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Abstract
Wearable devices are a growing field of research that can have a wide range of applications. The energy harvester is the most
common source of power for wearable devices as well as in wireless sensor networks that require a battery-free operation.
However, their power is restricted; consequently, power saving is crucial for wearable devices. Finding the best schedule for
the various tasks that run on the wearable device can help to reduce power consumption. This paper presents a task scheduler
for wearable medical devices based on Gaining–Sharing Knowledge (GSK) algorithm. The purpose of this task scheduler is
to handle the tasks of a heart rate sensor and a temperature sensor to optimize the energy consumption throughout wearable
medical devices. The proposed GSK-based scheduling algorithm is assessed against the state-of-the-art technique. The data
used in our experiments are collected from an in-lab prototype.
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Introduction

Wearable medical devices have grown in popularity due to
their ability to improve people’s lives. The rapid develop-
ment in medical wearable devices has attracted research
communities’ interest over the past years [1, 2]. Wearable
technology has aided healthcare professionals in intervening
early in chronic diseases, particularly among patients who
live lonely, and has enabled remote real-time monitoring of
various vital signs [3]. So, any delay inmonitoring vital signs
could result in undesired health consequences for the users.
Consequently, a continuous source of electrical power is crit-
ical to prevent wearable device malfunctions of the operation
[4, 5].

The term "wearable" indicates that the device is either
supported on the human body or a piece of clothing, and that
it has a suitable design that allows it to be used as a wearable
accessory for an extended period of time. Wearable technol-
ogy represents a new methodology for improving healthy
lifestyles [6]. The main constraints of impeding the adop-
tion of wearable devices are their need for continuous power
supply [6], and their size where, most of wearable medical
devices depend on rechargeable batteries that increase their
size and weight. Subsequently, this makes them unappealing
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to users, and uncomfortable [6, 7]. Battery-based wearable
devices confirmed inefficient and limited operation as well
as human intervention [8].

Toovercome these constraints,many researchers tended to
use energy harvesting technology to power wearable devices
[9–11]. As a result, scavenging energy from the ambient
environment helps to solve the problem of battery source
[12]. Energy scavenging means gathering and converting
renewable power for use in wearable devices [13]. Energy
harvesting technology is commonly used in wearable medi-
cal devices as the main source of energy due to the process of
absorbing and converting energy from the environment into
electricity such as kinetic, solar, thermal, and radio-frequency
(RF) waves [14, 15]. By taking advantage of the human body
as an energy source, kinetic activity can guarantee a long-
lasting operation. Nevertheless, when the kinetic energy of
the human activity is high, there is sufficient energy to be used
for powering wearable devices and tasks are executed regu-
larly without interruption. In the contrast, this stored energy
is used when the human body activity is low and insuffi-
cient to supply the wearable device [16]. The human body
is a potential source of energy. The human body generates a
large amount of mechanical energy [17] as shown in Fig. 1.

Several studies suggested to increasing the benefits of the
energy harvesting system [18–20]. Harvesting energy from
ambient vibration using piezoelectric elements is a practi-
cal interest in portable electronics, and in wireless sensor
networks that demand battery-less operation, which helps
to solve the interruption of an operating wearable device
and reduces reliance on battery energy [12]. In recent years,
research has focused on harvesting energy from the atmo-
sphere (transforming ambient energy sources into electrical
energy) to operatewearable devices rather than batteries [21].
As well as in wireless sensor networks that require a battery-
free operation. Medical implants and sensors in the Internet
of Things (IoT) are two major applications that will benefit
significantly from energy harvesting. Many researchers have
worked to develop energy harvesting-basedwearable devices
that can improve users’ quality of life [11, 22].

This paper uses a nature-inspired optimization algorithm
that can be classified as human-behaviour inspired algorithm.
Gaining–Sharing Knowledge (GSK) is based on the concept
of gaining and sharing knowledge during human life.

GSK is a robust and reliable optimization algorithm and
have been proved to be superior to other nature inspired algo-
rithms [23], tackling complex optimization problems with
better performance than other state of the art algorithms. The
algorithm has been applied in several optimization problems
as feature selection [24–26], scheduling problems [27–29],
maximal covering model [30], parameter extraction of photo
voltaicmodels [31] and combinatorial optimization problems
as knapsack [25], travelling salesman problem [32], travel-
ling advisor problem [33] and transportation problem [34].
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Fig. 1 Harvesting energy from human activities

The purpose towards adopting an efficient task scheduling
technique as the main objective of our work is to guaran-
tee the continuous and efficient functionality of the sensors
within a simple medical wearable device based on the energy
harvesting technology.

The main contributions of this work can be listed as fol-
lows:

• Proposing a task scheduling algorithm based on GSK
which is used for the first time for wearable medical
devices that optimizes energymanagement (minimize the
energy consumption and maximize the energy through-
out) for wearable medical devices.

• The experiments demonstrated that the proposed GSK
algorithm outperforms the state-of-the-art FPA (Flower
Pollination Algorithm).

• Studying the impact of the task scheduling on the battery
lifetime for the wearable devices.

The rest of this paper is organized as follows. The liter-
ature review is presented in Sect. 2, the system description
and data profiling are illustrated in Sect. 3 and the details of
problem formulation and optimization algorithm GSK are in
Sect. 4, the results are discussed in Sect. 5, and conclusion is
in Sect. 6.

Related work

This section reviews previous related work on managing and
optimizing energy throughout energy harvesting-basedwear-
able devices. Previous research considers task scheduling
algorithms for wearable technology based on energy har-
vesting. The power consumption of the sensor nodes varies
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with the voltage and frequency. As a result, changing both the
operating frequency and the supplied voltage is feasible to
optimize the amount of power used and minimize the power
consumption. The energy consumption can be reduced while
considering the performance limits using the idea of dynamic
voltage and frequency scaling (DVFS). The goal of DVFS is
tomaximize the performance given the limited energy budget
or to minimize the energy consumption [35, 36].

The authors of [37] suggested an energy-aware DVFS
(EA-DVFS) algorithm that slows task processing based on
the available as well as predicted harvested energy. Tasks are
executed at high speed if there is sufficient energy available
otherwise, they are slowed down. The main drawbacks of
this work are, the “sufficient available energy” is determined
based on a single current task. The remaining time operation
of the system at the full speed is more than the relative dead-
line of the task, then the system considers it has sufficient
energy. However, there might be only 1% energy left in the
energy storage while the system can operate at maximum
speed for a task without depleting the energy. As a result, the
EA-DVFS algorithm schedules the task at maximum speed.
A behavior like that is not desired. The EA-DVFS algorithm
takes only one task into consideration when the program is
scheduled and the operating voltage is selected, instead of
considering all tasks. Due to this, task slacks are not fully
exploited to save energy. This is critical for achieving higher
performance while avoiding any interruptions in the opera-
tion of the device. To further improve system performance
and energy efficiency, our work propose a task scheduling
algorithm based on GSK that optimizes energy management
(minimize the energy consumption and maximize the energy
throughout) for wearable medical devices.

In [38] they presented a literature survey on different task
scheduling algorithms for energy harvesting-based sensors
(i.e., energy positive sensors) to achieve the sustainable oper-
ation of IoT operation. Also, they presented a comprehensive
analysis for developing new task scheduling algorithms that
incorporate this new class of sensors. Due to the resource
constraints of the hardware, DVFS algorithms may not be
acceptable for task scheduling on energy harvesting-based
battery-less sensors; they may not provide a range of voltage
levels to execute tasks on the sensor node.

In [39], the authors focused on enhancing the short-term
performanceof energyharvesting-based communication sys-
tems as time scheduling, and power allocation optimizations
are required in such systems. In [40], a task scheduling tech-
nique using DVFS was developed to optimize rechargeable
sensor nodes. These tasks are queued according to their dead-
lines. Task execution relies on the available energy, the task
can be completed if the current energy is greater than a thresh-
old; else, the taskwill be delayed. In [41], task decomposition
and combining algorithmwas presented to reduce the energy
consumption of sensor node and can be split into two sub-

tasks: sensing and data transmission. The two transmission
sub-tasks can be combined by grouping the data from these
sub-tasks and transmitting them in a single data packet to
reduce energy consumption. Also, they evaluated their task
scheduling algorithm, where the results showed that their
method completed more tasks with fewer missed deadlines
than previous algorithms that did not use the decompos-
ing/combining algorithm for energy-intensive tasks. In [42],
amathematical model for duty cycling sensor nodes based on
harvested energy is described where it maximizes the system
performance by adapting the dynamics of the energy source
during operation by employing the exponentially weighted
moving average scheme to predict future harvested energy,
which is then used to compute a nodes’ duty cycle. The lim-
itation of the minimally adaptive duty-cycling mechanism
was overcome by incorporating a new technique that ensures
duty cycle stability without the need for prior knowledge of
the incoming energy [43]. Authors in [44] presented a frame-
work for energymanagement in energy harvesting embedded
systems.Using energy harvesters for both simultaneous sens-
ing and energy harvesting enables energy-positive sensing,
which is an increasingly prominent class of sensors. Harvest-
ing more energy than is required for context detection, and
the extra energy can be used to power other system com-
ponents [45]. All Previous researchers used task scheduling
for energy harvesting in different methods not in wearable
medical devices and meta-heuristics.

A prior study [46] proposing sensors task scheduling
for the first time in the energy harvesting-based wearable
medical devices. Flower Pollination Algorithm (FPA) was
employed in this scheme. FPA is a nature-inspired meta-
heuristic algorithms used to solve optimization problems. In
our work, we used a nature-inspired optimization algorithm
GSK, that can be classified as human-behaviour inspired
algorithm. GSK is based on the concept of gaining and shar-
ing knowledge during human life [23]. We proposed a task
scheduling algorithm based onGSK for the first time inwear-
able medical devices to enhance the energy managements
(minimize the energy consumption and maximize the energy
throughout).

The experiments showed that the proposedGSKalgorithm
outperforms the state-of-the-art FPA in terms of energy man-
agement, and computation time as discussed in Sect. 5.

System description

System overview

This section describes the in-lab wearable medical system
that will be used in this research study for investigating
the optimization approach. Afterwards, the data profiling
will be elaborated for further usage during the problem for-
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Fig. 2 Hardware diagram of wearable medical device

mulation. The functionality of our energy harvesting-based
wearable system is the continuous monitoring via a heart
rate sensor [47] and a temperature sensor [48]. So, the med-
ical wearable device is ought to contain a micro-controller
[49] to be connected to the two adopted sensors. The basic
energy harvesting-basedwearable device should also contain
a piezoelectric harvester, a bridge rectifier, and supercapac-
itor. The main components that involves in our problem
formulation are the two sensors and the supercapacitor. The
supercapacitor acts as the energy reservoir of the wearable
device and our vision in this study is to optimize the energy
consumption so that the voltage stored in it is maximized.
Figure2 illustrate the adopted hardware system upon which
we will construct our data-set.

The piezoelectric energy harvesters are great means of
powering self-sustaining electronic devices [50]. The usage
of the piezoelectric elements is to harvest energy from
ambient vibration and convert energy from ambient to elec-
tricity to power thewearable device. Afterward, the electrical
energy is passes through a bridge rectifier and a supercapac-
itor. The supercapacitor is capable of storing a large amount
of electrical charge than normal capacitor. In other words,
it has a substantially larger capacitance value than regular
capacitors. This allows the supercapacitor to store energy for
a longer period of time. A micro-controller is essential for
wearable technology to function, which is act as small com-
puter (system on chip) to keep wearable device in small size
[51].

Data profiling

The energy consumption of the components within the wear-
able device can affect the neutral operation, thus, it is
necessary to reduce total energy consumption [52]. There-
fore, the main goal of this work is to maximize the stored
energy in the supercapacitor by reducing the overall energy
consumption. The amount of the energy consumed varies

Table 1 Sample from generated data-set

Volt_level Combination �V

3.3000 0 1.680004e−05

3.3000 1 5.228415e−04

3.3000 2 0.00202342

3.3000 3 0.00252976

3.27058 0 1.6951e−05

3.27058 1 5.275439e−04

3.27058 2 0.00202342

.

.

.
.
.
.

.

.

.

according to the change in current/voltage passing through
the supercapacitor. The consumption of energy is affected
by a nonlinear load such as the sensors. The task scheduling
technique of this study aims to manage the activity of the
two adopted sensors. Accordingly, we need to represent the
activity of the sensors to be used during the problem formu-
lation.We refer to the status of two sensors either ON or OFF
by representing this in an integer number from 0 to 3. This
representation is considered a compact form of the original
binary representation (e.g. ON (1) or OFF (0)). In this study,
the Least Significant Bit (LSB) indicates the state of the tem-
perature sensor and theMost Significant Bit (MSB) indicates
the state of the heart rate sensor. The mapping from decimal
to binary can be easily done, for example, the states combi-
nation represented in decimal as 2 is equal to (1 0) in binary
which implies that temperature sensor is OFF while the heart
rate sensor is ON. The combination profiling is considered
very crucial as the final desired task schedule is supposed to
be set of these combinations.

Table 1 depicts a representative sample of the generated
dataset, which is measured from the datasheets.

where, Volt_level refer to the voltage across the super-
capacitor, combination column refers to the status of two
sensors ON/OFF which was elaborated earlier and�V is the
result value of voltage drop.

In first scenario we have four states as we use two sensors,
the all possible probabilities for working temperature sensor
and heart rate sensor respectively as follow:

• When both sensors are off (0 0) the combination equal
to 0.

• When temperature sensor is ON and Heart rate sensor is
OFF (0 1) the combination equal to 1.

• When temperature is OFF and Heart rate sensor is ON
(1 0) the combination equal to 2.

• When both sensors are ON (1 1) the combination equal
to 3.
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As an extension for the proposed algorithm, two sensors
have been added. The new dataset for the two added sensors
has been generated and measured from the datasheets.

As a result, we also should demonstrate the action of the
sensors thatwill be used throughout the problem formulation.
Wecorrespond to the status of four sensors, eitherONorOFF,
using an integer number ranging from 0 to 15. This depiction
is thought to be a version of the binary representation (e.g.,
ON (1) or OFF (0)). When the sensor is turned on, the binary
value of its representation is 1, and when the sensor is turned
off, the binary value of its representation bit is 0.

In the second scenario, we have four sensors as the fol-
lowing order:

1. Temperature sensor (T)
2. Heart rate sensor (H)
3. Glucose sensor (G)
4. Communication module (C)

The LSB refers to the state of the temperature sensor, the
second bit refers to the state of the heart rate sensor, the third
bit refers to the state of the Glucose sensor, andMSB tends to
the communication module state. The conversion of decimal
values to four binary bit representation is obtained as follows:

Y = {y0, y1, y2, y3, . . . , y15} (1)

whereY is the obtainedbest schedule fromoptimization algo-
rithm, {y0, y1, . . . , y15} are the states of the sensors at time
slots {0, 1, . . . , 15}. For example at y10 in decimal represen-
tation is equal to (1010)bin in binary representation which
indicates that the Temperature sensor (LSB) is ON, second
bit/next bit refer to Heart rate sensor is OFF, third bit/next bit
refer to Glucose sensor is ON, and MSB refer to the commu-
nicationmodule isOFFas shown inTable 2. The combination
is thought to be crucial because the final desired task schedule
is supposed to be set up of these combinations.

Task scheduling approach

Problem formulation

In this part, the problem formulation is introduced to han-
dle the energy consumption throughout the wearable device.
Once the problem is formulated including the objective func-
tion, the adopted GSK algorithm will be applied to it to
achieve the desired solution or the schedule. However, before
proceeding in the objective function formulation, we need to
get more familiar with the expected solution. The suggested
algorithm tends to generate an optimal schedule for operating
the temperature and heart rate sensors to save power without
considering the devices’ functional constraints.

Table 2 All possible
combination in case of using
four sensors

Time slots Combination

y0 0000

y1 0001

y2 0010

y3 0011

y4 0100

y5 0101

y6 0110

y7 0111

y8 1000

y9 1001

y10 1010

y11 1011

y12 1100

y13 1101

y14 1110

y15 1111

In this study, we recognize the task schedule of our
wearable medical device in decimal representation and the
operation duration is divided into a number of time slots Nslot .
The desired task schedule X is anticipated to be a series of
combinations along the defined number of time slots in case
of two sensors as follows:

X = {x1, x2, . . . , xNslot } (2)

xi ∈ {0, 1, 2, 3}dec (3)

where i refers to number of time slot and xi refers to the
sensors status at time slot i .

In the case of using four sensors, the task schedule is in
decimal representation, and the operation duration is split
into a number of time slots Ntslot. The optimum task schedule
(solution) X is expected to be a sequence of combinations
along the defined number of time slots Ntslot, as follows:

X = {x1, x2, . . . , xNslot } (4)

xn ∈ {0, 1, 2, . . . , 15}dec (5)

xn ∈ {0000, 0001, 0010, . . . , 1111}bin (6)

where n corresponds to the number of time slot and xn cor-
responds to the sensors’ status at time slot n.

Objective function

The main objective of our study is to maximize the energy
throughout the energy harvesting-based medical wearable
device. This is done in this research by applying GSK opti-
mization algorithm to find best schedule X that leads to
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energy maximization. The objective function is described as
follows:

f (X) = V f (X) (7)

where V f (X) refers to the final voltage across the superca-
pacitor which can be calculated according to the generated
data-set by defining an initial voltage and attaining the volt-
age drop across the supercapacitor at the end of each time slot
due to the operated combination. As per our goal of maxi-
mizing energy, we should ensure that the final voltage across
the supercapacitor V f inal is alsomaximized and the optimum
solution is:

X̂ = argmax
∀X

( f (X)) (8)

where X̂ is the optimum schedule.

Gaining–sharing knowledge algorithm

The basic version of GSK was released in [23]. GSK is
a nature-inspired algorithm that is based on human social
behavior. GSK comprises two major stages: junior stage and
senior stage for gaining and sharing the knowledge. Every-
body gains knowledge and then shares it back with their
own perspectives with other individuals. In the initial phase,
humans gain from their small social network, which includes
members of their families, relatives, neighbors, and so on.
Afterwards, people share their newly acquired knowledge
with others. Using the same notion for human with middle
or large ages, they gain their knowledge from wide area net-
work such as social media, and coworkers, and then, share
their knowledgewith others.GSKalgorithmhas several steps
shown in Fig. 3 and explained as follows:

1. To initiate the optimization procedure, it begins with the
initialization of the population (solution) which is ran-
domly generated considering constraints as follows:

xi = LB + rand (UB − LB) (9)

where i is the number of the individual in the population, x
represents the decision variables, rand refers to a random
number from [0 − 1], UB represents the upper bound of
the decision variable and LB is the lower bound of the
decision variable.

2. Calculate the dimensions of the juniors and seniors indi-
viduals in each stage using:

DJ = D ∗ ((Gmax − G)/Gmax)
k (10)

where DJ denotes the number of dimensions of junior
phase and D is the total number of dimensions, Gmax and

G are the maximum number of function evaluations and
the number of function evaluations consumed by the algo-
rithm respectively, k is a positive number that determines
the rate at which the person moves from junior stage to
senior stage. Note that DJ is calculated for each person,
due to each person has a different rate k value.
The dimension for senior stage is calculated as:

DS = D − DJ (11)

3. Junior phase: individuals gain from their small social
network and then share their knowledge with others. Indi-
viduals are sorted in ascending order regards to their
objective function values. For each individual in the
population xi (i = 1, 2, . . . , NP), the nearest best neigh-
bor (xi−1) and the worst neighbor (xi+1) is chosen for
gaining knowledge, as well randomly selecting (xr ) for
knowledge sharing then updating the individual using the
following at f (xi ) > f (xr ):

xi = xi + k f ∗ (xi−1 − xi+1) + (xr − xi ) (12)

Else, at f (xi ) < f (xr ):

xi = xi + k f ∗ (xi−1 − xi+1) + (xi − xr ) (13)

4. Senior phase: Individuals could be updated in the fol-
lowing ways: There are three types of candidates in the
population, (best people, middle people, and worse peo-
ple) The ratio of best class and worst class is calculated by
a factor p, after sorting all individuals in ascending order
based on their objective function values. Each individual
is updated according to the following at f (xi ) > f (xm):

xi = xi + k f ∗ (xp−b − xp−w) + (xm − xi ) (14)

Else, at f (xi ) < f (xm):

xi = xi + k f ∗ (xp−b − xp−w) + (xi − xm) (15)

The mathematical description of the aforementioned con-
cept of gaining–sharing knowledge is presented. Let xi , i =
1, 2, 3, . . . , N denote the individuals of a specific population,
i.e., this population has N individuals, and each individual xi
is defined by xi, j = (xi1, xi2, . . . , xiD), where D denotes
the number of fields (i.e., branches of knowledge) assigned
to a person, which define the dimensions of a person, and
f i ti , i = 1, 2, . . . , N denotes their fitness values.As a result,
it is evident to deduce from Fig. 4 that the main idea is that
throughout the junior gaining and sharing stage, the number
of dimensions of each vector that are modified by other val-
ues using the junior gaining–sharing scheme is greater than
the number of updated dimensions using the senior gaining
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Fig. 3 Flow chart of the GSK
[23]
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Fig. 4 Descriptions for junior and senior Gaining–Sharing Knowledge
stages

and sharing scheme, i.e. the number of updated dimensions
using the junior gaining and sharing rule is greater than the
number of updated dimensions using the senior gaining and
sharing scheme.

As a result, for each vector at the start of the search, the
desired number of dimensions that will be changed (using
junior scheme) and the other number of dimensions that will
be updated (using senior scheme) during generationsmust be
determined. The number of dimensions D is calculated using
the non-linear decreasing and increasing formula based on
the fundamental concept of gaining–sharing knowledge. It’s
important to note that the number of dimensions that will
be updated using the junior scheme will decrease over time,
while the number of dimensions that will be updated using
the senior scheme will increase as follows:

DJ = Sproblem ×
(
1 − G

Gmax

)k

(16)

where Sproblem is the problem size and k is knowledge rate
which is integer number and controls the experience rate for
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Table 3 Scheduling generated from GSK for different time slots

Time slots Heart rate sensor Temperature sensor

1 ON ON

2 OFF OFF

3 ON ON

4 OFF OFF

5 ON ON

6 ON OFF

7 ON ON

8 OFF ON

9 OFF OFF

10 OFF ON

each individual through generations, G is generation number
and Gmax is the maximum number of generations:

DS = Sproblem − DJ (17)

The number of gained and shared dimensions for each
vector using both schemes will be defined during the initial-
ization phase.

Results

In this paper, several experiments are conducted to generate
efficient task schedules in two scenarios with two different
datasets (two sensors and four sensors) based on the GSK
algorithm and compare the results with the state-of-the-art
FPA-based algorithm. In the optimal case for two sensor: the
two sensors are desired to operate periodically once every
two time slots to ensure continuous monitoring. For test-
ing the GSK algorithm, we adopt the following parameter
settings: 100 iterations, and the initial voltage across the
supercapacitor V = 3.3 V. By applying the GSK algo-
rithm on the objective function for Nslots = 10 time slots
using the mentioned settings, the best achieved schedule is
found to be {3, 0, 3, 0, 3, 2, 3, 1, 0, 1}dec which is equiva-
lent to {11, 00, 11, 00, 11, 10, 11, 01, 00, 01} in its binary
representation. For more elaboration, the schedule is bet-
ter off being represented in terms of sensor status (ON or
OFF) as shown in Table 3. By looking at the schedule,
we can notice that it is very close to the optimal solution
{3, 0, 3, 0, 3, 0, 3, 0, 3, 0}dec as there are not many violations
which implies that the GSK algorithm is indicative of pro-
ducing reliable solutions.

In this study, we focus on managing the energy consump-
tion; hence, the target is maximizing the supercapacitors’
stored energy. Accordingly, the effect of operating the best
schedule found by the GSK algorithm versus the optimal
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Fig. 5 The voltage drop across supercapacitor generated from GSK
and optimal solution

schedule is tackled inFig. 5,where the voltage drop across the
supercapacitor is plotted versus the time slots. We can notice
that till the fifth time slot, the GSK best solution achieves the
optimal operation. While for the remaining time slots, the
operation of the GSK task schedule differs from the optimal
schedule. However, the final voltages across the supercapac-
itor due to both schedules are not dramatically dissimilar
which gives intuition that the GSK algorithm is capable of
generating efficient solutions regardless of the huge search
space of the different time slots.

To effectively evaluate the performance of GSK algo-
rithm, several experiments are conducted on different time
slots to investigate the behavior on various search space
complexities. After conducting the experiments on Nslots =
5, 10, 15, 20, the best solutions reached by GSK algorithm
are summarized in Table 4 while the resultant voltage drops
are depicted in Fig. 6. During these experiments, the initial
voltage across the supercapacitor and the number of itera-
tions remain the same.

In general, the meta-heuristics are not guarantee to
approach the desired optimal solutions even with adequate
search space complexity and this is noticeable from experi-
menting GSK algorithm on different time slots. By tackling
the effect of operating the schedule of Nslots = 5 found in
the table, it is obvious that the temperature sensor operated
just one time along the slots. Despite that this solution mini-
mizes the voltage drop across the supercapacitor as shown in
the figure, however, it hinders the required functionality. On
other hand, when the number of time slots increased to 10,
the GSK algorithm reached more reliable solution that fit the
objective function in minimizing the voltage drop across the
supercapacitor while maintaining the functionality by oper-
ating the two sensors frequently.
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Table 4 Task schedules
generated by GSK for different
time slots

No. of slots Best solution of GSK

5 2, 0, 1, 0, 2

10 3, 0, 3, 0, 3, 2, 3, 1, 0, 1

15 3, 0, 1, 3, 0, 3, 1, 0, 2, 0, 2, 1, 0, 1, 0

20 1, 1, 2, 3, 0, 3, 2, 1, 0, 2, 3, 2, 1, 0, 3, 2, 0, 3, 1, 0
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Fig. 6 The voltage drop across supercapacitor due to GSK solutions on
different time slots

Nevertheless, to benchmark the performance of the GSK
algorithmagainst state-of-the-art techniques,we test it versus
the FPA algorithm, which is another nature-inspired algo-
rithm used in a prior study [46]. These testing experiments
are conducted by relying on the same parameter settings
adopted while evaluating GSK to fairly estimate the poten-
tiality of both algorithms on Nslots = 5, 10, 15, 20, 50, and
100. Figures7 and 8 displays the voltage drop across the
supercapacitor for GSK and FPA solutions on the different
time slots for two sensors and four sensors, respectively. For
the different time slots, it is obvious that the GSK algorithm
generates solutions with more tendency for minimizing the
voltage drop across the supercapacitor and hence, maximizes
the energy more throughout the wearable device. In all the
cases shown in the figures, the plots qualitatively indicate
that the GSK-based task scheduler outperforms the state-of-
the-art FPA algorithm. This intuitively proves the reliable
performance of the GSK algorithm on search spaces with
different complexities. We obviously see that discharge of
the voltage across the supercapacitor is increased in the case
of using four sensors. It is normal, as we use a communica-
tion module that operates near continuously to send data to
each sensor. It is evident that GSK Algorithm outperforms
the state-of-the-art FPA in two scenarios. Furthermore, we
need to investigate the performance of GSK versus FPA in
terms of functionality, not only in terms of energy maximiza-

tion. Therefore, it is important to comparatively present the
overall voltage drop across the supercapacitor by operating
the two sensors according to both GSK and FPA schedules
against the optimal schedule.

Figure9 is constructed to show the final voltage across
the supercapacitor in the cases of optimal, GSK, and FPA
solutions for two sensors. By looking at this bar chart, it is
noticeable that the GSK algorithm approaches the optimum
solutionwithminimal voltage drop alongnearly all the search
space complexities (i.e., different time of slots). Figure10
shows the final voltage across the supercapacitor in case of
using four sensors, in the cases of optimal, GSK, and FPA
solutions at different time slots.

It is also shown that the efficiency of the GSK algorithm
becomes more considerable as the number of slots increases
while that of FPA algorithm is reduced further away from
optimality. To quantitatively present the comparative results
between GSK and FPA, Tables 5 and 6 are constructed to
show the final voltage across the supercapacitor due to GSK
solution versus FPA solutions and the enhancement ratio of
the GSK over FPA for two scenarios (two sensors and four
sensors). In case of two sensor, by considering the initial
voltage equal to 3.3V.At Nslots = 5, the voltage drop approx-
imately 0.0005 V for GSK in case of using two sensor, while
in case of four sensors the voltage drop equal 0.036 V and
0.01 V for FPA in first scenario and equal 0.042 V for second
scenario. While at Nslots = 20, the voltage drop is approx-
imately 0.015 V for the GSK and 0.037 V for the FPA, at
Nslots = 50 the voltage drop is approximately 0.04 V for the
GSK and 0.066 V for the FPA.

And at Nslots = 100 the voltage drop is approximately
0.117 V for the GSK and 0.158 V for the FPA. It is nor-
mal that the voltage drop increases as the value of Nslots

increases.However, the solutions or task schedules gener-
ated by GSK algorithm achieves our goal of optimizing
energy consumption throughout managing the activities of
the sensors in two scenarios (two sensors and four sensors)
by maximizing the energy stored in the supercapacitor. The
last column of the table shows the improvement in minimiz-
ing the voltage drop done by the solutions of GSK algorithm
along the different time slots.

To experimentally display the computation time for GSK
and FPA, Tables 7 and 8 are created to compare the computa-
tion time between GSK and FPA for two cases of using two
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Fig. 7 The voltage drop across
the supercapacitor for best
solution result from GSK and
FPA for different time slots for
two sensors
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Fig. 8 The voltage drop across
the supercapacitor for best
solution result from GSK and
FPA for different time slots for
four sensors
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Fig. 9 The final voltage across the supercapacitor comparison between GSK, FPA, and optimal solution for different time slots in case of using
two sensors
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Fig. 10 The final voltage across the supercapacitor comparison between GSK, FPA, and optimal solution in case of using four sensors

Table 5 Performance of GSK
against FPA for different time
slots in case of using two
sensors

No. of slots V f (GSK schedule) V f (FPA schedule) Enhancement (%)

5 3.2995 3.29 0.28

10 3.287 3.285 0.06

15 3.29 3.275 0.5

20 3.285 3.263 2.2

50 3.26 3.234 0.79

100 3.183 3.142 1.288

Table 6 Performance of GSK
against FPA for different time
slots in case of using four
sensors

No. of slots V f (GSK schedule) V f (FPA schedule) Enhancement (%)

5 3.264 3.258 1

10 3.264 3.262 0.06

15 3.259 3.254 0.15

20 3.265 3.255 3

50 3.238 3.221 0.52

100 3.145 3.118 0.86
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Table 7 The computation time
for GSK versus FPA for all time
slots for two sensors

No. of slots Computation time for GSK (s) Computation time for FPA (s)

5 3 7

10 5 14

15 9 19

20 14 26

50 30 93

100 45 268

Table 8 The computation time
for GSK versus FPA for all time
slots for four sensors

No. of slots Computation time for GSK (s) Computation time for FPA (s)

5 7 61

10 11 31

15 17 40

20 21 53

50 55 117

100 72 480

and four sensors. We are obvious that GSK outperforms FPA
in terms of computation time.

In the context of energy saving, the solution that results in
the highest final voltage across the supercapacitor is expected
to be the best, which is happening in the case of using the
GSK Algorithm. The results of the two scenarios show that
the proposed GSK algorithm outperforms the state-of-the-art
FPA algorithm in terms of energy management and com-
putation time. In other words, using GSK as an optimum
task scheduling technique for the energy in wearable medi-
cal devices based on the energy harvesting technology shows
potential for further work.

Conclusion

Wearable medical devices have limited power. Thus, energy
harvesting is a desirable energy source for wearable medi-
cal devices to prevent their operation from disturbance. In
this paper, we produce a task scheduling technique for man-
aging the activity of sensors within energy harvesting-based
wearable medical devices. In this study, two scenarios are
applied. the first one, temperature sensor and a heart rate sen-
sor are both used. the second scenario, temperature sensor,
heartrate sensor, glucose sensor, and communication module
are used. By formulating the problem, we aim to optimize
the energy consumption throughout the device by apply-
ing a new optimization technique, the GSK algorithm. The
GSK has evidenced its ability to handle various optimiza-
tion challenges, and its performance is much better than the
state-of-the-art FPA for both scenarios in terms of energy
managements (minimize the energy consumption and max-
imize the energy throughout) and computation time. The

results demonstrate that task scheduling can be enhanced
evenmore in future research using various optimization tech-
niques and more sensors.
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