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Abstract
Many optimization problems are expensive in practical applications. The surrogate-assisted optimization methods have
attracted extensive attention as they can get satisfyingly optimal solutions in a limited computing resource. In this paper,
we propose a two-stage infill strategy and surrogate-ensemble assisted optimization algorithm for solving expensive many-
objective optimization problems. In this method, the population is optimized by a surrogate ensemble. Then a two-stage infill
strategy is proposed to select individuals for real evaluations. The infill strategy considers individuals with better convergence
or greater uncertainty. To calculate the uncertainty, we consider two aspects. One is the approximate variance of the current
surrogate ensemble and the other one is the approximate variance of the historical surrogate ensemble. Finally, the population
is revised by the recently updated surrogate ensemble. In experiments, we testify our method on two sets of many-objective
benchmark problems. The results demonstrate the superiority of our proposed algorithm compared with the state-of-the-art
algorithms for solving computationally expensive many-objective optimization problems.

Keywords Surrogate ensemble · Many-objective optimization · Infill strategy · Expensive optimization problems

Introduction

In industrial optimization problems, such as electric vehicle
control problems [4], industrial scheduling [12], and robotics
[24], there are multiple objectives to be optimized simultane-
ously. These multi-objective optimization problems (MOPs)
can be mathematically formulated as follows:

minimize F(x) = ( f1(x), f2(x), . . . , fM (x)),
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subject to x ∈ RD (1)

where RD represents the D-dimensional decision space,
fi (x) represents the i th objective of individual x and M is
the number of objectives. Objectives are often conflicting
with each other, and one objective getting better may cause
another to deteriorate. Pareto optimal solutions obtained by
multi-objective optimization algorithms can trade off the dif-
ferent objectives, and they are called Pareto set (PS) in the
decision space and Pareto front (PF) in the objective space,
respectively. Various methods like a fast and elitist multi-
objective genetic algorithm (NSGA-II) [8], a multiobjective
evolutionary algorithm based on decomposition (MOEA/D)
[38], and indicator-based selection in multiobjective search
(IBEA) [42] have been proposed for solving MOPs with
two or three objectives. These multi-objective evolution-
ary algorithms (MOEAs) are confronted with the lack of
selection pressure when the objectives increase. To solve
many-objective optimization problems (MaOPs) with more
than three objectives, a lot of methods have been proposed,
for example, NSGA-II/SDR [31] based on the strengthened
dominance relation (SDR), AR-MOEA [30] based on an
IGD non contributing solution detection (IGD-NS) indica-
tor, reference vector guided evolutionary algorithm (RVEA)
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[3] which decomposes a MOP into several single-objective
optimization problems.

Usually, MOEAs require a lot of real evaluations of the
objective function before finding a set of Pareto optimal
solutions, which makes the MOEAs restricted in the expen-
sive engineering problems, such as computing fluid kinetics
(CFD) simulation [10] and engineering design optimization
[11]. In these expensive problems, one simulation could take
from minutes to hours [14]. Surrogate-assisted evolution-
ary algorithms (SAEAs), have been proposed to address the
optimization of expensive problems. Commonly used surro-
gate models include polynomial regression model (PR) [12],
radial basis function (RBF) [13], and Gaussian process (GP)
[14]. For more descriptions of surrogate model, readers can
refer to the review articles [13,14].

Surrogate-assisted evolutionary algorithms (SAEAs) can
be divided into on-line and off-line optimization methods
[33]. In the on-line surrogate-assisted optimization methods,
a small number of expensive real fitness can be conducted
during the optimization, and the newly generated samples can
also be used to update the surrogates. Conversely, in the off-
line surrogate-assisted optimization algorithms, there are not
new samples available [35]. In the on-line surrogate-assisted
optimization algorithms, themethods to select individuals for
expensive evaluation, are also known as infill sampling crite-
rion, infill strategy or surrogate management. Infill sampling
criteria, such as expected improvement (EI) [21,25], lower
confidence bound (LCB) [18], and probability of improve-
ment (PoI) [9], are widely used in the Kriging or Gaussian
process (GP) assisted optimization algorithms.

On-line SAEAs are more flexible than off-line SAEAs
as they have additional samples for surrogate manage-
ment during the optimization process, which may have
more opportunities to improve the performance of the algo-
rithm than off-line SAEAs [14]. Therefore, in this paper,
our work mainly focuses on the on-line surrogate-assisted
optimization methods. A lot of on-line surrogate-assisted
single-objective optimization methods have been proposed.
In [16], Li selected the individualswith the best approximated
fitness and maximum uncertainty for expensive evaluations
and used the distance and fitness value information to calcu-
late the uncertainty. In [29], Tian proposed a multi-objective
infill strategy that considers both approximated fitness and
uncertainty for solving high-dimensional expensive prob-
lems. In [22], Pan used teaching-learning-based optimization
(TLBO) or differential evolution (DE) alternately to search
for the best candidate solution, and the generation-based and
individual-based strategies are used for surrogate manage-
ment. In [37], Yu used a GP model as a coarse surrogate to
learn the global landscape and an RBF model as a fine surro-
gate to learn the local feature of the fitness landscape. In the
coarse search, approximate fitness together with the uncer-
tainty of GP is used for environmental selection. In [19], Liu

used the affinity propagation clustering technique to partition
the population into several subpopulations and proposed an
RBF-assisted learning strategy-based particle swarm opti-
mizer (PSO) to update the particle in each subpopulation.
For more methods of on-line single-objective SAEAs, please
refer to Refs. [2,18,27,28,32,36].

Someon-line surrogate assisted-multi-objective optimiza-
tion methods have been proposed. In ParEGO [15], a weight
vector was selected at each iteration for optimization by the
efficient global optimization (EGO). InMOEA/D-EGO [39],
Gaussian process is built for each objective in the MOP and
maximizing the expected improvement metrics are used to
select test points for expensive evaluations. In KRVEA [5],
the Kriging model is used to approximate each objective of
MOPs, and approximated values or uncertainties provided by
Kriging model are adaptively selected for expensive evalua-
tions. In CSEA [23], Pan used a feedforward neural network
(FNN) as a classifier to identify good solutions from the
whole population. In [11], Guo used an efficient dropout neu-
ral network (EDN) to approximate the fitness of individuals
and get their approximate uncertainties by randomly ignor-
ing neurons in the neural network. In [34], Wang proposed
an adaptive acquisition function in the Bayesian approach
to solve expensive multi-objective optimization problems.
In [26], Song used the two-archive evolutionary algorithm
to optimize the population, and the differences between the
individuals in the two archives are used for infill strategy. In
[17], Lin used a global Kriging and several sub-models to
construct the surrogate ensemble to approximate the objec-
tives of the expensivemulti-objective problems and proposed
a reference vector-based infill strategy. In [10], Gu used the
Kriging model to optimize the population for several gener-
ations, then the crowding degrees of the individuals in the
radial space and the uncertainty information provided by
the Kriging model are used for surrogate management. For
ParEGO, MOEA/D-EGO, these two methods cannot obtain
good performance on expensiveMaOPswithmore than three
objectives. In KRVEA, the population is optimized by a set
of uniformly distributed reference vectors, and the true eval-
uated individuals are selected from the population. When the
shapes of reference vectors and PFs are not consistent with
each other, the performance of the algorithmwill be affected.

From the mentioned above, there have been some stud-
ies on multi-objective expensive optimization problems, but
there are still some challenges in this field. First, different
surrogate models are suitable for different types of expen-
sive problems. Therefore, selecting an appropriate surrogate
for the problems is important and difficult as there is no crite-
rion for this work. Second, the multi-objective optimization
framework also has an impact on the performance of the
expensive MOPs. Third, as to surrogate management, infill
sampling criteria directly affect the approximate accuracy of
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the surrogate and the optimal solutions finally found by the
methods.

On one hand, considering the first challenge of the expen-
sive multi-objective optimization problems as described
above, a natural idea is to combine multiple base learners
to form a strong learner. And in our previous work [40],
ensemble constructs a strong learner by combining multiple
base learners, which has proved to be superior to a single
learner in terms of accuracy and robustness. Furthermore,
an ensemble surrogate can provide approximate variance
among different surrogates, which is important for surro-
gate management. On the other hand, in SAEAs, the update
process of surrogate model contains some historical infor-
mation. At present, there is no method to use these historical
information for surrogate management. Motivated by these,
we propose a method to solve the expensive many-objective
optimization problems, named a two-stage infill strategy and
surrogate-ensemble assisted expensive many-objective evo-
lutionary optimization algorithm (TSEMO). The main work
of this paper consists of two aspects:

(1) The RBF models based on two different kernel functions
are used as the base learners to construct the surrogate
ensemble.And the surrogate ensemble is used to optimize
the population.

(2) A two-stage infill strategy is proposed to select individu-
als for expensive function evaluations. In the first stage,
the individuals with the minimum approximate fitness or
themaximumuncertainty are selected for expensive eval-
uations. The uncertainty is the approximate variance of
the surrogate ensemble. In the second stage, the indi-
vidual with the maximum uncertainty is selected for
expensive evaluations and the uncertainty is the approx-
imate variance of the historical surrogate ensemble.

The rest of this paper is organized as follows. Section
“Relatedwork” introduces the relevantwork. In “A two-stage
infill strategy and surrogate-ensemble assisted expensive
many-objective optimization”, the details of the proposed
algorithm TSEMO are described. In “Numerical experi-
ments”, the numerical experiments are carried out, and the
results are comparedwith severalmethods onmulti-objective
benchmark problems. Finally, the conclusion and futurework
are drawn in “Conclusion”.

Related work

Different multi-objective optimization algorithms have a
certain degree of impact on expensive multi-objective opti-
mization problems. To solve the expensive many-objective
optimization problems, we used NSGA-II/SDR [31] as the

underlying optimization framework of our method. And the
NSGA-II/SDR algorithm is described below.

NSGA-II/SDR

Before giving NSGA-II/SDR, we first introduce the original
dominant relation in NSGA-II, which is defined below.

Definition 1: an individual x is said to dominate another
individual y (denoted as x ≺ y) if and only if ∀ i , i =
1, 2, . . . , M , fi (x) ≤ fi (y), and there is at least one j , j ∈
1, 2, . . . , M satisfying f j (x) < f j (y).

Due to the lack of selection pressure, the traditional
NSGA-II algorithm based on the dominant relation deteri-
orates in solving MaOPs with more than three objectives. To
solve this problem, Tian [31] proposes a strengthened domi-
nance relation (SDR), which replaces the original dominance
relation in NSGA-II, and can greatly improve the selection
pressure of many-objective optimization problems, thus pro-
moting the performance of the algorithm. SDR can balance
the convergence and diversity of MaOPs well by adopting
the specific niche technology. The definition of strengthened
dominance relation is given below.

Definition 2: an individual x strengthened dominate
another individual y (denoted as x ≺SDR y) if and only if

{
Con(x) < Con(y) θxy < θ̄

Con(x) · θxy

θ̄
≤ Con(y) θxy ≥ θ̄

(2)

where Con(x) = ∑M
i=1 fi (x), θxy denotes the acute angle

between the two individual x, y in the objective space, θ̄

is the parameter which is set to the �(|P|/2)�th minimum
element of{
min
q∈P\p θpq | p ∈ P

}
. (3)

SDR is irreflexive, antisymmetric, and nontransitive, respec-
tively.

NSGA-II/SDR is based on the algorithm framework
of NSGA-II. The multi-objective algorithms obtain a set
of non-dominant solutions that are consistently distributed
and proximate to the Pareto front by performing the envi-
ronmental selection. During the environmental selection,
NSGA-II/SDR first uses the strengthened dominance rela-
tion to sort the individuals into several non-dominant layers
(L1, L2, . . . , Li , . . .). We suppose that the parent popula-
tion size is N, and the first |i − 1| layers are put into the
next generation, where|L1 ∪ L2 ∪ · · · ∪ Li−1| < N and
|L1 ∪ L2 ∪ · · · ∪ Li | > N . Crowding distance [8] which is
the same as the original NSGA-II, is used to select the i th
layer into the next generation one by one until the popula-
tion size reaches N . More details of NSGA-II/SDR can be
referred to [31].
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A two-stage infill strategy and
surrogate-ensemble assisted expensive
many-objective optimization

Radial basis function(RBF) has been widely used in SAEAs.
RBF fits well for nonlinear and higher-order problems and
it has a low training complexity [41]. We use two differ-
ent kernel functions, cubic and Gaussian function in RBF
as the basic learners to construct the surrogate ensemble.
The flowchart of TSEMO is given in Fig. 1 and the pseu-
docode of TSEMO is in Algorithm 1. In the main loop,
TSEMO first uses Latin hypercube (LHS) [20] to gener-
ate 11D − 1 individuals. These individuals are evaluated by
the expensive functions and kept in archive A1. The non-
dominated individuals in A1 are kept in A2. We conduct
the environmental selection of NSGA-II/SDR on the indi-
viduals in A1, and N individuals are selected as the initial
population. Then the individuals in A1 are used to train
the surrogate ensemble for each objective of the MaOPs.
After that, the population is optimized for wmax generations.
Next, a two-stage infill strategy is used to select individu-
als for expensive evaluations. These new samples are added
to archive A1 and used to update archive A2. The surrogate
ensemble is re-trained by the samples in A1. At last, the pop-
ulation is revised with the surrogate ensemble. This process
is repeated until the maximum number of expensive evalu-
ations FEmax is reached. In the subsequent subsections, we
will give a detailed description of the methods on the surro-
gate ensemble-based optimization, choosing individuals for
exact function evaluations (a two-stage infill strategy), and
revising the population, respectively.

Surrogate-ensemble based optimization

In the surrogate-ensemble based optimization, all the individ-
uals are evaluated by the RBF ensemble instead of the exact
objective functions. Algorithm 2 gives the pseudocode of
the surrogate-ensemble based optimization. In the surrogate-
ensemble based optimization, we use simulated binary cross
over[6] and polynomial mutation [7] to generate offspring
population Q, and population Q is evaluated by RBF ensem-
ble. The i th objective of individual x is calculated below:

f̃i (x) = f̃ cubici (x) + f̃ Guassiani (x)

2
(4)

where f̃ cubici (x) and f̃ Guassiani (x) denote i th objective of the
individual x evaluated by RBF models with cubic kernel
function and Gaussian kernel function respectively. Then the
objective functions of P ∪ Q are normalized by

F(x)
′ = F(x) − Fmin

Fmax − Fmin
(5)

Algorithm 1 The pseudocode of TSEMO
Input: Maximum number of expensive function evaluations (FEmax);

population size N ;
Output: Solutions in A2
1: Use LHS to generate the 11D − 1 initial individuals and initialize

the number of function evaluations FE = 0, set A1 = ∅, A2 = ∅,
A3 = ∅

2: Evaluate the initial individuals with the expensive objective func-
tions, add them to A1, add all nondominated individuals of the
samples into the archive A2; and update FE = 11D − 1;

3: Select N individuals in A1 as the initial population.
4: Use the samples in A1 to train surrogate ensemble
5: while FE < FEmax do
6: Add the current population P into the archive A3
7: Implement the surrogate-based optimization on the population P

and get the population P
′
(Refer to Algorithm 2)

8: Add the population P
′
into the archive A3

9: Select u individuals from the population P
′
by the two-stage infill

strategy and re-evaluate them with the expensive functions (Refer
to Algorithm 3)

10: Add u individuals obtained from step 9 to A1 and update A2
11: Update the surrogate ensemble with archive A1
12: Implement the population revising strategy on the archive A3

(Refer to Algorithm 4)
13: Reset the archive A3 = ∅
14: end while

where Fmax and Fmin are the vectors of the maximum and
minimum objective functions of population P ∪ Q respec-
tively. Then the environmental selection of NSGA-II/SDR
is used on the combined population L = P ∪ Q to select
the next generation. If the maximum number of generation
wmax is reached, the surrogate-ensemble based optimization
is ended and the population P

′
is as the output.

Algorithm 2 surrogate-ensemble based optimization
Input: population P
Output: population P

′

1: while w < wmax do
2: Generate offspring Q using simulated binary crossover and poly-

nomial mutation
3: Combine parent and offspring populations L = P ∪ Q, and eval-

uate the objective values of L by RBF ensemble
4: Normalize the population L
5: Use environmental selection on L
6: Update w = w + 1
7: end while

A two-stage infill strategy

After the surrogate-ensemble assisted optimization, u indi-
viduals are selected for exact evaluations. In this paper, we
propose a two-stage infill strategy for selecting individuals,
and the pseudocode of the infill strategy is given in Algo-
rithm 3.

In the first stage, the convergence of population or the
uncertainty of the surrogate ensemble is adaptively con-
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Fig. 1 The flow chart of TSEMO

sidered according to the distribution of the population. By
considering the diversity of the population, we use k-means
to divide the population P

′
into K clusters in objective space.

An individual from each cluster with theminimumEuclidean
distance (ED) to theorigin or themaximumapproximate vari-
ance ε1 is selected for expensive function evaluations and ε1
is calculated as follows:

ε1(x) = 1

M

M∑
i=1

(√
( f̃ cubici (x) − f̃ Gaussiani (x))2 (6)

To select individuals from each cluster, the population P
′
is

sorted into several non-dominated fronts by the original dom-
inant relation in NSGA-II. For each cluster, if there is only
one non-dominated front, which means the individuals are
non-dominated with each other, the individual with the max-
imum uncertainty will be selected. Otherwise, the individual
with the minimum Euclidean distance (ED) to the origin will
be selected. Then the distance d1, which is the minimum dis-
tance from each of the K individuals to the samples in A1 in
the decision space is calculated. If the distance d1 is greater
than the threshold δ, the individual selected from the first
stage will be evaluated by the exact objective function. After
that, the individuals calculated by the expensive function are
added to A1. Else if the distance d1 is less than or equal to δ,
the individual will not be reevaluated. Here we set the value
of δ to 10−6. A simple example is given in Fig. 2 to show
the criterion to select individuals in each cluster. In Fig. 2,
there are three clusters, c1, c2, c3, and one individual from
each cluster will be selected. In cluster c1, because there are
two non-dominated fronts, the individual a1 with the small-

Fig. 2 An example of the infill strategy in the first stage

est ED value will be selected. In cluster c2, there is only one
non-dominated front, thus the individual a3 with the largest
ε1 will be selected. In cluster c3, a6 will be selected as in
cluster c2.

In the second stage, the u − K individuals with the maxi-
mumuncertainty of ε2 are selected. In this stage, the surrogate
ensemble is updated by A1 and the population P

′
is re-

evaluated by the surrogate ensemble. The uncertainty ε2 is
calculated below:

ε2(x) = 1

M

M∑
i=1

(√
( f̃ 1i (x) − f̃ 2i (x))2 (7)
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where f̃ 1i (x) denotes the i th objective value of the individual
x approximated by the surrogate ensemble in the first stage
and f̃ 2i (x) denotes the i th objective value of the individual x
approximated by the surrogate ensemble in the second stage.
The distance d2 of u−K individuals is calculated in the same
way as d1. If d2 is greater than the threshold δ, the individuals
will be evaluated by the exact objective function and theywill
be added to A1. The approximated variance from the first
and the second stage is used to select individuals for exact
evaluation and the aim is to exploit the historical information
of the surrogate ensemble.

Algorithm 3 A two-stage infill strategy

Input: population P
′
, archive A1

Output: Set Ru
1: (Front1, Front2, …, FrontL ) = Non-dominated-sort(P

′
)

2: (c1, c2, . . . , cK ) ←Divide the population P
′
into K clusters using

k-means method
3: for i = 1 to K do
4: Calculate the number of non-dominance layers τ in the ci cluster
5: if τ = 1 then
6: Select the individual with the maximum ε1 value in each clus-

ter
7: else
8: Select the individual with the minimum Euclidean distance to

origin in each cluster
9: end if
10: Calculate the minimum distance d1 from the individual to the

samples in archive A1
11: if d1 > δ then
12: Evaluate the individual using the exact objective functions

and add it to A1.
13: FE = FE + 1
14: end if
15: end for
16: Update the surrogate ensemble with archive A1
17: Select u − K individuals in P

′
with the maximum ε2 value

18: for j = 1 to u − K do
19: Calculate the minimum distance d2 from the individual to the

samples in archive A1
20: if d2 > δ then
21: Evaluate the individual using the exact objective functions

and add it to A1.
22: FE = FE + 1
23: end if
24: end for

Revising the population

In surrogate-assisted optimization, the approximated errors
of objectives may lead to the wrong direction of search. And
the approximated objectives of the surrogate ensemble may
become increasingly accurate as the training samples in A1

increase. Considering the above two points, we propose a
strategy to revise the population. First, the population P
before the surrogate-based optimization and the population
P

′
are combined into A3. After the two-stage infill strategy,

the surrogate ensemble will be updated by the samples in A1.
Then the objectives of the individuals in A3 are re-evaluated
by the updated surrogate ensemble. Finally, environmental
selection of NSGA-II/SDR is performed on A3 and N indi-
viduals with better convergence and diversity are retained.
Figure 3 gives an example to explain the effect of revising
the population. Figure 3 shows a two-dimensional decision
space. In Fig. 3, region 1 represents the region occupied by
individualswithworse convergence and smaller approximate
error, region 2 represents the region occupied by individuals
with better convergence and larger approximate error, region
3 represents the region occupied by individuals with bet-
ter convergence and smaller approximate error, and region
4 represents the region occupied by individuals with worse
convergence and larger approximate error. The five-pointed
star represents the individuals whose exact function values
are convergent. In the process of surrogate-ensemble based
optimization, the optimization of the population is based on
approximated value of the surrogate ensemble. Besides, due
to the limited training samples at the initial stage of optimiza-
tion, approximated error of the surrogate ensemble is large,
the individuals in region 4 with worse convergence will be
discarded. However, region 4 may contain some individu-
als with good convergence. By revising the population, the
initial population is re-evaluated with the updated surrogate
ensemble after the two-stage infill strategy. At this time, the
approximate accuracy of the surrogate ensemble is improved
due to the increased samples. In this way, the individuals rep-
resented by the five-pointed star in region 4 can be retained.
And the effectiveness of this step will be validated in the
experimental section.

Algorithm 4 Revising the population
Input: The archive A3
Output: Population P
1: Evaluate the objective values of the individuals in the archive A3 by

RBF ensemble
2: P = Environmental_Selection (A3)

Numerical experiments

In this section, we first describe the performance metrics
and parameter settings. Then we test the performance of
TSEMOby comparing it with several state-of-the-artMaOPs
algorithms on DTLZ and MaF test problems. After that, we
conduct experiments on different values of K to determine
the thresholds used in the two-stage infill strategy inTSEMO.
Then the effectiveness of the two-stage infill strategy is
studied. At last, the efficiency of revising the population is
examined. Wilcoxon rank-sum test is used to compare the
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Fig. 3 An example to explain the effect of revising the population

results of different algorithms and each algorithm is run 20
times independently. The significance level is set to 0.05.
And the symbol ‘+’ indicates that the compared algorithm
performs statistically better thanTSEMO.The ‘−’ represents
that the compared algorithmperforms statisticallyworse than
TSEMO.And the ‘≈’means that there is no significant differ-
ence between the performance of TSEMO and the compared
algorithm.

Performancemetrics and experimental settings

In this paper, inverted generational distance (IGD) [1] is used
as the performance indicator to compare the performance of
different algorithms. The IGD indicator can provide informa-
tion about convergence and diversity of the non-dominated
solutions, and it is defined as follows:

IGD(P∗,Ω) =
∑

x∈P∗ dis(x, P∗)
|P∗| (8)

where P∗ denotes the evenly distributed point set on the
true PF, Ω is the non-dominated solutions obtained by the
algorithm and dis(x, P∗) represents the minimum Euclidean
distance between x and the point in P∗. The number of the
reference points in the true PF is set as recommended in
KRVEA [5].

We also use HV as the performance indicator to com-
pare the performance of our method with other algorithms.
The HV indicator measures the volume of the hypercube
dominated by the non-dominated solutions obtained by the
algorithm, and it is defined below:

HV (Ω|zr )
= Vol

( ⋃
x∈Ω

[ f1(x), zr1] × [ f2(x), zr2] × · · · × [ fM (x), zrM ]
)

(9)

where Vol(·) indicates the Lebesgue measure, and zr =
(zr1, z

r
2, . . . , z

r
M ) is a reference point in the objective space

that is dominated by Ω . zr is set as recommended in AR-
MOEA [30].

The experimental settings are given below:

(1) Genetic operators: in this paper, the simulated binary
crossover [6] and polynomial mutation [7] are used to
generate offspring population in all the algorithms. The
distribution index of crossover is set to 20, and the dis-
tribution index of mutation is set to 20. The crossover
probability pc is set to 1.0, and the mutation probability
pm is set to 1/D.

(2) Population size: the population ofTSEMO is set to 50 and
the compared algorithms are set as their corresponding
references.

(3) The termination condition: the maximum number of
function evaluations is used as the termination condition
and it is set to 300.

(4) The number of evolutionary generations assisted by sur-
rogate -ensemble wmax is set to 20 as the empirical value
in KRVEA [5].

Experimental results

In this section, we compare TSEMO with three surrogate-
assisted algorithms namely, KTA2, CSEA, KRVEA, and two
MOEAs called NSGA-II/SDR, RVEA on DTLZ1-DTLZ7,
and the comparison results are given in Tables 1 and 2. The
objective dimensions of DTLZ problems are 3, 4, 6, 8, 10.
We also test the performance of TSEMO and other com-
pared algorithms onMaF1–MaF7. The objective dimensions
of MaF problems are 3, 5, 10. The decision variable dimen-
sions of the two test suites are 10.

The statistical results of IGD in Table 1 show that TSEMO
obtained the best results on all the test problems of DTLZ2,
DTLZ5, and DTLZ6, and TSEMO obtained the best results
on most of the test problems of DTLZ4 and DTLZ7. For
two multi-objective algorithms, NSGA-II/SDR and RVEA,
TSEMO obtained 25 better results than NSGA-II/SDR and
RVEA among 35 test problems, which demonstrate that sur-
rogate models are effective on most test problems. For a
few test problems like DTLZ1 and DTLZ3, TSEMO needs
more expensive function evaluations to find the true PF.
TSEMO got 20 better results and 12 worse results than
KTA2. TSEMO got 18 better results and 6 worse results than
KRVEA. Compared to CSEA, TSEMO obtained 23 better
results and 11worse results. Then the statistical results of HV
in Table 2 also show that TSEMO performed the best among
all the algorithms. Therefore, for DTLZ test suite, TSEMO is
more efficient than the three representative surrogate-assisted
many-objective optimization algorithms, KTA2, KRVEA,
and CSEA. Next, the parallel coordinates plot of the final
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Fig. 4 Parallel coordinate plot of the nondominated solutions obtained by KTA2, CSEA, K-RVEA, TSEMO, NSGA-II/SDR, and RVEA in the run
with the best IGD value on the 10-objective DTLZ2

non-dominated solutions obtained by TSEMO and the com-
pared algorithms for DTLZ2 with 10 objectives is presented
in Fig. 4. From it, we can see that the maximum value of
objectives for all the non-dominated solutions obtained by
TSEMO is smaller than that of the compared algorithms and
the non-dominated solutions of TSEMO have a higher den-

sity than the two non-surrogate assisted MOEAs algorithms.
These mean TSEMO can achieve a set of well convergent
and evenly distributed solutions and has a better capability
on the convergence and diversity. As to MOEAs, NSGA-
II/SDR and RVEA have a lower density of solutions which
means they have a worse distribution.
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Fig. 5 The mean IGD values obtained by TSEMO with different threshold K

Fig. 6 The mean IGD values obtained by TSEMO with different threshold u

Furthermore, to verify the effectiveness of TSEMO on
many-objective optimization problems, we conduct exper-
iments on MaF1–MaF7, which are the modified versions
of the DTLZ. And the results are presented in Table 3.
For MOEAs without surrogates, TSEMO obtained 15 better
results than RVEA and NSGA-II/SDR among 21 test prob-
lems, which further verified the effectiveness of adding the
surrogate in MOEAs. We can see that our proposed TSEMO
can obtain 11, 10 better results among 21 test problems than
KRVEA andCSEA, and lose towin on 6 and 7 problems than
KRVEA and CSEA, respectively, which shows that our pro-
posed method is more efficient than both of these algorithms
on MaF1–MaF7 test problems.

Parameter analysis

In the two-stage infill strategy, a total of u individuals are
selected for expensive objective evaluations. For fairness, we
set u to the same value of 5 as in the KRVEA [5]. In the first

stage of the infill strategy, K individuals are selected for real
evaluations.And the remaining u−K individuals are selected
in the second stage. The number of individuals selected in
the first stage will affect individuals with large uncertainty
found in the second stage and ultimately affect finding a good
Pareto front. Therefore, we first conducted experiments with
u = 5, and different numbers of individuals selected in the
first stage for expensive evaluations, i.e., K = 5, 4, 3, 2, 1.
When K = 5, it means that individuals are selected for real
evaluations only in the first stage. Figure 5 shows the mean
IGD values of 20 independently runs obtained by TSEMO
with the different numbers of individuals selected for exact
evaluations in the first stage. From Fig. 5, we can see that
when the number of individuals selected for exact evaluation
in the first stage is set to 4, the performance of TSEMO is
the best.

Then we further analyze the performance variation of the
algorithm, when u, K increase further, and the number of
infill samples in the second stage remains unchanged. Fig-
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Table 4 Statistical results for
IGD values obtained by
TSEMO-I and TSEMO

Problem M TSEMO-I TSEMO

DTLZ1 3 8.2589e+1 (1.84e+1)≈ 8.2409e+1 (1.61e+1)

4 6.1807e+1 (1.37e+1) ≈ 6.4502e+1 (1.28e+1)

6 2.9182e+1 (4.34e+0) ≈ 3.0229e+1 (5.41e+0)

8 1.2382e+1 (4.33e+0) − 9.1380e+0 (3.76e+0)

10 5.6657e−1 (4.31e−1) ≈ 4.0968e-1 (1.18e-1)

DTLZ2 3 5.6160e-2 (2.30e-3) ≈ 5.7483e−2 (2.17e−3)

4 1.3454e−1 (3.63e−3) − 1.2823e-1 (1.99e-3)

6 2.8978e−1 (9.44e−3) − 2.7141e-1 (3.40e-3)

8 4.3340e−1 (4.23e−2) − 3.8555e-1 (5.97e-3)

10 5.7618e−1 (4.56e−2) − 5.0242e-1 (3.23e-2)

DTLZ3 3 1.8945e+2 (1.92e+1) ≈ 2.1191e+2 (6.06e+1)

4 1.8079e+2 (4.40e+1) ≈ 1.7526e+2 (3.77e+1)

6 9.6178e+1 (1.16e+1) ≈ 1.0040e+2 (2.87e+1)

8 4.0896e+1 (1.22e+1) − 3.2472e+1 (1.04e+1)

10 1.6613e+0 (6.38e−1) ≈ 1.5560e+0 (5.59e-1)

DTLZ4 3 4.0220e−1 (2.06e−1) ≈ 3.1139e-1 (4.61e-2)

4 4.3237e−1 (8.03e−2) ≈ 3.9368e-1 (5.14e-2)

6 5.0095e−1 (5.84e−2) ≈ 4.9458e-1 (3.41e-2)

8 5.4235e−1 (3.45e−2) ≈ 5.2261e-1 (2.83e-2)

10 5.7137e−1 (3.53e−2) ≈ 5.6244e-1 (2.05e-2)

DTLZ5 3 2.3099e-2 (3.94e-3) ≈ 2.3601e−2 (3.23e−3)

4 2.7654e-2 (4.23e-3) ≈ 3.1403e−2 (6.38e−3)

6 2.5895e-2 (4.08e-3) ≈ 2.8630e−2 (4.36e−3)

8 1.9766e−2 (3.50e−3) ≈ 1.9254e-2 (2.43e-3)

10 1.2168e−2 (2.37e−3) − 1.0464e-2 (1.71e-3)

DTLZ6 3 1.8728e+0 (4.18e−1) ≈ 1.7507e+0 (4.87e-1)

4 1.2291e+0 (4.48e-1) ≈ 1.4274e+0 (4.77e−1)

6 1.0268e+0 (3.97e−1) ≈ 8.7852e-1 (3.46e-1)

8 4.3779e−1 (2.36e−1) ≈ 3.6345e-1 (9.95e-2)

10 4.2406e-2 (1.83e-2) ≈ 4.6694e−2 (1.67e−2)

DTLZ7 3 1.4210e-1 (2.99e-2) ≈ 1.4281e−1 (1.71e−2)

4 2.3364e-1 (2.55e-2) ≈ 2.4455e−1 (2.21e−2)

6 5.0016e-1 (1.96e-2) ≈ 5.0508e−1 (2.38e−2)

8 8.1152e-1 (2.80e-2) ≈ 8.1673e−1 (4.02e−2)

10 1.1521e+0 (2.26e−2) ≈ 1.1391e+0 (2.24e-2)

+/ − / ≈ 0/7/28

The best results are highlighted

ure 6 shows the mean IGD values of 20 independently runs
obtained by TSEMO with the different numbers of u indi-
viduals selected for exact evaluations. From Fig. 6, we can
see that there are no significant differences among the per-
formance of TSEMO on 3, 4, 6, 8, 10 objectives of DTLZ2
when u increases further. On the low-dimensional 3 objec-
tives of DTLZ1, the algorithm performs best when u = 6,
K = 5. However, on the high-dimensional DTLZ1 of 4, 6,
8, 10 objectives, the algorithm performs best when u = 5,
K = 4. Thus, we set u = 5 and K = 4 in our method

for solving the expensive many-objective optimization prob-
lems.

Effectiveness of the two-stage infill strategy

In this part, we investigate the effects of the two-stage
infill strategy by comparing TSEMO with another variant
TSEMO-I, which only selects individuals for exact evalua-
tions in the first stage. Table 4 gives the statistical results
of our proposed TSEMO, and TSEMO-I. From Table 4,
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Table 5 Statistical results for
IGD values obtained by
TSEMO-II and TSEMO

Problem M TSEMO-II TSEMO

DTLZ2 3 1.8534e−1 (3.76e−2) − 5.7483e-2 (2.17e-3)

4 2.5978e−1 (4.11e−2) − 1.2823e-1 (1.99e-3)

6 3.6333e−1 (3.73e−2) − 2.7141e-1 (3.40e-3)

8 4.5395e−1 (2.11e−2) − 3.8555e-1 (5.97e-3)

10 4.9455e-1 (1.55e-2) ≈ 5.0242e−1 (3.23e−2)

DTLZ5 3 1.0441e−1 (4.09e−2) − 2.3601e-2 (3.23e-3)

4 1.0950e−1 (3.15e−2) − 3.1403e-2 (6.38e-3)

6 6.9213e−2 (1.97e−2) − 2.8630e-2 (4.36e-3)

8 5.0860e−2 (1.53e−2) − 1.9254e-2 (2.43e-3)

10 1.7743e−2 (4.08e−3) − 1.0464e-2 (1.71e-3)

DTLZ6 3 1.7087e+0 (3.21e-1) ≈ 1.7507e+0 (4.87e−1)

4 1.3937e+0 (2.56e-1) ≈ 1.4274e+0 (4.77e−1)

6 1.0651e+0 (2.12e−1) − 8.7852e-1 (3.46e-1)

8 5.2791e−1 (1.68e−1) − 3.6345e-1 (9.95e-2)

10 7.7568e−2 (2.39e−2) − 4.6694e-2 (1.67e-2)

+/ − / ≈ 0/12/3

The best results are highlighted

we can see that TSEMO obtained 7/35 better results than
TSEMO-I. Compared to TSEMO-I, our TSEMO obtained 0
worse and 28 comparable results than TSEMO-I. TSEMO-I
without the second stage sampling strategy has worse per-
formance mainly on DTlZ1 with 8 objectives, DTLZ2 with
3, 4, 6, 8 and 10 objectives, DTLZ3 with 8 objectives, and
DTLZ5 with 10 objectives. The reason we analyze is that
DTLZ2 is used to investigate the diversity and distribution
of the algorithm and the second stage sampling strategy has
a potential benefit to improve the diversity of algorithms. For
other problems, like DTLZ4 and DTLZ7, TSEMO-I showed
comparable performancewith TSEMO. Therefore, the effec-
tiveness of the second stage infill sampling strategy cannot
be ignored and the two-stage infill strategy is adopted to be
used in our method.

Effectiveness of the two different kernel functions
used in the surrogate ensemble

In this paper, we adopt two different kernel functions of
RBF models to construct a surrogate-ensemble and utilize
the ensemble to approximate each objective function. To
see the efficiency of using surrogate-ensemble, we com-
pare TSEMO with another variant TSEMO-II, where the
surrogate-ensemble is replaced with GP, the uncertainty is
provided byGP, and the two-stage infill strategy and the strat-
egy of revising the population are employed. The average
IGD results of TSEMO-II and TSEMO based on 20 inde-
pendent runs are presented in Table 5. As can be seen in
Table 5, TSEMO performed 12 better, 3 comparable, and 0
worse results among a total of 15 problems than TSEMO-II.

TSEMO performs well on most test problems. The results
showed that TSEMO can achieve a better balance between
convergence and diversity. This may be attributed to that the
two different kernels of RBF can provide more accurate fit-
ness predictions and the uncertainty information provided by
our method is useful. Thus, we use the surrogate ensemble
to approximate each objective function.

Effectiveness of revising the population

In this section, we investigate the effects of revising the
population by comparing TSEMO with another variant
TSEMO-R, which removes the strategy of revising the pop-
ulation. The average IGD results of TSEMO-R and TSEMO
based on 20 independent runs on DTLZ1-DTLZ7 problems
with 3, 4, 6, 8, and 10 objectives are presented in Table 6. As
can be seen in Table 6, TSEMO performed 5 better , 25 com-
parable, and 0 worse results among a total of 35 problems
than TSEMO-R. TSEMOperforms better on DTLZ2with 10
objectives, DTLZ5with 8 and 10 objectives andDTLZ6with
3 and 4 objectives. The results showed that the strategy of
revising the population is effective for the surrogate-assisted
multi-objective optimization problems.

Conclusion

In this paper, we propose a two-stage infill strategy and
surrogate-ensemble assisted expensive many-objective opti-
mization (TSEMO)method. To improve the robustness of the
surrogate model, we use two kernel functions of RBF to con-
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Table 6 Statistical results for
IGD values obtained by
TSEMO-R and TSEMO for
DTLZ1-DTLZ7

Problem M TSEMO-R TSEMO

DTLZ1 3 8.3799e+1 (1.60e+1) ≈ 8.2409e+1 (1.61e+1)

4 5.7835e+1 (1.43e+1) ≈ 6.4502e+1 (1.28e+1)

6 2.9962e+1 (4.55e+0) ≈ 3.0229e+1 (5.41e+0)

8 8.7329e+0 (3.07e+0) ≈ 9.1380e+0 (3.76e+0)

10 4.2367e−1 (1.52e−1) ≈ 4.0968e-1 (1.18e-1)

DTLZ2 3 5.7477e-2 (2.56e-3) ≈ 5.7483e−2 (2.17e−3)

4 1.2822e-1 (3.20e-3) ≈ 1.2823e−1 (1.99e−3)

6 2.7217e−1 (5.50e−3) ≈ 2.7141e-1 (3.40e-3)

8 3.8813e−1 (1.23e−2) ≈ 3.8555e-1 (5.97e-3)

10 5.1958e−1 (2.19e−2) − 5.0242e-1 (3.23e-2)

DTLZ3 3 1.9159e+2 (2.77e+1) ≈ 2.1191e+2 (6.06e+1)

4 1.8175e+2 (4.86e+1) ≈ 1.7526e+2 (3.77e+1)

6 1.0924e+2 (1.96e+1) ≈ 1.0040e+2 (2.87e+1)

8 3.8663e+1 (1.45e+1) ≈ 3.2472e+1 (1.04e+1)

10 1.4728e+0 (4.58e-1) ≈ 1.5560e+0 (5.59e−1)

DTLZ4 3 3.2031e−1 (6.70e−2) ≈ 3.1139e-1 (4.61e-2)

4 3.9581e−1 (3.37e−2) ≈ 3.9368e-1 (5.14e-2)

6 5.2076e−1 (4.80e−2) ≈ 4.9458e-1 (3.41e-2)

8 5.2465e−1 (3.12e−2) ≈ 5.2261e-1 (2.83e-2)

10 5.8204e−1 (3.30e−2) ≈ 5.6244e-1 (2.05e-2)

DTLZ5 3 2.2435e-2 (3.17e-3) ≈ 2.3601e−2 (3.23e−3)

4 2.9782e-2 (5.65e-3) ≈ 3.1403e−2 (6.38e−3)

6 2.6321e-2 (4.91e-3) ≈ 2.8630e−2 (4.36e−3)

8 2.7590e−2 (3.24e−3) − 1.9254e-2 (2.43e-3)

10 1.1568e−2 (1.64e−3) − 1.0464e-2 (1.71e-3)

DTLZ6 3 2.2876e+0 (6.61e−1) − 1.7507e+0 (4.87e-1)

4 1.8655e+0 (5.76e−1) − 1.4274e+0 (4.77e-1)

6 1.0711e+0 (3.94e−1) ≈ 8.7852e-1 (3.46e-1)

8 3.8225e−1 (1.53e−1) ≈ 3.6345e-1 (9.95e-2)

10 4.5238e-2 (1.45e-2) ≈ 4.6694e−2 (1.67e−2)

DTLZ7 3 1.5304e−1 (2.58e−2) ≈ 1.4281e-1 (1.71e-2)

4 2.3883e-1 (2.87e-2) ≈ 2.4455e−1 (2.21e−2)

6 4.9962e-1 (2.24e-2) ≈ 5.0508e-1 (2.38e-2)

8 8.0918e-1 (2.50e-2) ≈ 8.1673e−1 (4.02e−2)

10 1.1460e+0 (2.42e−2) ≈ 1.1391e+0 (2.24e-2)

+/ − / ≈ 0/5/30

The best results are highlighted

struct a surrogate ensemble. After optimization, a two-stage
infill strategy is proposed to select individuals for expen-
sive evaluations. The approximated variance of the surrogate
ensemble and approximated fitness are considered adaptively
in the first stage. And historical information of the approxi-
mated variance by the surrogate ensemble is considered in the
second stage. To avoid the approximated errors frommislead-
ing the search direction, a strategy of revising the population
is proposed.

We compare our method with three surrogate-assisted
MOEAs and two non-surrogate-assistedMOEAs on two sets
of test problems. The results show that TSEMO achieves bet-
ter performance than the compared algorithms on the limited
number of expensive function evaluations. In our work, the
surrogate-ensemble, two-stage infill strategy, and strategy of
revising the population are effective for solving expensive
MOPs. However, for multimodal problems, like DTLZ3 and
MaF4, TSEMO still needs more expensive function eval-
uations to find the true PFs. Therefore, a more effective
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optimization process and infill strategy should be developed
for solving these complex problems.
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