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Abstract
Heart sound segmentation (HSS) aims to detect the four stages (first sound, systole, second heart sound and diastole) from
a heart cycle in a phonocardiogram (PCG), which is an essential step in automatic auscultation analysis. Traditional HSS
methods need to manually extract the features before dealing with HSS tasks. These artificial features highly rely on extraction
algorithms,which often result in poor performance due to the different operating environments. In addition, the high-dimension
and frequency characteristics of audio also challenge the traditional methods in effectively addressing HSS tasks. This
paper presents a novel end-to-end method based on convolutional long short-term memory (CLSTM), which directly uses
audio recording as input to address HSS tasks. Particularly, the convolutional layers are designed to extract the meaningful
features and perform the downsampling, and the LSTM layers are developed to conduct the sequence recognition. Both
components collectively improve the robustness and adaptability in processing the HSS tasks. Furthermore, the proposed
CLSTM algorithm is easily extended to other complex heart sound annotation tasks, as it does not need to extract the
characteristics of corresponding tasks in advance. In addition, the proposed algorithm can also be regarded as a powerful
feature extraction tool, which can be integrated into the existing models for HSS. Experimental results on real-world PCG
datasets, through comparisons to peer competitors, demonstrate the outstanding performance of the proposed algorithm.

Keywords Heart sound segmentation · End-to-end heart sound segmentation · Deep convolutional recurrent network ·
Sequence tagging

Introduction

Heart disease is the leading cause of deathworldwide [43,66].
Many types of heart disease canbediagnosedby auscultation,
which is realized in practice by experienced physicians[24,
34]. Unfortunately, auscultation highly relies on clinical
expertise, which often results in biased results due to the
various diagnostic levels of different doctors. Thus, auto-
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matic heart sound analysis, which can automatically analyze
heart sounds via algorithms, has recently become a popular
research topic [33]. Generally, automatic heart sound analy-
sis is composed of three steps. They are preprocessing, heart
sound segmentation (HSS), and classification, among which
HSS is widely recognized as the key step in automatic heart
sound analysis [58].

Generally, the HSS aims to detect the four stages in one
heart cycle from a phonocardiogram (PCG) [7,9,11,29,60],
i.e., the first sound (denoted as S1), the systole, the second
heart sound (denoted as S2) and the diastole. Specifically, S1
is audible at the onset of mechanical systole, and S2 occurs at
the onset of mechanical diastole. For a glance, two examples
of the PCG including the four states are illustrated in Fig. 1,
where different colored areas symbolize different states of
the heart cycle. HSS is a challenging task [31,33]. First, PCG
recording is often populated by background noise in different
environments, such as friction noise between the stethoscope
and skin [59]. Second, a variety of other sounds, such as
the sound of breathing, conversational voice, cardiac mur-
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mur, third sound, and fourth sounds, are often injected into
the recording of normal sounds even without environmental
noise [33]. These sounds collectively make the HSS very dif-
ficult to exactly identify the S1 and the S2. Finally, most of
the PCGs are common with short recordings, which propose
higher requirements for the HSS algorithms. This is because
the short recording makes it difficult for the corresponding
algorithm to find the patterns [7].

In the past few decades, many HSS methods have
been proposed to address these issues. These methods can
be divided into four categories: envelope-based methods,
feature-based methods, probabilistic model-based methods,
and machine learning methods. Among these methods, the
hidden semi-Markov model (HSMM)-based algorithms and
the deep recurrent neural network (DRNN) algorithms,
which are from the third and fourth categories, respectively,
have demonstrated their promising performance [3,7,11,
18,23,31,37,42]. Generally, both HSMM-based and DRNN
algorithms consider the HSS as a sequence tagging task [23]
by assigning a categorical label to eachmember of a sequence
of the observed values. Specifically, HSMM-based algo-
rithms assume that the state of the heart is unknown, while
stochastic output and heart sounds can be observed [13,52–
54,59,63]. Recently, DRNN algorithms have also shown
promising performance as the dominant algorithm among
variousmachine learning approaches, achieving state-of-the-
art results using proper metrics [39,47,55]. In principle, these
methods are composed of two main steps in addressing HSS
tasks: extracting features and tagging sequences. Both phases
are important to the performance of the HSS tasks. A variety
of feature extraction methods have been developed to extract
the useful features of heart sounds in recent decades, such
as the homomorphic envelope features, the energy envelope
feature, the Hilbert envelope features, the wavelet enve-
lope features, the spectral features, and the power spectral
density (PSD) envelope features [4,8,10,26,38,41,44,45,47–
49,51,56,65]. Figure 2 illustrates some envelope features that
are often used in heart segmentation algorithms. TheHSMM-
based algorithms often adopt the four envelope features, and
the DRNN algorithm takes the combination of the envelope
features and the spectral features as their inputs [6,12,39,59].
After that, these features are processed by the above algo-
rithms, and segmentation is finished by the sequence tagging
models.

Previous researchers need feature extraction algorithms
to process raw audio data for two reasons. On the one hand,
the raw audio signal of heart sound is frequency data, with
an important structure at many time scales [46]. Therefore,
researchers usually avoid modeling raw audio. Some classi-
cal feature extraction algorithms, such as wavelet transform
[10,47], can greatly reduce the redundancy information of
the raw audio signal [30]. On the other hand, audio data
are high-dimensional sequence data, and traditional methods

cannot deal with them directly. For instance, the sampling
frequency of common heart audio files is 2000 Hz, while
the artificial envelope features are usually used at 50 Hz in
the HSMMmethod and DRNN processing [33,54,59]. Over-
all, the ability of the feature extraction algorithm determines
the final performance of HSS. However, these algorithms
often have some limitations. First, most of these algorithms
are designed within some context, such as specific data or a
specific environment. These HSS methods require consider-
able time and manpower to verify and process these feature
extraction algorithms [33]. In addition, the extracted features
may obtain good results in some data but can lead to cliff-
like falls in some environments [4,10,26,38,41,45,47,49,51].
Second, the feature algorithms for HSS are not easy to extend
to other heart sound annotation tasks [8]. If we need to
solve other heart sound tasks, such as locating the posi-
tion of the heart murmur during segmentation, these feature
algorithms will redesign or combine according to the new
requirements [44,48,65]. To solve the above problems, we
explored a method to implement HSSwith the raw audio sig-
nal. For instance, in image processing, the convolution layer
adjusts the parameters of the convolutional kernel through
error backpropagation and can extract the effective features
of the image [16]. Moreover, some deep fully convolutional
networks are designed for processing and generating raw
audio waveforms [46], which utilize various dilation fac-
tors that allow the receptive field to grow exponentially with
depth and cover thousands of timesteps. In certain biological
sequence signals, such as electrocardiograms, convolutional
and long short-term memory networks, are used to realize
automatic diagnosis of heart disease, which has the advan-
tages of fewer computations and high accuracy [64]. These
results inspired us to explore the power of the convolutional
network and LSTM to extract efficient features and imple-
ment end-to-end segmentation. Unlike multistage training,
end-to-end network training can learn global solutions and
is more convenient and elegant; it is widely used in vari-
ous domains [19,57]. To the best of our knowledge, there is
currently no contribution of raw audio signals to label heart
sounds in the literature.

In this study, the CLSTM algorithm is proposed based
on convolutional neural networks [32] and long short-term
memory (LSTM) neural networks [16] to efficiently solve
HSS tasks. Figure 3 illustrates the differences between the
traditional method and the CLSTM. The proposed CLSTM
algorithm can directly use the original digital audio signal
as input and has no limitations of the existing methods,
which require the features extracted in advance. Therefore,
theCLSTM is trained in an end-to-endmanner. The contribu-
tions of the proposed algorithm are summarized as follows:

1. An end-to-end algorithm is proposed to address HSS
tasks. In the proposed algorithm, the convolutional lay-
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Fig. 1 Two examples of PCG signals. Each signal recording has many cardiac cycles (beats), and each heart sound beat consists of four states (S1,
systole, S2 and diastole). The HSS task aims to determine the four states of the beat and identify the exact location of S1 and S2 from PCG recording

Fig. 2 The examples of envelope features. Extracting the location of S1 and S2 is more time dependent than amplitude dependent

Fig. 3 The overall system design. The first three lines of the figure
illustrate some design methods based on features extracted by other
algorithms. The raw PCG recording must be extracted to obtain the fea-
tures for the following DRNN-, duration-LSTM-, and HSMM-based

algorithms [52–54,63]. The last line of the figure is our proposed
method, which implements end-to-end segmentation and does not need
to extract features
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ers and the LSTM layers are reasonably integrated to
deal with the raw acoustic data, where the convolutional
layers play the role of extracting the feature and perform-
ing the downsampling, and the LSTM layers perform the
sequence recognition task and feature extraction. Exper-
imental comparisons have demonstrated the competitive
performance of the proposed algorithm against state-of-
the-art models.

2. To address the challenge of effectively processing high-
dimensional PCG recordings, stacked convolutional lay-
ers are introduced into the proposed algorithm. Specifi-
cally, the temporal convolutional layers and LSTM layers
in the model can collectively extract the features closely
related to the data. These features achieve good tagging
results using only two fully connected neural networks,
which can also be used by traditional models.

3. The impact of the model parameters and the related
key factors have been extensively investigated. Specif-
ically, we explore the different sizes and numbers of
convolutional kernels in combination with dropout and
augmentation regularization and experimentally inves-
tigate the effect of the recording length and sampling
rates, which can provide the guidelines of researchers in
designing methods for similar tasks.

The remainder of this paper is organized as follows. The
background related to the base knowledge of the proposed
algorithm is introduced in the section. The next section doc-
uments the details of the proposed algorithm. To verify the
performance of the proposed algorithm, the following sec-
tions show the experimental design and the experimental
results, respectively. The last section provides the conclu-
sions and our further work.

Background

In this section, the background of the LSTM and the con-
volutional neural networks is provided, which are the base
work of the proposed CLSTM algorithm in this study. Please
note that the temporal convolutional layers and the dilated
convolutional layers serve as the background of the convo-
lutional neural networks. This is because both are the main
operations for processing the data having a high-dimensional
signal. Please note that the recording data to be investigated
in this paper are 1-D audio data.

Long short-termmemory (LSTM) and BiLSTM

LSTM targets addressing the disadvantages of the vanilla
recurrent neural network, such as gradient vanishing/exploration
problems and hard training [16]. LSTM is often used to
detect the state of sequential data, which can be naturally

presented to segment heart sounds, which is principally a
sequence tagging task [15,17,21,21,35,39,39] Through more
complex nonlinear structures, LSTM can process and cap-
ture the long-termmemory in sequential data. Specifically, its
architecture uses purpose-builtmemory cells ct to store infor-
mation, which is beneficial to find and exploit the long-range
context [47,55]. The units in the LSTM are mathematically
formulated by Eq. (1):
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(1)

where i , f and o denote three gates (input, forget, output)
that use sigmoid activation. c is the cell memory that is trans-
formedwith the activation. ht is the output of LSTMat step t .
In addition, � denotes the elementwise multiplication oper-
ation, Wjk means the weight from the unit j to the unit k, b
is the bias term, t refers to the time slot, and x is the input
data. In Messner’s study tasks, x is the stack of the enve-
lope features as the BiLSTM input [12,14]. There have been
multiple LSTM variants proposed for different purposes. In
this paper, BiLSTM is used to capture the dependencies of
features in two directions, which is widely used to process
the annotation task as an effective version of LSTM. The
BiLSTM computes the forward hidden sequence

−→
h and the

backward hidden sequence
←−
h in both input directions for

capturing bidirectional semantic dependencies [15,17]. The
output z is computed by Eq. (2):
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After that, the output sequence z is obtained through the for-
ward

−→
h and backward hidden layer sequence

←−
h . Usually,

each step zt can use the softmax function to classify for anno-
tating the sequence.

Temporal convolutional layer

The temporal convolutional layer is also known as the 1-
D convolutional layer, which is widely used in image and
video action recognition [28,32]. This is because the tem-
poral convolutional layer can capture how features at lower
levels change over time. The filters slide over the whole input
sequence and help identify different features present in the
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Fig. 4 An example to demonstrate how dilated convolution works.
Compared with normal convolution, the output of the same length has
a capacity of more input

temporal convolutional layer. Feature maps are the output of
one filter applied to the previous layer and can be regarded
as the convolutional activation of the corresponding filter. In
practice, the temporal convolutional layer is often followed
by a pooling operation that is used to efficiently compute
long-term time patterns. At each convolutional layer, the
previous layer’s feature maps are convoluted with learnable
kernels and put through the activation functions to form the
output feature map. The output is obtained by Eq. (3):

xlk = f

⎛

⎝
Nl−1∑

i=1

conv1D
(
wl−1
ik , xl−1

i

)
+ blk

⎞

⎠ , (3)

where xlk is defined as intermediate output through the acti-
vation function f , xl−1

i is the output of the i neuron at layer
l − 1, wl−1

ik is the kernel from the i neuron at layer l − 1 to
the k neuron at layer l and b is bias. conv() is ‘invalid’ 1-D
convolutional without zero-padding.

Dilated convolution

Dilated convolution, which is achieved by the traditional
operation with holes, has been previously used in various
contexts, e.g., signal processing [1], waveNet [46], sound
classification [67] and image segmentation [50]. The recep-
tive field of the dilated convolution is the implicit area
captured on the initial input by each input to the next layer
in the convolutional neural network, which is an efficient
method for increasing the receptive viewof the network expo-
nentially and linear parameter accretion. As shown in Fig. 4,
the dilated convolution is similar to the traditional convolu-
tion where the filter is applied over an area but skips the input
values with a certain step [46].

Fig. 5 The overall architecture of the proposed CLSTM algorithm

The proposed algorithm

In this section, the proposed CLSTM algorithm is detailed.
Specifically, the architecture of CLSTM is elaborated first.
Then the training details of CLSTMare documented. Finally,
the output of the CLSTMmiddle layers is discussed, which is
helpful for interpreting what features the proposed CLSTM
algorithm has learned.

The CLSTM architecture

The ideas and principles of network model design are as
follows. First, convolutional layers are utilized to extract
the meaningful features of the raw recording data. Stacked
convolutional layers and numerous feature maps can extract
rich and effective features. As some studies have shown that
the accuracy of segmentation is correlated with the length
of input in models [6,12], the dilated temporal convolu-
tional layer is introduced into this structure to effectively
increase the receptive view. Second, the pooling layer is
very important in this architecture, which is designed to
halve the length of input and capture the valid features of
high-dimensional audio recording. Third, the LSTM layers
focus on the sequence tagging tasks, which have been suffi-
ciently demonstrated to be effective in theHSS task [6,12,39].
Figure 5 shows the architecture of theproposedCLSTMalgo-
rithm.

CLSTM is composed of convolutional layers, LSTM
layers, and fully connected layers. Specifically, the con-
volutional layers contain three parts. The first part is
approximately two dilated temporal convolutional units,
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three temporal convolutional units, and one temporal con-
volutional layer. Each dilated temporal convolutional unit
is composed of a dilated temporal convolutional layer, a
rectified linear unit (ReLU) activation function, and a max-
pooling layer. The temporal convolutional unit contains a
temporal convolutional layer, a ReLU activation function,
and a max-pooling layer. Separately, the temporal convolu-
tional layers extract the features and deal with the 1-D data,
which is often high-dimensional. These layers are stacked at
the beginning of the model to effectively extract the features
of the high-dimensional PCG recordings. In these tempo-
ral convolutional layers, k filters slide over the whole audio
sequence to generate k feature maps. The max-pooling layer
following every convolutional layer is designed to remove
redundant information and downsample features to a fixed
length. The pooling operation obtains the maximum output
in the sequence neighborhood and is applied to reduce the
complexity of each feature map and construct important fea-
tures. The LSTM layers are two stacked BiLSTM layers, and
the output sequence of one layer generates the input sequence
for the next layer. The number of units for eachBiLSTMlayer
is set to 128 in the proposed CLSTM algorithm. Finally, the
fully connected layers are designed to concatenate the output
of the BiLSTM layers for the softmax process. The softmax
function is over all the predicted output annotation sequences
to compute the probability of each state, and the negative log-
likelihood function is used for training this neural network
model [47,55].

Training of CLSTM

Based on the conventions of the neural network commu-
nity, the proposed CLSTM algorithm is trained by minibatch
stochastic gradient descent (SGD), which offers computa-
tional and statistical efficiency in training. In CLSTM, the
input of the network is a sequence of raw audio clips denoted
as X = (x1, x2, . . . , xU ), and the sequence of classification
outputs is Ŷ = (

ŷ1, ŷ2, . . . , ŷT
)
, whereU is the length of the

input sequence and T is the length of the output sequence.
The corresponding target is Y = (y1, y2, . . . , yT ), which
is the sequence of one-hot encoding vectors. The middle
features using convolutional layers and pooling layers are
denoted as C . The relationship between U and T is:

T = U

2N
, (4)

where N is the number of pooling layers. The pool operation
reduces the length of the sequence, thus greatly reducing the
model complexity. The details of the training strategy are
shown in Algorithm 1. Specifically, line 1 shows the pre-
processing of the PCG recording. Because the architecture
of the proposed model has five pooling layers and the sam-

Algorithm 1: CLSTM algorithm training
Input: The raw PCG signal recording X = (x1, x2, . . . , xU ).

1 Downsampling PCG recording to 1, 600 Hz, then processing the
signal with a bandpass filter ;

2 for number of training iterations do
3 for k steps do
4 Getting minibatch of M fixed-length PCG recording

x (1), x (2), . . . , x (M);
5 Extracting features using convolutional layers and

downsampling to fixed length using pooling layers,
C = (c1, c2, . . . , cT ) ;

6 BiLSTM models the sequence and incorporates long-term
sequential information to obtain the feature vectors
Z = (z1, z2, . . . , zT );

7 The softmax layer generates the sequence of classification
outputs

(
ŷ1, ŷ2, . . . , ŷT

)
:

ŷt = softmax (g (zt ))

8 Computing the loss with respect to that sequence L(θ):

L(θ) = − 1

T

T∑

t=1

yt log
(
ŷt (θ)

)

9 Given M samples, computing the overall loss:

Lminibatch(θ) = 1

M

M∑

m=1

Lm(θ) + λ

2
‖θ‖22

10 end
11 Update the model by ascending its stochastic gradient

∇Lminibatch(θ);
12 end

pling rate of the target sequence is 50 Hz, the raw audio
signal needs to be converted to 1600 Hz using a polyphase
antialiasing filter, as suggested in [55]. The signal is filtered
with a fourth-order Butterworth bandpass filter with cut-off
frequencies at 25 Hz and 400 Hz [27]. As the majority of
the frequency content of S1 and S2 is below 150 Hz [2],
the main content of heart sounds is retained, and low- and
high-frequency noise can be reduced after filtering. Lines
2–11 demonstrate the training details of training the pro-
posed algorithm using the minibatch SGD. Particularly, line
4 shows the process of randomly obtaining clips from raw
audio when training. The fixed-length raw audio clips are
extracted from the raw recording using a random start posi-
tion. The method of randomly obtaining clips is widely used
in the sequence annotation and classification of biological
data, which can greatly expand the diversity of training data
to avoid overfitting. It is also an essential step to train the
CLSTM algorithm. Line 5 shows how to extract the mid-
dle features C using convolutional layers and pooling layers.
After several convolutional layers and pooling layers, the
length of the middle feature is T and coincides with the tar-
get length. Line 6 shows the process of the middle feature
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C using BiLSTM layers. BiLSTM can capture the long-term
temporal dependence of the two directions. zt is the out-
put sequence of stacked BiLSTM layers, which is computed
through the backward layer

−→
h and the forward layer

←−
h .

Line 7 illustrates the CLSTM algorithm to obtain the proba-
bility of the target tags, and g denotes the nonlinear function
that outputs a vocabulary-sized vector in each time step. At
each output time step t , the model makes a prediction ŷt ,
where ŷt ∈ {S1,Systole, S2,Diastole}. Line 8 shows how to
obtain the sequence loss L(θ), and line 9 is the minibatch
loss Lminibatch(θ), where λ denotes the hyperparameter that
controls the strength of the penalty, ‖θ‖22 is an �2-norm regu-
larization term, which can help avoid overfitting and improve
the accuracy of deep learning models.

To efficiently utilize the audio data, we increase the depth
of the networks by adding more convolutional layers and
recurrent layers. However, it inevitably becomes more chal-
lenging to train the network using the gradient descent
algorithm as the size and depth increase. In the training
process, the loss value of themodel can be small, and the pre-
diction accuracy is high, but the prediction accuracy is lower
in test data, which refers to the overfitting problem [62,68].
To address this issue, the dropout mask [25] and weight
decay [36,61] are used in the model. The dropout works like
the activation neurons stop working with a certain proba-
bility. This causes the model to not rely too much on the
local features, thus reducing overfitting and improving the
performance of the model. L2 regularization [5] is another
commonly used method to deal with overfitting by decaying
the weights, which can also help to improve the convergence
of the model. Please note that some other mechanisms that
are commonly used by other research, such as batch nor-
malization [20] and adding the skip connections between
layers [40], are not adapted in the proposed algorithm. This is
because they cannot significantly improve the performanceof
the proposed CLSTM algorithm after our careful and exten-
sive experimental investigation.

The output of themiddle layers

We have noted that in the proposed CLSTM algorithm, the
output of the temporal convolutional layers and the LSTM
layers are very similar to the features extracted by traditional
methods [26,38,45,56]. These layers can collectively extract
the features closely related to the data, and using a large
number of convolutional kernels, the model can be regarded
as extracting the essential characteristics of more categories.

Figure 6 is an example of the output of the middle lay-
ers. These visualizations can provide insight into the internal
representations for the convolutional layers and LSTM lay-
ers. As shown in Fig. 6a, the model input is a raw PCG
recording, which samples at 1600 Hz. Figure 6b illustrates

an output after the temporal convolutional layers, which is
very similar to envelope features extracted fromPCG signals.
Each feature map can be regarded as the convolutional acti-
vation of the corresponding filter over the whole sequence.
The output after the LSTM layers is illustrated in Fig. 6c,
which can extract the local features efficiently and use both
past and future input features to determine the labels of the
segmentation. Generally, the number of feature maps can be
regarded as the number of feature types extracted in these
layers. Therefore, the combination of convolutional layers
and LSTM layer methods can be more effective and power-
ful because the feature map has diversity.

Experimental design

Benchmark dataset

Based on the conventions of the HSS community [39,59], the
Massachusetts Institute of Technology heart sound database
(MITHSDB) [63] is employed as the benchmark dataset
in this experiment. In particular, the MITHSDB dataset is
a high-quality and rigorously validated standard database
of heart sound signals obtained from a variety of healthy
and pathological conditions [33]. In this dataset, there are
synchronous 405 PCGs and 405 electrocardiography (ECG)
recordings varying from9 ∼ 36 s. Corresponding to the posi-
tions of the R-peak and the T wave-end in synchronous ECG
recordings, accurate positions of S1 and S2 in the PCG are
easily obtained. These positions are recognized as the gold
standard of theHSS tasks. In addition, theMITHSDBdataset
is sufficiently diverse compared to the other datasets. These
PCG recordings were collected from 121 subjects and were
grouped as follows: (1) normal control group: 117 recordings,
(2) murmurs relating to mitral valve prolapse (MVP): 134
recordings, (3) innocent or benign murmurs group (benign):
118 recordings, (4) aortic disease (AD): 17 recordings, and
(5) other miscellaneous pathological conditions (MPC): 23
recordings.

Segmentation annotation information is essential to the
training and evaluation of the proposed algorithm. However,
manual annotation is not an easy task in PCG, especially
in this dataset, which has 405 recordings and 14,559 beats.
To achieve this, the target label is obtained by the popu-
lar Springer method [59] and the error labels are manually
revised. In the tagging sequence, the four stages are anno-
tated, i.e., S1, systole, S2 sound, and diastole, as 0, 1, 2, and
3, respectively.

Evaluationmetric

In this experiment, the F1 score of locating S1 and S2 sound
is used to evaluate the algorithm performance. As the four
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Fig. 6 The input, output, feature maps, and implementation details in the proposed CLSTM algorithm

Fig. 7 The output of the proposed CLSTM algorithm. Specifically, the raw PCG recording is shown using the yellow line, and the target states and
the predicted states are illustrated with the red dotted line and the blue line, respectively

stages in a heart cycle can be easily obtained through the
positions of S1 and S2 in the PCG, this evaluation metric
is effective for HSS tasks. In addition, the output of the
model has a negligible chance of matching target labels at
an exact time. Therefore, the tolerance of the windows is
used to address this problem, and the prediction is consid-
ered correct just when it falls within these windows. The
tolerance window is often defined as an absolute time in HSS
tasks. For example, Springer set the tolerance window to 100

ms [59], Schmidt set to 60 ms [54], and Messner set to 40
ms [39]. In practice, the tolerance window is enough to find
an exact location when the value is set to 100 ms, but the
stricter standard is also used to measure the algorithm per-
formance. Furthermore, the first and last 20% of the length
are excluded from the tests, as the segmentation algorithm
easily fails to identify the heart sounds at the beginning and
end of the recordings [54].

123



Complex & Intelligent Systems (2021) 7:2103–2117 2111

Aheart sound is identified as a true positive (T P)when the
distance between the predicted position and the target posi-
tion is less than the tolerance window; otherwise, it is defined
as a false positive (FP). Accuracy is the most common mea-
sure of classification, but accuracy does not adequately reflect
the results in the case of unbalanced samples. In the HSS
tasks, precision or positive predictive value (P+ or PPV),
sensitivity (Se), and F1 score are used to comprehensively
measure the performance of the annotation. P+ is the frac-
tion of correct instances among the retrieved heart sounds,
which are defined by Eq. (5). Se refers to how many posi-
tive examples in the sample have been predicted correctly,
which is defined by Eq. (6). The F1 score can be regarded as
a weighted average of model accuracy and recall, having a
maximum value of 1 and a minimum value of 0. The mea-
sure score is calculated using Se and P+ as the intermediate
quantities. F1 score is defined by Eq. (7):

P+ = number of TP

number of TP + number of FP
(5)

Se = number of TP

total number of S1 and S2
(6)

F1 = 2 × P+ × Se

P+ + Se
. (7)

Peer competitors

In this study, three popular models are chosen as peer
competitors for comparing the annotation performance:
DRNN [39] and logistic regression hidden semi-Markov
model (LR-HSMM) [59]. The LR-HSMMmethod addresses
the problem of HSS within noise using HSMM and logistic
regression for emission probability estimation and achieves
state-of-the-art performance when the tolerant window is
100 ms. The DRNN method is a framework for heart sound
segmentation using neural networks, which uses traditional
artificial methods as the input of the BiLSTMmodel. DRNN
also achieves the state-of-the-art model when the tolerant
window is 40 ms. Two versions of the DRNN algorithm (i.e.,
BiLSTM and BiGRNN) are used in follow-up experiments.
Duration-LSTM(LSTM) and duration-LSTM(BiLSTM) [6]
are also compared with the proposed model. Similar to
DRNN, duration-LSTM also uses envelope sequence fea-
tures as input but incorporates duration parameters to model
intrinsic sequence characteristics. Additionally, the convolu-
tional part of our model is also used for comparison. Two
versions of CNN with different numbers of convolutional
layers are implemented with the same parameters and inputs
in experiments. Based on the conventions, the four proven
envelope features (homomorphic, Hilbert, wavelet, and the
PSD envelope) are extracted from the raw PCG signal and
used as input in all peer competitors [10,45,47,56,65]. These

features and their combination have been proven to be the
best artificial features for the HSS task [6,39,59].

Implementation details

All recordings are randomly divided into training and test sets
according to the proportion of 70% and 30% and repeated 5
times. In CLSTM, the input is an audio file with a sample
rate of 1600 Hz. The next part is the convolutional layers,
which are contributed by two dilated temporal convolutional
layers and four normal temporal convolutional layers. All
convolutional layers have 256 feature maps, and the size of
each feature map is set to 5. The pooling size of 2 is used for
all max-pooling layers, which are located behind the con-
volutional layer. After 5 pooling layers, the length of the
feature sequence is downsampled to 50 Hz, and this sam-
pling rate is the time step of the output sequence. In addition,
each BiLSTM layer has 256 feature dimensions. For all com-
pared algorithms, the Adam optimizer [22] is used to train
their respective weights. The configuration of the proposed
CLSTM algorithm is presented in Fig. 6. The learning rate of
CLSTM is set to 0.001, and the batch size is 64. All models
are implemented and tested using Keras and PyTorch.

Experiment results

In this section, the experimental results of the proposed
CLSTM algorithm against the chosen peer competitors are
presented at the different tolerance windows specified. Fur-
thermore, we also evaluate the sizes and numbers of the
convolutional kernels in the proposed CLSTM, the com-
parisons of inputs of different sampling frequencies, the
performance of varied input lengths, and convergence anal-
ysis to extensively demonstrate the effectiveness of our
designs.

Overall results

The segmentation results of CLSTM and peer competitors
are shown in Tables 1 and 2. These tables illustrate the final
F1 scores of the proposed CLSTM algorithm and the chosen
peer competitors and the F1 scores for S1 and S2 sounds.
Specifically, Table 1 shows the experimental results of the
tolerance window specified as 100 ms. The results of LR-
HSMMachieve an average F1 score of 95.63±0.85%, which
comes from its seminal paper [59]. According to Messner’s
method [39], BiLSTM and BiGRNN are implemented and
trained under the same conditions. The average F1 score of
BiLSTM is 94.12±0.42% and 94.46±0.42%, respectively.
The result of duration-LSTM (LSTM) [6] is 94.82±0.49%,
and duration-LSTM (BiLSTM) is 96.11±0.27%. The results
of CNN are depicted in the following two lines. In the
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task, the F1 score of CNN (5 layers) is 74.13 ± 0.96%,
and the version of convolutional layer14 is 81.83 ± 1.29%.
The result of CLSTM having two dilated layers obtains an
average F1 score of 96.18 ± 0.70% on the same dataset.
Experimental results demonstrate that the proposed CLSTM
algorithm achieves the best score among the comparisons,
which demonstrates the effectiveness ofCLSTM. Please note
that the chosen peer competitors, i.e., LR-HSMM, BiLSTM,
BiGRNN, and duration-LSTM, cannot directly take effect on
the raw data instead of using the artificial features. The pro-
posed CLSTM algorithm is directly based on raw data, i.e., it
is an end-to-end algorithm. In Table 2, the performance of the
algorithm is evaluated by a smaller tolerance window. The
final results of the CLSTM algorithm are 96.09%, 92.89%,
and 94.37 ± 0.73% under more stringent conditions, and it
also obtained the best results in locating the two heart sounds.
It is clearly shown that the results of the proposed CLSTM
algorithm are also the best among the comparisons. Please
note that the F1 scores of S1 and S2 are not provided inTable 2
because both were not reported in the corresponding paper.

To make the comparisons more intuitive, some final seg-
mentation output of the CLSTM algorithm is depicted in
Fig. 7. As seen in this figure, the raw PCG recording signals,
target states, and estimated states are illustrated in different
colors in these examples. The CLSTM algorithm accurately
identifies four states of heart sounds and works well even
in many locations that are difficult to manually distinguish.
In the first three examples, the output label of CLSTM is
equivalent to the target state except for a tiny time shift.In
the fourth example, there was an error in annotations due to
noise or murmur at some locations.

To further analyze the proposed algorithm to check where
the proposed algorithm fails to tag the sequence in the test set,
the confusionmatrix of the estimated label is shown in Fig. 8.
The performance of the proposed model can be observed
from the figure, and some errors generated by the model can
be explained based on this. For example, the most common
labeling error is S2 tagged to diastole and systole. The reason
is that the duration of Systole and Diastole is relatively long,
and S1 and S2 account for only a small part of a heart sound
cycle. Considerable noise andmurmurs occurring during this
period affect the labeling of S2.

Comparison of kernel sizes and number

The kernel sizes and the number of kernels are often
viewed as important parameters affecting the performance
of convolution-based models. Therefore, a series of exper-
iments are illustrated to analyze their sensitivity to the
proposed CLSTM algorithm, and these experiments are
initiated by finding appropriate sizes and numbers of con-
volutional kernels on the same dataset. Figure 9 shows the
results with varying numbers of convolutional kernels when

Fig. 8 The normalized confusion matrix of the proposed CLSTM algo-
rithm

Fig. 9 Comparisons of the numbers of convolutional kernels, show-
ing the F scores for a CLSTM with five convolutional layers using a
{32, 64, 92, 128, 256} kernel per layer

Fig. 10 Comparisons of the sizes of convolutional kernels, showing the
F scores for a CLSTM using {2, 3, 4, 5, 6, 7} kernel lengths

the depth of the convolutional layers is 5. In principle, the
results become better as the number of kernels increases.
However, this also makes the network hard to train. When
there are too many convolutional kernels, the network often
fails to train in experiments. For this reason, an appropriate
number of convolutional kernels (Numberkernel = 256) are
used for the subsequent experiments.

Another exploration is about the sizes of the convolu-
tional kernels. Please note that the convolutional kernel only
considers the length because thePCGdata in 1-Dand the con-
volutional operation in this experiment is 1-D accordingly.
The result is shown in Fig. 10, and the best score is achieved
with kernel lengths of 6. In addition, the model would fail
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Table 3 Comparison of different sample rates as input in CLSTM

Sample rate Se P+ FS1
1 FS2

1 F1

200 Hz 86.78 86.87 90.72 82.93 86.83

400 Hz 91.47 89.88 93.07 88.27 90.67

800 Hz 97.13 93.32 95.68 94.70 95.19

1600 Hz 96.78 95.67 97.11 95.54 96.18

Best results are highlighted in bold

when the size of the convolutional kernels is too large or too
small.

Comparison of input of different sampling
frequencies

In this experiment, the impact of different sampling rates
is explored for the proposed algorithm. The raw recordings
in the MITHSDB are audio data sampled at 2000 Hz, which
needs to be converted into an appropriate sampling rate as
the input of the algorithm. When changing the sampling fre-
quency of the input audio signal, the number of pooling layers
must be changed to ensure that the output sampling rate is
50 Hz. It should be noted that the other parameters have not
changed. Table 3 shows the results for CLSTM with differ-
ent sample rates. As seen from this table, the best results are
obtained with 1600 Hz, followed by 800 Hz and 400 Hz.
100 Hz is not listed because it loses audio details and is not
enough to train the model.

Performance variations with input length

Testing the impact of different input lengths on performance
can guide the design of the model. Because the smallest
length in the dataset is 9 s, we extracted the length of clips
from 2 to 8 s. The performance of variationswith input length
evaluated by two tolerance windows is illustrated in Figs. 11
and 12.All input segments are extracted dynamically to avoid
overfitting during the training phase.Although there are some
fluctuations in the F1 score, we can observe that the longer
the input length is, the more accurate the annotation. This
experimental result shows that the F1 score is positively cor-
relatedwith the length of the input. The reason is that a longer
input length can obtain more global information and more
accurately annotate these models.

Convergence analysis

The convergence of F1 and loss value score is illustrated
in Figs. 13 and 14. In Fig. 13, with the increase in training
times, the accuracy of the model increases in the test set.
After many epochs, the F1 score of CLSTM becomes sta-
ble. DRNN (BiLSTM) andDRNN (BiGRU) easily converge,

Fig. 11 The results using different input lengths (tolerance window =
100 ms)

Fig. 12 The results using different input lengths (tolerance window =
40 ms)

Fig. 13 The convergence of F1 over test data

while CNN is the slowest. As shown in Fig. 14, the objective
function value decreases first and changes significantly after
several iterations. In addition, the convergence rate of DRNN
(BiLSTM) and DRNN (BiGRU) is much faster than CLSTM
and CNN.
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Fig. 14 The convergence of the loss function over test data

Conclusion

In this study, the CLSTM algorithm can deal with the HSS
task effectively by the end-to-end method and directly esti-
mate the four heart states from the raw audio signal. In
CLSTM, the temporal convolutional layers are utilized to
extract the meaningful features of the raw recording data,
the pooling layers are used to perform downsampling, and
the LSTM layers focus on capturing the long-term memory
of the 1-D feature and sequence recognition task. As an end-
to-end algorithm that combines the extracting features and
tagging sequence in amodel, the proposedCLSTMalgorithm
is good at processing high-dimensional audio data. CLSTM
can be regarded as a feature extraction method used by other
sequencemodels (e.g., LR-HSMM). The proposed algorithm
is also flexible and can be extended to more annotations in
the PCG. A series of experimental results was performed
and demonstrated the promising performance of the pro-
posed algorithm. In addition, a group of experimentswas also
designed to verify the robustness of the proposed algorithm
in terms of parameter settings. In the future, we will continue
exploring the benefits of the convolutional method approach
to HSS and improve the performance of the deep neural net-
work model through comprehensive use of the sequence of
each stage.
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