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Abstract
Blood glucose (BG) prediction is an effective approach to avoid hyper- and hypoglycemia, and achieve intelligent glucose 
management for patients with type 1 or serious type 2 diabetes. Recent studies have tended to adopt deep learning networks 
to obtain improved prediction models and more accurate prediction results, which have often required significant quanti-
ties of historical continuous glucose-monitoring (CGM) data. However, for new patients with limited historical dataset, it 
becomes difficult to establish an acceptable deep learning network for glucose prediction. Consequently, the goal of this study 
was to design a novel prediction framework with instance-based and network-based deep transfer learning for cross-subject 
glucose prediction based on segmented CGM time series. Taking the effects of biodiversity into consideration, dynamic time 
warping (DTW) was applied to determine the proper source domain dataset that shared the greatest degree of similarity for 
new subjects. After that, a network-based deep transfer learning method was designed with cross-domain dataset to obtain 
a personalized model combined with improved generalization capability. In a case study, the clinical dataset demonstrated 
that, with additional segmented dataset from other subjects, the proposed deep transfer learning framework achieved more 
accurate glucose predictions for new subjects with type 2 diabetes.

Keywords Transfer learning · Blood glucose prediction · Deep learning network · Dynamic time warping (DTW)

Introduction

Diabetes mellitus (DM) is a chronic metabolic disease, 
which causes a series of complications and seriously affects 
the patient’s health and daily life [1]. For patients with dia-
betes, it is necessary that they maintain their blood glucose 
concentration (BGC) within a target range (e.g., 70–180 mg/
dL) [2]. Recently, continuous glucose-monitoring (CGM) 
systems [3–5] have been widely used in diabetes man-
agement to provide accurate and frequent dynamic glu-
cose records in the form of time series data. By analyzing 
these data, deeper insight into glucose fluctuations could 

be obtained to provide valuable information for glucose 
management.

A glucose predictor would utilize the valuable CGM 
records to forecast the glucose level with a short-term time 
horizon and guide the diabetics to make proper insulin 
adjustments. Accurate glucose prediction is also vital for 
the early and proactive regulation of blood glucose before it 
drifts to undesirable levels. Therefore, numerous approaches, 
based on physical models or data-driven empirical models, 
have been proposed to predict glucose levels [6–13].

For physical models, it is usually difficult to provide a 
personalized description as the model parameters are usually 
impossible to estimate [14]. In contrast, data-driven empiri-
cal models provide a relatively easier way to estimate the 
time-varying relationships among the variables [8, 15, 16], 
but they have limitations in real-time prediction. The main 
reason is that future glucose levels are influenced by many 
factors such as historical trends, administered insulin, physi-
cal activity, carbohydrate intake and hormone concentration, 
and most of these factors are time variant and cannot be 
captured accurately [17, 18]. Moreover, the glucose levels 
of different subjects may be impacted by their different life 
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styles and physiological reactions [19]. As a result, various 
prediction strategies based on complex nonlinear data-based 
structures only rely on CGM or a small amount of physiolog-
ical status monitoring data without involving physiological 
variables [20–22].

In recent years, with the development of deep learning 
networks, more and more researchers have begun to apply 
deep learning techniques to blood glucose prediction. Mir-
shekarian et al. used the long short-term memory network 
(LSTM) with multiple physiological data to predict blood 
glucose, which achieved better prediction results than SVR-
based methods [23]. Moreover, Li et al. proposed a convo-
lutional recurrent neural network (CRNN) for blood glucose 
predictions [24]. It consisted of a multi-layer convolutional 
neural network (CNN) and a modified recurrent neural net-
work (RNN) layer, in which CNN extracted the features from 
multi-dimensional aligned time series data, while the modi-
fied RNN layer modeled the sequence data and provided 
blood glucose predictions. The experimental results showed 
that the network performance was better than the exogenous 
autoregressive model (ARX), SVR and latent variable (LV) 
models. Aiello et al. presented a deep glucose forecasting 
(DGF) model that was constructed by LSTM with a full con-
nection layer. That model had better prediction results than 
the average linear model and daily model predictor (DMP) 
[25]. Mosquera-Lopez et al. [26] developed a deep learning 
network that achieved superior prediction performance with 
the aid of huge amounts of blood glucose data (27,466 days). 
This model produced more accurate predictions than other 
machine learning approaches. The authors attributed the 
results to massive training data, a sufficiently complex net-
work structure, and using different data volumes for model 
training. Therefore, it was reasonable to presume that deep 
learning networks tend to perform better when provided with 
sufficient training data.

Considering the significant differences in patients’ phys-
iology and behavior, many studies attempted to develop 
personalized deep learning models for better performance 
[27–29]. However, a common situation in clinical practice 
is that new patients do not have sufficient data for train-
ing a personalized model. Luo and Zhao [30] used transfer 
learning and incremental learning to improve the predic-
tion accuracy of the ARX model, thus resolving the issue of 
insufficient data from new patients. However, that study was 
only concerned with traditional machine learning methods 
which could not benefit from the superior modeling perfor-
mance of deep transfer learning.

Although various strategies for glucose prediction have 
been proposed in recent research studies, most of those were 
for patients with type 1 diabetes. Considering that type 2 
diabetes accounts for a high proportion of the diabetic popu-
lation and many patients with serious type 2 diabetes need to 
precisely manage their glucose levels, there arose a need for 

online glucose monitoring and prediction to provide early 
warning of hypoglycemia, as well as the selection of a per-
sonalized clinical medication and treatment plan [31, 32]. 
However, glucose dynamics may vary substantially among 
patients with type 2 diabetes, due to their diverse individ-
ual specificities, pathogenic factors, therapeutic schedules, 
and lifestyles. Therefore, there are still many challenges 
for the accurate prediction of glucose levels in type 2 dia-
betes patients and these challenges must be appropriately 
addressed.

Motivated by the above considerations, a deep transfer 
framework to predict glucose levels of new subjects with 
limited historical data was proposed in this paper. By includ-
ing historical segmented blood glucose data from other 
patients’ database, a personalized deep learning model was 
established to achieve dynamic short-term glucose predic-
tions for new patients with T2D. The schematic diagram is 
shown in Fig. 1.

As shown in Fig. 1, the proposed deep transfer framework 
consisted of instances-based deep transfer and network-
based deep transfer. The specific design ideas can be sum-
marized as follows: first, a pre-trained deep learning model 
with superior neural network generalization ability was 
developed with the source domain data. Then, to guarantee 
the greatest level of similarity between the extended target 
domain and the target domain, the training dataset was aug-
mented under the minimum dynamic time warping (DTW) 
distance principle [33]. Finally, the pre-trained general deep 
learning network was fine-tuned by data from the extended 
target domain to achieve the personalized prediction model. 
In addition to inheriting the generalization ability of the pre-
trained network, the personalized model also benefited from 
improved prediction performance in the target domain.

The contributions of this study were as follows:

1. A deep transfer learning framework was developed to 
establish a personalized glucose prediction model for 
new subjects with type 2 diabetes.

2. Instance-based deep transfer learning with the minimum 
DTW distance was proposed to guarantee the minimal 
differences between the extended target domain and the 
original target domain.

3. Based on the extended target domain, network-based 
deep transfer learning was developed to fine-tune the 
pre-trained general deep learning network to finally 
achieve the personalized prediction model.

4. The proposed framework was applied on clinical data-
set from patients with T2D, and a series of experiments 
were performed to verify its effectiveness and clinical 
acceptability.

The rest of this paper was organized as follows: Sect. 2 
explains the deep transfer learning framework for glucose 
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prediction, and introduces its related methods in detail. Sec-
tion 3 describes the dataset and data pre-processing. Sec-
tion 4 shows the experimental results in the clinical data-
set with the proposed framework and presents necessary 
comparative experiments for performance analysis. Finally, 
Sect. 5 provides concluding comments for our study.

Deep transfer learning framework 
for personalized glucose prediction

Deep transfer learning is an extension of the standard trans-
fer learning theory that addresses how to effectively transfer 
knowledge by deep neural network when there is insufficient 
data in the target domain. It can be classified into instance-
based deep transfer learning, mapping-based deep transfer 
learning, network-based deep transfer learning, and adver-
sarial-based deep transfer learning [34]. The unified defini-
tion of deep transfer learning is based on standard transfer 
learning [35], which defines a source domain DS and a target 
domain DT with learning tasks TS and TT , respectively. Deep 
transfer learning refers to deep learning improvement of the 
nonlinear predictive function fT(⋅) in DT using the knowl-
edge obtained in DS with TS , where DS ≠ DT , or TS ≠ TT.

Instance-based deep transfer learning is a branch of deep 
transfer learning which aims to find appropriate instances 
from the source domain to be used as supplements for deep 
learning in the target domain by a well-designed weight 
adjustment mechanism. As an example, let us consider 
TrAdaBoost, which is a typical instance-based algorithm 
that addresses inductive transfer learning problems [36]. 
This algorithm assumes that data in the source and target 
domains have the same features and labels but different dis-
tributions. Therefore, some data in the source domain could 

be valuable for learning, while other data may be of no use, 
or may even have a destructive effect.

A small amount of data from a new subject can be 
regarded as the target domain DT , and glucose prediction for 
a new subject is equivalent to the learning task TT . The data 
from other subjects can be regarded as the source domain 
DS , where DS ≠ DT because of the different distributions 
between the subjects. Therefore, deep transfer learning can 
be defined as using deep learning to complete the predic-
tion task for new subjects. The related methods of seg-
mented data deep transfer learning for glucose prediction 
are described in detail in the following sections.

Instance‑based transfer with minimum DTW 
distance

For the glucose prediction task discussed in this paper, the 
source domain contained the segmented glucose measure-
ment data from multiple subjects, and the target domain only 
contained the segmented glucose data of a new subject. The 
data in the source and target domains had the same features 
and labels. The limited amount of data from new subjects 
was not enough to train a personalized deep learning predic-
tion model, therefore, the expansion of the target domain 
data through instance-based transfer was the most intuitive 
transfer method. However, due to the differences in the phys-
iological state and external environment between the sub-
jects, different subjects had different distributions of glucose 
measurement data. Consequently, it was necessary to extract 
the data from the source domain that would be beneficial for 
transferring into the target domain. It was generally believed 
that it would be beneficial to learning of the target domain if 
the source domain data had a higher degree of similarity to 
the target domain. The trend and fluctuations of the sequence 
can be judged by the sequence shape, hence this study used 

Fig. 1  Schematic diagram of 
deep transfer learning of blood 
glucose prediction for a new 
subject
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dynamic time warping (DTW) distance for measurement the 
similarity of the glucose measurement sequences.

Dynamic time warping (DTW) is one of the most well-
known pattern match techniques to determine the shape 
similarity between two time series [37]. Compared with 
other pattern match methods, DTW is a simple but effective 
method that has been applied in many fields [38], such as 
speech recognition [39, 40], computer vision and process 
monitoring [41, 42]. Based on a dynamic programming tech-
nique, DTW could find the minimal distance between two 
time series by shrinking or stretching its time dimension 
[33, 43].

Given  two sequences  X = (x1, x2,… , xm) and 
Y = (y1, y2,… , yn) , a distance matrix with dimension m × n 
was first calculated. The local distance d(xi, yj) between 
the corresponding elements xi and yj were measured by 
a distance function, such as the square Euclidean dis-
tance or Manhattan distance [44]. Then, the warping path 
W = (w1,w2,… ,wk,… ,wL) through the distance matrix was 
determined by minimizing the cumulative distance, where 
wk = (i, j) represented the local distance d(xi, yj) on step k of 
warping path W  , and L was the length of the warping path 
W  , where max(m, n) ≤ L ≤ m + n − 1 . The warping path W 
satisfied the three local constraints as follows:

(1) Boundary constraints. w1 = (1,1) and wL = (m, n).
(2) Continuity. If wk−1 = (i, j) and wk = (i�, j�) , then 

i − i
�

≤ 1 and j − j
�

≤ 1.
(3) Monotonicity. If wk−1 = (i, j) and wk = (i�, j�) , then 

i
�

− i ≥ 0 and j� − j ≥ 0.

Next, the DTW distance was designed to search the mini-
mum warping path DTW(i, j) by the following warping cost:

Thus, the DTW distance was a dynamic programming 
solution that satisfied the above three constraints.

where D(i, j) represented the DTW distance between two 
time series of length i and j. Finally, the DTW provided the 
cumulative distance to measure the similarity between the 
two time series. The DTW alignment is illustrated in Fig. 2, 
where red line shows the optimal warping path (the W in 
the middle). A diagonal move indicated a match between 
the two series, while an expansion duplicated a point in one 
sequence and a contraction eliminated a point.

The DTW was used to measure the level of similarity 
between the glucose measurement sequences in the target 
and source domains, and to transfer the glucose measurement 

(1)DTW(i, j) = min

{
L∑

k=1

wk(i, j)

}

.

(2)
D(i, j) = wk(i, j) +min[D(i − 1, j),D(i, j − 1),D(i − 1, j − 1)],

sequences in the source domain that had high similarity to 
the target domain to construct an extended target domain. 
The extended target domain constructed based on the mini-
mum DTW distance had a high degree of similarity with 
the original target domain, and retained the distribution of 
the original target domain to the greatest extent, which was 
desirable for representation learning of the target domain.

Network‑based transfer on glucose prediction 
network

In network-based deep transfer learning, the pre-trained 
partial network in the source domain could be reused and 
transferred as part of the deep neural network in the target 
domain [34]. During the transfer process, whether the net-
work structure needs to be modified depends on if the tasks 
are the same or not. For the network investigated in this 
study, the task was unchanged, because the glucose predic-
tion task was performed on both the source domain and the 
target domain. Therefore, there was no need to modify the 
network structure during the transfer process, and the net-
work structure and parameters of the pre-trained model were 
reused completely.

Reducing the parameters of the personalized glucose pre-
diction model effectively shortened the update and inference 
time, thereby making it possible to achieve online updates 
and real-time predictions on mobile devices. The structure 
of the glucose prediction network proposed in this paper 
was similar to the LSTNet [45] used for time series predic-
tion. It was mainly composed of a 1-D convolutional layer, 
a recurrent layer (gate recurrent unit, GRU), a batch nor-
malization layer, and a fully connected layer, with only 427 
trainable parameters as shown in Fig. 3. The 1-D convolu-
tional layer performed preliminary feature extraction on the 
glucose measurement data, the recurrent layer extracted the 
time dependencies in the sequence, the batch normalization 
layer was used to improve the data distribution and training 
speed [46], and the fully connected layer provided the final 
prediction. The details of the prediction model are shown in 
Table 1. The inputs of this prediction model were 1-h CGM 
records with a sequence length of 12, and the outputs were 
the glucose levels a half hour or 1 h in the future.

The generalization ability of a deep learning model is 
largely affected by the amount and diversity of the training 
data. Using an extended target domain data based on the 
minimum DTW distance achieve a high degree of shape 
similarity with the target domain, but at the same time, it 
possibly led to the weaker generalization ability of the pre-
diction model. The pre-trained model had a stronger gener-
alization ability by directly training on the source domain. 
Subsequently, the pre-trained model was transferred to the 
extended target domain through network-based deep transfer 
learning to obtain the personalized model. The personalized 
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model further improved the performance on the target 
domain while inheriting the generalization ability of the 
pre-trained model.

Deep transfer learning framework with segmented 
data

The deep transfer learning framework with segmented data 
is shown in Fig. 4. Initially, a deep learning model was gen-
erated for the blood glucose prediction task, and then the 
amount of data required for sufficient training was estimated 
based on the number of parameters in the model. Subse-
quently, DTW was used to measure the similarity between 
the glucose measurement sequences in the source and target 
domains, and enough source domain data with a high degree 

of similarity were transferred to the target domain to form 
an expanded target domain. Finally, the pre-trained model 
was trained on the source domain and the pre-trained model 
was fine-tuned on the extended target domain to obtain a 
personalized prediction model.

The main steps for deep transfer learning with segmented 
data were as follows:

1. An initial deep learning model � was constructed for the 
blood glucose prediction task and experimental methods 
were used to estimate the minimum number of sources 
N required to sufficiently train the model based on the 
number of parameters n(�).

2. The source domain DS(CGM records from different sub-
jects) was extracted from N − 1 sources with the mini-

Fig. 2  Illustration of DTW 
alignment (on the top) for Y (at 
the left) and X (at the bottom) 
time series
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mum DTW distance from the target domain DT (CGM 
records from new subject) to construct an extended tar-
get domain D′

T.
3. The initial model � was directly trained on the N sources 

from the source domain DS to obtain the pre-trained 
model �S.

4. The pre-trained model �S was fine-tuned on the extended 
target domain D′

T to obtain the personalized prediction 
model �T.

Dataset and data pre‑processing

Segmented clinical dataset

This study included 908 hospitalized patients with type 2 
diabetes at Department of Endocrinology and Metabolism, 
Shanghai Jiao Tong University Affiliated Sixth People’s 

Hospital from January 2018 to the end of December 2018. 
Each subject wore a CGM system (Medtronic iPro2, North-
ridge, California) for 3–5 days for glucose measurement 
sampling once every 5 min. Capillary blood glucose was 
measured every 12 h by a SureStep blood glucose meter 
(LifeScan, Milpitas, CA, USA) to calibrate the CGM system. 
This study was approved by the Ethics Committee of Shang-
hai Jiao Tong University Affiliated Sixth People’s Hospital, 
Shanghai, China.

To eliminate the adaptability error of subjects wearing a 
CGM device for the first time, only the data from the second 
day to the third day were extracted and each subject had 
288 × 2 valid measurement points. In this study, the first 288 
glucose measurements of the subjects were used as training 
data, and the last 288 data points were used as the testing 
data. The glucose measurement data from the target subject 
were defined as the target domain DT and the data from other 
subjects served as the source domain DS . To differentiate 
the results and facilitate the drawing of the prediction-error 
grid analysis (PRED-EGA) grid, the units of the glucose 
measurement data were converted from mmol/L to mg/dL.

Data pre‑processing

Standardizing the original data can improve the data dis-
tribution and quicken the model learning to a certain 
extent. The two commonly used standardization methods 
are min–max standardization and Z score standardization. 
Min–max standardization is a linear transformation of the 
original data and it maps the data values to [0, 1]. The Z 
score standardized calculation formula is shown below:

Fig. 3  The glucose prediction network architecture

Table 1  The details of glucose prediction network

Layer Parameter Activa-
tion 
function

Convolutional layer 6 kernels (6 × 1) ReLU
Batch normalization 7 × 6 —
Recurrent layer (GRU) 6 units tanh
Batch normalization 7 × 6 —
Recurrent layer (GRU) 3 units tanh
Batch normalization 3 —
Fully connected layer 1 ReLU
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where x denoted the origin data, and � and � were the mean 
and standard deviation of the original data, respectively. 
Z score standardization was standardized according to the 
mean and standard deviation of the original data. The pro-
cessed data conformed to the standard normal distribution, 
which was beneficial to the training of the deep learning 
network. Therefore, Z score standardization was selected to 
preprocess the blood glucose data.

Results and discussion

Evaluation metrics

The efficiency and accuracy of our proposed method was 
demonstrated with the root mean squared error (RMSE) 

(3)x∗ =
x − �

�
,

results in mg/dL, the mean absolute error (MAE) results in 
mg/dL and the mean absolute relative difference (MARD) 
in %, calculated by:

where ŷi denoted the forecasting results, yi denoted the CGM 
measurement, and N was the total number of data points. 
Additionally, the prediction-error grid analysis (PRED-
EGA) [47, 48] quantified the clinical acceptability of the 

(4)RMSE =

√√√
√ 1

N

N∑

i=1

(ŷi − yi)
2,

(5)MAE =
1

N

N∑

i=1

||ŷi − yi
||,

(6)MARD =
1

N

N∑

i=1

||ŷi − yi
||

yi
,

Fig. 4  Schematic diagram of deep transfer learning framework with segmented data
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predicted glucose levels and was used to evaluate our pro-
posed method. The PRED-EGA was shown to be a reliable 
and robust method for the continuous glucose-error grid 
analysis [49], which evaluated the accuracy of the predic-
tions in terms of both the values and derivatives of the pre-
dictions. The PRED-EGA included two interacting compo-
nents: (1) point-EGA (P-EGA) for evaluating the accuracy 
of the predictions and (2) rate-EGA (R-EGA) for assessing 
the capability of the model to characterizes the derivative of 
the measurement values.

Deep transfer learning based on segmented blood 
glucose dataset

(1) Extended target domain
Before performing instance-base transfer, it is neces-

sary to consider the size of the extended target domain. It 
is generally believed that the amount of data required to 
sufficiently train a model is proportional to its number of 
parameters, however, there is still no theoretical method to 
estimate the amount of data required. Therefore, experimen-
tal methods are used to estimate the data size required by the 
extended target domain.

The specific method employed in this study was to ran-
domly select a certain number of subjects and use their train-
ing data as the testing dataset. One subject was randomly 
selected from the 908 clinical subjects in T2D to develop the 
predictive model with the training dataset. The performance 
of the model was evaluated based on the testing dataset. 
Next, the dataset of a subject in the training process was 
randomly expanded and the model was retrained and re-eval-
uated. This step was repeated until the model’s performance 
on the test dataset stabilized. In this experiment, 20 subjects 
were randomly selected as the test dataset, the number of 
subjects with maximum expansion of the training dataset 
was also 20, and the prediction horizon (PH) of the model 
was 30 min. The training settings of all the experiments in 
this study are shown in Table 2. The construction method of 
the validation dataset was the hold-out method, where the 
last 20% of the training data was set aside as the validation 
dataset. As the size of the training dataset increased, the 
performance of the model stabilized, as shown in Fig. 5.

The trends in Fig. 5 showed that the performance of the 
model on the test dataset stabilized when the number of sub-
jects in the training dataset reached 12. However, consider-
ing the randomness of the training, a certain margin needed 
to be maintained, and the size of the extended target domain 
was finally determined to be a training dataset of 15 subjects.

(2) Joint transfer of instances and networks
The deep transfer learning framework proposed in this 

study was composed of instance-based transfer with DTW 
and network-based transfer. To evaluate the prediction 
performance of instance-based transfer with DTW, the 
models for 20 subjects in the target domain were indepen-
dently trained on the extended target domain and evaluated 

Table 2  The training settings of model

Loss func-
tion

Optimizer Learning 
rate

Training 
stop strategy

Training data-
set: validation 
dataset

MSE Adam 0.001 Early stop-
ping

8:2

Fig. 5  Model performance for a PH of 30 min with different training dataset sizes
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separately. For comparison, 14 subjects were randomly 
selected from the source domain to construct an extended 
target domain with the target subjects, and the model train-
ing and evaluation were carried out in the same way. For the 
instance-based transfer with DTW, the network-based trans-
fer was also used to obtain a personalized model which had 
improved generalization ability. Therefore, from the source 
domain with the target subjects excluded, 15 subjects were 
randomly selected to train a pre-trained model. As a result, 
all models of the subjects in target domain shared this pre-
trained model for network-based transfer. The performance 
of the models generated by different transfer methods is 
shown in Table 3.

Table 3 shows the performance of the three transfer 
methods. The proposed transfer method represents that the 
transfer method combined with instance-based deep transfer 
learning with minimum DTW distance and network-based 
deep transfer learning. The instance transfer with DTW 
represented the minimum DTW distance to construct the 
extended target domain. The randomized instance transfer 
represented the random construction of the extended target 
domain.

The experimental results in Table 3 showed that for 
both PHs of 30 min and 60 min, using the minimum DTW 
distance for instance-based transfer improved the predic-
tion accuracy significantly compared with using randomly 
selected samples. From the DTW distance calculation prin-
ciple, the main factor affecting the DTW distance was the 
shape difference between the time series. The glucose meas-
urement sequences that were extracted according to the min-
imum DTW distance with the target domain had the highest 
similarity versus the glucose measurement sequences that 
were extracted randomly. For the purposes of model learn-
ing, using glucose measurement sequences with minimum 
difference with the target subject made the model more sen-
sitive to the specificity of glucose fluctuations, which would 
allow the model to perform better when the target subject 
has similar glucose fluctuations in the future.

Network-based transfer based on instance-based transfer 
with DTW improved the generalization ability and perfor-
mance of the model. In addition, we found that the choice 
of the network layer for network-based transfer was crucial 
to the transfer results. As far as the network used in this 

experiment was concerned, only reusing the convolutional 
layer without the subsequent GRU and fully connected 
layer would result in negative transfer. Moreover, when 
the full model was fine-tuned, it was also susceptible to 
the influence of poorly pre-trained models and may result 
in negative transfer. Therefore, adopting a more reason-
able network-based transfer method was very important for 
improving the prediction accuracy of the model. In addi-
tion to evaluating the prediction accuracy of the model, it 
may be more valuable to evaluate the clinical acceptability. 
The PRED-EGA of 20 subjects is shown in Fig. 6.

The PRED-EGA showed the clinical acceptability of 
the glucose estimation by the proposed method for each 
of the 5420 estimations from the target subjects. It was 
found that there was no hypoglycemia in the tested blood 
glucose. In the predictions for euglycemia (5183 points 
in total), 99.57% was accurate, 0.39% was benign, and 
0.04% was error. In the predictions for hyperglycemia (237 
points in total), 86.50% was accurate, 11.39% was benign, 
2.11% was error. This confirmed that our proposed predic-
tive model and transfer learning method performed well on 
clinical dataset. In addition, we also specifically analyzed 
the prediction curve of the three different deep transfer 
learning methods on a subject in the target domain, as 
shown in Fig. 7.

As shown in Fig. 7, the main source of prediction error 
was the rapid increase and decrease of glucose. A large 
prediction delay could also be observed in the model. 
In addition, for relatively flat glucose levels, the predic-
tion model was prone to provide fluctuating glucose pre-
dictions, which was also the main source of prediction 
error. In contrast, the prediction results of the randomized 
instance-based transfer had too many spikes, while the 
prediction results of the instance-based transfer with DTW 
were relatively flat and the prediction performance was 
better. Furthermore, the use of network-based transfer 
improved the forecasting performance in some situations 
and strengthened the overall prediction results. In future 
work, a more appropriate deep transfer learning method 
may be used to improve the sensitivity and stability of the 
model, and further improve the performance of the deep 
learning model in glucose prediction.

Table 3  Prediction accuracy 
with different transfer methods

PH Transfer methods MAE (mg/dL) RMSE (mg/dL) MARD (%)

30 min Proposed transfer method 4.769 ± 1.720 6.509 ± 2.584 3.937 ± 1.220
Instance-based transfer with DTW 4.896 ± 1.682 6.553 ± 2.408 4.083 ± 1.166
Randomized instance-based transfer 6.308 ± 1.798 7.954 ± 2.262 5.291 ± 1.239

60 min Proposed transfer method 8.561 ± 3.725 11.252 ± 5.063 7.073 ± 2.564
Instance-based transfer with DTW 8.838 ± 4.277 11.401 ± 5.586 7.263 ± 2.600
Randomized instance-based transfer 12.812 ± 4.850 15.947 ± 5.922 10.910 ± 4.118
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Comparative experiment: deep transfer learning 
and machine learning

In addition to deep learning, segmented data can also be 
predicted by machine learning that requires less data. In 
this section, we will compare the three machine learning 
methods commonly used for glucose prediction, support 
vector regression (SVR), random forest (RF), and Gaussian 
process regression (GPR) with our proposed deep transfer 
learning method. The machine learning method only uses 
the training dataset of subjects in the target domain for train-
ing without extension. The machine learning model uses the 
encapsulated model in Python’s Sklearn library. In terms of 

detailed configuration, the SVR model used the radial basis 
function (RBF) as the kernel function, and the remaining 
hyperparameters were used as the default parameters. For 
the RF model, all the hyperparameters used default param-
eters. The kernel function of the GPR model was the product 
of ConstantKernel and RBF plus WhiteKernel. The number 
of restarts of the optimizer was set to 3, and the rest were 
default parameters. The performance of machine learning 
and deep transfer learning models is shown in Table 4, and 
the prediction accuracy of the selected subject in the target 
domain are shown in Fig. 8.

As can be seen in Table 4, the deep transfer learning 
method achieved the best prediction performance for both 

Fig. 6  PRED-EGA for 20 target subjects with PH = 30 min

Fig. 7  The prediction results 
of a subject in target domain 
by three deep transfer learning 
methods for PH = 30 min
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the 30- and 60-min PH. This result proved that the deep 
transfer learning method with segmented data achieved bet-
ter prediction accuracy than traditional machine learning 
methods. It also showed that our proposed network-based 
transfer and instance-based transfer with minimum DTW 
distance is a feasible deep transfer learning method for glu-
cose prediction. It can be seen from Fig. 8 that the predic-
tion results of the deep transfer learning method had the 
best performance, and the glucose fluctuations were well 
captured. The prediction results of the SVR method had a 
high degree of fit with the raw data, were smoother than the 
deep transfer learning method overall, and performed better 
in places with minor blood glucose fluctuations. Therefore, 
this hybrid method using deep learning methods combined 
with other machine learning methods has the potential to 
obtain better prediction performance.

Conclusions

This study proposed a deep transfer learning framework 
to establish a personalized deep learning model for new 
patients with insufficient historical data. The minimum 
DTW distance was used for instance-based transfer and 

extended target domain, while the network-based transfer 
was applied to improve the comprehensive performance of 
the model in the target domain. The effectiveness of this 
method was verified through a series of blood glucose pre-
diction comparison experiments using clinical data. One 
limitation of the method was that when the daily blood 
glucose level fluctuated significantly due to changes in the 
treatment plan or huge environmental changes in the clini-
cal patients, the performance of the transfer model suffered 
due to changes in the target domain. To address this issue, 
the mean of daily differences (MODD) of blood glucose can 
be used, as it is a commonly used clinical indicator which 
reflects the consistency and stability of day-to-day blood 
glucose patterns [50]. Online updates can then be provided 
for blood glucose prediction methods with fast tracking abil-
ity for time-varying processes in this situation. Future work 
will also consider combining online updated machine learn-
ing methods with deep learning networks to obtain a more 
adaptable blood glucose prediction model.
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Table 4  Prediction accuracy 
for the selected subject with 
different methods

PH Prediction methods MAE (mg/dL) RMSE (mg/dL) MARD (%)

30 min Proposed method 4.769 ± 1.720 6.509 ± 2.584 3.937 ± 1.220
SVR 6.655 ± 2.429 9.011 ± 3.659 5.481 ± 1.821
RF 7.258 ± 2.718 9.624 ± 3.953 5.992 ± 1.913
GPR 8.698 ± 4.114 11.402 ± 5.798 7.076 ± 2.554

60 min Proposed method 8.561 ± 3.725 11.252 ± 5.063 7.073 ± 2.564
SVR 9.234 ± 3.516 12.232 ± 5.244 7.489 ± 2.388
RF 10.464 ± 4.498 13.715 ± 6.517 8.457 ± 2.715
GPR 11.077 ± 4.576 14.231 ± 6.370 9.003 ± 2.791

Fig. 8  The prediction results 
of different machine learn-
ing methods and deep 
transfer learning method for 
PH = 30 min
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