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Abstract In this article, a thinking-as-communicating approach is used to analyse calculus
students’ thinking in two environments. The first is a ‘static’ environment in the sense of
static visual representations, such as those found in textbook diagrams, while the second is a
dynamic environment as exploited by the use of dynamic geometry environments (DGEs).
The purpose of the article is to compare calculus students’ communication as it is facilitated
by each of these two environments, and to explore the role of paper- and digital-mediated
representations for positioning certain ways of thinking about calculus. The analysis
provides evidence that the participants employed different modes of communication –
utterances, gestures and touchscreen-dragging – and they communicated about fundamental
calculus ideas differently when prompted by different types of representations. The study
presents implications for teaching dynamic aspects of functions and calculus, and argues for
a multimodal view of communication to capture the use of gestures and dragging for
communicating dynamic and temporal mathematical relationships.

Keywords Thinking-as-communicating . High school calculus . Dynamic geometry
environments . Textbook diagrams . Touchscreen-dragging

Introduction

Studies have shown that calculus students have significant difficulties connecting alge-
braic with graphical representations of calculus concepts and in dealing with simulta-
neous change of variables in calculus relationships (Tall and Vinner 1981; Tall 1986;
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Graham and Ferrini-Mundy 1989; Thompson 1994; Ubuz 2007). Within the North
American curriculum, students are seldom given opportunities to work with covariation
and functions in a dynamic sense during their pre-calculus years. Traditional methods for
teaching functions and their transformations are inadequate, as functions are commonly
only manipulated algebraically at the object level without making use of the idea of
continuous change. The tendency to think of functions and graphs as static objects, rather
than as dynamic processes, may contribute to their struggles in the learning of calculus.

Classic studies have offered insights into obstacles for learning various calculus
concepts, such as graphical interpretations of the derivative, limit, rate of change,
differentiation and the fundamental theorem of calculus (FTC). Tall and Vinner
(1981) traced students’ difficulties in the study of limits and continuity to a dichotomy
between dynamic and static notions of the concepts. They characterized the problem as
students having non-cohering concept images and concept definitions. Studies have
shown that a dynamic limit definition, which includes a definite feeling of motion, has a
strong influence on students (Williams 1991; Tall 1980). Even after students are
exposed to formal limit instruction, they continue to hold dynamic views of limit.

These studies all contend that a dynamic conception is both easy to grasp and natural
to develop for students. Graham and Ferrini-Mundy (1989) approached the problem via
students’ representation of limits, showing that students’ algebraic understanding of
limits is independent of their graphical understanding. When students were asked to
evaluate limits of the form limx→ af (x), they are quite successful, but when asked for a
geometric interpretation, students showed very little understanding. In one interview, a
student explained that limit problems were simply functions to be evaluated and that the
graph cannot help them find an answer.

Thompson (1994) found that visual understanding of the simultaneous change of all
three variables, x, f(x) and ∫ax f (t)dt in the FTC to be a challenge for students. Similarly, a
number of studies reported students’ difficulties in creating a graphical representation of a
function’s rate of change function (Tall 1986; Ubuz 2007). Berry and Nyman (2003)
confirmed students’ algebraic–symbolic view of calculus and the fact that they found it
difficult to make connections between the graph of a derived function and that of the
function itself. Furthermore, they indicated that students’ thinking about the links between
the graphs of a function and its derived function was enhanced by asking students to ‘walk’
these graphs as if they were displacement–time graphs. Their study suggests that these
tasks help students to extend their understanding of calculus concepts from a symbolic
representation to a graphical representation – and to what they termed a ‘physical feel’.

This brief review of some classic studies on students’ difficulties in the learning of
calculus reveals that a split exists between graphical and algebraic representations, and that
students have difficulties working robustly with dynamic elements of calculus beyond a
physical and intuitive level. While students still struggle with calculus, more recent studies
have shown instances of positive effects on calculus learning made possible by technology.
In particular, the introduction of dynamic geometry environments (DGEs) has given rise to
newways of doing and representing calculus (see sub-section BThe Learning of Calculus in
Dynamic Environments^ for a fuller review). DGE capabilities fill the gap among numer-
ical, algebraic and graphical representations of functions by producing a seemingly limitless
table of values for an algebraic expression by means of the act of continuous dragging.

I hypothesised that students’ communication of calculus ideas via DGEs (in particular,
via touchscreen-based DGEs) would differ from that in a static environment in terms of
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how simultaneous change, graphs and dynamic properties of functions and relationships
would be communicated. The study reported in this article investigated high school
calculus students’ communication across two different environments: the first is a ‘static’
one, in the sense of static visual representations as those found in textbook diagrams, while
the second is a dynamic one, as exploited by the use of DGEs. The ability to make
connections across representations and to work with dynamic elements of calculus lies at
the core of developing calculus thinking. This article further contributes to current research
on the role of DGEs for developing calculus thinking, by exploring the role of paper- and
digitally-mediated representations in framing certain ways of thinking about calculus.

In the next two sub-sections, I review the ways that static visual representations
(such as textbook diagrams) convey the idea of ‘change’ in the study of calculus, and
then discuss literature that points towards certain positive effects of using DGEs for the
learning of calculus. Then, in subsequent sections, I describe the communicational
framework and specific methodological tools I used for studying calculus thinking,
followed by detailed analyses of two pairs of students communicating across two
environments. Finally, I conclude by discussing the role of paper- and digitally-
mediated representations for situating certain ways of thinking calculus, and some
potential implications for teaching and learning.

The Learning of Calculus Using Static Visual Representations

Weber et al. (2012) conjectured that students’ difficulties with function notation, their
struggles to connect algebraic with graphical representations of functions, and their
understanding of rate of change may explain their struggles to think about the deriv-
ative as a function. They also contend that traditional calculus textbooks do not support
the thinking and learning of certain calculus concepts: Bthe definition of derivative, as it
was found in the contemporary calculus books […], failed to convey mental imagery
that would support students in constructing the derivative function^ (p. 278). The
insufficiency of conveying functions, covariation and continuous change in a dynamic
sense may have contributed to students’ difficulties. Below, I review a popular univer-
sity calculus textbook in North America (Calculus by Stewart 2008), in particular some
its conventions for conveying calculus relationships, in order to support this claim.

The diagrams shown in Fig. 1 introduce the idea of the derivative and the area-
accumulating functions which are central to the study of calculus. Colours and symbols
are used to name mathematical objects. In Fig. 1a, the red line labelled t is the tangent to
the function f at point P, while the blue line is the secant to the function f that passes
through the points P and Q. In Fig. 1b, the shaded pink region illustrates the area under
y= f (t) between t=a to t= x, which generates a function of x, denoted by g(x), the area-
accumulating function.

Due to their static nature, both diagrams in Fig. 1 are captioned with words to
convey change of the variables h and x, as h→0 and as x varies, respectively. Words
such as Bapproaches^ and Bbecomes^ are used to introduce movement and a state of
change in Fig. 1a: BNotice that as x approaches a, h approaches 0 […] and so the
expression for the slope of the tangent line in Definition 1 becomes

f ′ að Þ ¼ limh→0
f aþhð Þ− f að Þ

h ^ (Stewart 2008, p. 145).
The word Bnotice^ in the caption seems an interesting choice of word, because the

diagram is actually static, and thus it does not readily invite readers to Bnotice^
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anything changing in the diagram. Similarly, in Fig. 1b, the textbook diagram is
accompanied by words to suggest the variation of x, as in: BIf we then let x vary, the
number ∫ax f(t)dt also varies and defines a function of x denoted by g(x)^ (p. 380). The
conditional statement that begins with Bif^ suggests that there is a state of change, along
with the verb Bvary ,̂ which invites the readers to imagine the movement of x. Although
both diagrams aim to communicate dynamic properties by means of static representa-
tions, it is the words that bear the dynamic quality of these properties.

Besides words, series of images are used to convey a sense of change in textbook
diagrams. Fig. 2a shows a series of images illustrating a classic optimisation problem in
differential calculus: maximize a rectangular areawith a fixed perimeter. The variation of area
with a fixed perimeter is implictly suggested – discretely – using three geometrical figures
accompanied by numerical values of areas equal to 220,000 ft2, 700,000 ft2 and 400,000 ft2.
Similarly, Fig. 2b shows a series of images depicting Bthe secant lines approaching the
tangent line^ (p. 82). It is interesting to note the plural form of Bsecant lines^, because with a
dynamic approach, there is only one secant line approaching the tangent line at a given point.
Therefore, the idea of change is conveyed discretely and not continuously.

Point-wise and global trajectories are communicated using two graphs, one directly
above the other, along with visual cues to suggest the same values on the x-axis.
Figure 2c conveys the idea of plotting the slope of tangent at different points of the
above graph, y= f (x) = sin(x), to obtain the graph of its derivative, y= f’(x). However,
the dynamism of constructing of the derivative function is lost in the diagram, as seen
in the caption, Bby measuring slopes at points on the sine curve, we get strong visual
evidence that the derivative of the sine function is the cosine function^ (p. 172).
BMeasuring^ the Bslopes^ at points (note Bslopes^ is plural too) on the sine curve
implies that the process of obtaining the graph of y= f’(x) is a discrete one. Had the
process been offered as a continuous dynamic one, the tangent slope (singular) would
have been observed as x varies instead.

The Learning of Calculus in Dynamic Environments

Evolution in digital technology has affected our thinking, learning and modes of
interactions with mathematics. The invention of graphing and dynamic geometry

(a) (b)

Fig. 1 a The relationship between secant and tangent to illustrate the definition of derivative. b The orange
region illustrates the accumulating area, g(x), as x varies
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technologies has offered new ways of doing and representing mathematics. In partic-
ular, the dragging modality offered by DGEs enables users to interact with parameters
in embodied ways and to observe change of functions dynamically. A growing number
of research studies have focused upon the dynamic nature of DGEs and how this
supports calculus thinking and learning. Research literature related to these ideas is
reviewed in this sub-section.

A number of studies have investigated the learning of functions from a graphical
point of view, using graphing and computer environments (Confrey and Smith 1994;
Schwarz and Bruckheimer 1990; Cuoco 1994). These studies offer evidence of students
overcoming difficulties with functions at the high school level. The digital environment
enabled students to have control over a function by switching among representations
and changing individual parameters. Falcade et al. (2007) showed how a DGE could
help high school students grasp the notion of function; they focused on the affordances
of the Trace tool as a semiotic mediator that could introduce the two-fold meaning of
trajectory, both global and local (point-wise). Robutti and Ferrara (2002) introduced
motion graphs via motion sensors that record displacement over time, concluding that
the technology facilitated transitions between static and dynamic interpretations of the
space–time graphs. Arzarello and Paola (2003) designed a teaching experiment involv-
ing students moving with respect to a motion sensor, where the goal was that the
calculator should reproduce a graph that was as close as possible to the one drawn at the

(a) 

(b) (c) 

Fig. 2 a The variation of area using a series of images; b: BThe secant lines approaching the tangent line^ (p.
82) using a series of images; c: BBymeasuring slopes at points on the sine curve, we get strong visual evidence
that the derivative of the sine function is the cosine function^ (p. 172)
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blackboard by the teacher. They argued that this embodied task using motion sensors is
effective for introducing functions (and their first and second derivatives) within the
same field of experience. By contrast, traditional teaching tasks for calculus introduced
these aspects on separate occasions.

Distinguishing between the intuitive versus formal approaches to various topics in
calculus, Ferrara et al. (2006) reviewed a number of studies using dynamic geometry
technology for enhancing the teaching of derivatives and integrals. In one study, a DGE
was used to plot a function along with its derivative dynamically on the same screen.
As one student explained, BI never understood what it meant to say that the derivative
of sinx is cosx until I saw it grow on the computer^ (p. 261). As the student saw the
derivative function Bgrow^ on the screen, the covariation between tangent slope and
derivative functions was mediated dynamically and continuously. Moreover, BThey
seem far more willing to discuss conceptual difficulties thrown up by the computer than
they would difficulties in understanding a teacher’s explanation^ (p. 261).

Investigating how students understand rate of change has naturally led to the study of
how students understand Riemann sums and the fundamental theorem of calculus (FTC)
graphically. Thompson et al. (2013) emphasise an approach that allows students to explore
variation and covariation in a technological environment, prior to leading up to the study
of the FTC. They designed a digital environment that simulates the ‘bottle problem’, in
which water accumulates in a bottle: the participants were asked to graph the volume of
water in the bottle as a function of its height. The authors argue that this approach helps
students to build a reflexive relationship between concepts of accumulation and rate of
change, one which could only be possible with the use of technology.

Yerushalmy and Swidan (2012) used a semiotic lens through which to observe
students’ use of dynamic and multi-representation environment for learning the concept
of accumulation graph. Their artifact was designed to support exploration using
dynamic and multiple representations of an area-accumulation function. With an
interface that allows interactive changes of parameters and direct manipulation of
graphic objects, the graph of the area-accumulation function can be drawn simulta-
neously, directly below the given function. They found that the zeroes of the accumu-
lation graph and the use of colour coding for positive and negative areas served pivotal
roles in the process of semiotic mediation.

Hong and Thomas (2013) examined the design of a curriculum where students used
digital technology to develop a more balanced dual view of calculus ideas as both process
and concept. Their results called for a teaching approach incorporating frequent use of
dynamic geometry technology and graphing calculators, in order to encourage versatile
embodied and inter-representational thinking. Further, using a calculator to display both
numerical and graphical representations and engagement with them can support students
in constructing derived functions and the development of local or interval thinking.

Theoretical Framework

The notion that learning mathematics invovles building mathematical communicative
competence is suitable for the current study because it establishes a strong link between
mathematics learning and communication. The learning as participation perspective
complements this view; it is a broader framework for conceptualising learning in its
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social dimensions (Lave and Wenger 1991; Wenger 1998). This perspective suggests
that learning is located neither in the heads nor outside of the individual, but in the
relationship between a person and a social world. Thus, learning is cognitive, social,
discursive and also semiotic, because it involves thinking, signs, and tools.

Sfard’s (2008) communicational framework is based upon the social dimensions of
learning and highlights the communicative aspects of thinking and learning. It has roots
in the work of Vygotsky (1978) and Wittgenstein (1953), who both claimed that speech
and thought are inseparable. Sfard redefines thinking as an Bindividualised version of
(interpersonal) communicat[ion]^ (p. 81). Her term commognition underscores her
claim that thinking (individual cognition) and interpersonal communication are mani-
festations of the same phenomenon. This perspective is offered as a way to avoid the
quandaries facing paradigms that treat learning as acquisition: rather, mathematical
learning is regarded as expanding one’s mathematical communication or discourse.

In her book, Sfard proposes four features of the mathematical discourse: word use,
visual mediators, routines and narratives. These features can be used to analyse
mathematical thinking and changes in thinking. For the purpose of this paper, the first
three features will be used for analysing the utterances, gestures and dragging in two
pair’s mathematical discourse. Word use is a main feature in mathematical discourse; it
is Ban-all important matter because […] it is what the user is able to say about (and thus
to see in) the world^ (p. 133). In addition, as a student engages in a mathematical
problem, her mathematical discourse is not limited to the vocabulary she uses. For
example, her hand-drawn diagram and gestures can be taken as a form of visual
mediator to complement word use.

Routines are meta-rules defining a discursive pattern that repeats itself in certain types
of situations. In learning situations, teachers may use certain words or gestures repeat-
edly to model a discursive pattern, such as looking for patterns and what it means to be
Bthe same^. Also, if, for example, a student repeatedly uses her arm to signify slope
when comparing slopes of different line segments, she is using gestures as a routine to
look for what is Bthe same^. The same can be said of the use of dragging to compare the
slopes of tangent at different points of the function. Hence, gestures and dragging can be
taken both as a routine for defining a discursive pattern and as a visual mediator or
multimodal feature of the students’ discourse. This communication can be interpersonal
when it is directed to another student or intrapersonal when it is directed to oneself.

Furthermore, Sfard (2009) explains that language and gestures should not be
counter-posed to one another, since language is any symbolic system used in commu-
nication, and gestures are Bthe actual communication^ (p. 194) that is visually medi-
ated. Instead, she suggests that the proper verbal counterpart of gesture would be an
utterance, a communicational act that is audio-mediated. According to Sfard, utterances
and gestures inhabit different modalities that serve different functions in the
commognitive process. Recursivity is a linguistic feature in mathematical discourse
offered by utterances. The unlimited possibility to expand linguistically allows human
to work in meta-discourse, or thinking about thinking.

On the other hand, gestural communication ensures all interlocutors Bspeak about
the same mathematical object^ (p. 197). Gestures are essential for effective mathemat-
ical communication: BUsing gestures to make interlocutors’ realizing procedures public
is an effective way to help all the participants to interpret mathematical signifiers in the
same way and thus to play with the same objects^ (p. 198). Gestures can be realised
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actually when the signifier is present, or virtually when the signifier is imagined. Sfard
illustrates how a student uses Bcutting^, Bsplitting^ and Bslicing^ gestures to realise the
signifier Bfraction^. Since these gestures were performed in the air, where the signifier
Bfraction^ is imagined, they provide an instance of virtual realization. Therefore, the
same signifier Bfraction^ may be realised differently with different kinds of gesture or
word use.

Temporality, Gestures and DGEs

Sfard (2008) argues that mathematics could not progress as a discipline without the
process of objectifying actions into nouns. On the other hand, she cautions us that
removing the temporality and context of processes hides important details. Although
Sfard considers gestures and diagrams as different forms of visual mediators, her view of
visual mediation does not distinguish between the static and the dynamic. For example,
in the case of diagrams, the mediation by a hand-drawn diagram is different from that
offered by a textbook diagram like the ones in sub-section BThe Learning of Calculus
Using Static Visual Representations^, because temporality is captured in the act of
drawing by hand. This is also true for gestures – and even more so for DGEs which
readily mediate temporality and dynamism. This may explain why Sfard cautions
against the removal of temporality in the development of mathematical discourse.

The temporal functions of gestures have not been widely examined in gesture
studies. Leading gesture specialist David McNeil’s (1992) categorization of gestures
(into deictic, iconic, metaphoric, and beat) broadly characterizes the functional range
served by gestures. For example, deictic gestures serve as pointing means, while
metaphoric gestures serve to represent the mathematical objects themselves.
Although useful for identifying the general functions of gestures, these categories also
do not distinguish between the static and dynamic nature of gestures, in particular,
when gestures are used to convey temporal relationship.

For example, when a person makes a metaphoric gesture to realize the signifier, a
linear function, it could be of static nature, with the arm or hand enacting the function,
or of dynamic nature, with the hand or finger tracing the motion of the function’s path.
In the latter case, the gestures communicate temporal relationships of the linear function
as opposed to the offering the shape of the linear function statically. A few studies have
shown that temporality can be evoked by the use of dynamic visual mediators like
gestures (Ng and Sinclair 2013; Sinclair and Gol Tabaghi 2010), especially in the study
of calculus (Núñez 2006). These studies point to the dynamic and temporal aspects of
mathematicians’ thinking; they also reveal that mobile hand movements are important
features of this type of mathematical thinking.

In relation to the role of DGEs for evoking temporality, DGEs enable learners to
observe and manipulate visual objects that are moving and changing over time.
Because of its dynamic nature, visual mediation via DGEs is significantly different
from that supported by textbook diagrams. Static visual representations evoke images
of static mathematical objects (such as triangles) or artifacts (such as the number line).
In contrast, DGEs may evoke mathematical relationships and properties due to its
potential to depict an invariant property of a mathematical object continuously. For
example, a student may realise new mathematical properties by dragging a vertex of a
triangle or a point on the number line dynamically.
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With respect to the study of calculus, concepts like the graphs of derivative functions
can be evoked readily on a dynamic sketch by utilising the Dragging and Trace tools.
Sinclair and Yurita (2008) drew on Sfard’s communicational approach to investigate the
impact of using DGEs on mathematical thinking by identifying changes in the teacher’s
discourse in a grade ten geometry class. They found significant differences in the ways
that the teacher talked about geometric objects, when moving from a static to a dynamic
environment. For example, he no longer relied on comparing a given static shape with a
definition, but began to use the Dragging tool to show whether properties of a given
quadrilateral can be ‘broken’. Their study shows how DGEs may change the way
teachers use visual artifacts and geometric reasoning, as well as speak about them.

In a similar way, my study used Sfard’s communicational framework to examine
changes in the mathematical discourse as students moved from one type of environ-
ment to another. In my comparison, I highlight the roles of textbook diagrams (static
environment) and touchscreen-based DGEs (dynamic environment) for facilitating
certain ways of talking (thinking) about calculus. I also take up gestures as a dynamic
visual mediator for conveying temporal relationships. In other words, I use a combi-
nation of utterances, gestures and dragging routines on a touchscreen-based DGE to
study the students’ multimodal mathematical discourse. Furthermore, I extend Sfard’s
communicational theory by distinguishing between dynamic and static visual media-
tors, in an effort to ‘bring back’ temporality into mathematical discourse.

Methods

The study reported here was part of a larger research project aimed at examining patterns of
high school students’ communication about calculus as they interacted with touchscreen-
based DGEs in pairs. In this article, I focus on the data concerning the participants’
communication prompted by two different types of environments (static and dynamic).
The study took place at the end of the school year, in the participants’ regular calculus
classroom during school hours, but not during an actual math class. At the time of study, the
participants had just completed a year-long AP Calculus course, where key concepts were
taught using a class set of touchscreen-based DGEs. Therefore, at the time of study, the
participants were experienced with exploring and discussing calculus concepts through
geometrical, dynamic sketches in pairs. These concepts included the definition of a deriv-
ative, derivative functions, related rates and the fundamental theorem of calculus. This
particular setting allowedme to compare the participants’ features ofmathematical discourse
about the same calculus concepts, but facilitated by different environments.

Two pairs of my grade 12 (age 17 to 18) students participated in the study: Ana and
Tammy had been regular classroom partners, and Melissa and Yee had sat in proximity
to each other, but were not regular classroom partners. These pairings were intended to
foster the kinds of student-pair communication that would occur in the students’ regular
calculus classroom. The pairs were asked to discuss twelve different diagrams present-
ed on the iPads – seven textbook diagrams shown in.pdf form and then five dynamic
diagrams presented using iPad-based DGE application, SketchExplorer (Jackiw 2011).
The seven textbook diagrams were taken from students’ regular calculus textbook
(Stewart 2008), and the five dynamic sketches were minimally adapted from the ones
that the students had used in class during the school year.
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For the purpose of comparing patterns of communication, seven of the textbook
diagrams had a corresponding dynamic sketch that involved the same target concept
(for a list of target concepts, see Table 1). The order of presenting the diagrams to the
participants was chronological, as they had been taught in the participants’ regular
classroom. Also, the choice of presenting the seven textbook diagrams before the dynamic
sketches was based on my hypothesis that the students’ discourse about the textbook
diagrams would not have a significant impact on their later discourse about the DGEs (as
opposed to the reverse order). I gave the participants the instructions: Bdiscuss what you
see, what concepts are involved^ and then turned on the camera located in front of and
facing the student-pairs and left the room, until the students had finished talking about all
the diagrams. Each student-pair took around 25 min to complete the task.

As it was necessary for this study to capture student pairs’ utterances, gestures and
dragging actions in different environments, special decisions were made around the
transcribing of data and its organisation. Unlike conventional transcripts which inform
only Bwhat was said^, I included Bwhat was done^ in the transcript, in order to record
Bwho gestured what^ and Bwho dragged what^. Snapshots of certain gesturing and
dragging actions were taken and included in the transcripts. As a transcript convention,
certain parts of the transcript were underlined and italicised to record which words were
spoken while a dragging and gesturing action was being simultaneously performed by one
of the students. My rationale was to legitimise each of the three modes of communication:
speaking, gesturing and dragging as significant modes of communication for the students.

Besides studying each mode in isolation, I also studied the interplay between them
for better understanding the participant pairs’ patterns of discourse. This was achieved
by attending to turn-taking; instances of simultaneous speaking, dragging and gesturing
actions (either by the same person or by different persons); dragging or gesturing
actions without accompanying speech. The list below summarises the units of analysis
in the study.

1. Particular words or phrases that were used repeatedly.
2. Particular dragging and gesturing actions that were used repeatedly.
3. Turn-taking: modes of communications (speaking, dragging, gesturing) when a

new turn began.

Table 1 Calculus topics discussed by the participants in the study

Calculus topics discussed by
the participants in the study

Textbook diagrams used in the
study and included in this paper

Dynamic sketches used in the study and
their screenshots included in this paper

Definition of a derivative Figure 1a Figure 3a to d

Derivative functions Figure 2c

Related rates Figure 5

Linear approximation Corresponding dynamic sketch not used

Optimization problems Figure 2a Figure 6

Mean value Theorem

Newton’s Method Corresponding dynamic sketch not used

124 Digit Exp Math Educ (2016) 2:115–141



4. Particular words that were used simultaneously with dragging or gesturing actions
by one or two persons.

5. Dragging or gesturing without accompanying speech by one or two persons.
6. Recurrent sentence structures within a certain time span.

Besides comparing the list mentioned above to characterise students’ patterns of
discourse in different environments, I also compared the mathematical content com-
municated by the students, especially as it pertained to dynamic elements of calculus.
To achieve this, the data was analysed in terms of the mathematical processes (NCTM
2000) demonstrated by the participants. These processes, which include reasoning,
conjecturing, modelling, connecting and proofing, were intended to guide instructional
programs by describing what teaching and learning should look like when attaining a
certain learning outcome.

As the data collected was multimodal, two kinds of analyses, synchronic and
diachronic, were carried out. According to Arzarello (2006), both are needed to
understand semiotic activity fully. Synchronic analysis enables the study of relationship
among different semiotic sets activated simultaneously. Diachronic analysis studies the
same phenomenon in successive moments. The use of synchronic and diachronic
analyses is suitable for the aims of the study: a synchronic lens is used to analyse the
interrelationships among different modes of communication used by participants when
engaging in calculus communication. On the other hand, a diachronic lens is used to
investigate how the use of speech, gestures and dragging, change over time. Using
Sfard’s framework, such diachronic analysis enables the study to address changes in
mathematical discourse as changes in mathematical thinking.

Design of Sketches

My study aims to support student communication pertaining to dynamic calculus
relationships and to foster multiple representations of calculus. With this aim, the
sketches used in the study were designed to highlight dynamic aspects of calculus, to
exploit touchscreen dragging and to connect algebraic, geometrical and numerical
representations of the calculus. To examine the role of touchscreen-dragging in math-
ematical thinking, the iPad application, SketchExplorer (Jackiw 2011), was used to
present the sketches that I had originally designed using the computer program
Geometer’s Sketchpad (Jackiw 2001).

The sketch described below was used in the study to convey the definition of a
derivative. It mainly features two functionalities offered by Geometer’s Sketchpad: the
Hide/Show button and theDragging tool. These functionalities have the potential to evoke
mathematical relationships that would have been difficult to capture in textbook diagrams.
For example, Fig. 3a shows the screen of a page in the sketch when the first button Bshow
function^ is activated. The capability to show or hide this function with the press of a
button enhances the effect of seeing the function as a reified mathematical object.

The Dragging tool can be combined with the Hide/Show button to communicate the
relationship between objects effectively. Figure 3b shows the screen of a sketch when
the Bshow tangent^ and the Bshow function^ buttons are both activated. As the user
drags the point of tangency along the graph dynamically, the slope of the tangent at
different points on the graph changes correspondingly. Performing this kind of
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dragging enables the user to attend to the variation in the tangent slope (see Arzarello et
al. 2002). Furthermore, by assigning Bshow tangent^ (a second button available in the
sketch), the tangent line can be seen as another reified mathematical object. Yet it is a
Bchild^ object, one dependent upon the function, since dragging is restricted to points
on the graph only.

Figure 3c and d illustrate how a dynamic sketch may connect symbolic, numerical,
and geometrical representations of calculus concepts. Upon activating the Bshow secant
line^ button in Fig. 3c, the green point can then be dragged along the graph and the
corresponding numerical values of the secant slope is displayed. At the same time, the
value of the secant slope is represented geometrically by two triangles (conveying rise
and run). Therefore, dragging actions produce a simultaneous change to the numerical
value, the rise and the run of the slope triangles. Finally, the last button, when activated,
shows the numerical value of the secant slope calculation (see Fig. 3d).

The simultaneous change of the values of f(x+h) and h, as well as the continuous
change of the rise/run triangle, provide a strong visual mediation connecting algebraic,
numerical and geometrical representations of the definition of a derivative. As the user
drags the point of tangency continuously along the graph, the numerical calculations of
the secant slope and the rise/run triangles change dynamically as well. Meanwhile, the
use of colour enhances the visual effect, since the same colour is assigned to the

(c)  (d)

(b)(a)

Fig. 3 a–d: Screenshots of a page in a dynamic sketch conveying the definition of a derivative
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mathematical object and its symbolic equivalent. For example, both h and the Brun^ of
the rise/run triangle are coloured red in Fig. 3d.

Data Analysis

In this section, I provide a four-part analysis of the participants’ communication during
the task, drawing on the communicational theoretical framework as overviewed in
section BTheoretical Framework^. Following the methods as described previously, I
analysed the participant pairs’ communication by attending to their patterns of dis-
course consisting of particular speech, gestures and dragging actions used by one or
both participants synchronically and diachronically. In particular, two short episodes
(five turns in each) are chosen from a 25-min discussion between the student pair, Ana
and Tammy, and analysed in detail in sub-section BComparing Gestures: Dragging as a
Form of Gesturing^.

It involves two episodes of Ana and Tammy’s engagement with the task when they
were given a textbook diagram and then a dynamic sketch related the definition of a
derivative. Each episode begins with a transcript followed by an analysis. The episodes
were chosen to characterise and contrast the non-linguistic modes of communication
used by the student pair. Although the use of gestures was prevalent in Ana and
Tammy’s discourse with both textbook diagrams and with DGE, different types of
gestures were observed in each situation, including the emergence of dragging as a
form of gestural communication. This analysis grounds the work of further analysis in
the sections to follow.

In sub-sections BOther Gestures Facilitated by a Static Environment^ to
BCommunicating Variance and Invariance Through Dragging^, I focus my analysis
on my second participant pair, Melissa and Yee’s, communication. In Ana and
Tammy’s communication, I analysed the student pair’s engagement of the task on
one particular topic and compared their communication across two environments. By
contrast, I found Melissa and Yee’s communication interesting in terms of particular
features of communication relative to the mathematical ideas. Therefore, I summarise
some key findings about this student pair’s communication about various mathematical
ideas in three sub-sections. In addition, I highlight particular words, gestures and
dragging actions that were not observed in the previous analysis about Ana and Tammy.

Comparing Gestures: Dragging as a form of Gesturing

The following is a transcript1 of the first five turns between Ana (on the left) and
Tammy’s (on the right) discussion about the definition of a derivative when prompted
by a textbook diagram Table 2.

The transcript above shows that Ana and Tammy were mainly engaging in two kinds
of mathematical processes, namely those of naming/identifying the mathematical
objects shown in the textbook diagram. The students took turns to name the red line,

1 Transcript conventions: Underlined transcripts denote words that were spoken while the speaker was
gesturing. A comma (,) denotes short pauses, and a period (.) denotes longer pauses. The question mark (?)
denotes high intonation.
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blue line, change of x, and change of y respectively. The use of gestures was present, as
the students identified each of the four mathematical objects during this part of their
discussion. Of the six gestures shown in the transcript, five of them were deictic
(pointing) gestures, while the speaker also referred to the particular objects in their
utterances. For example, Tammy used her left index finger to point to the tangent line
while she uttered Bthe red line is…^ (turn 1). Then, Ana completed Tammy’s statement
with Bthe tangent line of the function^ (turn 2), accompanied by a similar pointing
gesture with her right index finger pointing towards the tangent line.

Besides being observed frequently in their communication, these gestures also
seemed significant in terms how they complemented utterances in the communication.
With the use of deictic gestures like the ones found within the first five turns, word use
was transformed: deictic words like Bthis distance^ (turn 5) and Bfrom here to here^
(turn 4) appear in the students’ utterances. Using deictic words, the speakers no longer
needed to refer to the mathematical objects by describing them verbally, but instead
they could use deictic gestures along with pronouns and locative nouns to replace the
descriptions completely. Therefore, these gestures could significantly reduce the num-
ber of words that were needed to refer to the mathematical objects, as found in
Tammy’s Bthis distance is the change of y^ (turn 5) and Ana’s Bfrom here to here is

Table 2 Transcript and selected snapshots of Ana and Tammy’s gestures while discussing a textbook diagram
related to the definition of a derivative

Turn What was spoken What was done
1 Tammy: Ok, so the red line is… Tammy gestures deic�cally

2 Ana: The tangent line of the func�on. Ana gestures deic�cally

3 Tammy: And the blue line is secant line. Tammy gestures deictcally

4 Ana: Um... From here to here, h is the
change of x.

Ana gestures deic�cally Ana moved her finger sideways

5 Tammy: And this distance is the y,
change of y.

Tammy gestures deic�cally
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the change of x^ (turn 4). As Sfard explains, gestures help ensure that the interlocutors
speak about the same mathematical objects. As seen in this episode, Ana and Tammy
were able to use a combination of utterances and gestures to communicate effectively
about the mathematical objects. In particular, word use is transformed with the presence
of deictic gestures.

The textbook diagram may have influenced Ana and Tammy’s thinking about
calculus. The students’ mathematical discourse, as observed in their word use and
gestures, reflected a static way of thinking about the definition of a derivative. The
students resorted to the verb form Bis^ four times in this episode, each time followed by
nouns Btangent line^ (turn 2), Bsecant line^ (turn 3), Bchange of x^ (turn 4) and Bchange
of y^ (turn 6) respectively to name each of the visual mediators shown in the textbook
diagram. These verb–noun combinations generated statements that are static in nature.
During the first five turns, the only instance where dynamism was conveyed was when
Ana moved her index finger while uttering Bchange of x^ in Turn 4. When speaking
about the Bchange of x^, Ana moved her index finger laterally from left to right. It
could be said that this gesture was deictic, pointing to the mathematical object, but it
also served to enact the mathematical idea of Bchange of x^, temporally.

Other than that, all of the gestures in this part of their discussion were for deictic
purposes and static, as opposed to dynamic in the sense of conveying temporality in
mathematics. These word use and gestures were highly relevant to the students’
particular mathematical processes at the moment, of naming and stating mathematical
objects, which are static in nature as well. The static mathematical objects evoked by
the textbook diagram may have facilitated this form of communication.

Below, I analyse the transcript2 containing the first five turns between Ana and
Tammy’s discussion about a dynamic sketch relating to the definition of a derivative
Table 3.

When the students initially opened the sketch, two buttons were already in the
Bshow^ position on the page – therefore, the graph of a parabola, f(x) = x2 and its
tangent line at a given point appeared on the sketch. As can be seen in the transcript,
Ana and Tammy explored the dynamic sketch using the dragging modality. In the first
exchange, Tammy’s utterance, Btangent line is increasing^ (turn 1) was accompanied
by dragging the point of tangency from left to right (although technically it was the
tangent slope that was increasing and not the tangent line). Following that, Ana seemed
to be mirroring Tammy’s utterance-dragging combination with Bthe tangent [slope of
the] line is zero^ (turn 4), while dragging the point of tangency back towards the vertex.
These were two of five series of dragging actions observed that spanned up to five
seconds within the first fourteen turns of their discussion with a dynamic sketch.

My analysis suggests that these dragging actions were not solely dragging, but were
also gestural communications – to communicate the dynamic features and properties in
the sketch it the very moment of dragging. Recall that in a static environment, Ana and
Tammy frequently used static, deictic gestures to refer to different mathematical
objects. By contrast, these static, deictic gestures were not observed in the dynamic
environment. Instead, the students’ gestures were blended within their dragging actions
as they spoke about the change of the tangent slope.

2 Transcript convention: Italicised parts of the transcript denote words that were spoken while one of the two
interlocutors was dragging.
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To illustrate why I also consider the dragging actions to be gestures, it would be
possible to imagine an environment where the dragging modality is not available.
If a speaker moved his/her finger along a graph while referring to the tangent
slope as Bincreasing^ or Bdecreasing^, this action could be considered a kind of
gesture for communicating the idea, Bas x varies along this graph^. In the present
episode, the dynamic environment allowed the dragging with one finger on the
touchscreen and the gesturing with the index finger to blend together as one
action, into what I term the act of dragsturing (Ng 2014). The importance here
is that the dragsturing is one action subsuming both dragging and gesturing
characteristics – it both causes the point to be moved on the screen (dragging)
and fulfills a communicational function (Sfard’s definition of gestures). The
present analysis is addressing the role of touchscreen-based DGEs for facilitating
this form of communication.

Word use was also transformed in the presence of dragsturing. During the first
exchange, Tammy used the phrases Bis increasing^ and Bis decreasing^ to describe
the tangent slope, accompanied by dragsturing to communicate the change of
tangent slope as the point was being dragged. This seemed to be mirrored
immediately by Ana in the next turn. The use of the present continuous tense
Bis [verb]–ing^ was a change from their previous discussion over a textbook
diagram, where the students used the verb form Bis [noun]^ four times when
discussing the same topic. Thus, in the present episode, dragsturing transformed
the way Ana and Tammy communicated about the tangent slope. The verb forms
suggest that Bsomething is happening^ at the very moment it is employed. This
observation is made possible by a synchronic analysis of utterances, gestures and
dragging in the students’ mathematical discourse.

Table 3 Transcript and selected snapshots of Ana and Tammy’s dragging while discussing a dynamic sketch
related to the definition of a derivative
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Other Gestures Facilitated by a Static Environment

Both pairs of students used deictic gestures for pointing and gestures for conveying
temporal relationships, as was noted in Ana and Tammy’s communication. Besides
these, two other interesting use of gestures were observed in Melissa and Yee’s
communication, when the two were discussing Blinear approximation^ in a static
environment. At 06:47, Yee used his right index finger and thumb to form the shape
of a BC^ while he said, Band we get the values r, and actually the actual value is pretty
close, right,^ with a high intonation (Fig. 4a). This is what I call a Bmeasuring gesture^
for conveying the distance or proximity between objects. Then, as he continued to
speak, he brought the tips of his index and thumb together to touch each other, hence
using another Bmeasuring gesture^. However, since the distance between the two points
was Bpretty close^, the distance between his fingers was also reduced in his gesture
(Fig. 4b).

Yee continued to use a combination of words and gestures to communicate the
approximation of BΔy^ using Bdy .̂ In saying that Bdy and change of y are a little bit
different^, he used his right pinky finger to point to the distance between the labelled
lengths Bdy^ and BΔy^ (Fig. 4c). This gesture resembled the kinds of deictic gestures
that he had used before, but it was also different, in that it was the pinky finger that was
used for pointing instead of the index finger. The change of finger for pointing
suggested that Yee was communicating something slightly different here. More than
just pointing, he may be thinking about a degree of precision with this gesture to
complement his word use Ba little bit different^. The use of pinky was observed again
when Yee talked about a different diagram, that of Newton’s Method. With the use of
his pinky for gesturing, he commented that, Bthe point is getting closer and closer^
(11:30) when the Newton’s Method was performed to approximate the root of an
equation recursively.

It could be argued that both the gesture with a pinky finger and the Bmeasuring
gesture^ were performed because it was not possible to move the objects close together
in a textbook diagram physically; therefore, these gestures were used to convey the idea
of bringing something close to another in the process of approximation. For example, in
the diagram related to Newton’s Method, the approximate roots x1, x2, …, xn were

(c)(b)(a)

(f)(e)(d)

Fig. 4 a and b Yee’s Bmeasuring gesture^; c Yee’s gesture with his pinky finger; Bscribing gestures^ used by
(d) Ana, (e) Tammy and (f) Melissa
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explicitly shown in the textbook diagram. Hence, it could be difficult to express the
action of obtaining xn+1 recursively using the diagram. Perhaps the pinky finger was
employed deictically (instead of the index finger) in order to convey a level of precision
around approximating the root of an equation.

A little later, Melissa made a Bscribing gesture^ when she spoke, BAs x is ap-
proaching, x approaching x n, and then like, the x n is like closer to the r^ (12:05). I
characterise the ‘scribing gesture’ as one where the finger enacts a pen, as if the gesturer
was writing something down. These gestures were found in Ana and Tammy’s
discussion as well, sometimes accompanied by speech involving symbolic representa-
tions of calculus (Fig. 4d and e). The presence of scribing gestures was helpful for
examining Melissa’s thinking in the moment. In particular, her scribing gestures
(Fig. 4f) suggested that she was thinking algebraically, perhaps about the Newton’s
Method formula, and not geometrically.

Communicating BChange^ in Two Environments

In terms of the mathematical content communicated, it can be observed that the
textbook diagram had occasioned certain ways talking about Bchange^ for Melissa
and Yee. Table 4 shows Yee’s talk about change in a static and discrete sense when
prompted by the given textbook diagrams. In terms of modal verbs, he said that Bwe
can know^ in two of his utterances, which implied that there were some concepts that
the diagrams intended to convey. Occasionally, he also included the conditions of
which the statements would hold true, such as, BSo like when the graph of the function
is decreasing, we can know that its derivative is less than zero. And when the graph of a
function is increasing, the derivative is always greater than zero (03:10). The word
Bwhen^ conveyed one static moment; moreover, the phrase Bwhen […] we can know^
suggest that he was stating a calculus relationship as a timeless story.

Unlike Ana and Tammy, Melissa and Yee’s discourse seldom contained deictic words,
Bthis, that, here^, etc. Without consistent usage of deictic words, the students’ discourse
lacked reference to the diagrams; rather, their discourse seemed to be focused on some
mathematical concepts that existed outside of the diagrams. This was evident in the students’
utterances and gestures as they discussed the diagrams. On three occasions, Yee discussed
mathematics as if it existed outside of the diagrams with his mathematical-theorem-like talk.

Table 4 Yee’s theorem-like discourse when discussing in static environment

(a) BSo like when the graph of the function is decreasing, we can know that its derivative is less than zero.
And when the graph of a function is increasing, the derivative is always greater than zero.^ (03:10)

(b) BOh I got it… This is how to find the approximate value of a point by knowing one point and its
derivative right? and its slope … So from P, we can know that the slope at P, point P and we can find
the function, and now we input another value which is x plus delta x, and we get the values r ….^
(06:18)

(c) BI think it’s mean value theorem… ya should be mean value. So we have a function, you know a and b,
and you draw a line across it and you get a secant, secant function, secant line function, and there must,
if the function is continuous, so there must be a point P, which its slope is equal to the slope of the
secant line a, b. So for this here, at least one, it can be two, for Fig. 4, there is actually two points, P1
and P2, they both have the same slope as A, the secant line a, b. So there must be at least one point.^
(10:00)
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When discussing the textbook diagram related to Bderivative functions^, Blinear
approximation^, Bmean value theorem^, Yee’s talk resembled the genre of formal
mathematics in the sense that he stated the givens statically and then deduced the
results formally. One important characteristic of mathematical theorems is the absence
of temporality. The majority of Yee’s verb use, which was in the form of Bis-noun^ or
Bis-adjective,^ implied a timeless sense of calculus, as opposed to verb forms describ-
ing a process or dynamic relationships in calculus.

In addition, the different environments may have occasioned different ways of
communicating Bchange^. The analysis of the word Bas^, which presents dynamic
qualities, supports this claim. Yee’s first use of the word Bas^ was during the
discussion of derivative functions in a static environment. Interestingly, he did not
finish his sentence after beginning with the words, Bso, as …^ (02:38). Rather, he
self-repaired his speech and finished his sentence with the utterance: Bfrom zero to
a, from negative infinity to a, the graph is decreasing, right? So the graph of the
derivative is under zero, less than zero …^ (02:40) In other words, Yee’s sentence
began with Bas^, but he immediately changed this way of talking about derivative
functions by suggesting an interval for which the function is decreasing. Having
begun with Bas …^, he could have finished his sentence with something like, Bas x
increases, the tangent slope remains negative,^ which would convey continuous
change, but he did not. Instead, he stated a property of the function, namely Bthe
graph is decreasing^ over the interval (0,-∞).

The notion that Bthe graph is decreasing^ is discrete and static in nature, for it
required that f(b) < f(a) for all a< b. Although the verb itself ends in B-ing^, a
Bdecreasing^ function does not necessarily imply a sense of motion or continuous
change, as it is only necessary to provide an interval of which f(b) < f(a). It could be
further argued that the textbook diagram occasioned a discussion like this because it

Fig. 5 Once the ‘animate fall’ button is pressed, the Bladder^ as represented by the blue segment begins to
‘fall’ dynamically
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was showing a decreasing function statically. Had the dragging modality been available,
it could have possibly occasioned a different kind of discourse, as I illustrate below.

In a dynamic environment, Yee did finish his sentence beginning with Bas …^.
When he pressed the action button to animate the falling of the ladder on the DGE
screen (Fig. 5), he clearly communicated a sense of continuous change: Bas the
latter falls, we can see that x… is increasing and y is decreasing, but z remains
constant^ (17:10). By Bx… is increasing and y is decreasing^, Yee was referring to
the change of distance from the two ends of the ladder to the wall and ground
respectively. The change communicated here was continuous and was visually
mediated by the DGE.

Numerically, the change was conveyed by the values of x, y and z (rounded to 2
decimal place) shown in the sketch. Therefore, Yee might be addressing the
continuous change of x and y both numerically and symbolically in his commu-
nication. Besides, Yee also communicated about the invariance of z. Although it
may sound trivial to observe that z, the length of the ladder, was invariant, it was
not trivial to comment on the invariance of z as x and y are simultaneously
changing as the ladder fell. This way of thinking about the change of variables
simultaneously is necessary for the learning of related rates, which was the
intended learning target of the sketch.

One example where Yee’s word use conveyed discrete change was in his discussion
of optimising area in a textbook diagram. As seen in Fig. 2a, the diagram consisted of
three figures depicting the enclosure of a rectangular area that borders a river geomet-
rically and numerically. Given the diagram, Yee did not communicate the variance of
area and the dimensions of the enclosure in a dynamic and continuous sense; rather, he
described a discrete change of the enclosed area. He used numerical values to reason
why Byou can’t have a very long side^ of enclosure (Table 5a). There was no indication
of continuous change in his verb use.

In contrast, Yee used different words to describe the dimensions of the box that
would optimise volume when the problem was posed in a dynamic sketch. He talked of
the height of the box as Bgreater and greater^ and the volume as getting Bsmaller and
smaller^ (Table 5b). Although the sketch showed numerical values of the dimensions
(Fig. 6), he did not provide any numerical examples as he did with a textbook diagram.
Moreover, functional dependency was also noted in his use of Bif …, then …^
statements: here, it was that the volume of the box was dependent on the height of

Table 5 Highlights of Yee’s transcript when he discussed the optimisation of (a) area and (b) volume

(a) with textbook
diagram

B[be]cause you can’t have a very long one side and a very small two side, to maximize
area. It has to be, both of them has to be like a big number, in order to have a bigger
area. I think that’s the point, like for this one both of them have 1200 that’s pretty
long, but the other two sides are only 100, so the area is actually not that big right?^
(09:30)

(b) with a DGE BIf the length, the height of the box is greater and greater, the volume is smaller and
smaller, you actually can see.^ (20:15)

BSo now the height is decreasing, the length is increasing, the volume is actually getting
bigger and bigger, but if the, if the length continues increasing, the volume decrease
again, so there is one point like here… remains the greatest volume. I think that’s it.^
(21:30)

134 Digit Exp Math Educ (2016) 2:115–141



the box. As the height increases, the volume decreases. All of these sways of speaking
supported the claim that Yee’s discourse about continuous change was occasioned by a
dynamic environment in the form of a DGE.

Communicating Variance and Invariance Through Dragging

Overall, the use of dragging was prevalent throughout both pairs of participants’
discourse in a dynamic environment. It was used extensively as a routine to explore
the dynamic relationship shown in the sketch. Figure 7 shows screenshots of some of
Melissa and Yee’s dragging routines: dragging with one finger (Fig. 7a), with two
fingers (Fig. 7b) and two fingers one from each dragger (Fig. 7c). The consistent use of
dragging changed the students’ discourse about calculus: they did not use theorem-like
talk to explain what the sketch was intended to say, but rather, communicated the
variance, covariance and invariance that were implicated in the sketch through speech
and dragsturing.

In some cases, dragsturing was used to explore the continuous change of variables
after which the students described the relationships explored verbally. Conversely, in

Fig. 6 A dynamic sketch conveying volume optimisation: the pink point on the 2D net of the box can be
dragged to display different dimensions of the box 2- and 3-dimensionally, numerically and graphically

(c)(b)(a)

Fig. 7 Melissa and Yee’s dragging routine with (a) one finger; (b) two fingers; (c) two different draggers, one
finger each
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other cases, dragsturing was used to verify certain relationships after the students had
initially hypothesised them. In either case, the dragging routine gave rise to verb forms
that implied motion, such as Bbecome^ (14:13) and Bgetting closer and closer^ (14:19).
They also gave rise to exploring and verifying processes, none of which were observed
when the students discussed the textbook diagrams.

In addition to exploring and verifying processes, the students also demonstrated a
variety of other mathematical processes in a dynamic environment. Recall that the
students were often previously stating static calculus ideas via theorem-like statements.
In contrast, there were significantly less stating but more comparing and reasoning
practices observed in the dynamic environment. For example, consider Yee’s utterance:

If we have a linear function, the slope doesn’t change. It remains the same
because in this case f x is three x minus two and the derivative of f is always
three, it’s a constant. (16:05).

The words Bdoesn’t change^ and Balways^ suggest that Yee had been observing the
change of the derivative of the function f(x)=3x – 2. In order to say that the derivative is
Balways^ three, one needs to compare the derivative of f(x) across different values of x. This
was achieved through Yee’s dragging of x. Besides comparing, Yee was also reasoning
about why Bthe slope doesn’t change^. As illustrated in his utterance, he was reasoning that
the derivative was always three, a constant, hence the slope does not change.

Similarly, Melissa communicated the invariance of the tangent slope of f(x) =3x – 2,
as follows:

If we drag the x, on the function of x, we get the tangent slope, and it’s always y
equals three, and uhm here, the tangent line, the tangent line is the same as the x-
values, and then the y-value is the secant, ah the tangent slope, so it’s always three
because it’s on the same function, and the function has the same slope. (15:05)

What Melissa was communicating here was more than invariance of f ’(x); she was
communicating the covariance of two functions, f(x) and f ’(x). In the first part of her
utterance, she was referring to Bthe function of x^, and that its tangent slope was always
equal to three. Then she mentioned that, Bthe tangent line is the same as the x-values^,
which I interpret as her comparing the x-values of the points (x, f(x)), (x, f ’(x)), since
they would be Bthe same^. Finally, she suggested that the By-value is the […] tangent
slope^, which shows that she was attending to the mapping of (x, f ’(x)) on y= f ’(x).
Hence, Melissa was referring to the simultaneous change in both f(x) and f ’(x) in this
communication.

Related to variance and invariance was the idea of the general and particular. The
contrast between Yee’s discourse on the MVT across environments was illuminative in
this respect. Recall that Yee’s utterance resembled the genre of a mathematical theorem
earlier and he used the phrase, Bwe can know that^, which implied that there was some
knowledge to be acquired cognitively from the textbook diagrams. With the DGE,
however, Yee’s discourse differed in several ways. First, he uttered Bwe can see that^ as
opposed to Bwe can know that^. The transcript showed that Yee used the exact wording
in the task of Bwe can see that^ twice (both in the dynamic environment) and Bwe can
know that^ twice (both in the static environment). It was likely that the difference in
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verb use was due to the fact that dragging in DGE allowed one to Bsee^ the change
visually. This was significant because it shows that Yee’s word use was connected with
his dragging routine, and that he was making reference to the sketch directly. It was as
if mathematics was happening right in front of him that he could Bsee^, and it was no
longer some knowledge to be acquired or to Bknow .̂

Secondly, Yee was able to use dragging to convey both generality and particularity
in his communication. His dragging and word use complemented each other to convey
generality, as he said, Bwe can choose random two points, a, b in this case these two
points, a and b,^ while he dragged both a and b back and forth. In contrast, the idea of
choosing two random points a and b was never communicated in a static environment.
In fact, he used the verb Bknow^ to introduce a and b in the textbook diagrams: BSo we
have a function, you know a and b^. Later, Yee also dragged the point c on the function
to locate x= c such that f ’(c) would be equivalent to the secant slope through f(a) and
f(b). His previous dragging of a and b to Bchoose two random^ points, combined with
the dragging of c conveyed a sense of variance and invariance here, in that no matter
which two points a and b he chose, he could find a point c such that f ’(c) = [f(b) – f(a)]/
[b – a]. In other words, the theorem works for all chosen a and b. Finally, he described a
particular example of the MVT in the utterance, Bwhich is 0.79 in this case right^.

By illustrating particularity, he was also implying generality because he had said that
the particular a and b were chosen randomly. This means that dragging was an
important mode of communication about calculus and, more importantly, that calculus
communication was situated in relation to the DGE. The textbook diagram occasioned
Yee’s talk about the MVT as a theorem (Table 6a), but the DGE occasioned Yee’s talk
about the MVT in terms of variance and invariance (Table 6b). The dynamism of the
sketch and the draggable points a and b may well have facilitated this way of talking.

Table 6 Yee’s talk about the MVT when given (a) a textbook diagram; (b) a DGE

(a) With textbook diagram (b) With DGE

Defining the interval
(a,b)

So we have a function, you know a and b, We can choose random two points, a, b in
this case these two points, a and b,

Drawing a secant line
through f(a) and
f(b)

and you draw a line across it and you get a
secant, secant function, secant line
function, and there must,

and we draw a secant line, so we can see
that there is a point, here here, the
slope at c is pretty close to the slope at
a b. If I can draw … yes, exactly the
same one. So which means,

Stating the conditions
and the results

if the function is continuous, so there must
be a point p, which its slope is equal to
the slope of the secant line a b.

if a function is continuous from a to b,
there must be at least one point that the
slope of c is equal to the slope of a b,

Verifying from the
textbook diagram
or dynamic sketch

so for this here, at least one, it can be two,
for figure four, there is actually two
points, P1 and P2, they both have the
same slope as A, the secant line a b. So
there must be at least one point.

which is 0.79 in this case right? And that’s
called mean value theorem?
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Discussion and Conclusion

The analysis provides strong evidence that the participants used different modes –
utterances, gestures and dragging – in their mathematical communication; and they
communicated about the fundamental calculus ideas differently when prompted by
different types of environments. Gestures were prevalent, but took on different com-
municative roles in different environments. In a static environment, the students mainly
used utterances accompanied by deictic gestures and occasionally used gestures to
communicate temporal relationships such as the Bchange of x^. In addition, Yee
changed the size of his Bmeasuring gestures^ to convey a change of distance, perhaps
because he could not physically alter the objects on the textbook diagram. This
communication routine evolved in the presence of the dragging modality and a
dynamic environment. A new form of gesture emerged in the touchscreen dragging
action with DGE and fulfilled the dual function of dragging and gesturing.

The frequent use of dragsturing in the analysis suggests that dragging was a
significant communication routine for the students. They used dragsturing, accompa-
nied by utterances, to talk about the variance of tangent slopes – and this was facilitated
by the dynamic environment in the form of a DGE. The presence of dragsturing
transformed the way calculus was communicated. As illustrated in the episode, Ana
and Tammy resorted to verb forms that implied motion and temporality while they used
dragging to change the tangent slope. This way of talking about calculus as a process
was a change from their earlier discussions about the textbook diagrams, where the
students used the Bis [noun]^ form to communicate a static sense of calculus ideas.

The students engaged in different mathematical processes in different environments.
With the textbook diagrams, the students communicated about calculus procedurally
and statically by naming the mathematical objects, by developing a formula and by
communicating in a theorem-like discourse. The use of Bscribing gestures^ and
utterances such as Bwe can know^ and Bwe know a and b^ provided evidence of their
procedural and static calculus thinking. They communicated a discrete sense of change,
complemented by the use of numerical examples.

With dynamic sketches, the students used dragsturing as a communication routine,
accompanied by speech, to engage in exploring, verifying, comparing and reasoning
processes. As a result, Yee’s discourse changed from Bwe can know^ to Bwe can see^
when he began to drag on the touchscreen-based DGE. The touchscreen-dragging
affordance may have facilitated this change of communication, by enabling Yee to
Bsee^ the dynamic relationships unfold in real time on the touchscreen DGE as he was
dragging. The design of the sketch played an important role, since the draggable point
was also the point of tangency on the function, which was a geometrical object. Thus,
dragging the point has a dual meaning of changing the x-coordinate numerically, as
well as physically moving the point of tangency geometrically. This design could
potentially support students’ communication of multiple representations in calculus,
and it might have initiated dragsturing as the blending of dragging and gesturing the
movement of the point of tangency.

Also, in line with Falcade et al. (2007), Melissa might have exploited the function-
alities of the Dragging and Trace tools to communicate covariance of a function and its
derivative function geometrically and dynamically. In summary, the dynamic environ-
ment, touchscreen technology, and the design of the sketch which include the
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exploitation of the dragging tool, all played a role in the students’ discourse about
dynamic features of calculus.

This study points to an expanded view of mathematical discourse that includes
gestures, diagrams and dragging on touchscreen devices, in order to communicate
dynamic aspects of mathematical ideas. Sfard’s communicational framework – which
defines gestures as communicational acts – was useful for understanding students’ non-
linguistic communication such as gestures and dragging. Furthermore, this article
extends Sfard’s notion of visual mediators by distinguishing two kinds of visual
mediation, dynamic and static. The distinction was important for this study because
of the potential for the dynamic visual mediators such as gestures and DGEs to evoke
temporal and mathematical relations (Ng and Sinclair 2013; Sinclair and Gol Tabaghi
2010), particular for the study of calculus (Núñez 2006). It also helped guide the
analysis in terms of how Bchange^ was conveyed in students’ discourse, by
distinguishing deictic gestures from gestures (or dragging) that conveyed temporal
relationships.

This article presents the possibilities for extending the notion of visual mediators and
routines to include gestures and dragging on touchscreen-based DGEs. As touchscreen
learning technologies continue to enhance digital experience of learners, the blending
of gestures and touchscreen-dragging for providing a haptic and mobile environment in
mathematics learning is worthy of further examination (see also Sinclair and de Freitas
2014).

To revisit, this article has explored ways that may support student communication in
calculus. The results of the study showed that different aspects of calculus communi-
cation can be facilitated and hindered with different media. First, in terms of fostering
multiple representations in calculus, the study suggests that providing opportunities for
students to learn with both textbook diagrams and dynamic sketches may help students
develop their discourse about functions numerically, algebraically and geometrically.
Second, the use of DGE was shown to be instrumental for facilitating dynamic and
temporal – motion-based and action-oriented – thinking in calculus.

It is important to bear in mind that, at the time of study, the participants had already
previously been taught the target calculus concepts with the use of touchscreen-based
DGEs in their regular classrooms. Despite having learned the topics with the same
dynamic sketches used in the study, the participants exemplified different discourses
when prompted by two different types of environment. This offers important potential
implications for classroom teaching, since it shows that mathematical thinking is not
located in the heads but in the task and in the kinds of visual representations used (Chen
and Herbst 2013). In order to develop and assess certain aspects of students’ discourse
in the study of functions and calculus, I have argued that providing situations for
students to communicate these ideas in both static and dynamic environments, as well
as adopting a multimodal view of communication, can be beneficial.
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