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Abstract In this paper, we investigate mathematics majors’ perceptions of the admis-
sibility of inferences based on graphical reasoning for calculus proofs. The main
findings from our study is that the majority of mathematics majors did not think that
graphical perceptual inferences (i.e., inferences based on the appearance of the graph)
were permissible in a proof, but the majority of mathematics majors did believe that
graphical deductive inferences (i.e., inferences based on what must necessarily be
entailed by a graph having a certain property) were permissible.
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Introduction

As proof is a central activity in mathematical practice, a primary goal of the under-
graduate mathematics curricula is to improve students’ appreciation, understanding,
and production of proof (Harel and Sowder 1998). Unfortunately, numerous studies
demonstrate that mathematics majors struggle both to write proofs (e.g., Hart 1994;
Iannone and Inglis 2010; Ko and Knuth 2009; Moore 1994; Weber 2001) and evaluate
proofs for correctness (e.g., Alcock and Weber 2005; Inglis and Alcock 2012; Ko and
Knuth 2013; Selden and Selden 2003; Weber 2010), even after taking proof-oriented
courses in mathematics.
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There have been several accounts of mathematics majors’ difficulties, many of
which suggest that students fail to write or understand proofs because they lack certain
competencies. For instance, some researchers have suggested that mathematics majors
fail to construct proofs because they have trouble unpacking the meaning of complex
logical assertions (e.g., Selden and Selden 1995; Zandieh et al. 2014), they do not know
what can be assumed and what should be concluded (e.g., Selden and Selden 1995),
and they lack proving strategies and heuristics (e.g., Weber 2001), amongst other
factors. Further, mathematics majors cannot distinguish between valid proofs and
invalid arguments because they do not attend to the overarching logical structure of
the purported proofs that they read (e.g., Inglis and Alcock 2012; Selden and Selden
2003) or infer the mathematical principles that were used to deduce new claims in a
proof from previous assertions (e.g., Weber and Alcock 2005). After identifying
competencies that students lack, some researchers have designed instruction to help
students develop these competencies (e.g., Hodds et al. 2014; Selden, and Selden 2013;
Weber 2006) on the assumption that if students developed these competencies, their
performance on proof-related tasks would improve.

There are also researchers who believe mathematics majors’ difficulties with proof
are more fundamental than lacking a set of cognitive skills. These researchers posit that
a primary cause of mathematics majors’ difficulties is that their standards for proof are
different from those of mathematicians (Harel and Sowder 1998, 2007). As a conse-
quence, students will produce arguments that they find convincing but that mathema-
ticians would not find acceptable. Hence, helping students write proofs successfully
involves shifting students’ perceptions about the goal of the activity of proving.

Students’ Proof Schemes

In an influential paper, Harel and Sowder (1998) defined an individual’s proof scheme
to be to the ways in which that individual attempts to convince himself or herself and
persuade others about the truth of a mathematical assertion. While students’methods of
obtaining personal conviction and persuading others are related, they are not identical
(Segal 2000). In particular, students might recognize that an empirical argument is not
an acceptable proof, but still find it personally convincing (Brown 2014; Healy and
Hoyles 2000; Segal 2000) and they may believe that proofs must include symbols or be
written in a two-column format, even if they find arguments lacking symbols or written
as a narrative paragraph to be convincing (e.g., Healy and Hoyles 2000; Martin and
Harel 1989). In this paper, we are concerned with the persuasive aspect of mathematics
majors’ proof schemes– what types of inferences do students think are acceptable in a
mathematical proof?

There is a large body of research on students’ proof schemes with students who do
not have training in advanced mathematics, including middle school and high school
students, as well as preservice elementary teachers. A key finding from this research is
that a substantial number of students in these populations appear to believe that
arguments based on empirical reasoning are an acceptable form of proof (e.g., Healy
and Hoyles 2000; Knuth et al. 2009; Martin and Harel 1989; Recio and Godino 2001;
for a review and critique of this literature, see Weber 2010). There have been a smaller
number of studies with undergraduates who have completed proof-oriented mathemat-
ics courses (from here on, advanced mathematics majors) and the situation appears
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different for this population of students. When given proving tasks, such students rarely
submit empirical arguments (Iannone and Inglis 2010) and if asked to evaluate such an
argument, they will reject it as not meeting the standards of proof (e.g., Bleiler et al.
2014; Pfeiffer 2011; Segal 2000; Weber 2010). There is debate as to whether advanced
mathematics majors do this because they recognize the limitations of empirical reason-
ing (Weber 2010) or are merely following the social conventions of their classes or the
directives of their instructors (Brown 2014; Segal 2000).

Although there has been much research on students’ perceptions of empirical
arguments, the literature on students’ perceptions of visual arguments has been com-
paratively sparse. The goal of the current paper is to address this void in the literature
by describing the types of graphical arguments that advanced mathematics majors
consider acceptable within a proof. This issue is of theoretical interest in its own right,
but it also has an important consequence for the literature on proof production.
Mathematics educators have argued that diagrammatic reasoning, specifically graphical
reasoning, can and should form the basis for the proofs that students write (e.g., Alcock
2010; Gibson 1998; Raman 2003). However, for this strategy to be viable, students will
need to be able to translate their graphical arguments into an argument that satisfies the
standards of proof, something that advanced mathematics majors find difficult (e.g.,
Alcock and Weber 2010; Zazkis et al. 2014). Crucial to understanding how advanced
mathematics majors translate arguments into proofs involves knowing which inferences
these students believe need to be translated.

The Role of Diagrams in doing Mathematics

Both mathematicians and mathematics educators consider diagrams1 to be an important
component of doing and understanding mathematics (e.g., Hadamard 1945; Stylianou
2002). A critical benefit of diagrams is that they provide an individual access to view,
compare, and integrate simultaneous pieces of information with little cognitive effort.
Such reasoning is often difficult when the same information is presented sequentially
and symbolically (Dreyfus 1991; Larkin and Simon 1987). As a result, certain prop-
erties of mathematical concepts that are transparently obvious with a diagram would be
difficult to discern with non-visual representations of this concept (e.g., Piez and
Voxman 1997). For instance, one can frequently see that a function is increasing easier
from its graph than deducing it from its formula.2

Explanations involving diagrammatic reasoning often have different virtues than
those provided in a verbal-syntactic representation system. Such explanations are often
more accessible and more concrete, particularly to students of mathematics (e.g., Hersh
1993), and they can provide students with different types of learning opportunities
(Weber 2005). These explanations can also highlight aesthetics or underlying mathe-
matical principles, as is illustrated by Nelsen’s (1993, 2000) Proofs Without Words.

Many mathematicians claim that diagrams play an irreplaceable role in their math-
ematical reasoning (e.g., Burton 2004; Hadamard 1945). Research on mathematicians’

1 For the purposes of this paper, by diagram, we are referring to any visual representation of a mathematical
situation where properties of mathematical objects or relationships between mathematical objects are depen-
dent on the physical location of these objects within the diagram in two-dimensional space.
2 Such judgments, however, are fallible. For instance, graphs that are non-monotonic due to very small
wrinkles may appear to be increasing.
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problem-solving has revealed that the construction and consideration of diagrams is
commonplace and has substantial benefits (e.g., Schoenfeld 1985). For instance,
diagrams allow problem solvers to infer consequences, elaborate on mathematical
ideas, create sub-goals, and encourage metacognitive reasoning (Samkoff et al. 2012;
Stylianou 2002).

The use of diagrams has also been shown to facilitate students’ proof-writing. In an
illustrative study, Gibson (1998) explored how students in a real analysis course
overcame impasses when writing proofs. He noted Busing diagrams helped students
complete sub-tasks that they were not able to complete while working with verbal-
symbolic representation systems alone^ (p. 284) by facilitating understanding, evalu-
ating the truth of statements, generating ideas, and expressing ideas (see also Alcock
and Simpson 2004). Of course, not every inference drawn from a diagram would be
permissible in a proof without a separate deductive justification. In the following
sections, we discuss mathematicians’ and students’ views on what types of justifica-
tions are permissible within a proof.

The Normative view on the Permissibility of Diagrams in Mathematical Proof

Amongst mathematicians, the normative view is that while diagrams are useful for the
construction of proofs, they are expected to play an ancillary role in the presentation of
proof, such as helping the reader understand the proof. In principle, the validity of the
proof should not be altered by the removal of the diagram. Without necessarily
endorsing this viewpoint, Inglis and Mejia-Ramos (2009a) asserted that the common
view on the relationship between diagrams and proof presentation is this: BPictures may
be useful heuristic tools which suggest ways of understanding proofs but that they are
nevertheless inappropriate when it comes to providing unequivocal reliable evidence to
support a mathematical claim, let alone providing a proof^ (p. 100). There is suggestive
empirical evidence to support Inglis and Mejia-Ramos’ claim. For example, these
authors (Inglis and Mejia-Ramos 2009b) conducted a series of experiments in which
mathematicians were asked how persuasive they found various mathematical argu-
ments to be. The mathematicians judged the visual arguments that they evaluated as
significantly less persuasive than the conventional symbolic proofs that they read (for
further evidence, see Inglis and Mejia-Ramos 2009a). This was the case even though
the visual argument was written by a famous mathematician and is generally regarded
as mathematically correct. Recently, several philosophers have argued that visual
arguments should be perfectly convincing and hence ought to be acceptable in a proof
(e.g., Azzouni 2013; Feferman 2012; Kupla 2009). However, as these authors are
arguing against the status quo– i.e., that such arguments are usually regarded as
unacceptable– the existence of these essays in support of visual arguments offers
further evidence for the viewpoint that diagrammatic reasoning is not currently per-
missible in a proof.

There is, however, reason to doubt the universality of this viewpoint. While dia-
grammatic proofs are unusual in many mathematical domains, they are commonplace
in others, such as knot theory (e.g., Rav 1999). Nelsen’s (1993, 2000) publication of
Proofs without words, which is comprised entirely of diagrammatic arguments, is not
aimed at specialists in a particular sub-discipline of mathematics, but rather for a broad
mathematical audience. This illustrates that diagrammatic arguments can be convincing
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proofs for the wider audience of mathematicians, at least in some sense of the word
Bproof^. Even in conventional domains such as Euclidean geometry, some published
proofs implicitly rely on perceptual reasoning to make inferences, although the authors
of the proof might not be aware that they are doing so (e.g., Herbst 2004). Aberdein
(2009) described picture proofs as an instance of a Bproof*^, which he defined as
Bspecies of alleged ‘proof’ where there is no consensus that the method provides proof,
or there is a broad consensus that it doesn’t, but a vocal minority or an historical
precedent point the other way^ (p. 1). As Tall (2013) argued, the validity of reasoning
from diagrammatic arguments sometimes has formal backing. Some theorems, which
Tall calls structure theorems, can be interpreted as ensuring that diagrammatic
reasoning will not lead to fallacious inferences. For instance, a powerful
structural theorem is that any structure satisfying Peano’s postulates is isomor-
phic to the set of natural numbers (Tall 2001). This permits mathematicians to
model Peano’s axiomatic system with the natural numbers on the number line
and use their associated intuition about this line to draw inferences about the
axiomatic system. Whether mathematicians recognize visual reasoning justified
by structure theorems as admissible in a proof is an open question. In summary,
it is not clear how many mathematicians adopt or disagree with the normative
position that visual reasoning is not permissible in a proof. Empirical studies
addressing how mathematicians actually feel about visual arguments, as well as
what types of visual arguments mathematicians find acceptable for proofs in the
courses that they teach, are important avenues for future research.

Mathematics Majors’ Perceptions of Diagrams in Proofs

As we noted earlier, the literature on how students perceive diagrammatic evidence is
sparse. Harel and Sowder (1998) observed that some mathematics majors held a
perceptual proof scheme, which they defined as convincing oneself or persuading
others by appealing to a diagram without regard to how that diagram can be trans-
formed. In other words, students holding a perceptual proof scheme would draw
conclusions solely by the appearance of the diagrams. However, Harel and Sowder
did not specify how common this proof scheme is with mathematics majors.

Several empirical studies suggest that many undergraduates do not believe that
diagrams are permissible in a proof. Inglis and Mejia-Ramos (2009b) asked mathemat-
ics majors how persuasive they found a visual argument to be. They found that the
mathematics majors largely dismissed the visual argument as unpersuasive; when asked
why they did so, some students claimed they were taught that diagrams were not
allowed in a proof. Raman (2003) also found some students in calculus would try to
write a proof entirely by logical and algebraic manipulation; she argued that they did so
because they did not perceive a connection between visual arguments and the proofs
that their professors expect. Both the Inglis and Mejia-Ramos (2009b) and Raman
(2003) studies suggest that some university students overgeneralized the maxim that
Bdiagrams cannot prove^ to believe that diagrams cannot provide conviction (Inglis and
Mejia-Ramos 2009b) or that diagrams are not useful in the construction of a proof
(Raman 2003).

Weber (2010) found that advanced mathematics majors were not consistent in their
evaluations of visual arguments. Twenty-eight mathematics majors were presented with
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a diagrammatic argument that purported to establish the claim that ∫∞0
sin x

x
dx > 0. The

argument first presented a graph of the function f xð Þ ¼ sin x
x ; the argument proceeded by

observing the first positive area was larger than the first negative area, the second
positive area was larger than the second negative area, and so on, which implied the
improper integral would have positive area. Fourteen of the 28 participants evaluated
this argument as not meeting the standards of proof, with nine citing the presence of a
graph as a reason for their judgment. Weber (2010) also presented these students with a
traditional area model to establish the claim that (a+b)2=a2+2ab+b2 along with an
explanation for why the diagram related to the claim. No participant said this argument
did not meet the standards of proof 3 and 14 participants said it was their favorite
argument of the ten arguments they read in the study. One contribution of this current
paper is to offer an explanation for why the students in Weber’s (2010) study evaluated
these arguments differently.

Study 1

Rationale for Study

The original intention of Study 1 was to identify the processes that students used
as they attempted to translate graphical arguments to (what they perceived to be)
deductive proofs. However, as the study progressed, we found the interesting issue
in our data was not how participants attempted to make this translation but if and
when they chose to do so. In many cases, participants would simply include the
graphical inference that they made without attempting to provide a non-graphical
justification for it.

The main point of presenting this study is to advance two ideas. First, we noticed
that participants made two different types of graphical inferences, which we labeled
graphical perceptual inferences and graphical deductive inferences. Second, we found
that participants usually would try to justify the graphical perceptual inferences without
reference to a graph while they would often acted as if they believed the graphical
deductive inferences were permissible within a proof.

Methods

Corpus of Data

Twelve mathematics majors agreed to participate in a study about their proof writing
processes in exchange for a monetary fee. The participants consisted of students who
had recently graduated with a degree in mathematics or who had completed their junior
year. Each participant met individually with an interviewer for two 90-minute sessions.
Participants were told that they would be asked to write proofs and to Bthink aloud^ as
they constructed the proofs. They were informed they would be given ten minutes to

3 Fifteen participants thought the argument was fully rigorous, nine thought the argument was a non-rigorous
proof, and four participants said they were unsure if the argument met the standards of proof.
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complete each proof and that they should write up their final proofs as if they were
going to be graded in a mathematics exam.

Participants were asked to complete seven proving tasks from calculus and seven
from linear algebra. The data presented in this paper is from the seven calculus tasks,
which are given in the Appendix. The calculus tasks were chosen so that it would be
feasible to approach them Bsemantically^ (in the sense of Weber and Alcock 2004)–
that is, participants could make progress on the tasks by considering informal repre-
sentations of concepts such as graphs, diagrams, and prototypical examples. This
choice of tasks was informed by a grant advisory board (which included a mathema-
tician and two mathematics educators) and consultations with mathematics faculty
members at the university where this study took place.

In the first interview session, each participant began by completing a practice
problem to become accustomed to the interview format. The participant was then given
one of the study tasks. The participant was permitted to work on a proof until he or she
wrote a proof that he or she was satisfied with, the participant felt that he or she could
not make any more progress, or ten minutes elapsed (whichever event occurred first).
The interviewer then asked the participant questions about their proving process,
including a summary of what the participant did, what the main ideas of the proof
were, and how the main ideas of the proof were generated. This process was repeated
six more times for other tasks. In the second interview session, the participant attempted
the remaining seven tasks using the same protocol as above.

At any point in the study, two resources were available to the participants. First, if
participants could not recall the definition of a relevant concept, they could ask the
interviewer for the definition. At that point, the interviewer would hand them a sheet of
paper with the definition of the concept and an example of the concept. Second, partic-
ipants had access to a computer with a graphing calculator application that enabled them to
make basic calculations and view the graph of any function that they wished.

Identifying Informal Explanations

The purpose of this study was to investigate how students attempted to translate an
informal explanation into a deductive proof.

To identify informal explanations, we analyzed each of the participants’ protocols on
their proving tasks as follows: First, we flagged for every instance in which they
represented a concept. Following Weber and Alcock (2009), the representation was
coded as a syntactic representation if it consisted of the definition of a concept or a
formula and a semantic representation if it was an informal representation of a concept
such as a graph or a diagram. We then flagged each inference made by the participant
(i.e., where a participant claimed a particular assertion was true, or likely to be true, that
was not contained in the problem statement and had not been stated previously by the
participant). If the inference was drawn from a syntactic representation, we coded this
as a syntactic inference. 4 If the inference had been drawn from a semantic

4 Note that we are not claiming that the student making a syntactic inference necessarily lacked the ability to
interpret the statement in graphical terms, only that we saw no evidence that they did so in this case. A student
producing a syntactic inference may have been following a procedure rather than focusing on logic, as
discussed in Weber (2004), but as our primary concern is the student’s semantic inferences, this distinction is
not important for the purposes of this paper.
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representation, we coded this as a semantic inference. To illustrate, if a participant
graphed a specific function (a semantic representation) and observed from the graph
that the function appeared to be increasing, we coded this as a semantic inference. If the
participant represented the function by its formula (a syntactic representation) and
deduced that the function was increasing because its derivative was strictly positive,
we coded this as a syntactic inference. An informal explanation was coded as occurring
if there was a chain of inferences concluding with the statement to be proven that
contained at least one semantic inference.

By following this procedure, we identified 16 informal explanations that contained a
total of 38 semantic inferences. Each of the 38 semantic inferences involved drawing an
inference from a graph.

Analyzing Informal Explanations

We analyzed each informal explanation as well as each proof that the participant
submitted using the methodology of Pedemonte (2007). Pedemonte used a simplified
Toulmin (2003) scheme where each inference was categorized in terms of a claim (the
new statement being asserted), data (the facts that form the basis for the claim that are
accepted as true), and a warrant (a general principle for why the data necessitates the
claim). In some cases, the warrant was not explicitly stated. In these cases, the research
team would infer the warrant if we perceived an obvious connection between the data
and the claim. We classified the warrants for the semantic inferences into two types,
which we termed graphical perceptual warrants and graphical deductive warrant. We
define and illustrate both types of warrants shortly.

While our original intention was to see how participants translated the graphical
inferences into deductive inferences for the purposes of proving, we found that the
more interesting issue was whether the participants expressed the need to do so. We
coded a participant as expressing the need to translate a graphical inference if one of
the three conditions occurred: (i) the warrant used in the proof to justify the graphical
inference differed from the warrant in their informal argument, (ii) the participant
attempted to construct a sub-proof using the data from the inference as an assumption
and the claim as the conclusion but was unable to do so, or (iii) the participant
submitted the proof but expressed doubt that the proof was correct because of the
presence of this graphical inference. We coded a participant as not expressing the need
to translate a graphical inference if both of the following conditions were met: (i) the
warrant used to justify the graphical inference was the same warrant used to justify this
step in the proof that they submitted and (ii) the participant expressed no indication that
he or she had reason to doubt if this step was appropriate.

Graphical Perceptual and Graphical Deductive Inferences

Definitions in advanced mathematics are usually expressed formally, using a combina-
tion of natural language and logical syntax and lending themselves to syntactic
manipulation by means of logic and algebra. While pictures are often important for
motivating or comprehending the definition of a concept, the definition itself ordinarily
avoids direct reference to a picture. Nonetheless, it is frequently the case that formal
definitions have graphical interpretations. For instance, a strictly positive function can
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be interpreted as a function whose graph is strictly above the x-axis, an increasing
function is a graph that is continually moving upward as the graph is read from left to
right, and an even function can be interpreted as a graph that is symmetric across the y-
axis.

We found that the participants in our study frequently took a graphical interpretation
of a definition as a starting point in their reasoning. The participants used these
graphical interpretations in two ways. For graphical perceptual inferences, participants
would examine the graph of a specific function, notice from the graph that the function
satisfied the graphical interpretation of some property, and then infer that the function
had that property. Graphical perceptual inferences were of the form “A specific function
f has property P” with the warrant that “the graph of f visually satisfies a graphical
interpretation of P”.

As an example of a graphical perceptual inference, consider P10’s work on the task
“prove that the only real solution to the equation x3+5x=3x2+sin(x) is x=0”. Like many
students, P10 reformulated the problem by defining the function f(x)=x3+5x-3x2-sin(x)
and trying to show that f(x) only had a root at x=0. P10 sketched the graph of
f′(x)=3x2+5-6x-cos(x) and from the appearance of the graph, concluded
BAlright, so this [the graph of f′(x)] doesn’t hit zero at all^. Note here that
P10 is using a graphical interpretation of a strictly positive function– that the
function is above the x-axis and never intersects it– and observes that f′(x)
satisfies this condition. This alone is P10’s grounds for claiming that f′(x) is a
strictly positive function.

For graphical deductive inferences, participants would say that a function that
satisfied the graphical interpretation of some properties would necessarily satisfy
a graphical interpretation of another property. The justifications would depend
upon what they perceived to be a common sense understanding of the nature of
two-dimensional space. We chose the name graphical deductive inferences be-
cause to the individuals, these inferences are deductive in the sense that they
view them as logically necessary consequences of how properties are conceptu-
alized. They differ from conventional deductive inferences in traditional proofs
in that the conceptualization of the concepts is based on graphical considerations
rather than formal definitions and that the deduction itself involves spatial
reasoning. Graphical deductive inferences are of the form, “Since a specific
function f has property P, the function f must necessarily have property Q” with
the warrant that “One cannot construct a graph of a function satisfying the
graphical interpretation of P while not also satisfying a graphical interpretation
of Q because this would violate principles of two dimensional space”. Note that
as opposed to graphical perceptual inferences, the warrants for graphical deduc-
tive inferences avoid direct reference to the specific graph of f.

For an example of a graphical deductive inference, after inferring that f′(x) was
strictly positive (and hence f(x) was increasing) and then verifying that f(0)=0, P10
reasoned, Bthat means it [f(x)] will never cross over the x-axis again and it'll have to
decrease at some point, so it'll actually have to actually…the derivative will have to go
under the x-axis for there to be another root^. Our interpretation of this utterance is that
P10 is describing a relationship between the graphical interpretation of f(x) being
increasing (as you read from left to right, the height of the graph of f(x) will be
increasing) and the graphical interpretation of f(x) having a root after x=0 (the graph
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of f(x) will have to Bcross over the x-axis again^).5 For the graph to have another root,
the graph will have to decrease (or go down) at some point.

As a general heuristic, we can distinguish between graphical perceptual and graph-
ical deductive inferences as follows. If there was an inaccuracy in the graph that was
drawn, this could render the graphical perception to be invalid. With graphical deduc-
tive reasoning, the accuracy of the graph is less important as the graph can be viewed as
a prototype of a graph satisfying certain hypotheses (e.g., being increasing) and hence
the validity of such an inference is not dependent upon the graph.

Graphical perceptual inferences are related to Harel and Sowder’s (1998) perceptual
proof schemes, where an individual holding a perceptual proof scheme would believe a
mathematical assertion was true based solely on the appearance of a visual represen-
tation of a mathematical object (rather than results anticipated by some transformation
of this representation). The difference between the two is that we do not claim that
participants making a graphical perceptual inference necessarily have absolute convic-
tion that their inference is true or believe such inferences are appropriate in a proof. One
may reinterpret our question of whether participants expressed a need to provide a
different warrant for their graphical perceptual inferences as asking whether these
participants are exhibiting perceptual proofs schemes.

Graphical deductive inferences are related to, although not identical with, Simon’s
(1996) transformational reasoning, which anticipates the results of performing a trans-
formation on a set of objects (see also Harel and Sowder’s (1998) transformational
proof scheme). In the example in this section, one could argue that P10’s graphical
deductive inference involved imagining transforming the graph of a continuous func-
tion so that it had two x-intercepts and realizing this entailed the function must be
decreasing at some point.

Students’ Perceptions on the Appropriateness of Graphical Perceptual Inferences
and Graphical Deductive Inferences in a Proof

In Table 1, we present the number of times participants did or did not express a need to
translate their graphical inferences as a function of the type of graphical inference that
they drew. Table 1 indicates that when participants made a graphical perceptual
inference in their informal explanation, in most cases (68 %), participants expressed
a need to translate this inference when writing up their proof. However, when partic-
ipants made a graphical deductive inference, participants did not express this need the
majority of the time (74 %). We illustrate this with two examples.

A First Example of Providing Justification for Graphical Perceptual Inferences

For the first example, P3 was attempting the following task:

Suppose f′′(x) > 0 for all real numbers x. Suppose a and b are real numbers with
a<b. Define g(x) as the line through the points (a, f(a)) and (b, f(b)). Prove that for
all x in [a, b], f(x)≤g(x).

5 Note P10’s explanation is only sufficient to show that f(x) has no positive roots, not that it has no roots other
than x=0. However, our intention is not to judge the quality or correctness of P10’s reasoning.
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P3 attempted to prove this statement by contradiction. To do so, P3 first drew a
graph where there was an x between a and b such that f(x)>g(x). This graph is presented
in Figure 1. (The entirety of P3’s written work and the proof that she submitted is
presented in the Appendix). Note that in Figure 1, the variables a and b are represented
as an interval on the x axis, g(x) is the line connecting (a, f(a)) and (b, f(b)), and f(x) lies
above g(x) on the interval (a, b). P3 then presented the following argument based on the
picture.

[1] So my pretend point is up here [P3 draws a point whose x-coordinate was in the
interior of the interval (a,b) with the point lying above the graph of g(x). Note that
the existence of such a point is implied by assuming the statement to be proven is
false].
[2] And I think the way I’m going to do this is by saying that if my function looks
like this [pause] then it has.....so I can use the Intermediate Value Theorem I think,
to do this…
[3] So this slope will be greater than 0, [draws a line between (a, f(a)) and the point
plotted in step [1]] and this one [draws a line between the point plotted in [1] and
(b, f(b))] will be less than 0.
[4] So there are values…in fact for all of the values here, f'>0 [draws a parabolic
curve and writes f′>0] and f′<0 [writes f′<0 to the right of (x, f(x))]. Which means
that somewhere on this interval that f′′ needs to be 0 […] I need to contradict that
f′′>0 so if I can show that if this is the case [points at the graph] than f′′ has to equal
0 somewhere […] in this interval […] and then that contradicts my hypothesis.

In [2], P3 makes two perceptual inferences– namely that f is increasing between a
and x and f is decreasing between x and b. (P3’s decision to label the point where

Table 1 Participants’ Expressing a Need to Translate Their Graphical Inferences by Type of Inference

Perceptual inferences Deductive inferences

Expressed need to translate 13 (68 %) 5 (26 %)

Did not express need to translate 6 (32 %) 14 (74 %)

Fig. 1 P3’s graph for her informal argument
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f(x)>g(x) as x makes it difficult for us to smoothly describe her work). As P3
observed later, these graphical perceptual inferences were not valid as her
hypothetical point (x, f(x)) need not appear with a higher altitude than the
point (a, f(a)). With these assumptions, P3 incorrectly uses the Intermediate
Value Theorem6 to conclude that there must be a value where f”(x)=0. When
P3 attempted to write up the proof, she began by trying to provide algebraic
backing for these two perceptual inferences. She wrote that f(x)-f(a)>0 and x-

a>0 and used this to infer that f xð Þ− f að Þ
x−a > 0. Upon making this inference, P3

then noticed a flaw in her reasoning, stating:

[6] So then f(x) minus f(a)…no that’s not true. I think I’ve drawn a picture
in a way that tricks me actually. Because it’s not true that f(x)…I wanted to
write that f(x)-f(a) is greater than 0, but actually the picture could’ve been
something like this [draws graph in Figure 2, a generic concave down arc
such that the first intersection of the arc and the line is higher up, or has a
greater y-value, than the second intersection] and you know, f(x) would be
somewhere out here. Sorry I need to think about this for a second because
I need to set it up correctly and it should just fall out but I actually have
to set it up correctly.

P3’s final proof, presented in Figure 3, is based on a faulty use of “without loss of
generality” to retain her original argument. What is clear from this episode is that P3
recognized that her two perceptual inferences required algebraic backing and this
backing is provided in the proof that she submitted.

A Second Example Where P5 Expresses the Need to Provide Algebraic Support
for Graphical Perceptual Inferences, but not Graphical Deductive Inferences

For the second example, we describe P5’s attempt to prove that the only real
solution to the equation x3+5x=3x2+sin(x) is x=0. P5 initially attacked this
problem by expressing sin x as its Maclaurin series, but quickly abandoned this
approach when he saw its algebraic complexity. P5 then transformed the
problem into showing that f(x)=x3+5x-3x2-sin(x) had a root at x=0. He used
the graphing software to graph f(x) and said:

[1] Oh God there is a much easier way to do that. So this function becomes the
function x3-3x2+5x-sin(x) …we know that’s equal to zero.
[2] But if this is our function, and if we take the derivative of this function…the
derivative is…3x2-6x+5…derivative of sine is cosine, so minus cos(x).
[3] So the most cos(x) can take away from this is…the absolute value of cos(x) is at
most 1, so this is less than or equal to…I want to take absolute value. So we want
to prove that this is greater than 0 for all x, and…

6 Actually, the Intermediate Value Theorem would imply that there is a c on the interval [a,b] where f′(c)=0,
which would not contradict any of the hypotheses in the proposition to be proved. However, it would be
sufficient to show that f′(x) could not have a positive value and then a negative value, as this would imply f′(x)
was not strictly increasing, as asserted by the assumption that f′′(x)>0.
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[4] if we can do that then we can prove what the graph shows us, that the function
is increasing…and if the function is increasing everywhere then…I think that’s
what the graph shows us.
[5] If we can prove that the function is increasing everywhere, then we’ve done
enough to show that 0 is the only real solution, because if the function is increasing
everywhere and it crosses at zero then it can’t go back.

After making these comments, he manipulated f′(x) and (erroneously) believed it
was sufficient to prove that 3x2+5>6x so he graphed both sides of the inequality and
said:

[6] We want 3x2+5 greater than 6x [P5 graphs 3x2+5 and 6x on the same screen].
Hey look it’s everywhere, which is exactly what we needed it. Can I use that as
part of the proof? Or should I ‘prove it’ prove it?

Fig. 2 P3’s second graph for how the conclusion of the proposition can be contradicted

Fig. 3 P3’s submitted proof of the proposition
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Here, the interviewer replied, BI mean however you would write it in an exam^. P5
spent the remainder of his time attempting to prove that f′(x)>0, but was not successful.
For the proof, P5 presented the following:

Let y=x3 - 3x2+5x - sin x. Observe that y=0when x=0, and that y′(x)=3x2- 6x+5 - cos(x),
which is positive for all x, so the function is always increasing & cannot
therefore cross the x-axis anywhere else, so 0 is the only solution.

In this protocol, P5 made two graphical perceptual inferences. The first was that f(x)
was increasing. In [4], P5 expresses a need to provide a non-graphical justification for
this, saying, “if we can prove what the graph shows us [that f(x) is increasing]”. The
proof itself does contain such a justification, that f′(x) is strictly positive. The claim that
f′(x) is strictly positive was also a graphical perceptual inference, but again P5 expresses
doubt about its appropriateness in [6], where he says, BCan I use that as part of the
proof? Or should I ‘prove it’ prove it?^ When told to proceed as if he were answering
an exam question, he continued to search for an algebraic justification. He was unable
to find one and the statement appears unjustified in the proof, but P5 clearly demon-
strated a need to do so.

P5 also made a graphical deductive inference in [5], noting that f(x) cannot
have two roots because Bif it is increasing and it crosses at zero then it can’t go
back^. However, he does not express a need to justify this in a non-graphical
manner, saying in [5] that if he can establish that f(x) is increasing, Bthen we’ve
done enough to show that 0 is the only solution^. No further justification is
presented in the proof.

Summary

From this study, we introduced the constructs of graphical perceptual inference and
graphical deductive inference. By analyzing students’ actions after making each infer-
ence, we have the hypotheses that the participants perceive the validity of each
inference differently. In particular, participants demonstrated a strong propensity to
believe that graphical perceptual inferences, but not graphical deductive inferences,
required non-graphical justifications in a proof.

There are three limitations to this study that prevent us from making broad conclu-
sions. First, the results from this study were based on only 16 informal explanations. A
larger sample is needed before attempting to generalize the findings of this study to the
larger population of advanced mathematics majors. Second, in other publications, we
cautioned researchers not to infer what proof schemes that students possess based on
the justifications that they submit for credit (e.g., Weber 2010; Weber et al. 2014), in
part because students may realize that they are handing in a flawed product (see also
Stylianides and Stylianides 2009). Perhaps students did not attempt to justify graphical
deductive inferences in a non-graphical manner for reasons that they did not state orally
(e.g., time constraints or they perceived such a justification to be too difficult to
construct). Third, while students were asked to write up proofs as if they were
completing an examination, the course in which this exam was given was not specified
to students. It may have been the case that students thought such an explanation was
appropriate on a first-semester calculus exam, but not a real analysis exam. We
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conducted a confirmatory quantitative study that addresses each of these three
concerns.

Study 2

Rationale for Study 2

The goal for Study 2 is to explicitly test the main hypotheses generated from Study 1–
that mathematics majors believe graphical deductive inferences are permissible in a
proof but graphical perceptual inferences are not– while addressing the limitations from
Study 1. Participants in this study viewed three proofs, each of which contained a
graphical perceptual and a graphical deductive inference. They were asked to judge
whether each inference was appropriate for a proof and if their professor would take off
points if that inference appeared in a proof.

This study addresses the limitations in Study 1 in the following ways: First, 90
mathematics majors participated in the study, limiting the possibility that the findings
from Study 1 were an artifact of having a small sample. Second, participants were
explicitly asked which graphical inferences would be permissible in a proof, a more
direct and transparently valid way to address the research questions in this paper. Third,
participants were told these proofs were given in a specific class (half were told real
analysis and half were told introductory calculus), eliminating ambiguity about the
context in which the proofs were couched.

Methods

The use of an Internet Study

Following the methodology employed by Inglis and Mejia-Ramos (2009b), we col-
lected data through the Internet in order to maximize our sample size. Recent studies
have examined the validity of Internet-based experiments by comparing this type of
studies with their laboratory equivalents (e.g., Kranz and Dalal 2000; Gosling et al.
2004). The notable degree of congruence between the two methodologies suggests that,
by following simple guidelines, Internet data has comparable validity to more tradi-
tional data. We adopted the measures described in Inglis and Mejia-Ramos (2009b) to
ensure the validity of our data.

Participants

We recruited mathematics majors to participate in this study as follows. Twenty-four
secretaries from top-ranked mathematics departments in the United States 7 were
contacted and asked to distribute an email to the mathematics majors at their university.
The email invited mathematics majors who had completed a course in real analysis to
participate in our study. Mathematics majors who agreed to participate in our study
could click on a hyperlink that directed them to the website of the study. When they

7 As ranked by the USNews.com BBest Graduate Schools^ list of Btop mathematics programs^.
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clicked on the page, the study began by asking for demographic information. One
question asked participants if they had taken a course in real analysis. The data for
students who answered no to this question was not included in our study.8 Through this
process, we recruited 90 mathematics majors who claimed to have taken a course in
real analysis and completed our experiment.

Procedure

Upon participating in the experiment, participants were randomly assigned to the real
analysis or introductory calculus group. Participants in the real analysis group received
the following instructions:

We will ask you to read three mathematical statements and proofs. After carefully
reading, please respond to the questions that follow as if the proofs are items on an
exam in a real analysis class in your university. Two questions will be asked
following each proof. The first question will ask you whether you think a step in
the proof is sufficiently justified for an exam in a real analysis class. The second
question will ask you whether you think your class’ professor would take points
off of the exam for the step.
We will first provide you with an annotated and answered sample item to clarify
the questions we are asking. Each proof will also be separated into steps so the
reasoning is easier to follow. (The phrase Breal analysis^ was given in bold font
and underlined on the actual webpage).

The text for the calculus group was identical, except the Breal analysis class^ phrases
were substituted with Bfirst year calculus class^.

Next, participants were shown a worked example to illustrate the ideas of the
experiment. They were shown a sample proof of the claim that B 1

x4þx2þ2xþ1 þ 1 was
positive for all real-valued x^. Step 1 of the proof claimed that Bmy roommate told me
that 1

x4þx2þ2xþ1 was positive^. In the worked example, step 1 was evaluated as not being
an adequate justification in a calculus/real analysis class and that the professor would
take points off, because even though the claim in Step 1 is true, appealing to one’s
roommate is presumably regarded as an impermissible justification. Step 2 declared
that since 1

x4þx2þ2xþ1 was positive and 1 was positive,
1

x4þx2þ2xþ1 þ 1 was positive. In the
worked example, this step was considered acceptable, since if one assumed step 1 as
correct, step 2 is only using the accepted fact that the sum of two positive numbers is
positive. One reason for presenting this worked example is to make participants aware
that one could accept a step in the proof as permissible, even if the step is logically
building on a previous step that was problematic.

From here, participants saw three proofs in a randomized order, where each
proof contained a graphical perceptual inference and a graphical deductive
inference (the proofs are presented in Appendix and discussed shortly). They
were first shown the theorem statement and asked to read the proposition. They
were then shown a proof of the proposition with the graphical perceptual

8 Only five of the 95 students who completed the study answered no to this question.
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inference shown in red and were asked the following two questions: BDo you
think the argument in step x is an adequate justification for the claim that
[claim made in step x] if the proof was written on an exam for a real analysis
student^. They were also asked, Bdo you think the professor would take points
off for the justification of the step highlighted in red if the proof was written
on an exam for a real analysis class?^ (In each case, Breal analysis^ appeared
in bold in the instructions. The calculus group had Bfirst year calculus^ printed
in place of Breal analysis^. The variable Bx^ represented the step number where
the graphical perceptual inference was highlighted in red). This was then
repeated with the graphical deductive inference highlighted in red with the
same two questions being asked.

Materials

There were three proofs used in this study, each of which contained a graphical
perceptual and a graphical deductive inference. The complete tasks are given in
the Appendix. We illustrate our task with Proof 2, which purports to establish that

the derivative of e−x
2
is odd. (This proof is adapted from the task in Raman 2003).

The proof begins by presenting a graph of f(x)=e−x
2
. Step 1 in the proof is the

graphical perceptual inference, stating “we can see from the graph that f(x) is
symmetric across the y-axis”. Step 3 in the proof is a graphical deductive inference
that builds upon Step 1, claiming, BThus for any point a, the tangent line of f at a
and the tangent line of f at -a will be mirror images of each other. Thus the slopes
of these tangent lines will have the same magnitude but opposite signs^.

In addition to the three proofs found in the Appendix, we added two other
tasks, one involving an inference that we believed was clearly valid and
acceptable and a second that we believed was clearly invalid and unacceptable.
In Proof 3, we highlighted an inference that we thought was clearly justified in
an adequate manner (an algebraic demonstration that the solutions to 12x2−4x3=0 are
x=0 and x=3). When participants evaluated Proof 3, in addition to the graphical
perceptual inference and the graphical deductive inference, they were also asked
if this transparently good inference was appropriate and whether the professor
would take points off for this step in the proof. We presumed that if
participants were taking our tasks seriously, the answer the participant would
judge this as appropriate and would claim a professor would not take points off
for this.

For a transparently bad inference, we created an alternative proof to Proof 1
that we believed was clearly inadequate (claiming x=0 was the only solution to
an equation by verifying that x=0 was a solution). Prior to reading Proof 1, the
participants read a proof consisting entirely of the transparently bad inference
and were asked if this inference was appropriate and whether the professor
would take points off for this step in the proof. We presumed that if partici-
pants were taking our tasks seriously, the participant should claim this inference
was not appropriate and a professor would take points off for it. We included
these additional inferences to be sure that participants were not saying that
every inference was acceptable or that no inference was acceptable.
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Planned Comparisons

We planned to test two specific hypotheses in this study. Hypothesis 1 is that partic-
ipants will find graphical deductive inferences as more permissible in a proof than a
graphical perceptual inference. Hypothesis 2 is that participants in the calculus condi-
tion will be more likely to find an inference as acceptable than participants in the real
analysis condition.

Results

What Inferences are Acceptable within a Proof?

In Table 2, we present the percentage of participants who thought each of the eight
inferences in the study was acceptable for a proof on an exam. In Table 3, we aggregate
participants’ judgments across the three graphical perceptual inferences and the three
graphical deductive inferences. We first note that the transparently good and bad
justifications had their desired effects. From Table 2, we see that 98 % of the
participants thought the transparently good justification was acceptable in a proof and
less than 10 % of the participants judged the transparently bad inference to be
acceptable.

Related-samples Wilcoxon signed-rank tests reveal that for both the Real
Analysis group and the Calculus group, participants found more graphical
deductive inferences than graphical perceptual inferences within a proof to be
acceptable (p<.001 for both comparisons), confirming Hypothesis 1. However,
we found no statistically reliable difference between the Real Analysis and
Calculus participants regarding their judgments of either the graphical percep-
tual inferences (Mann–Whitney, U=1136.5, p=.217) or the graphical deductive
inferences (Mann–Whitney, U=1024, p=.827). Hence, this data does not sup-
port Hypothesis 2, that participants would find more inferences acceptable
within a calculus context than a real analysis context.

In Table 4, we present the percentage of participants who were completely
consistent in their evaluations of both the graphical perceptual and graphical
deductive inferences on the three proofs in this study (i.e., participants who
judged all three of a type of inference as acceptable or all three as unaccept-
able). As Table 4 illustrates, the majority of participants in both the calculus
and real analysis conditions thought no perceptual inferences were acceptable
and the majority judged all three graphical deductive inferences to be
acceptable.

Table 2 Participants’ Judgments of Acceptability of an Inference by Inference

Condition Good Bad Perceptual inferences Deductive inferences

Inf. Inf. Proof1 Proof2 Proof3 Proof1 Proof2 Proof3

Real analysis (N=40) 98 % 10 % 18 % 23 % 25 % 68 % 60 % 80 %

Calculus (N=50) 98 % 6 % 30 % 30 % 32 % 76 % 66 % 76 %
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For What Inferences would a Professor take Points off?

In Table 5, we present the percentage of participants who thought a professor
would take off points for each of the eight inferences in this study. In Table 6, we
aggregate participants’ judgments across the three graphical perceptual inferences
and the three graphical deductive inferences. Tables 5 and 6 show trends similar to
Tables 2 and 3. Most participants believed a professor would not take off points
for the transparently good inference but would do so for the transparently bad
inference. Related-samples Wilcoxon signed rank tests demonstrated that both the
Real Analysis participants and the Calculus participants judged professors more
likely to take off points for the graphical perceptual inferences than the graphical
deductive inferences (p<.001 in each case), thereby confirming Hypothesis 1.

As opposed to their judgments on whether an inference was appropriate, the Real
Analysis participants were more likely than the Calculus participants to believe the
professor would take points off, both for the graphical perceptual inferences (Mann–
Whitney, U=760.5, p=.034) and the graphical deductive inferences (Mann–Whitney,
U=730, p=.015), confirming Hypothesis 2.

Accounting for the Differences between Validity and the Professor Taking Points off

For Hypothesis 2, we predicted that (a) participants were more likely to judge graphical
perceptual and graphical deductive as valid in a calculus setting than a real analysis
setting and (b) participants were more likely to believe a professor would take points off
in a real analysis setting than a calculus setting. Our data confirmed (b) but not (a). We
did not anticipate this result. We performed the following post-hoc analysis in an
attempt to explain this discrepancy.

Table 3 Participants’ Aggregate Judgments of the Acceptability of Graphical Perceptual Inferences and
Graphical Deductive Inferences

Experimental
Condition

Graphical perceptual
inferences

Graphical
deductive inferences

Real analysis (N=40) 22 % 69 %

Calculus (N=50) 31 % 73 %

Table 4 Consistency of participants’ judgments across the graphical perceptual inferences and the graphical
deductive inferences

Experimental condition Judged all three
perceptual inf.
as acceptable

Judged no
perceptual inf.
as acceptable

Judged all three
deductive inf.
as acceptable

Judged no
deductive inf.
as acceptable

Real analysis 5 % 63 % 55 % 8 %

Calculus 10 % 52 % 60 % 8 %
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To see if there was an interaction between the experimental condition (Real Analysis
vs. Calculus) and the type of evaluation of being made (appropriate vs. whether a
professor would take points off),9 we tabulated the cases where there was an inconsis-
tency between a participant’s judgment on a graphical perceptual or graphical deductive
inference. That is, we counted the cases where (i) the participant indicated an inference
would be appropriate for a proof but also that the professor would take points off and
(ii) the participant indicated that an inference would be unacceptable for a proof but the
professor would not take points off.

We found that situation (i) occurred 12 times in the Calculus condition (.24
times per participant) and 17 times in the Real Analysis condition (.43 times
per participant). A post-hoc Mann–Whitney test did not find a significant
difference in the occurrences of situation (i) between the two experimental
conditions (U=867.5, p=.123).

Situation (ii) occurred 28 times in the Calculus condition (.54 per partici-
pant) and seven times in the Real Analysis condition (.18 per participant). A
post-hoc Mann–Whitney test found a significant difference between the two
groups in this respect (U=1222.5, p=.016), suggesting participants in the
Calculus condition were more likely to believe calculus professors would be
lenient in their grading of inferences that they felt were invalid. As these tests
were not planned comparisons, we treat this account as speculative and recom-
mend verifying this trend in a future study.

Discussion

Summary of Main Results

In this paper, we distinguished between two types of graphical inferences:
graphical perceptual inferences and graphical deductive inferences. We investi-
gated advanced mathematics majors’ perceptions of the appropriateness of both
types of inference within a proof after having taken a course in real analysis.
Our main findings are that: (i) Most advanced mathematics majors indicated

9 Of course, obtaining statistical significance in one comparison but not another comparison does not
necessarily imply that the size of the effects in the two comparisons differed significantly.

Table 5 Participants’ judgments of whether professor would take off points by inference

Condition Good Bad Perceptual inferences Deductive inferences

Inf. Inf. Proof1 Proof2 Proof3 Proof1 Proof2 Proof3

Real analysis (N=40) 3 % 93 % 83 % 73 % 78 % 40 % 48 % 33 %

Calculus (N=50) 4 % 94 % 66 % 54 % 60 % 20 % 36 % 20 %
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that they did not believe graphical perceptual inferences were appropriate in a
calculus proof. (ii) Most advanced mathematics majors indicated that they
believed graphical deductive inferences were appropriate in a calculus proof.
(iii) Whether a proof was given in a calculus or real analysis context did not
significantly alter participants’ judgments about the appropriateness of an infer-
ence in a proof, but it did influence their judgments of whether a professor
would take off points for including such an inference. Our tentative account of
this finding is that participants believed that professors in a calculus course
were less likely to penalize an invalid inference. (iv) As Study 1 illustrates,
these perceptions affected the way that advanced mathematics majors attempt to
translate informal arguments into proofs. The participants in Study 1 generally
expressed a need to justify a graphical perceptual inference via conventional
deduction but believed a graphical deductive inference can be written in a proof
without translation.

Caveats and Limitations

There are three important limitations of our study. First, although Study 2
examined mathematics majors’ perceptions of the appropriateness of graphical
arguments with a reasonably large number of participants, the number of tasks
used was relatively small (three graphical perceptual inferences and three
graphical deductive inferences) and all in the same context (elementary calcu-
lus). It is possible that using a wider range of tasks, including tasks in a
domain other than calculus, may have elicited different responses from these
mathematics majors. Also, the consistency that many participants demonstrated
with their evaluation of the three graphical perceptual inferences and three
graphical deductive inferences may have been an artifact of using only three
tasks.

Second, as we indicated in our opening section, we are unsure of how
mathematicians would judge the appropriateness of the inferences that we
presented to students. It is plausible that mathematicians might have considered
the graphical deductive inferences to be acceptable in a proof, perhaps because
they were permitted by the existence of a structure theorem (Tall 2013), or
there might not be a consensus amongst mathematicians on the appropriateness
of some inferences. For this reason, we deliberately refrained from making
normative judgments on participants’ evaluations. We believe more research
on mathematicians’ practice is needed to address these issues.

Table 6 Participants’ aggregate judgments of graphical perceptual proofs and graphical deductive proofs

Experimental
condition

Graphical perceptual
inferences

Graphical
deductive inferences

Real analysis (N=40) 78 % 40 %

Calculus (N=50) 60 % 25 %
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Third, it is plausible that advanced mathematics majors from top ranked
universities who agreed to participate for free on a survey about real analysis
had a better understanding of real analysis than a typical student. This is a
common bias in empirical studies that recruit mathematics majors from ad-
vanced mathematics courses; students who perform poorly in these courses
likely exhibit a greater reluctance to participate in such studies. Hence, the
findings may not necessarily generalize to all mathematics majors who com-
pleted real analysis.

Relationship to the Mathematics Education Literature

Weber (2010) found that some mathematics majors were inconsistent in their
evaluation of visual arguments. The participants in his study all believed that a
justification using an area model of multiplication to show that (a+b)2=a2+
2ab+b2 constituted a proof, but many did not think a graphical argument

showing that ∫∞0
sin x

x
dx > 0 was a proof. The results reported in this paper

both corroborate and explain these findings. The first argument in Weber’s
(2010) study used a graphical deductive inference while the second employed
a graphical perceptual inference. In this study, we find that many advanced
mathematics majors are accepting of the former but not the latter in a proof.

Harel and Sowder (1998) noted that some mathematics majors held percep-
tual proof schemes, meaning that they would convince themselves and persuade
others by the appearance of a graph or diagram. Our data support Harel and
Sowder’s claim in that these data verify that some mathematics majors were
willing to accept some of the graphical perceptual inferences as valid. However,
the data also suggest such perceptions are uncommon with advanced mathe-
matics majors, at least with respect to the persuasive aspect of this proof
scheme. In Study 1, participants usually expressed a need to justify their
graphical perceptual inferences. In Study 2, the majority of the participants
claimed that all three graphical perceptual inferences would not be appropriate
in a proof.

Raman (2003) conveyed concern that some mathematics students would be
reluctant to base their proofs off of informal personal arguments. She exempli-
fied this by showing a graphical argument that employed a graphical deductive
inference and claiming that students would not use such a graphical argument
when writing a proof. Raman conjectured that this is due to calculus students
(not necessarily advanced mathematics majors) having an undesirable epistemo-
logical belief that there is no connection between the formal (non-graphical)
proofs that one produces and the informal (possibly graphical) arguments that
one uses to understand why something is true. Our data suggest that this does
not appear to be a significant concern with most advanced mathematics majors.
Not only did the participants in Study 1 and Study 2 believe graphical
arguments can form the basis for a formal proof, they also believe that
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graphical deductive inferences are appropriate for a proof and require no
translation. The majority of participants in Study 2 judged all three graphical
deductive inferences to be appropriate in a proof and 92 % of participants
found at least one of the three inferences of this type to be appropriate.

Suggestions for Future Research

We suggest two avenues for future research. First, it is important to investigate
mathematicians’ viewpoints on the validity of graphical inferences in a proof and their
appropriateness in proof-oriented mathematics courses. This research would be impor-
tant for determining whether the viewpoints expressed by some students in this study
were normatively correct and for setting instructional goals for the beliefs about proof
that we want students to develop.

Second, it would be worthwhile to conduct qualitative studies on why
students hold the beliefs that they do about graphical deductive inferences
and graphical perceptual inferences. Our data suggest that a substantial number
of advanced mathematics majors accept the former as valid but reject the latter
as invalid. Are these students aware that they are treating these two types of
inferences differently? Do they perceive graphical deductive inferences as being
in a separate category than graphical perceptual ones? If the answer to the
previous two questions is yes, what rationale do they provide for why the
former are permissible while the latter are not?
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Appendixes

Calculus tasks used in Study 1

1. Suppose f(0)=f ′(0)=1. Suppose f″(x)>0 for all positive x. Prove that f(2)>2
2. Prove that the only real solution to the equation x3+5x=3x2+sin x is x=0.
3. Suppose f(x) is a differentiable even function. Prove that f ′(x) is an odd function.
4. Prove that a2+ab+b2≥0 for all real numbers a and b.
5. Suppose f″(x)>0 for all real numbers x. Suppose a and b are real numbers with a<

b. Define g(x) as the line through the points (a,f(a)) and (b,f(b)). Prove that for all
x∈[a,b],f(x)≤g(x).

6. Prove that ∫− aa sin3(x)dx=0 for any real number a.
7. Let f be differentiable on [0,1], and suppose that f(0)=0 and f ′ is increasing on

[0,1]. Prove that g xð Þ ¼ f xð Þ
x is increasing on (0,1).
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P3’s scratch work and proof

Tasks used in Study

Proposition 1 Prove the only real solution to equation x3+5x=3x2+sin(x) is x=0
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Proof.

Step 1. We can rewrite the given equation as x3−3x2+5x−sin(x)=0. Then it suffices
to show that f(x)=x3−3x2+5x−sin(x)=0 if and only if x=0.

Step 2. First, we know that x=0 is a solution since f(0)=03−3∗02+5∗0−sin(0)=0.
So we show that x=0 is the only solution.

Step 3. Given the graph of f (x) above, f (x) is strictly increasing.
Step 4. Because f (x) is strictly increasing, f (x) does not have a positive root, since it

will have to come back down or remain flat which contradicts the fact that f
(x) is strictly increasing.

Step 5. Similarly, f(x) does not have a negative root. Thus x=0 is the only
solution.

STEP 3 is the graphical perceptual inference
STEP 4 is the graphical deductive inference

Proposition 1 Prove that the derivative of f (x)= e−x2 is odd.

Proof.

Step 1 From the graph, we see that f (x) is symmetric across the y-axis.
Step 2 For any a, the slope of the tangent line of f at a is f ′(a).
Step 3 By step 1, f (x) is symmetric across the y-axis. Thus, for any point a, the

tangent line of f at a and the tangent line of f at – a will be mirror images of
each other. Thus the slopes of these tangent lines will have the same magni-
tude but opposite signs.

Step 4 Thus, from step 2 and step 3, we get f ′(a)=−f ′(−a) for any a and f ′ is odd, as
desired.

STEP 1 is the graphical perceptual inference
STEP 3 is the graphical deductive inference
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Proposition 1 Prove that the equation 4x3−x4=30 has no real solutions.

Proof.

Step 1. Let f(x)=4x3−x4. Since f (x) is polynomial function, f (x) is continuous.
Step 2. From the graph above, we see that f (x) tends to −∞ as x tends to −∞.
Step 3. Similarly, f (x) tends to −∞ as x tends to ∞.
Step 4: By steps 2 and 3, f (x) tends to −∞ as x tends to −∞ and x tends to ∞.

Therefore, f (x) must be bounded. If not, f (x) must have a vertical asymptote,
which implies, f (x) is not continuous.

Step 5. Taking the derivative of f (x) we get f ′(x)=12x2−4x3.
Step 6. Setting f ′(x)=0 gives 12x2−4x3=0. This can be simplified to 4x2(3−x)=0.

Hence, a solution to this equation occurs when 4x2=0 or 3−x=0 and so x=0
or x=3. Thus f ′(x)=0 when x=0 and x=3. Thus f (x) has critical points x=0
and x=3.

Step 7. Since f (x) is bounded above, one of these critical points must be a global
maximum. Since f(0)=0 and f(3)=27,f(0)<f(3), and thus f(3) is a global
maximum. So f(x)<f(3)<30 for all x ∈ ℝ, the equation 4x3−x4=30 has no
real solutions.

STEP 2 is the graphical perceptual inference
STEP 4 is the graphical deductive inference
STEP 6 is the transparently good inference
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