea about what a more general argument might
entail, suggesting process pattern generalization.

2 Harel (2008) proposed instruction based on three principles — duality (D), necessity (N), and repeated
reasoning (R).
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Mathematicians Demonstrated an Overall Metacognitive Awareness of Their Work
with Examples and how that Related to Their Broader Proof Activity

In discussing and working with examples, mathematicians overwhelmingly exhibited a
meta-awareness of their activity. They were able to situate their example-related activity
in terms of a broader context of their mathematical work and they demonstrated
intentionality about their work with examples. They were aware of what their examples
could do for them and were often explicitly deliberate about their example choices.
Furthermore, mathematicians are aware of their overall proof activity and are
intentional about their example-related activity and how examples play into this
activity. Such metacognition has been reported as being an important aspect of
mathematical activity (e.g., Schoenfeld 1979, 1992), and particularly among math-
ematicians’ practices such as proving (Savic 2012) and problem solving (Carlson
and Bloom 2005).

The following survey response exemplifies this tendency, as the mathematician
displays a clear strategy and cognizance when it comes to choosing examples when
exploring a conjecture:

If possible, I try and figure out how a proof might go. When I run into a “difficult”
part of the idea, I then begin trying to craft an example that exposes this difficulty.
If this difficulty can never be avoided, then said example may be a counterexam-
ple. If said example is not a counterexample, then I try and prove the conjecture. If
I still fail, then I may look at my conditions and try and weaken them so as to
bypass the troublesome part more easily. I then repeat the above process.

This mathematician seems to be aware of how exactly he uses examples when
working on a conjecture. Here, it seems that an example can provide insight to a
difficult step in a proof, refute the conjecture (if it turns out to be a counterexample), or
lead to a revised conjecture.

Additionally, some mathematicians’ survey responses indicate that they recognize
that their strategy might change depending on whether they think the statement to be
true or false. One such responses was:

If I am not sure whether the conjecture is true, I start by considering an example
for which I believe it will be true- maybe a special case of the hypotheses of the
conjecture, and then if it succeeds, I would try to consider a more general
example. If I think it is not true, I choose the simplest example for which I
believe the conjecture will fail. If I am fairly certain it is true, I usually try to
consider the most general case- i.e. draw a picture that breaks any extra assump-
tions that I think might obscure the story.

According to this response, this mathematician seems aware of the ways in which
examples can shed light on the truth or falsity of a conjecture. She describes strategic
guiding principles for selecting examples in trying to determine the validity of a
conjecture. This suggests that mathematicians are aware of how their choices and uses
of examples can function in different ways as they engage in a variety of proof-related
activities.
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To summarize the themes so far, we have highlighted several key features of the
mathematicians’ example-related activity. We demonstrated the varied and robust ways
in which mathematicians strategically select and use examples, and we also highlighted
the purposeful engagement with examples that guides their activity, especially through
attention to generalization and acute metacognitive awareness. In order to exemplify
and explore the interplay between these themes in mathematicians’ work, we now
present a detailed discussion of two longer interview excerpts.

Interview Examples

By providing significant mathematical detail in the following two in-depth interview
excerpts, we unpack and demonstrate the productive ways in which examples actually
arise during mathematicians’ exploration and proving of conjectures. These examples
also serve to show that many of the activities and purposeful engagement with examples
occur simultaneously and are richly connected across the mathematicians’ work.

Interview Example 1 As a rich example of the ways in which mathematicians can
powerfully and strategically leverage example-related activity in the proving process,
we highlight how Dr. Aldridge’s work with a particular example allowed him to make
general arguments and ultimately formulate a valid proof of Conjecture 4b, which
states: If n is deficient, then every divisor of n is deficient).

Dr. Aldridge proved this conjecture by proving the contrapositive of the statement
(that a number with at least one non-deficient factor must itself be non-deficient). We
give a brief summary of his proof here to provide the mathematical idea of the proof,
and we then present the role examples played in formulating this proof (see Fig. 3). Dr.
Aldridge argued that if a number b has a factor a that is not deficient, then a has proper
factors f; through f; whose sum is greater than or equal to a. Since a is a factor of b,
there is a number d such that 5=a*d. Then d*f; through d*f;, must also be factors of b
(and since f; through f; are strictly less than a, d*f; through d*f; must be strictly less
than b). He noted that the sum of d*f; through d* £, must be greater than or equal to
d*a, which is itself already a copy of b. The sum of b’s factors, then, includes d*f;
through d*f;, which is greater or equal to d*a, and b itself. This is greater than or equal
to two copies of b, and thus by the definition of deficient, & itself cannot be deficient.

In his initial work on this conjecture, Dr. Aldridge examined what he called “test
cases,” in which he drew upon the perfectness of 6 to examine numbers in which 6 was
a factor. His rationale for this is seen below.

Fig. 3 Dr. Aldridge’s proof of conjecture 4b
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Dr. Aldridge: And then the real reason why I went after it with examples, not so
much that I thought these would be counterexamples, as I thought they would be
good test cases. And they’d maybe give me a feel for how, more information as to
maybe why this is true.

Interviewer: Okay, and what do you mean by test case?

Dr. Aldridge: Um, test case because the 6, like I said before is perfect. So it’s
going to be, it’s a, it’s a pretty decent, uh, example of maybe, it’s, so if anything
has a chance to be a divisor that’s not deficient inside of number that is
deficient... I would guess it would be a perfect number [he previously shared
that he was aware of the property of perfectness].

Continuing to focus on 6, after trying to see if 6*2 and 6*3 would have to be
abundant, he chose an example of 6*11. While working through this example, he had
the following insight (illustrated in Fig. 4).

Dr. Aldridge: 1t’s almost like you get, like a duplication of the perfectness of six
that shows up in this piece here.

Interviewer: Okay, how so?

Dr. Aldridge: So, so, like this one, two, three adds up to six. Eleven, twenty-two,
thirty-three actually adds up to sixty-six. So I’'m feeling like I probably ought to
be able to prove that this is a true statement.

This exchange provides evidence that Dr. Aldridge used examples to ground his
work in something concrete, particularly when he needed to make sense of a given
situation or conjecture. Dr. Aldridge’s activity puts a slight twist on the manipulation
stage of the manipulating-getting-a-sense-of-articulating (e.g., Sandefur et al. 2013),
because while he talked about manipulating a concrete example to get a sense of the
conjecture, he did so in a domain with which he was less familiar (although the
example he chose may have been familiar to him).

His work with this example not only confirmed that he thought he could prove the
conjecture, but using 6*11 as a generic example ultimately led him to a sketch of the
correct proof described above. As he wrote out a sketch of the proof, he simultaneously
referred back to his example in doing so (Fig. 5 shows him referring back to the
particular example in his write-up of the proof — in his notation, b is the number chosen

Fig. 4 Dr. Aldridge pointing out the “duplication of the perfectness of 6.”
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Fig. 5 Dr. Aldridge refers to the particular example in writing up the proof

as the example (b=66), a is the factor of interest (¢=6), and d is the number that
satisfies b=a*d (d=11)). The connection between the 6*11 and the a, d, and b enabled
him to formulate the proof, as described above (see Fig. 3).

‘What is most interesting to us is not that he proved the conjecture, but rather the precise
role that his example 6*11 =66 played in his development of this proof. In reflecting on his
proof, Dr. Aldridge made several statements that highlighted the importance of the
example. Specifically, the nature of the multiplication by 11 allowed him to see that certain
numbers (11 times the factors of 6) would show up in the complete list of factors. While this
property (that d times the factors of ¢ will appear in the list of factors of b=a*d) is a
property that he asserted, “is clearly always going to work out,” he acknowledged that the
nature of the number 11 made that particularly salient for him.

The structure of the example enabled him to recognize a key piece of the proof. This
focus on structure is seen in the following excerpt, in which the interviewer asked him
to reflect on the role of the 6*11 example in his proof.

Interviewer: You said something about, maybe, start, being able to start a proof
based on that observation you found in that six times eleven...

Dr. Aldridge: Right, which is kind of what I was thinking of was that the perfect-
ness of the, um, 6 is basically copied, replicated by these multiples. Each multiple of
the factor of 6. So I’'ve got my 1, 2, 3, 6 here. Right now the 1, 2, 3, adds up to 6.
And then multiply each of those by 11, those are also in my list of factors, and I add
those up, I get 66. Which, kind of is clearly always going work out...But then when
I'wrote it down it was actually quite helpful because, I mean, I was also benefited by
the choice of 11... Because you multiply by 11, it looks very much like the number
you started with before you multiplied by 11... And so, it was much more
transparent that the structure on this 11, 22, 33, 66 mirrored the 1, 2, 3, 6.

In this interview episode, we see Dr. Aldridge strategically selecting and using
examples, and we see both the generalization piece and the metacognitive piece at
play. He chose a simple boundary case, and from there he selected a set of examples
that progressed according to certain mathematical properties. Then, he was able to
focus on one particular example (the 6*11) and use its structure to build an argument
for the general case. This highlights the role that generalization played in how he
leveraged his choice of examples into a productive and correct proof. In addition,
throughout his work on this problem, it is clear that he was aware of his overall process,
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both what he was trying to do at each stage and why he was doing it. He demonstrated
strategic intentionality as he worked, looking ahead and looking back, which highlights
the kind of metacognitive awareness we previously described.

Interview Example 2 As a second example from the interviews, we consider Dr.
Weisman’s work on Task 1 in IS2, for which he was ultimately able to provide a correct
conjecture and proof. To provide some context for Dr. Weisman’s work, we give a
sketch of a solution to Task 1 (see Fig. 1 for the statement of Task 1). It can be shown
that the sum of two or more consecutive positive integers has an odd factor greater than
1. Specifically, the sum of 2 £+ I consecutive integers starting at » has an odd factor of
2 k+ 1 and the sum of 2 k consecutive integers starting at » has an odd factor of 2n+
2 k-1. Conversely, if a positive integer N has an odd factor m > 1, it can be shown that N
can be written as the sum of either m or 2 N/m consecutive positive integers, whichever
is smaller. The interesting numbers are thus exactly those positive integers that have no
odd factors greater than 1. In other words, the interesting numbers are the powers of 2.

Dr. Weisman had been given the task just prior to the exchange below. Before
beginning to work on the task, he described three possible strategies.

Dr. Weisman: Okay...So there’s a kind of gradation here. We could look for numbers
that are, um, sort of level 2 interesting, which would mean they’re not expressible as the
sum of just two positive integers. We can look at level 3 interesting, and so forth.
And...maybe those sub problems might be easier to understand. And once we
understand those sub problems, then we put our results together...So that would be
one approach.

[long pause], Um, let’s see now. Let me just, before I start doing any calculations,
let me just kind of free associate a little bit. We could list out the positive integers.
Imagine them on some kind of a number line. And...so what we’re doing, if we
consider now, the non-interesting numbers for a minute, we’re taking some
interval in that list, of any length, and then we’re going add up those numbers
involved, and whatever we get, that’s a non-interesting number...

Dr. Weisman then paused for a while in order to think. We observe that at this point,
we already have evidence of his metacognition. Dr. Weisman is already strategizing
ahead of time how to tackle the problem and to consider what sorts of examples he
should try. He also anticipates a possible route before actually digging into the work.
After some time, Dr. Weisman made the following comments, demonstrating that he
was aware that he could take another approach to the problem.

Dr. Weisman: 1 suppose another way of...thinking about this is to, um, notice
that... well let me define a new term. A very non-interesting number would be
that is the sum of 1+2+3 up to whatever, something.

Interviewer: Okay.

Dr. Weisman: Okay. Very non-interesting. So any non-interesting number is
gonna be the difference between two of those, ‘cause you’re gonna, you start at
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A and you go to B. That’s just like going from 1 to A, 1 to B, and then taking the
difference between the two, or maybe 1 to A — 1, and then taking the 1 to B, 1 to
A minus 1, taking the difference would be just like going from A to B.

Interviewer: Right. Sure.

Dr. Weisman: So...if we could get a good grip on...the very non-interesting
numbers, okay, but those are easy. Because those are just binomial coefficients.

The first strategy Dr. Weisman described involves breaking the task into sub-
problems, because, “maybe those sub-problems might be easier to understand.” By
his definition, the interesting numbers are the numbers that are level » interesting for
every number 7. Thus, if he can determine which numbers are level n interesting for
each n, then he will know which numbers are interesting.

For the second and third strategies, Dr. Weisman approached the task from the
opposite perspective — looking for the numbers that are not interesting. In the
second strategy, he described a concrete approach to constructing examples of non-
interesting numbers: “We could list out the positive integers. Imagine them on, uh,
some kind of a number line...we’re taking some interval in that list, of any length,
and then we're going to add up those numbers involved, and whatever we get,
that’s a non-interesting number.” In the third strategy, he suggested looking at a
special class of examples of non-interesting numbers — the numbers that are sums
of consecutive numbers starting with 1. He observed that these examples, which he
calls “very non-interesting,” are useful to him because any non-interesting number
is the difference of two very non-interesting numbers. He also observed that the
very non-interesting numbers are “easy,” because they are familiar to him as
binomial coefficients. His familiarity with the very non-interesting numbers led
him to proceed with the third strategy, through which he ultimately developed a
correct conjecture and proof. Dr. Weisman articulated a number of different
approaches he could take toward the problem, and he identified different classes
of examples that would be relevant in the respective approaches. We highlight this
example because it demonstrates sophisticated metacognitive awareness of how he
was approaching the problem and how examples were arising in the problem.

Summarizing Examples 1 and 2 Both of these examples serve to exhibit the
purposeful engagement with example-related activity that we observed among the
mathematicians. We see in both instances that Dr. Aldridge and Dr. Weisman demon-
strated intentional ways of selecting and using examples, and they were reflective about
the various ways in which examples might prove useful in their work. Dr. Aldridge’s
work especially highlights how he purposefully selected a progression of examples, and
then he leveraged structure in a particular, intentionally chosen example in order to
generalize and arrive at a correct proof. Dr. Weisman leveraged different classes of
examples as he clearly articulated and considered a number of different approaches
toward the task. For both of these mathematicians, their overall metacognitive aware-
ness of the variety of ways in which examples might productively arise in their work
was evident. Thus, these two examples serve as cases that highlight the sophisticated
ways in which mathematicians can purposefully engage with examples as they explore
and prove mathematical conjectures.
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Discussion and Implications

In this paper, we have presented several findings about mathematicians’ example-
related activity when exploring and proving conjectures, which help to paint a more
complete picture of the variety of ways in which mathematicians draw upon examples.
Our findings have extended the existing literature, especially work initially done by
Antonini (2006) and Iannone et al. (2011), which introduced categorizations of exam-
ple generation. We have built on those existing frameworks by suggesting our own
characterization for mathematicians’ example generation (Table 1). We have demon-
strated the ways in which mathematicians strategically choose and use examples, and
we have emphasized the attention to generalization and the metacognition that rein-
forces such activity. In this section we offer a couple of points of discussion, connecting
these to pedagogical implications and suggesting directions for future research.

The behaviors we see in mathematicians’ activity are not entirely dissimilar from what
has been reported among students. We do have evidence that some students are aware of
limitations of examples in a proof context (e.g., Weber 2010) and that students can work
productively and strategically with examples, including using examples as a source of
generalization (e.g., Ellis et al. 2012). However, we also identified some traits in mathe-
maticians’ proving activity that are less typical in our understanding of students’ proof
practices according to the literature (e.g., Stylianides and Stylianides 2009; Zaslavsky et al.
2012). In particular, we identified three traits that were key in mathematicians’ success with
leveraging examples to prove. First, we saw the mathematicians display metacognitive
awareness in their choice and use of examples. Throughout many of the survey and
interview responses, it was clear that the mathematicians were always aware of their overall
proving activity, and in particular they understood the role that their example-related
activity played in their broader mathematical work. Second, our results also contribute to
an understanding of the nature of the back and forth relationship between proof (and
examples) and disproof (and counterexamples) for expert provers. It is not the case that
mathematicians set out to prove and engage in a neat, clean, logical, abstract, algebraic
process proceeding from axioms to deductions. Instead, they make missteps and they
abandon false routes. Although this is not a brand new insight, our data reveals specifics
about such non-linear proving (especially the relationship between developing examples
and counterexamples). These insights about this back and forth relationship can be valuable
in helping us make sense of the ways in which mathematicians make progress towards a
proof, highlighting the complex, nonlinear nature of proving, even for expert provers.
Third, the mathematicians displayed persistence and self-confidence in their work, viewing
impasses in a proof as an opportunity to learn rather than an excuse to give up. This self-
confidence may be a possible factor contributing to a mathematician’s attention to the back
and forth relationship, allowing him or her to embrace being stuck in ways that may make
students uncomfortable.

Our findings from these key traits suggest four pedagogical implications for helping
students more effectively leverage examples in their proof activity:

1. Do not discourage or denigrate example use. We acknowledge that it is important
to help students understand that examples are not suitable substitutes for a proof of
a universally true statement, but by high school and especially college, there is
evidence that students do indeed understand limitations of example use (e.g.,
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Weber 2010). Our findings build on the literature by showing that expert provers
do not eschew examples, but in fact they work with them and build understanding
from them in specific, strategic ways. Rather than simply emphasizing that exam-
ples do not constitute proof, we instead need to help students learn ways to build
bridges between the conviction and understanding that can come with examples
and deductive argumentation.

2. Encourage and foster deliberate awareness and discussion of example use. We
observed a noticeable degree of metacognitive awareness among the mathemati-
cians, and they regularly demonstrated a mindfulness of their work and progress,
including a cognizance of how their search for and use of examples was closely
connected to their proving activity. Although this phenomenon is perhaps not
surprising among experts, an implication could be that fostering metacognitive
awareness as we support students’ proof activity could be efficacious. Helping
students become more aware of their mathematical work and thinking is not a
straightforward task, and researchers have previously demonstrated the importance
and the challenge of fostering metacognition (Schoenfeld 1979, 1985). Our study
lends another voice to work on metacognition, providing further evidence for its
value. More research is needed that investigates practices that could help students
be more metacognitive in general, and, specifically, more aware of their selection
and use of examples in the proving process. We do, however, have some practical
ideas. Often what we saw in the mathematicians’ interview data is that it was one
particular example that supported a key insight (such as Dr. Aldridge’s work on
Conjecture 4b). When those moments happen in students’ proving activity, in-
structors might stop and draw attention to the ways in which an example afforded
the insight. We hypothesize that possible ways to foster metacognition with
example use in particular is to engage in activities such as: a) make explicit the
example choices one uses in making sense of a conjecture, and discuss with
students their affordances and drawbacks; b) emphasize the role of generic exam-
ples, how they differ from proof but act as a bridge to a broader deductive
argument; c) ask students to answer reflective questions about their example use
when formulating, making sense of, and proving conjectures; d) make example
choice explicit when students share their ideas more broadly with the class, and
open up example choice and use to a public discussion; e) reinforce the link
between a particular example and a moment of insight.

3. Explicitly highlight example use in proving. In instruction, we should expose
students to different kinds of examples in different domains and be explicit with
them about the roles they play in relation to particular conjectures. We saw in our
data that mathematicians used some simple examples merely to check the reason-
ability of a conjecture, while some used extreme examples to test the limits of a
conjecture, and still others used examples to gain key insights about a proof.
Students might benefit from being exposed to various kind of examples in partic-
ular mathematical domains, and instructors could be explicit with them about
different types of examples that are available and the roles they play in relation
to certain conjectures. For example, such activity might include having students
answer reflective questions about their example choices as they explore a conjec-
ture, or teaching them how a generic example differs from, but can lead to, a valid
proof. A stronger understanding of the strategies mathematicians employ as they
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use examples to develop, explore, and prove conjectures may ultimately inform the
design of instructional practices and curricula that effectively foster students’
abilities to prove. More research is needed to investigate such practices and
interventions, and we are engaging in such work moving forward.

4.  More broadly, shift norms about what it means to be a competent or successfil
prover. Our findings highlight the importance of shifting the norms for both mathe-
matical activity and proving activity in our instruction. People who are successful at
mathematics — in fact, the most successful people, professional mathematicians —
themselves experience struggles, and this is a normal, natural, and expected aspect
of doing mathematics (and of proving). Thus, we should strive to emphasize the truth
about mathematicians’ processes and normalize it in our instruction and in the
development of the classroom cultures we form in instruction. In most undergraduate
proof courses, the model of instruction tends to be the presentation of already-
complete, beautiful proofs as exemplars. Seldom do we share proofs in progress with
students, the challenges in developing proofs, and other evidence that can normalize
this back-and-forth behavior. We cannot expect students to develop this kind of
persistence if we do not model it ourselves. Thus, one potential pedagogical implica-
tion is that we should share these kinds of struggles and present in-progress proof
activities with undergraduates in proof courses as part of an explicit attempt to change
the culture of what it means to be successful mathematically.

Mathematicians possess an awareness of the powerful role examples can play in
exploring, understanding, and proving conjectures, as well as the ability to implement
example-related activity in meaningful ways. Yet, the role examples play in proof-related
activities in mathematics classrooms, secondary school classrooms, as well as undergrad-
uate classrooms, often stands in stark contrast to the role examples play in the proof-related
activities of mathematicians. Our findings build on the literature and suggest important
ways in which thinking with examples does indeed serve as a critical step towards proof,
and we have offered some implications to help students learn to think critically about how
they can draw upon examples as they engage in exploring and proving conjectures. More
work remains to be done, however, in translating findings such as these into concrete ways
to help students leverage examples effectively.
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