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Abstract
When solving expensive multi-objective optimization problems, surrogate models are often used to reduce the number of true
evaluations. Based on predictions from the surrogate models, promising candidate solutions, also referred to as infill solutions,
can be identified for evaluation to expedite the search towards the optimum. This infill process in turn involves optimization
of certain criteria derived from the surrogate models. In this study, predicted hypervolume maximization is considered as the
infill criterion for expensive multi/many-objective optimization. In particular, we examine the effect of normalization bounds
on the performance of the algorithm building on our previous study on bi-objective optimization. We propose a more scalable
approach based on “surrogate corner” search that shows improved performance where some of the conventional techniques
face challenges. Numerical experiments on a range of benchmark problems with up to 5 objectives demonstrate the efficacy
and reliability of the proposed approach.

Keywords Normalization · Surrogate assisted optimization · Corner search

Introduction and background

Multi-objective optimization problems (MOPs) are fre-
quently encountered in practical applications, wherein two or
more conflicting performance criteria need to be optimized
simultaneously [26]. The problems with more than three
objectives are also commonly referred to as many-objective
optimization problems (MaOPs) [22]. Furthermore, such
problems can often be expensive in nature [7], when the
performance estimate of each candidate solution incurs a
significant expense. Commonly, the expense referred to is
computational, involving time-consuming numerical sim-
ulations. However, the term is also applicable to other
scenarios, such as where physical experiments or finan-
cial cost is involved in the evaluation. Evidently, the key
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challenge in solving expensive optimization problems stems
from the fact that a very limited number of candidate
designs can be evaluated during the course of search. To
achieve competitive results within such a small number
of evaluations, researchers have often resorted to the use
of surrogate models [4,13]; also referred to as metamod-
els [11]. Surrogate-assisted optimization (SAO) attempts to
build approximations for the response function based on
a small number of truly evaluated solutions. The predic-
tions from the surrogate model are then primarily used to
guide the search, with only occasional calls to the true
evaluations. The newly evaluated solutions in turn help
to train more accurate surrogate functions for subsequent
search.

The promising solutions selected using the surrogatemod-
els for true evaluations are referred to as infill solutions.
Typically, an infill solution is obtained by optimizing cer-
tain criterion derived from surrogates [20]. In the context of
single-objective optimization, a simple and effective scheme
is selecting optimal solutions based on the predicted mean
values [4,27], the so-called ‘believer’ model [12]. Another
widely used infill criterion is the expected improvement (EI),
implemented within the efficient global optimization algo-
rithm (EGO) [20]. The EI criterion takes both the mean
prediction and the associated uncertainty of the surro-
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gate model into consideration. Likewise, in the context of
MOPs, some of the reported infill criteria include scalarized
objective functions [21], hypervolume (HV) improvement,
expected HV improvement, Euclidean distance improve-
ment, maxmin distance improvement, etc. [36]. In this
paper, we focus on a steady-state algorithmic framework
that uses predicted HV improvement as the infill crite-
rion.

Hypervolume (HV), also referred to as Lebesgue mea-
sure, was originally proposed for comparing the performance
of multi-objective evolutionary algorithms (MOEAs) [38].
It computes the volume dominated by a given set of non-
dominated solutions, bounded by a reference point R. It
attempts to capture both convergence and diversity of the
obtained non-dominated set and is one of the few known
unary measures that are Pareto-compliant. This property
implies that a solution (set) that dominates another solu-
tion (set) will have a better (higher) HV. Thus, the theoretical
Pareto front (PF) has the maximum HV in the objective
space. Given these interesting and desirable properties, HV
has attracted significant attention from both theoretical and
benchmarking perspectives [1,29,30]. Furthermore, it has
become a prominent approach for environmental selection
in indicator-based evolutionary algorithms [2,3,35] for solv-
ing MOPs.

There are some important considerations while utiliz-
ing HV for online/offline use. One of the concern relates
to the user-specified reference point R with respect to
which the dominated volume is calculated [17,30]. The
common practice in this regard is to position R slightly
beyond (dominated by) the nadir point ZN . This allows
for the HV contributions of the extremities of the non-
dominated set to be included, while not being significantly
higher than the rest of the non-dominated set. Another crit-
ical step in the application of HV is the normalization
of the objective values. In MOPs, the range of different
objectives can be in different orders of magnitude. Con-
sequently, the HV calculated in the raw objective space
can be biased towards the certain objective(s). To man-
age these two aspects simultaneously, objective vectors are
first normalized between 0 and 1 using certain normal-
ization bounds, typically defined by the ideal and nadir
points in the current non-dominated set. Then, for an M-
objective problem, the reference point is set to R = 1.1M =
(1.1, 1.1, . . . 1.1), as in, e.g. [35] to compute and identify the
next solution(s) that have high HV contribution. Some recent
works have also discussed the impact of the the reference
point specification [17,30] and provided further insights and
recommendations regarding its implications in benchmark-
ing.

In MOEAs, normalization plays an important role [15],
especially for estimating and enforcing diversity measures
among the solutions. Normalization has been studied in

various frameworks such as NSGA-III [5], MOEA/D [14],
and DBEA [32]. Normalization evidently helps in balanc-
ing the scales of different objectives. However, it also comes
with a downside, that the global perspective on where these
solutions lie in the raw objective space may become lost
during environmental selection. This can affect the perfor-
mance of the algorithm in terms of convergence and/or
diversity of the population, as will be discussed in the next
section. Although the effects of normalization have been dis-
cussed in the above studies, the focus was not on expensive
MOPs. In this paper, we take a step towards addressing the
above research gap, in the context of optimization where
the sampling is derived from HV-based infill criterion. This
research is motivated by our observation that the use of sur-
rogate models in expensive MOPs provides an opportunity
to adjust the normalization bounds to achieve better search
performance. Thus, we are interested in developing ways
that could provide better normalization bounds to aid the
search, and in particular overcome the conceptual shortcom-
ings of some of the standard normalizationmethods currently
used.

This study builds upon the ideas we introduced in our
previous conference paper [34]. In [34], the discussion and
development of themethodologywere limited to bi-objective
scenarios. The main proposal was to obtain the two extrem-
ities of the PF based on the search on surrogate models, and
use them to supplement the current non-dominated front to
establish the normalization bounds. The underlying principle
remains the same in this work, but we make the following
extended contributions:

• We utilize a more generalized method for finding the
extremities (“surrogate corners”) to adjust the normal-
ization bounds for M ≥ 2 objectives. The implicit
assumptions specific to solving bi-objective problems
[34] are thus removed.

• Since the number of corners grows with the number
of objectives, we introduce additional selection mech-
anisms to reduce the number of true evaluations directed
towards corner search in lieu of infill search.

• Lastly, we conduct numerical experiments on problems
with up to 5 objectives with a limited budget to demon-
strate that the proposed improvements lead to more
consistency in achieving competitive results compared
to other standard methods.

Following this introduction, the basic idea and algorith-
mic framework is outlined in Sect. 2, followed by numerical
experiments and discussion in Sect. 3. Concluding remarks
and future work are discussed in Sect. 4.
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Methodology

General idea

As mentioned previously, a common approach to identify
normalization bounds is based on the limits of the cur-
rent non-dominated (ND) set of solutions. The technique is
simple, intuitive and often effective. However, a potential
drawback of this procedure is that if the current ND front
is biased towards a certain part of the PF, the resulting infill
search then also tends to be limited in exploring that part
of the PF. This could potentially lead to delay in explor-
ing other regions, or in the worst case, yield only a small
subset of the PF as the final output. This situation is visual-
ized in Fig. 1a. In this snapshot of the search, the ND front
is concentrated towards one end of the PF. If normalization
is conducted using the bounds of this ND front, along with
the standard reference point specification (1.1M ), the infill
search is bounded by the region enclosed by the black dotted
lines. Since the resulting infill point (in the predicted space)
will end up only from this region, the HV contribution of
any point outside these bounds with respect to R is zero.
Consequently, the improvement in the quality of the current
solution set is likely to be small.

An alternative explanation of the shortcoming is demon-
strated in Fig. 1a is that the current estimates of ideal and
nadir points(Z I and ZN , respectively) are not accurate rela-
tive to the true ideal and nadir points (Z∗I , Z∗N ). The main
idea behind the proposed method is therefore to improve the
estimation of these points to come up with adjusted normal-
ization bounds. We propose to do so by searching for the
extremities of the PF based on the surrogate models. The
search on the surrogate models itself does not add to the cost
of true evaluations. Only after the surrogate models have
identified the extreme points, such solutions would need to
undergo true evaluation before being added to the current
ND set to identify the new normalization bounds. This pro-
cess will consume some (small number of) true evaluations
and hence does not come at a zero cost. Hence, for the strat-
egy to be useful, the cost directed towards evaluating the
extreme points should be (a) reduced to the extent possible,
and (b) should eventuate in bringing relative benefits to the
search.

Since the number of such additional evaluations due to
corner point evaluations is not disproportionately high in
the above paradigm, we hypothesize that surrogate-assisted
optimization can particularly benefit from such normaliza-
tion adjustment. This is in stark contrast for attempting the
same process in a non-surrogate optimization frameworks,
where obtaining the extreme points themselves could take up
a substantial portion of the computational budget [32]. The
above discussion is visualized in Fig. 1b. Starting from the
current ND front, we search for an extreme point along each

objective using its surrogate model. Subject to the models
being good representations of the true functions, the extreme
points on PF are identified, and estimation of nadir and ideal
points is improved. This process yields updated normaliza-
tion bounds (Z I (updated) and ZN (updated)) and the updated
reference point. This process expands the search space of
infill search, and has the potential of uncoveringmore diverse
solutions on the PF. Of course, it is anticipated that the exact
extremities may not be identified in one shot; instead, the
search may need to be invoked more than once during the
overall optimization process to progressively approach the
true values. Additionally, the surrogates are not be likely
to be accurate from the beginning for generic non-linear
functions; but rather start from a coarse approximation that
becomes better over time as more solutions are evaluated.
However, even with relatively coarse models, the surrogates
may be able to capture general global trend, leading the
search to global optimal regions. Where this doesn’t happen,
the evaluation of the identified corner point instead brings
benefit in improving the surrogate models for subsequent
iterations.

Alsoworth noting is another type of normalization scheme
that is based on the whole archive of the solutions evalu-
ated so far [23,36]. The strategy may be of interest when
the overall numbers of solutions evaluated are small, which
is a scenario consistent with expensive MOPs. The archive-
based normalization bounds are less likely to be localized
compared to the ND-based bounds. However, it may suf-
fer from a different issue. When the evaluated solutions are
located far away from the true PF, the solutions that may
not be near the PF start to contribute significantly to the HV.
Consequently, the HV maximization for infill search does
not translate to the selection pressure required to emphasize
the diversity on the true PF itself. This situation is illustrated
in Fig. 1c, where the infill search ends up with significantly
expanded search area beyond the PF. As a result, solutions
that lie beyond the true PF boundaries could be suggested as
infill, adversely affecting the convergence (and diversity) of
final PF approximation.

The proposed approach intends to overcome the above-
mentioned limitations to yield amore consistent performance
across a range of problems. In our previous attempt [34], we
applied the extreme point search on each objective function
independently to adjust the bounds, which works well for
bi-objective problems due to a deterministic number (=2) of
extremities. Beyond two objectives, the definition of extreme
points becomes somewhat subjective, hence implementation
of the method needs some further considerations. To make
the approach more generic, we present here a modified ver-
sion of the Pareto corner search [31] and introduce further
improvements to obtain the adjusted bounds. In the follow-
ing sections, we introduce the surrogate corner search that is
used for normalization adjustment.
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Fig. 1 Illustration of
normalization schemes

Corner points in multi-objective problems

A unique feature for bi-objective problems is that for a given
non-dominated front (including the PF), the extremities (also
referred to as corners [31]) have a clear and intuitive geomet-
ric interpretation. One extremity has the lowest value of f1
and the highest value of f2 within the set, and the reverse
is true for the other extremity. This situation is shown in
Fig. 2a. Thus, the two extremities can in principle be iden-
tified by minimizing one objective at a time independently.
The only caveat is that if an objective function has multiple
global optima, then the second objective needs to be subse-
quently considered to pick the correct extremity.

For MOPs with M ≥ 3, the above does not hold. Mini-
mizing the objectives independently may not lead to unique
points on PF that can be considered as corners. Moreover,

minimizing a given objective may not result in an extreme
value for anyof the remaining objectives.Consider, for exam-
ple, the 3-objective PF shown in Fig. 2b, where minimizing
f3 alone can lead to any of the solutions in the PF that lie on
the f1 − f2 plane. Out of these, only the two extremes can be
intuitively perceived as geometric corners. Figure2c on the
other hand shows a case where there is a unique point cor-
responding to minimum f3 (and similarly, other objectives),
which can be considered as a corner.

A formal, though restrictive, definition of corner point was
provided in [31] in the context of dimensionality reduction.
It suggested that if the minimization of a subset of k < M
objectives led to a single point, then the point can be con-
sidered as a corner. Thus a corner solution can minimize
anywhere from 1 to M − 1 objectives, leading to up to total
2M − 1 possible combinations. Evidently, as the number of
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Fig. 2 Some examples of corner points (shown in red)

objectives increase, searching for all combinations becomes
tedious and impractical. Mostly, the common MOPs have
much fewer corners, for e.g., there are M corners for most
non-degenerate M-objective problems in DTLZ and WFG
benchmarks [8,16]. Considering this, two specific subsets of
corners were deemed to be of interest in [31]: Type-1 cor-
ners, that only minimize one objective value (Fig. 2c), and
Type-2 corners, that minimize M − 1 objectives simultane-
ously (Fig. 2b).

It is additionally worth noting that theoretically any sim-
plex with an arbitrary number of vertices (e.g., a star/square)
can be projected on these PF surfaces, comprising potential
PF shapes that could have anynumber of perceived “corners”.
Such cases are not covered (and it is subjective whether they
should be considered as corners) in the definitions discussed
above. Nonetheless, given that in the surrogate corner search
we are primarily concerned with objective value bounds
rather than internal geometric features of the PF, they still
seem sufficient for the task at hand.

Corner search scheme

From the above discussions, it is clear that as the number of
objectives grow, independent search along the objectivesmay
lead to increasing possibility of identifying solutions that are
far from the intended corners. This will in turn lead to nor-
malization bounds that are not suitable. Hence, the search
for the corners need to be conducted concurrently so that
the resulting solutions are likely to be closer to the true PF
extremities. Therefore, in this paper, we adapt the corner
sort ranking from [31] to simultaneously search for corners
using a single evolutionary algorithm (EA) that can be used
to establish the normalization bounds. An illustration is given
shortly, but we would point out an important change in the
ranking compared to [31]. That is, we do not consider the L2
norm of M − 1 objectives during the sorting process; which
was originally intended to search for Type-2 corners. The
reason is that our application context is expensive problems
where the evaluation budget needs to be spent carefully. Even
though corner search has the potential to improve normaliza-

tion bounds, toomany evaluations spent on it will leavemuch
fewer of them for the infill search, reducing the anticipated
benefits of the improved normalization bounds. To strike a
balance between the true evaluations spent on corner evalu-
ations and infill evaluations, we exclude the ranking based
on Type-2 corners; thus targeting a maximum of M possible
corners of Type-1. The details of the adapted corner search
is presented below.

The general goal of corner search discussed here is to
identify Type-1 corners as defined in Sect. 2.2, i.e., solu-
tions that minimize each objective individually. An intuitive
approach could be running a single-objective optimization
sequentially for each objective, however the search for one
objective’s optimum will not have any knowledge from the
points explored for the other objective when using such
approach. Instead, the corner search aims to achieve this with
a single population in a more efficient and scalable manner.
The ranking scheme plays an essential role in enforcing the
preferences for the corner points in this method. The ranking
can be better explained with an illustrative example shown
in Fig. 3.

In Fig. 3, the sample population for a 3-objective prob-
lem has six solutions with their IDs marked as 1–6. The
intent of sorting is that for each objective, a better solu-
tion is ranked higher in the final list. Since we have multiple
objectives, this is done in a sequential manner while avoiding
duplication. The left block shows the 6 solutions and their
objective values. First, each objective is sorted in ascending
order independently (minimization is assumed). The sorted
IDs of solutions are listed for each objective as shown in the
middle block.Next, top solution of each objective is picked in
turn (e.g. from left to right) to form the final sorted list. Note
that each time a solution ID is picked based on a given objec-
tive, this ID is deleted from the sorted solutions available for
the rest of the objectives. The solutions selected following
this sequence are marked with a circle in the middle block.
From the sorted list for f1, solution #6 is selected and for
f2, the solution #3 is selected. For objective f3, since the
solution #6 has already been picked (crossed out), the top
among the remaining solutions, #1, is selected. Now in the
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Fig. 3 Corner sort procedure
implemented in this study

final sorted list, we have three solutions #6, #3, #1. Next we
restart from objective f1. Since the solutions #1 and #3 are
already picked in the last round (crossed out), the available
solutions start from #5, so solution #5 is selected for f1. For
objective f2, the next best solution is #2 and it is still avail-
able, so it is selected for objective f2. Next, for objective f3,
since #2 is already picked in the last step, available solutions
start from #4, therefore #4 is selected. All solutions have a
unique rank now (in the sequence they were picked), hence
the sorting procedure terminates here. The final sorted order
is shown in the right block in Fig. 3.

With the above as the ranking process, the corner-search
EA based on the surrogate models is run with a population
size N evolving over G generations (this part incurs no true
evaluations). Then, from the final population, the corners
need to be selected for true evaluations. The selection strate-
gies are discussed in the next section.

Corner selection for true evaluation

The most straight forward way is to pick up top M solu-
tions directly from the ND front of the final population. This
baseline strategy consumes exactlyM true evaluations.How-
ever, this number can be reduced. In some cases, the corners
obtained by optimizing different objectives can return the
same (or similar) solutions. For example, in the Fig. 4, red
corner points can assist in preserving low f1 values or low
f2 values. In this case, there is no need to evaluate corner
solutions that are extremely close to each other. Instead, the
ND front of the final corner search EA population is analyzed
using Silhouette analysis [28] to identify the optimal num-
ber of clusters in the set. Clustering is conducted using the
K-means method [24]. In silhouette analysis, we calculate
the silhouette score for each possible cluster number (from
1 to M). Silhouette score calculates the separation distance
between the clusters for each cluster number. The highest
score determines the optimal cluster number. From this num-
ber of clusters, we can decide how many solutions should be
extracted for true evaluation. In each cluster, the solution that
has the highest rank in the corner sort is selected. Thus, for
the case shown in Fig. 4, even though M = 3, only two solu-

Fig. 4 Reducing the number of corners using Silhouette analysis

tions, one from each of the clusters at the two ends of the PF,
will be selected for evaluation.

Another approach to reduce the candidate solutions before
evaluation is to observe their location with respect to the
current reference point. Recall that the main objective of
identifying these solutions is to adjust the range of selec-
tion to appropriate bounds. Therefore, if the predicted values
of the solution do not affect the current bounds enclosed by
the reference point, then their evaluation will not provide the
related benefit. This consideration is illustrated in Fig. 5. The
surrogate corners may often be located close to and along
the edge of the current normalization boundary. We should
consider the benefit they bring in terms of HV improvement,
especially with a higher number of objectives. As shown
in Fig. 5, the surrogate corner under reference bound (black
line) will have a much less HV contribution (purple shade)
than a normal infill point (green shade). Therefore, such sur-
rogate corner is ignored. However, surrogate corner beyond
the reference bound (black line), has better potential in terms
of adjusting the normalization bound. We only evaluate such
corners. Thus in this case, out of the two potential corners
identified via corner search, only the one outside the box
enclosed by R is evaluated.
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Fig. 5 Selection of corners based on their location relative to R

Algorithm implementation

The pseudo-code of the overall framework is presented in
Algo. 1. The main algorithm starts with the generation of
an initial set of designs using the Latin Hypercube Sam-
pling (LHS), awidely usedmethod for design of experiments.
The designs are then truly evaluated and form the initial
archive A. Surrogate models are built for each objective
function based on the archive of solutions. This archive A
of all truly evaluated solutions is updated in each iteration
as the new solution(s) get evaluated. Corners are identified
by corner search outlined in Algo. 2. Importantly, note that
the corner search is not needed in every iteration. It is only
invoked after an infill point is found that is better than the
current ideal point (Z I ) in any of the objectives, as indicated
in Algo. 1, line 5. The obtained corners are then selectively
evaluated using the components discussed above (we dis-
cuss three variants in numerical experiments). All evaluated
solutions are then added to the archive. The maximum and
minimum values among the existing non-dominated solu-
tions are used as the normalization bounds. Using reference
point R = 1.1M , an HVmaximization is conducted to obtain
the infill solution, which is then evaluated and added to the
archive. The surrogatemodels, archive and number of evalua-
tions are updated, and the process repeats until the evaluation
budget is exhausted.

In the above process, we have used Kriging [25] as the
surrogate model for approximating the objective functions
in Lines 3, 12 and 17 of Algo. 1. Kriging is one of the widely
used surrogate models for approximating generic non-linear
functions. For HV maximization via infill identification in

Algorithm 1 Proposed HV infill-based algorithm
Input:Max. number of function evaluations FEmax , Initial sample size
N , normalization bounds search related parameters, Infill search related
parameters
Output: PF approximation
1: Initialize archive of evaluation solutions,A = ∅, No. of evaluations

FE = 0.
2: Sample N initial designs & evaluate them. Update A, FE .
3: Build surrogate models K = {K1,K2 . . .KM }
4: while (FE < FEmax ) do
5: if First iteration or infill point is better than current ideal on any

objective then
6: Search for surrogate corner solutionsE1,E2 . . .ES withAlgo-

rithm 2
7: for E ∈ { E1,E2 . . .ES} do
8: Selectively evaluate E
9: end for
10: Update A, FE
11: Set Z I , ZN based on non-dominated solutions N ⊆ A
12: Update K
13: end if
14: Identify infill solution xHV by maximising HV with reference

point R
15: Evaluate xHV . Update A, FE
16: Set Z I , ZN based on non-dominated solutions N ⊆ A
17: Update K
18: end while
19: Output the non-dominated solutionsN ⊆ A as the PF approxima-

tion

Algorithm 2 Corner search for identifying corner points
Input: Surrogate models K1,K2, . . .KM , population size NI , number
of generations GI , evolution parameters
Output:Corner solutionsE1,E2 . . .ES; S ≤ M
Initialize population PI of size NI .
for g = 1 to GI do

Apply evolutionary operator to generate child population CI of
size NI
Apply corner sort on PI ∪ CI
Select the top NI solutions in the above sorted list for the next
generation PI

end for
In the last population’s ND front, apply Silhouette analysis to deter-
mine the number of clusters S.
In each cluster select the solution with the best corner sort rank
Return these selected corner points E1,E2 . . .ES

Line 14 of Algo. 1, we have used differential evolution (DE)
[33] consistent with the previous work [34]. For the cor-
ner search in Algo 2, we use the same approach as done in
PCSEA [31] and use simulated binary crossover (SBX) [9]
and polynomial mutation (PM) [10] as the variation opera-
tors. For removing the dominance resistance solutions, for
each objective, the tolerance ε = 1e − 5 is used as done in
[34]. The code for the proposedmethod can be obtained from
the authors’ website http://mdolab.net/research_resources.
html
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Numerical experiments

Benchmark problems used

To demonstrate the performance of the proposed approach,
numerical experiments are conducted on a range of test
problems widely used in the evolutionary multi-objective
optimization domain. These include problems from the ZDT
[37], DTLZ [8],WFG [16] andMAF [6], invertedDTLZ [19]
and minus DTLZ [18] series, to cover a wide range of prob-
lem characteristics and PF shapes. The settings used for the
experiments are listed in Table 1. In our preceding work [34],
we only considered bi-objective problem suits, one of which
was the ZDT series that is not scalable beyond 2 objectives.
Hence, we have addedMAF series to complement DTLZ and
WFG for M ≥ 3. For consistency with our previous paper,
we keep the 2-objective experiments on the same problem
set (ZDT, DTLZ, WFG) and include additional inverted and
minus DTLZ series (iDTLZ and mDTLZ for short) prob-
lems. For 3-objective and 5-objective problems, we have
used DTLZ (standard, inverted and minus series), WFG and
MAF series. Since MAF1 is designed from inverted DTLZ1,
to eliminate duplication, we exclude inverted DTLZ1 for 3-
objective and 5-objective and keepMAF1. Some adjustments
are made in the ruggedness and bias parameters of the prob-
lems so that they are not too difficult for approximation; as
the focus of this study is on normalization bounds rather
than improving surrogate accuracy. Accordingly, we have set
ruggedness parameter= 2π and scaling factor for g(x) = 1 for
DTLZ1, DTLZ3 and bias parameter bpoly = 0.5 for WFG.
For MAF3 and MAF4 problems, the ruggedness parameter
is reduced to π from 20π , scaling factor in g is reduced to 1
from 100. Moreover, the type of surrogate (Kriging) is kept
the same for all compared strategies, so that the limitations
in approximation, where applicable, affect all strategies in
a similar manner. There are also three problems (DTLZ7,
MAF2, MAF6), which are not extendable to 5-objective and

therefore, they have not been considered in the 5-objective
experiments.

Algorithm and experimental settings

The Kriging model used in this study is based on the
implementation of the DACE toolbox [25] in Python. The
regression function is set to be zero-order polynomial, while
the correlationmodel is set to be Gaussian. Kriging surrogate
is chosen since its is extensively used in surrogate-assisted
optimization studies. The infill strategy is based on the pre-
dicted values (“ believer” approach) for all the compared
strategies. Other infill strategies, such as expected improve-
ment, are excluded in comparisons as they involve additional
factors (such as uncertainties) whose influence is not the
subject of the current study. HV is used as the metric for per-
formance comparison of the final solutions, in the objective
space normalized by the true ideal and nadir points with the
reference point as 1.1M . A total of 29 independent runs are
conducted for each problem to observe the statistical behav-
ior of performance. The performance is compared across
six different normalization methods. These include the two
standard methods (ND and archive) and our method from
the preceding work [34]. As for the proposed method, we
consider three variants, by gradually activating the selective
evaluation and Silhouette analysis to ascertain their con-
tribution in the overall performance. For reference, the six
compared methods are listed below. The main comparison is
how each of the four extreme point/corner point-based meth-
ods compare with the standard approach of using ND-based
or full archive-based approach for identifying the normaliza-
tion bounds.

– NormRND , normalization bounds based on current non-
dominated solutions.

– NormRA, normalization bounds based on full archive.

Table 1 Settings for numerical
experiments

FEs. Initialization D (no. of variables) M (no. of objectives)

Problem-specific settings

ZDT 200 0.5 × FE 6 2

DTLZ 200/300/400 0.5 × FE 6 2/3/5

WFG 200/300/400 0.5 × FE 6 2/3/5

MAF –/300/400 0.5 × FE 6 –/3/5

Pop. size Gens. Evolutionary parameters

Evolutionary search settings

Corner search 100 100 0.8 (crossover rate) 0.2 (mutation rate)

20 (crossover index) 30 (mutation index)

Infill search 100 100 0.8 (crossover rate) 0.8 (scaling factor)

123



Complex & Intelligent Systems (2023) 9:1193–1209 1201

– NormRNDE , normalization bounds based on augmented
ND solutions with extreme points identified from inde-
pendent objective search, the method proposed in the
preceding work [34].

– NormRNDC (S1), the proposed method that augments
current ND solutions with corner points to define the nor-
malization bounds. In this variant, all top M corners in
the final population of the corner search are evaluated.

– NormRNDC (S2) the proposed method that augments
currentND solutionswith selected corner points to define
the normalization bounds. Selective evaluation (as dis-
cussed in Sect. 2.4) is applied on the top M solutions
in the final population of the surrogate corner search.
Thus, among these M points, only those that are non-
dominated with respect to the current ND front and lie
outside the reference point bounds based on predicted
values are evaluated. Silhouette analysis is not used in
this variant.

– NormRNDC (S3) the final version of the proposed
method (described in Algo. 1 and 2), that augments cur-
rent ND solutions with selected corner points to define
the normalization bounds. Both Silhouette analysis and
selective evaluation are activated in this variant, in that
order.

Results and discussion

The results obtained for 2-, 3- and 5- objective problems are
summarized in Tables 2, 3 and 4, respectively. In the fol-
lowing sections, we discuss the obtained results from three
different perspectives. These include the proposed method
compared with the conventional approaches (archive and
ND front based normalization), performance comparison
between the surrogate-based corner search and the extreme
point search proposed in our previous conference paper, and
the internal comparison between the three variants (S1–S3)
of the proposed approach.

Comparison with conventional normalization
methods (archive- and ND-based)

In our preliminary work [34], we had highlighted three typi-
cal problem characteristics that influenced the normalization
performance: initialization position (i.e., whether the initial
solutions are close to or far from the PF), coverage of the
PF (i.e., whether the initial solutions already provide a good
estimate of ideal by encompassing the PF range), and opti-
mization behavior on the surrogate model (i.e., whether the
search on the surrogate models led to a significantly bet-
ter estimate of the extreme points). Both the conventional
approaches, i.e., archive-based and ND-based normaliza-
tion, face challenges onproblemswith certain characteristics.

Below, we look into whether the proposed surrogate corner
search can provide a more consistent and competitive per-
formance across these problems across varying number of
objectives.

• Comparison with archive-based normalization:

– For the archive-based normalization, it typically faces
challenges when initialized solutions span a much
larger range of objective values compared to the PF.
As discussed earlier, the implication of using a refer-
ence point far away is that the solutions that are not
on the PF may have a high contribution, which takes
away the selection pressure to drive the solutions to
a well converged and diverse PF approximation. On
the other hand, if the initialized solutions are close to
the PF and span its range well, it has the advantage
of identifying good nadir and ideal approximation
without additional effort. We observed that the typ-
ical scenario reflecting the first situation is common
in DTLZ (except DTLZ7) problems and MAF prob-
lems. The representative cases of the latter scenario
are common in the WFG, ZDT and DTLZ7 prob-
lems. From Tables 2, 3 and 4, we observe that the
proposed NormRNDC (S3) either outperforms or
achieves equivalent results compared to the archive-
based method (NormRA) in nearly all cases. This
verifies that for the cases where the initial popula-
tion was far away, the proposed approach was able
to provide tighter bounds for the HV infill search by
bringing the reference point much closer to the true
Z I and ZN .

– To verify the above case where NormRA faced chal-
lenges, we observe the search behavior on DTLZ1
closely in Fig. 6. Figure6a shows the initial solutions
for the 2-objective DTLZ1, its normalization bounds
(orange box), and the position of the reference point.
Evidently, due to the distribution of initial solutions,
reference point is placed far away from its PF. In
contrast, Fig. 6b shows the normalization bounds and
location of the reference point suggested by the pro-
posed strategy (NormRNDC ) using the same initial
solutions. It is clear that the performance of the lat-
ter is likely to be better than NormRA strategy. It is
expected that the convergence of NormRA will be
inferior in this case, which indeed is the case as can
be seen from Fig. 6c.

– The two scenarios discussed above are further visu-
alized using 3-objective problems in Figs. 7 and 8.
In Fig. 7 for DTLZ7 problem, initial population cov-
ers the PF range well, and the solutions are not too
far away from the PF. Consequently, the archive-
based normalization has the advantage on covering
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Table 2 Median HV performance in test problems with 2 objectives across 29 independent runs

Problems NormRA NormRND NormRNDE NormRNDC NormRNDC NormRNDC
(archive) (ND) [34] (S1) (S2) (S3)

mDTLZ1 0.7011 0.7014 0.7020 ↑1 ≈2 0.7009 ≈1 ≈2 0.7012 ≈1 ≈2 0.7016 ≈1 ≈2

mDTLZ2 0.9915 0.9915 0.9915 ↓1 ↓2 0.9915 ↓1 ↓2 0.9915 ≈1 ↓2 0.9915 ≈1 ≈2

mDTLZ3 0.9908 0.991 0.9906 ≈1 ↓2 0.9905 ↓1 ↓2 0.9905 ≈1 ↓2 0.9906 ≈1 ↓2

mDTLZ4 0.7918 0.8265 0.8131 ≈1 ≈2 0.7941 ≈1 ≈2 0.8179 ≈1 ≈2 0.8335 ≈1 ≈2

iDTLZ1 0.2881 0.7007 0.7005 ↑1 ≈2 0.7002 ↑1 ↓2 0.7005 ↑1 ≈2 0.7006 ↑1 ≈2

iDTLZ2 0.9715 0.9866 0.9855 ↑1 ↓2 0.9857 ↑1 ↓2 0.9862 ↑1 ≈2 0.9857 ↑1 ↓2

ZDT1 0.8649 0.4646 0.8664 ↑1 ↑2 0.8659 ↑1 ↑2 0.8659 ↑1 ↑2 0.8661 ↑1 ↑2

ZDT2 0.5360 0.5386 0.5387 ↑1 ↑2 0.5385 ↑1 ↓2 0.5386 ↑1 ≈2 0.5386 ↑1 ≈2

ZDT3 0.7196 0.2973 0.7193 ≈1 ↑2 0.6500 ↓1 ↑2 0.7025 ↓1 ↑2 0.7201 ≈1 ↑2

ZDT6 0.4624 0.5105 0.4961 ≈1 ≈2 0.4470 ≈1 ↓2 0.4736 ≈1 ≈2 0.5049 ↑1 ≈2

DTLZ1 0.3111 0.7008 0.7005 ↑1 ≈2 0.7002 ↑1 ↓2 0.7003 ↑1 ↓2 0.7004 ↑1 ↓2

DTLZ2 0.4095 0.4198 0.4196 ↑1 ↓2 0.4195 ↑1 ↓2 0.4196 ↑1 ↓2 0.4197 ↑1 ↓2

DTLZ3 0.0563 0.4155 0.4137 ↑1 ↓2 0.4135 ↑1 ↓2 0.4134 ↑1 ↓2 0.4133 ↑1 ↓2

DTLZ4 0.1478 0.1522 0.2140 ↑1 ↑2 0.1838 ≈1 ≈2 0.2043 ↑1 ≈2 0.1989 ↑1 ↑2

DTLZ7 0.5427 0.3534 0.5447 ↑1 ↑2 0.5446 ↑1 ↑2 0.5447 ↑1 ↑2 0.5447 ↑1 ↑2

WFG1 0.1893 0.1900 0.1841 ↓1 ↓2 0.1761 ↓1 ↓2 0.1872 ≈1 ≈2 0.1867 ≈1 ≈2

WFG2 0.6617 0.6520 0.6695 ≈1 ≈2 0.6776 ↑1 ↑2 0.6506 ≈1 ≈2 0.6569 ≈1 ≈2

WFG3 0.6727 0.6655 0.6742 ≈1 ↑2 0.6723 ≈1 ↑2 0.6718 ≈1 ↑2 0.6729 ≈1 ↑2

WFG4 0.3476 0.3418 0.3463 ≈1 ↑2 0.349 ≈1 ↑2 0.3474 ≈1 ↑2 0.3468 ≈1 ↑2

WFG5 0.3646 0.3627 0.3634 ↓1 ≈2 0.362 ↓1 ≈2 0.3639 ↓1 ≈2 0.3635 ↓1 ≈2

WFG6 0.3644 0.3543 0.3629 ≈1 ≈2 0.3596 ≈1 ≈2 0.3587 ≈1 ≈2 0.3604 ≈1 ≈2

WFG7 0.3164 0.3129 0.3197 ≈1 ≈2 0.3254 ≈1 ↑2 0.3191 ≈1 ≈2 0.3222 ≈1 ↑2

WFG8 0.2189 0.2103 0.2177 ≈1 ≈2 0.2096 ≈1 ≈2 0.2141 ≈1 ≈2 0.2144 ≈1 ≈2

WFG9 0.3575 0.3578 0.3445 ≈1 ≈2 0.3542 ≈1 ≈2 0.3518 ≈1 ≈2 0.3526 ≈1 ≈2

Summary Compared to NormRA ↑1 10 ↓1 3 ↑1 9 ↓15 ↑1 9 ↓12 ↑1 10 ↓11

Compared to NormRND ↑2 7 ↓2 6 ↑2 6 ↓2 10 ↑2 5 ↓2 5 ↑2 7 ↓2 5

Wilcoxon rank-sum test is used to test significance with 0.05 significance level. The footnote 1 or 2 refers to the comparison is conducted with
either the archive-based normalization method or the ND-based normalization method, respectively

all the four patches of PF, since it can estimate
the bounds well from the beginning. The proposed
method does not have the scope of improving this
performance significantly via corner search, but we
can see that it achieves similar PF convergence and
diversity (Fig. 7d–f). Notably, the ND-based nor-
malization (NormRND) performs much worse here,
which will be discussed shortly. The second scenario
occurs for problem MAF6 in Fig. 8, wherein it is
observed that the initial solutions are far from PF.
The performance of the archive-based normalization
method suffers in this case (for similar reasons as
in Fig. 6), while the proposed method maintains its
competitive performance.

• Comparison with ND-based normalization:

– Though ND-based normalization generally performs
well, it faces challenges in the scenario where the

initial non-dominated population is concentrated in
localized region rather than spanning a good range
relative to the PF. In such cases, NormRND is
not able to easily expand the range to obtain other
parts of the PF and the diversity is severely com-
promised. This is illustrated for DTLZ7 in Fig. 7b,
where the final solutions cover only a part of the PF.
This is because during the initialization, although the
solutions in the archive spans a wide range, the non-
dominated solutions were concentrated only around
two of the patches. The surrogate corner search in
Fig. 7d is able to overcome this situation by supple-
menting the ND set with other corners spanning a
larger range which in turn improved its performance
significantly.

– The performance of the proposed method is also
very consistent compared to the ND-based nor-
malization across different number of objectives as
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Table 3 Median HV performance in test problems with 3 objective across 29 independent runs

Problems NormRA NormRND NormRNDE NormRNDC NormRNDC NormRNDC
(archive) (ND) [34] (S1) (S2) (S3)

mDTLZ1 0.3009 0.3007 0.3002 ≈1 ≈2 0.2992 ↓1 ↓2 0.3010 ≈1 ≈2 0.3004 ≈1 ≈2

mDTLZ2 0.7381 0.7068 0.7375 ↓1 ↑2 0.7375 ↓1 ↑2 0.7378 ↓1 ↑2 0.7378 ↓1 ↑2

mDTLZ3 0.7333 0.7325 0.7317 ↓1 ≈2 0.7328 ↓1 ≈2 0.7324 ↓1 ≈2 0.7325 ↓1 ≈2

mDTLZ4 0.2140 0.2222 0.2225 ≈1 ≈2 0.2384 ≈1 ≈2 0.2511 ≈1 ≈2 0.1981 ≈1 ≈2

iDTLZ2 0.7213 0.7348 0.7289 ↑1 ↓2 0.7272 ↑1 ↓2 0.7268 ↑1 ↓2 0.7269 ↑1 ↓2

MAF1 0.2992 0.3074 0.3070 ↑1 ↓2 0.3057 ↑1 ↓2 0.3066 ↑1 ↓2 0.3068 ↑1 ↓2

MAF2 0.7284 0.7286 0.7264 ↓1 ↓2 0.7259 ↓1 ↓2 0.7285 ≈1 ≈2 0.7285 ≈1 ≈2

MAF3 0.7881 0.8744 0.8631 ≈1 ≈2 0.8208 ≈1 ↓2 0.7863 ≈1 ≈2 0.8585 ≈1 ≈2

MAF4 0.5525 0.7227 0.6817 ↑1 ↓2 0.6695 ↑1 ↓2 0.6607 ↑1 ↓2 0.6814 ↑1 ↓2

MAF5 0.1404 0.1404 0.1489 ≈1 ≈2 0.1479 ≈1 ≈2 0.1402 ≈1 ≈2 0.1412 ≈1 ≈2

MAF6 0.0039 0.2515 0.2493 ↑1 ≈2 0.2469 ↑1 ≈2 0.2496 ↑1 ≈2 0.2489 ↑1 ≈2

DTLZ1 0.2263 1.0953 1.0963 ↑1 ≈2 1.0937 ↑1 ↓2 1.0944 ↑1 ≈2 1.0953 ↑1 ≈2

DTLZ2 0.7163 0.7633 0.7632 ↑1 ≈2 0.7620 ↑1 ↓2 0.7631 ↑1 ≈2 0.7632 ↑1 ≈2

DTLZ3 0.0265 0.737 0.7387 ↑1 ≈2 0.7366 ↑1 ≈2 0.7362 ↑1 ≈2 0.7375 ↑1 ≈2

DTLZ4 0.2176 0.2101 0.2094 ≈1 ≈2 0.2559 ≈1 ↑2 0.2419 ≈1 ↑2 0.2322 ≈1 ≈2

DTLZ7 0.5757 0.4774 0.5815 ↑1 ↑2 0.5813 ↑1 ↑2 0.5814 ↑1 ↑2 0.5815 ↑1 ↑2

WFG1 0.3493 0.3382 0.3433 ≈1 ≈2 0.3315 ≈1 ≈2 0.3329 ≈1 ≈2 0.3441 ≈1 ≈2

WFG2 1.1949 1.0197 1.0345 ↓1 ≈2 1.0382 ↓1 ↑2 1.0338 ↓1 ↑2 1.0234 ↓1 ≈2

WFG3 0.5190 0.5193 0.5171 ≈1 ≈2 0.5164 ≈1 ≈2 0.5194 ≈1 ≈2 0.5190 ≈1 ≈2

WFG4 0.6183 0.6200 0.6155 ≈1 ↓2 0.6151 ≈1 ↓2 0.6174 ≈1 ≈2 0.6231 ≈1 ≈2

WFG5 0.6549 0.6509 0.6465 ↓1 ↓2 0.6538 ≈1 ≈2 0.6540 ≈1 ≈2 0.6529 ≈1 ≈2

WFG6 0.6686 0.6707 0.6586 ↓1 ↓2 0.6642 ≈1 ↓2 0.6686 ≈1 ≈2 0.6700 ≈1 ≈2

WFG7 0.5850 0.5746 0.5739 ≈1 ≈2 0.5786 ≈1 ≈2 0.5779 ≈1 ≈2 0.5813 ≈1 ≈2

WFG8 0.3954 0.3956 0.4020 ≈1 ≈2 0.4050 ≈1 ≈2 0.4021 ≈1 ≈2 0.4103 ≈1 ↑2

WFG9 0.5561 0.5714 0.5567 ≈1 ≈2 0.5418 ≈1 ↓2 0.5509 ≈1 ↓2 0.5623 ≈1 ≈2

Summary Compared to NormRA ↑1 8 ↓1 6 ↑1 8 ↓1 5 ↑1 8 ↓1 3 ↑1 8 ↓1 3

Compared to NormRND ↑2 2 ↓2 7 ↑2 4 ↓2 11 ↑2 4 ↓2 4 ↑2 3 ↓2 3

Wilcoxon rank-sum test is used to test significance with 0.05 significance level. The footnote 1 or 2 refers to the comparison is conducted with
either the archive-based normalization method or the ND-based normalization method, respectively

evidenced from Tables 2 and 3. In Table 2 for 2-
objectives, the last column has 7 problems where
NormRNDC (S3) outperforms NormRND signifi-
cantly. There are 5 problems where the proposed
method performs worse. However, it is worth not-
ing that although there are cases where the proposed
method performs worse than the ND-based normal-
ization, the gap in performance is marginal. For
example, in the DTLZ1 problem in Table 2, the
median HV of the ND-based method is 0.7008,
while the median HV of the proposed method in
the last column is 0.7004. In contrast, for the cases
where NormRND faces challenge, such as DTLZ7
in Table 2, the gap is significantly larger.

– In addition, one can observe from Tables 3 and 4 that
NormRNDC (S3) outperforms NormRND in only a
few problems, while being equivalent in others. How-

ever, this does not indicate that the performance of the
proposed approach gets worse with increasing num-
ber of objectives. In fact, the main takeaway is that
for NormRA and NormRND method, there are both
typical scenarios where they suffer disadvantages.
The proposed strategy is expected to mitigate these
disadvantages in both scenarios and generate rather
stable performance across a range of problems, rather
than always outperforming the other two strategies. In
problemswith a higher number of objectives, the per-
formance is equivalent in the majority of instances.
Overall, it can be clearly seen that for the scenar-
ios that are challenging for NormRND , the proposed
approach is able to adapt andmaintain its competitive
performance.

– Among the problems with a higher number of objec-
tives, there are fewer that exhibit biased initial ND
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Table 4 Median HV performance in test problems with 5 objective across 29 independent runs

Problems NormRA NormRND NormRNDE NormRNDC NormRNDC NormRNDC
(archive) (ND) [34] (S1) (S2) (S3)

mDTLZ1 0.0214 0.0213 0.0213 ↓1 ≈2 0.0214 ≈1 ≈2 0.0214 ≈1 ≈2 0.0213 ≈1 ≈2

mDTLZ2 0.2329 0.2323 0.2321 ↓1 ≈2 0.2321 ↓1 ≈2 0.2326 ↓1 ↑2 0.2326 ↓1 ↑2

mDTLZ3 0.2305 0.2303 0.2293 ↓1 ↓2 0.2293 ↓1 ↓2 0.2304 ≈1 ≈2 0.2304 ≈1 ≈2

mDTLZ4 0.0065 0.0063 0.0043 ↓1 ↓2 0.0056 ≈1 ≈2 0.0067 ≈1 ≈2 0.0063 ≈1 ≈2

iDTLZ2 0.2189 0.2288 0.2163 ↓1 ↓2 0.2188 ≈1 ↓2 0.2148 ↓1 ↓2 0.2134 ↓1 ↓2

MAF1 0.0182 0.0216 0.0213 ↑1 ↓2 0.0212 ↑1 ↓2 0.0214 ↑1 ↓2 0.0216 ↑1 ≈2

MAF3 1.5865 1.59 1.5921 ↑1 ≈2 1.5907 ↑1 ≈2 1.5896 ↑1 ≈2 1.5898 ↑1 ≈2

MAF4 0.1473 0.224 0.1613 ↑1 ↓2 0.1632 ↑1 ↓2 0.1575 ↑1 ↓2 0.1495 ↑1 ↓2

MAF5 0.5568 0.5662 0.6225 ↑1 ↑2 0.6637 ↑1 ↑2 0.5664 ≈1 ≈2 0.5844 ≈1 ≈2

DTLZ1 1.3406 1.5294 1.5272 ↑1 ≈2 1.5293 ↑1 ≈2 1.5241 ↑1 ≈2 1.5317 ↑1 ≈2

DTLZ2 1.1930 1.2663 1.2835 ↑1 ↑2 1.2820 ↑1 ↑2 1.2854 ↑1 ↑2 1.2853 ↑1 ↑2

DTLZ3 0.8338 1.1742 1.2322 ↑1 ↑2 1.2540 ↑1 ↑2 1.2552 ↑1 ↑2 1.2567 ↑1 ↑2

DTLZ4 0.6440 0.6128 0.6351 ≈1 ↑2 0.6678 ≈1 ↑2 0.6294 ≈1 ≈2 0.6083 ≈1 ≈2

WFG1 0.2172 0.1979 0.1547 ≈1 ≈2 0.3349 ↑1 ↑2 0.2737 ↑1 ↑2 0.2732 ↑1 ↑2

WFG2 1.5756 1.5729 1.5706 ↓1 ↓2 1.5705 ≈1 ↓2 1.5749 ≈1 ≈2 1.5754 ≈1 ≈2

WFG3 0.3572 0.3625 0.3695 ↑1 ≈2 0.3643 ↑1 ≈2 0.3679 ↑1 ↑2 0.3638 ≈1 ≈2

WFG4 1.0582 1.0612 1.0505 ≈1 ↓2 1.0558 ≈1 ≈2 1.0569 ≈1 ≈2 1.0688 ≈1 ≈2

WFG5 1.0765 1.0721 1.0626 ≈1 ≈2 1.0777 ≈1 ≈2 1.0615 ≈1 ≈2 1.0608 ≈1 ≈2

WFG6 1.1989 1.2186 1.2024 ≈1 ↓2 1.2063 ↑1 ↓2 1.2183 ↑1 ≈2 1.2176 ↑1 ≈2

WFG7 0.9865 0.9853 0.9889 ≈1 ≈2 0.9816 ≈1 ≈2 0.9840 ≈1 ≈2 0.9855 ≈1 ≈2

WFG8 0.8229 0.8273 0.8176 ≈1 ≈2 0.8182 ≈1 ≈2 0.8162 ≈1 ≈2 0.8271 ≈1 ≈2

WFG9 0.8900 0.904 0.8864 ≈1 ≈2 0.8771 ≈1 ≈2 0.8591 ↓1 ↓2 0.8860 ≈1 ≈2

Summary Compared to NormRA ↑1 8 ↓1 6 ↑1 10 ↓1 2 ↑1 9 ↓1 3 ↑18 ↓1 2

Compared to NormRND ↑2 4 ↓2 8 ↑2 5 ↓2 6 ↑2 5 ↓2 4 ↑2 4 ↓2 2

Wilcoxon rank sum test is used to test significance with 0.05 significance level. The footnote 1 or 2 refers to the comparison is conducted with
either the archive-based normalization method or the ND-based normalization method

front; unlike the ZDT problems in the 2-objective
benchmarks (Table 2). Therefore, the performance
of NormRND and NormRNDC (S3) tend to be sim-
ilar. For the 5-objective test problems, NormRNDC

(S3) performs better than NormRND for more(4)
problems, and worse for fewer (2) problems. For 3-
objective cases, it has the same number of better and
worse cases (3 each). From the perspective of the
experiment setting, 5-objective problems have 200
solutions to train its surrogates while there were 150
solutions for 3-objective problems. Since the num-
ber of variables was 6 in both cases, we expect more
accurate surrogates to be generated for the 5-objective
case. The better surrogate accuracy is likely to lead
to offer benefit to surrogate-assisted corner search.
However, a crucial thing to note here is that the above
numbers are relatively small in comparison to the size
of the problem set. For a majority of problems in both
3-objective (19 out of 25) and 5-objective (16 out of
22) sets, the strategies actually perform similar. This

is consistentwith the principles of experiment design.
The main intent of the proposed strategy is to provide
competent (best or close to best) performance when
either NormRND or NormRA face challenging sce-
narios such as those discussed above.

Proposed approach compared to previous extreme point
search method

The proposed method in this paper is a more generalized ver-
sion of the extreme point-based normalization (NormNDE )
proposed in our previous work [34]. Thus, in this section
we compare the performance between the two. In general,
the proposed method NormRNDC (S3) is more consistent
across different problem settings than NormRNDE . This
can be observed from the number of cases where the two
normalization adjustment methods perform worse than the
ND-based normalization method NormRND . The reason to
choose comparison with NormRND is that for a higher num-
ber of objectives, there are fewer test problems that pose
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Fig. 6 DTLZ1 example of
search behavior difference

challenges to NormRND . As a baseline, NormRND per-
forms better than the archive-based normalization method.
Therefore, using comparison with the ND-based normaliza-
tion method can allow us to better illustrate the difference in
performance. In Table 2, the two normalization adjustment
methods perform the same, they both have 6 (NormRNDE )
and 5 problems (NormRNDC (S3)) performing worse than
the ND-based normalization method and in 7 problems they
perform better. In Table 3, last row, it can be seen that
for 3-objective problems, NormRNDE performs worse in
7 problems when compared with NormRND , while the pro-
posed method NormRNDC (S3) performs worse in only 3
problems. As for Table 4, these numbers are 8 and 2, respec-
tively. This verifies that the proposed improvements make
the method more scalable to higher number of objectives
and provides a better overall performance..

Internal comparison between the variants of proposed
approach (S1–S3).

Following the comparisons with the previous approaches, in
this section we observe the impact of the selective evaluation
and Silhouette analysis in the proposed approach. It can be
observed from the Tables 2, 3 and 4 that these mechanisms
progressively help to improve the consistency of the pro-

posed surrogate assisted corner search based normalization.
In Table 2, compared to the ND-based normalization (last
row), andwith adding selective evaluation, the cases ofworse
performance reduces from10 (S1) to 5 (S2, S3).With increas-
ing number of objectives, the impact of Silhouette analysis
also becomesmore prominent. InTables 3 and 4, the numbers
of worse cases compared to the ND-based normalization are
further reduced when the Silhouette analysis is active. For
example, in Table 3, compared to NormRND , the number
of worse cases reduces from 11 (S1) to 4 (S2), to 3 (S3).
In Table 4, this number reduces from 6 (S1) to 4 (S2), to
2 (S3). Similar trend can also be observed for comparisons
with the archive-based normalization method. Overall, these
observations suggest the contribution of these modules on
the general performance of the proposed method.

Convergence behavior for some representative problems

To supplement the few cases discussed in the above sections,
we provide below a few more representative problems to
show the convergence behavior. For the cases of Fig. 9a, b,
NormRA provides good initial bounds (not too far away
from the true PF), and is therefore among the better strategies
in terms of convergence across all considered. For Fig. 9c,
d on the other hand, the case is reversed. The archive of
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Fig. 7 Typical scenario
observed for 3-objective DTLZ7
problem
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Fig. 8 Typical scenario
observed for 3-objective MAF6
problem
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Fig. 9 Mean HV convergence
for selected test problems using
all strategies

initial solutions span a much bigger range in the objective
space compared to the PF, and hence the reference point
is set far away, affecting the performance adversely. As for
NormRND , it can be seen to struggle in Fig. 9a, where the
initial set of ND solutions are biased and consequently could
not provide a good reference point.

Concluding remarks

In this paper, we presented an approach for adjusting the
normalization bounds for HV-infill based search to solve
expensive MOPs. Towards this end, we incorporated a mod-
ified version of corner search on the surrogate models,
followed by further selectionmechanisms to reduce the com-
putational budget directed towards corner evaluations while
maintaining the associated benefits. The numerical experi-
ments demonstrate the consistency of the proposed approach.
For the problems where the ND-based or archive-based
schemes face challenges, it was observed that the proposed
scheme can adapt and maintain its competitive performance.
Moreover, compared to the extreme point search approach
proposed in our previous work [34], the performance of the
proposed approach scales betterwith an increasing number of
objectives. In the future, we plan to further improve the per-

formance by incorporating other infill criteria and strategies
to deal with problems with extreme convex and non-convex
PF shapes.
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