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Abstract
In the multi-criteria decision-making (MCDM) process, decision-makers with different risk attitudes may have different deci-
sion results. To address this issue and present decision-makers’ mentality, this paper introduces two mentality parameters. 
These parameters reflect the decision-makers’ risk attitudes in determining the membership and non-membership degrees of 
the evaluation information. In addition, the parameters demonstrate the risk attitude in terms of the hesitancy degree under 
interval-valued intuitionistic fuzzy information. Then, a new score function of interval-valued intuitionistic fuzzy numbers 
(IVIFNs) is proposed that uses the introduced mentality parameters. Meanwhile, certain properties of the proposed score 
function are discussed. Furthermore, the weighted comprehensive score value of IVIFNs is introduced, and an MCDM 
method is developed in an interval-valued intuitionistic fuzzy environment. Finally, a numerical example and comparative 
analyses are provided to illustrate the feasibility and effectiveness of the proposed method.

Keywords  Multi-criteria decision-making · Risk attitudes · Interval-valued intuitionistic fuzzy numbers · Score function · 
Mentality parameter

Introduction

In 1986, Atanassov [1] proposed intuitionistic fuzzy sets 
(IFSs), which are an extension of fuzzy sets [2]. In IFSs, 
the membership, non-membership, and hesitancy degrees of 
an element that belongs to a set are considered. These new 
sets are more flexible and practical than traditional fuzzy 
sets in dealing with the uncertainty of the objectives [3–9]. 
For example, Melliani and Castillo [7] introduced recent 
advances in intuitionistic fuzzy logic systems, Roeva and 
Michalikova [8] proposed a generalized net model based 
on intuitionistic fuzzy logic control, and Atanassov and 

Sotirov [9] discussed neural networks with interval valued 
intuitionistic fuzzy conditions. However, in some complex 
decision-making situations, decision-makers may not have 
sufficient knowledge to provide crisp values of membership 
and non-membership degrees. Nonetheless, their ranges can 
be indicated. Therefore, in 1989, Atanassov and Gargov [10] 
introduced the concept of interval-valued intuitionistic fuzzy 
sets (IVIFSs), whose membership and non-membership are 
closed intervals instead of crisp values. Because the mem-
bership degree and non-membership degree of IVIFSs are 
described by intervals, scholars have considered IVIFSs as 
a suitable tool to express uncertain and vague information 
for practical issues [11–14].

Over the last few decades, IVIFSs have been widely 
applied in multi-criteria decision-making (MCDM) [15–21], 
such as the evaluation of service quality in public bus trans-
portation [22], healthcare evaluation in hazardous waste 
recycling [18], multi-perspective collaborative scheduling 
[23], evaluation of the risk of failure modes [24], photo-
voltaic module selection [25], measurement of the service 
quality of urban rail transit [20], and evaluation of the effec-
tiveness of knowledge transfer [21]. The main goal in solv-
ing MCDM problems is to rank the admissible alternatives 
that have been evaluated based on the given attributes and 
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to choose the best one. Thus, with respect to the abovemen-
tioned MCDM problems which involve many interval-val-
ued intuitionistic fuzzy number (IVIFN) methods, how to 
select a reasonable approach to rank IVIFNs becomes an 
important research topic.

A considerable number of studies have been conducted 
on ranking and comparing IVIFNs [26–32]. For example, 
some ranking methods are based on the possibility degree 
and divergence degree [17], geometric aspect [30, 33], com-
plex proportional assessment method [18], distance-based 
approach [31, 34–36], score function [26, 37], generalized 
exponential entropy [32], and probability density functions 
and variances of IVIFNs [38]. Numerous methods have been 
developed to rank and compare IVIFNs in the abovemen-
tioned literature. These methods can be roughly classified 
into three categories: (1) independent ranking [17, 26, 32, 
37, 39], (2) pairwise comparison-based ranking [40, 41], 
and (3) reference based ranking [34–36]. The processes 
have been developed from various perspectives to rank and 
compare IVIFNs with applications to solve real-life decision 
making problems.

Among these approaches to rank IVIFNs, the score func-
tion is an effective method. Xu and Chen [42] introduced a 
ranking method based on the score function and accuracy 
function of IVIFVs. Ye [29] proposed a novel accuracy func-
tion for IVIFNs by taking into account the hesitancy degree 
of IVIFNs. Lakshmana Gomathi Nayagam et al. [43] pro-
vided a novel accuracy function for IVIFNs to overcome the 
difficult decision-making process of existing accuracy func-
tions in some cases. Wang and Chen [26] proposed a new 
score function of IVIFNs to handle the drawback of Chen 
and Huang [44] method. In another study, Wang and Chen 
[27] further introduced the new score function and accu-
racy function of IVIFNs to deal with the drawback of Wang 
and Chen [26] method. Nguyen [45] defined a generalized 
p-norm knowledge-based score function for IVIFNs, which 
is a generalization of the score function of IFSs. Additional 
score functions of IVIFNs can be found in [46, 47].

These methods are effective in solving decision-making 
problems in interval-valued intuitionistic fuzzy environ-
ments. However, the methods suffer from several shortcom-
ings. (1) The ranking method cannot distinguish whether two 
IVIFNs have equal middles of membership degree and non-
membership intervals [42] or have equal accuracy functions 
[29, 43]. (2) In the decision-making process, the decision 
result depends on the risk attitude of decision-makers. For 
example, risk-averse decision-makers are inclined to select 
low-risk alternatives, whereas risk-seeking decision-mak-
ers tend to select high-risk options. However, there are few 
studies on these aspects among most of the abovementioned 
ranking methods. (3) Some methods neglect the discussion 
of a reasonable score function, which can generate unreason-
able and unreliable decision results [17].

To overcome these shortcomings, the objectives of this 
study are summarized as follows:

1.	 To show that the ranking results are strongly affected by 
the decision-makers’ risk attitudes, this study introduces 
two mentality parameters.

2.	 A new score function of IVIFNs is proposed by intro-
ducing mentality parameters and integrating the mem-
bership, non-membership, and hesitancy degrees of 
IVIFNs.

3.	 Some basic properties of the proposed score function 
of IVIFNs are discussed to verify its reasonability and 
effectiveness, which can make the decision results 
believable and trustworthy.

The remainder of the paper is organized as follows. In 
“Preliminaries”, we briefly review basic concepts such as 
IFSs and IVIFSs. In “New score function of IVIFNs”, a new 
score function is proposed based on the discussion of the 
hesitation of the IVIFNs to properly reflect the decision-
makers’ risk attitudes. Several illustrative examples are 
provided to show the feasibility of the proposed method. 
In “MCDM in interval-valued intuitionistic fuzzy environ-
ments”, we apply the proposed score function to MCDM 
with IVIFNs. In “Illustrative example”, an illustrative exam-
ple and comparative analyses are provided to demonstrate 
the practicality and effectiveness of our method. The conclu-
sions are presented in “Conclusions”.

Preliminaries

This section presents the basic concepts of IFSs and IVIFSs.

Definition 1 [1]  Let X  be a fixed set with a non-
empty universe. An IFS A in X  is denoted as 
A =

�⟨x, �A(x), vA(x)⟩�� x ∈ X
�
 , where �A(x) ∈ [0, 1] and 

v
A
(x) ∈ [0, 1] represent the membership and non-member-

ship degrees of element x to set A , respectively, satisfying 
0 ≤ �A(x) + vA(x) ≤ 1 for all x ∈ X . The pair 

(
�A(x), vA(x)

)
 

is called an intuitionistic fuzzy number.
The concept of IFSs is further extended to IVIFSs.

Definition 2 [10]  Let X be a finite and non-empty set. An 
IVIFS Ã in X is an object with the following form.

where the functions 𝜇Ã(x) : X → D[0, 1]  and vÃ(x) : 
X → D[0, 1] denote the membership degree and non-mem-
bership degree of element x ∈ X in Ã , respectively. The pair (
𝜇Ã(x), vÃ(x)

)
 is called an IVIFN. 𝜇Ã(x) and vÃ(x) are two 

closed intervals, and their lower and upper boundaries are 

(1)Ã =
�⟨x, 𝜇Ã(x), vÃ(x)⟩�� x ∈ X

�
,
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denoted by 𝜇ÃL(x) , 𝜇ÃU(x), vÃL(x) , and vÃU(x) , respectively. 
IVIFS Ã is denoted as

where 0 ≤ 𝜇ÃU(x) + 𝜈ÃU(x) ≤ 1 , 𝜇ÃL(x) ≥ 0 , and 𝜈ÃL(x) ≥ 0 . 
Specifically, if 𝜇ÃL(x) = 𝜇ÃU(x) and 𝜈ÃL(x) = 𝜈ÃU(x) , then 
IVIFS Ã reduces to an IFS.

For simplicity, IVIFN 𝛼̃ =
(
𝜇𝛼̃(x), v𝛼̃(x)

)
 is usually 

denoted as 𝛼̃ = ([a, b], [c, d]) , where [a, b] ⊂ D[0, 1] , 
[c, d] ⊂ D[0, 1] , and b + d ≤ 1.

Example 1  Let 𝛼̃ = ([0.6, 0.7], [0.1, 0.2]) be an IVIFN; 
its meaning can be explained as follows: for an election 
with 100 voters, the value [0.6, 0.7] implies that 60–70 are 
expected to be in favor, the value [0.1, 0.2] implies that 10–20 
are expected to be against, and the value [0.1, 0.3] implies 
that 10–30 are expected to abstain.

Definition 3 [10]  Let 𝛼̃ =
(
𝜇𝛼̃(x), v𝛼̃(x)

)
 be an IVIFN.

then 𝜋𝛼̃(x) is called the hesitancy degree of 𝛼̃.
Xu [48] introduced some basic arithmetical operations of 

IVIFNs as follows.

Definit ion 4  [48]   Le t  𝛼̃ =
([
a1, b1

]
,
[
c1, d1

])
 and 

𝛽 =
([
a2, b2

]
,
[
c2, d2

])
 be two IVIFNs. Then, their opera-

tional laws are defined as:

New score function of IVIFNs

In this section, we review several representative score 
functions of IVIFNs and discuss their shortcomings. This 
is our motivation for proposing a new score function of 
IVIFNs, which is provided in “New score function of 
IVIFNs”.

For simplicity, we use the following symbols: 
l e t  𝛼̃ = ([a, b], [c, d]) be  an  IVIFN,  M

(
𝜇𝛼̃

)
=

a+b

2
 

denotes the middle value of the membership inter-
val, M

(
v𝛼̃
)
=
c+d

2
 is the non-membership interval, and 

M
(
𝜋𝛼̃

)
=

(1−b−d)+(1−a−c)

2
 is the hesitancy interval, where 

M
(
u𝛼̃
)
+M

(
v𝛼̃
)
+M

(
𝜋𝛼̃

)
= 1.

Ã =
�⟨x, [𝜇ÃL(x), 𝜇ÃU(x)], [𝜈ÃL(x), 𝜈ÃU(x)]⟩�� x ∈ X

�
,

(2)

𝜋𝛼̃(x) = 1 − 𝜇𝛼̃(x) − 𝜈𝛼̃(x)

=
[
1 − 𝜇𝛼̃U(x) − 𝜈𝛼̃U(x), 1 − 𝜇𝛼̃L(x) − 𝜈𝛼̃L(x)

]
,

(3)𝛼̃ ≻ 𝛽 if a1 > a2, b1 > b2, c1 < c2 and d1 < d2;

(4)𝛼̃ ∼ 𝛽 if a1 = a2, b1 = b2, c1 = c2, and d1 = d2.

Some representative score functions of IVIFNs

Xu and Chen [42] introduced the score function and accu-
racy function of IVIFNs as follows.

Definition 5 [42]  For an IVIFN 𝛼̃ = ([a, b], [c, d]) , the score 
function and accuracy function can be denoted as:

O bv i o u s ly,S(𝛼̃) = M
(
u𝛼̃
)
−M

(
v𝛼̃
)
∈ [−1, 1] ,  a n d 

h(𝛼̃) = M
(
u𝛼̃
)
+M

(
v𝛼̃
)
∈ [0, 1] . The larger the score value 

of 𝛼̃ is, the larger IVIFN 𝛼̃ is. Based on Definition 5, a pri-
oritized comparison method of IVIFNs is introduced as 
follows.

Definition 6 [42]  For any two IVIFNs 𝛼̃ and 𝛽 ,

1.	 If S(𝛼̃) < S
(
𝛽
)
 , then 𝛼̃ is smaller than 𝛽  , denoted as 

𝛼̃ ≺ 𝛽 ;
2.	 If S(𝛼̃) > S

(
𝛽
)
 , then 𝛼̃ is larger than 𝛽  , denoted as 𝛼̃ ≻ 𝛽 ;

3.	 If S(𝛼̃) = S
(
𝛽
)
 , then

(1)	 if h(𝛼̃) < h
(
𝛽
)
 , then 𝛼̃ is smaller than 𝛽  , denoted as 

𝛼̃ ≺ 𝛽 ;
(2)	 if h(𝛼̃) > h

(
𝛽
)
 , then 𝛼̃ is larger than 𝛽  , denoted as 𝛼̃ ≻ 𝛽 ;

(3)	 if h(𝛼̃) = h
(
𝛽
)
 , then 𝛼̃ is equivalent 𝛽  , denoted as 𝛼̃ ∼ 𝛽 .

The score function and accuracy function are con-
sidered at the midpoint of the membership interval and 
non-membership interval of the IVIFN. Most of the order 
relationship of IVIFNs can be distinguished by using this 
method. Unfortunately, we cannot identify the optimal 
method when the midpoints are equal by applying Defini-
tion 6. This shortcoming is shown in Example 2.

E x a m p l e  2   L e t  𝛼̃1 = ([0.3, 0.5], [0.1, 0.3])  a n d 
𝛼̃2 = ([0.4, 0.4], [0.2, 0.2]) be two IVIFNs for two 
alternatives.

Via Eq.  (5), we obtain S
(
𝛼̃1
)
= S

(
𝛼̃2
)
= 0.2 . Then, 

we obtain h
(
𝛼̃1
)
= h

(
𝛼̃2
)
= 0.6 by applying Eq.  (6). In 

this case, the order relationship of 𝛼̃1 and 𝛼̃2 cannot be 
distinguished.

Considering the limitations of Xu’s method, Ye [29] 
and Lakshmana Gomathi Nayagam et al. [43] introduced 
new accuracy functions by considering the hesitancy 
degree of the IVIFN.

(5)S(𝛼̃) =
a − c + b − d

2
,

(6)h(𝛼̃) =
a + b + c + d

2
.
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Definition 7 [29]  Let 𝛼̃ = ([a, b], [c, d]) be an IVIFN. Its 
accuracy function is denoted as:

Definition 8 [43]  Let 𝛼̃ = ([a, b], [c, d]) be an IVIFN. Its 
accuracy function is denoted as:

Ye [29] and Nayagam et al. [43] have asserted that the 
order relationship of IVIFNs can be obtained using the value 
of the accuracy function. Unfortunately, these methods have 
some shortcomings.

E x a m p l e  3   L e t  𝛼̃3 = ([0.1, 0.2], [0.6, 0.8])  a n d 
𝛼̃4 = ([0.4, 0.5], [0, 0.1]) be two IVIFNs for two alternatives.

Since the membership degree interval of 𝛼̃3 is smaller 
than that of 𝛼̃4 , the non-membership degree interval of 𝛼̃3 is 
larger than that of 𝛼̃4 . According to Eq. (3), we can obtain 
𝛼̃3 ≺ 𝛼̃4 . This conclusion is intuitive.

In addition, by applying Eq. (7), we obtain J
(
𝛼̃3
)
= 0 and 

J
(
𝛼̃4
)
= −0.05 . Since J

(
𝛼̃3
)
> J

(
𝛼̃4
)
 , we have 𝛼̃3 ≻ 𝛼̃4 . The 

above discussion demonstrates that the order relationship of 
𝛼̃3 ≻ 𝛼̃4 is unreasonable and counterintuitive.

E x a m p l e  4   L e t  𝛼̃5 = ([0.3, 0.3], [0.2, 0.2])  a n d 
𝛼̃6 = ([0.2, 0.4], [0.2, 0.2]) be two IVIFNs for two 
alternatives.

By applying Eq. (8), we obtain L
(
𝛼̃5
)
= L

(
𝛼̃6
)
= 0.4 . 

In this case, the order relationship of alternatives can-
not be distinguished. Since the range of the membership 
degree interval 𝛼̃5 is smaller than that of 𝛼̃6 and their non-
membership degree intervals are equivalent, the order 
relationship 𝛼̃5 ≻ 𝛼̃6 can be easily obtained. This result 
indicates that the method proposed by Lakshmana Gom-
athi Nayagam et al. [43] has some shortcomings.

The score function and accuracy function mentioned 
above are used to obtain the order relationship of IVIFNs. 
However, these ranking methods do not give sufficient 
attention to the score function and accuracy function. 
To overcome these shortcomings, a new method to rank 
IVIFNs considering the risk attitude of the decision-mak-
ers is proposed in the following section.

New score function of IVIFNs

In the decision-making process, the decision result depends 
on the risk attitude of the decision-makers. In other words, 
the risk attitudes of the decision-makers affect the decision 

(7)J(𝛼̃) = a + b − 1 +
c + d

2
.

(8)L(𝛼̃) =
1

2
[a + b− d(1 − b) − c(1 − a)].

results. In this paper, the risk parameter with a new score 
function of IVIFNs is proposed. Some related properties are 
discussed to verify the reasonability and effectiveness of the 
proposed score function.

Before introducing the new score function of IVIFN, 
we first introduce � ∈ [0, 1] to reflect the decision-
makers’ risk attitude in determining the membership 
degree and the non-membership degree. For an IVIFN 
𝛼̃ = ([a, b], [c, d]) ,  let   M𝜆

(
u𝛼̃
)
= a + 𝜆(b − a) and 

M𝜆
(
v𝛼̃
)
= c + (1 − 𝜆)(d − c) . Then, the hesitancy degree 

integrated with decision-makers’ risk attitudes can be 
obtained as follows: M𝜆

(
𝜋𝛼̃

)
= 1 −M𝜆

(
u𝛼̃
)
−M𝜆

(
v𝛼̃
)
 

= �(1 − b − c) + (1 − �)(1 − a − d).  C l e a r l y , 
we  h ave  M𝜆

(
u𝛼̃
)
∈ [a, b] ,  M𝜆

(
v𝛼̃
)
∈ [c, d] ,  a n d 

M𝜆
(
𝜋𝛼̃

)
∈ [1 − b − d, 1 − a − c] . The value of � depends 

on the risk attitude of the decision-makers. If 0 ≤ 𝜆 < 1∕2 , 
the decision-makers are risk-averse. If � = 1∕2 , the decision-
makers are risk-neutral. If 1∕2 < 𝜆 ≤ 1 , the decision-makers 
are risk-seeking.

For the hesitancy interval according to the vote model, 
supposing that people with hesitancy are always affected 
by supporters and opponents, which lead to support and 
opposition, respectively, we introduce the second attitude 
parameter � ∈ [0, 1] . The attitude parameter � expresses the 
proportion of the supporters in the original group of people 
with hesitancy. Among those with hesitancy, 𝜃M𝜆

(
𝜋𝛼̃

)
 tend 

to support, whereas (1 − 𝜃)M𝜆
(
𝜋𝛼̃

)
 tend to oppose. If 0 ≤

𝜃 < 1∕2 , the decision-makers are risk-averse. The smaller 
the value � is, the more risk-averse the decision-makers are. 
If 1∕2 < 𝜃 ≤ 1 , the decision-makers are risk-seeking. The 
larger the value � is, the more risk-seeking the decision-
makers are. If � = 1∕2 , the decision-makers are risk-neutral.

Combining these demonstrations, the new score function 
of IVIFNs is defined as follows.

Definition 9  Let 𝛼̃ =([a, b], [c, d]) be an IVIFN. Its score 
function can be denoted as:

where,

This score function can be further simplified as follows:

Evidently, if we include � = � = 1∕2 in Eq.  (10), we 
obtain SNew(𝛼̃) = S(𝛼̃) . In this case, the new score function 
SNew(𝛼̃) proposed in Eq. (10) is equivalent to Xu score func-
tion S(𝛼̃) introduced in Eq. (5). This result confirms that 

(9)
SNew(𝛼̃) =

[
M𝜆

(
u𝛼̃
)
+ 𝜃M𝜆

(
𝜋𝛼̃

)]
−
[
M𝜆

(
v𝛼̃
)
+ (1 − 𝜃)M𝜆

(
𝜋𝛼̃

)]
,

M𝜆
(
u𝛼̃
)
= a + 𝜆(b − a), M𝜆

(
v𝛼̃
)
= c + (1 − 𝜆)(d − c),

M𝜆
(
𝜋𝛼̃

)
= 𝜆(1 − b − c) + (1 − 𝜆)(1 − a − d), 𝜆 ∈ [0, 1], 𝜃 ∈ [0, 1].

(10)SNew(𝛼̃) = M𝜆
(
u𝛼̃
)
−M𝜆

(
v𝛼̃
)
+ (2𝜃 − 1)M𝜆

(
𝜋𝛼̃

)
.
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Xu and Chen [42] method is a special case of the proposed 
method.

Example 5  The IVIFNs are identical to those provided in 
Example 2.

According to Eq. (10), we obtain:

Then, SNew
(
𝛼̃1
)
− SNew

(
𝛼̃2
)
= 0.4(𝜆 − 1∕2) . Therefore, 

for any � ∈ [0, 1] , we have the following:

1.	 If 𝜆 < 1∕2 , then S𝜆
(
𝛼̃1
)
< S𝜆

(
𝛼̃2
)
 . Risk-averse decision-

makers believe that 𝛼̃1 ≺ 𝛼̃2;
2.	 If 𝜆 > 1∕2 , then S𝜆

(
𝛼̃1
)
> S𝜆

(
𝛼̃2
)
 . Risk-seeking deci-

sion-makers believe that 𝛼̃1 ≻ 𝛼̃2;
3.	 If � = 1∕2 , then S𝜆

(
𝛼̃1
)
= S𝜆

(
𝛼̃2
)
 . Risk-neutral decision-

makers believe that 𝛼̃1 ∼ 𝛼̃2.

The derived rankings may be different due to different 
risk attitudes of the decision-makers. This result is consist-
ent with the real situation. By using Eq. (7), we obtain that 
J
(
𝛼̃1
)
= J

(
𝛼̃2
)
= 0 . Therefore, we cannot obtain the order 

relationship of these two alternatives. By applying Eq. (8), 
we obtain L

(
𝛼̃1
)
= 0.29 and L

(
𝛼̃2
)
= 0.28 . Hence, 𝛼̃1 ≻ 𝛼̃2 , 

which is consistent with the result if the decision-makers 
are risk-seeking.

Example 6  The IVIFNs are identical to those provided in 
Example 3.

According to Eq. (10), we obtain

Then, SNew
(
𝛼̃4
)
− SNew

(
𝛼̃3
)
= 0.6 + 0.8𝜃 − 0.2𝜆𝜃 > 0 . 

For any � , � ∈ [0, 1] , we have SNew
(
𝛼̃4
)
 > SNew

(
𝛼̃3
)
 , which 

implies that alternative 𝛼̃4 is better than alternative 𝛼̃3 . This 
finding is intuitive.

Example 7  The IVIFNs are identical to those provided in 
Example 4.

According to Eq. (10), we obtain,

SNew
(
𝛼̃1
)
= 0.4(2𝜃 − 1 + 𝜆),

SNew
(
𝛼̃2
)
= 0.4(2𝜃 − 1 + 1∕2).

SNew
(
𝛼̃3
)
= −0.7 + 0.3𝜆 + (2𝜃 − 1)(0.1 + 0.1𝜆),

SNew
(
𝛼̃4
)
= 0.3 + 0.2𝜆 + 0.5(2𝜃 − 1).

SNew
(
𝛼̃5
)
= −0.4 + 𝜃,

SNew
(
𝛼̃6
)
= −0.4 + 𝜃 + 0.4(1 − 𝜃)(𝜆 − 1∕2).

T h e n ,  SNew
(
𝛼̃6
)
− SNew

(
𝛼̃5
)
= 0.4(1 − 𝜃)(𝜆 − 1∕2)  . 

Therefore, we obtain the following:

1.	 I f  0 ≤ 𝜆 < 1∕2  a n d  0 ≤ 𝜃 < 1∕2  ,  t h e n 
SNew

(
𝛼̃5
)
> SNew

(
𝛼̃6
)
 . Risk-averse decision-makers 

believe that 𝛼̃5 ≻ 𝛼̃6;
2.	 I f  1 ≥ 𝜆 > 1∕2  a n d  1 > 𝜃 > 1∕2  ,  t h e n 

SNew
(
𝛼̃5
)
< SNew

(
𝛼̃6
)
 . Risk-seeking decision-makers 

believe that 𝛼̃5 ≺ 𝛼̃6;
3.	 If � = 1∕2 and � = 1∕2 then, SNew

(
𝛼̃5
)
= SNew

(
𝛼̃6
)
 . 

Risk-neutral decision-makers believe that 𝛼̃5 ∼ 𝛼̃6.

By using Eqs. (7) and (8), we obtain 𝛼̃5~𝛼̃6 . The order 
relationship of these two alternatives cannot be obtained. 
However, if we use the proposed method, their order 
relationship can be distinguished when 0 ≤ 𝜆 < 1∕2 or 
1 ≥ 𝜆 > 1∕2 . This finding confirms the effectiveness of 
the proposed score function.

E x a m p l e  8   L e t  𝛼̃7 = ([0.5, 0.5], [0.4, 0.5])  a n d 
𝛼̃8 = ([0.4, 0.4], [0.3, 0.4]) be two IVIFNs for two 
alternatives.

According to Eq. (10), we obtain,

Then,  SNew
(
𝛼̃8
)
−SNew

(
𝛼̃7
)
= 0.2(2𝜃 − 1) .  For any 

� ∈ [0, 1] , we have the following:

1.	 If 𝜃 < 1∕2 , then SNew
(
𝛼̃7
)
> SNew

(
𝛼̃8
)
 . Risk-averse deci-

sion-makers believe that 𝛼̃7 ≻ 𝛼̃8;
2.	 If 𝜃 > 1∕2 , then SNew

(
𝛼̃7
)
< SNew

(
𝛼̃8
)
 . Risk-seeking 

decision-makers believe that 𝛼̃7 ≺ 𝛼̃8;
3.	 If � = 1∕2 , then SNew

(
𝛼̃7
)
= SNew

(
𝛼̃8
)
 . Risk-neutral 

decision-makers believe that 𝛼̃7 ∼ 𝛼̃8.

By using Eqs. (7) and (8), we obtain 𝛼̃7 ≻ 𝛼̃8 , which is 
consistent with the result of risk-seeking decision-makers.

Some properties of the proposed score function of 
IVIFN are discussed in the following section to confirm 
its reasonability and effectiveness.

Property 1.  Let 𝛼̃ = ([a, b], [c, d]) be an IVIFN. If the score 
function SNew(𝛼̃) is defined by Definition 9, then.

1.	 −1 ≤ SNew(𝛼̃) ≤ 1 , for any � , � ∈ [0, 1];
2.	 For any � , � ∈ [0, 1] , SNew(𝛼̃) = 1 if and only if 

𝛼̃ = ([1, 1], [0, 0]);

SNew
(
𝛼̃7
)
= 0.2𝜆𝜃,

SNew
(
𝛼̃8
)
= 0.2𝜆𝜃 + 0.2(2𝜃 − 1).
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3.	 For any � , � ∈ [0, 1] , SNew(𝛼̃) = −1 if and only if 
𝛼̃ = ([0, 0], [1, 1]).

Proof 

1.	 C o m b i n i n g  E q .   ( 1 0 )  w i t h 
M𝜆

(
𝜋𝛼̃

)
= 1 −M𝜆

(
u𝛼̃
)
−M𝜆

(
v𝛼̃
)
 , we observe that,

	   Notably,

	   Hence,

	   However,

	   Considering that,

	   we obtain,

	   This result establishes

2.	 Combining Eq. (10) with

	   we can observe

	   If SNew(𝛼̃) = 1 for any � , � ∈ [0, 1] according to 
Eq. (12), we can obtain

(11)
S
New

(𝛼̃) = M
𝜆
(
u𝛼̃

)
−M

𝜆
(
v𝛼̃

)
+ (2𝜃 − 1)

(
1 −M

𝜆
(
u𝛼̃

)
−M

𝜆
(
v𝛼̃

))
.

0 ≤ 𝜃 ≤ 1, 1 −M𝜆
(
u𝛼̃
)
−M𝜆

(
v𝛼̃
)
≥ 0,

M𝜆
(
v𝛼̃
)
≥ 0.

S
New

(𝛼̃) ≤ M
𝜆
(
u𝛼̃

)
−M

𝜆
(
v𝛼̃

)
+
(
1 −M

𝜆
(
u𝛼̃

)
−M

𝜆
(
v𝛼̃

))
= 1 − 2M

𝜆
(
v𝛼̃

)
≤ 1.

S
New

(𝛼̃) = M
𝜆
(
u𝛼̃

)
−M

𝜆
(
v𝛼̃

)
+ (2𝜃 − 1)

(
1 −M

𝜆
(
u𝛼̃

)
−M

𝜆
(
v𝛼̃

))

= 2M
𝜆
(
u𝛼̃

)
+ 2𝜃M𝜆

(
𝜋𝛼̃

)
− 1.

M𝜆
(
u𝛼̃
)
≥ 0, M𝜆

(
𝜋𝛼̃

)
≥ 0,

𝜃 ≥ 0,

SNew(𝛼̃) ≥ −1.

−1 ≤ SNew(𝛼̃) ≤ 1 for any 𝜆, 𝜃 ∈ [0, 1].

M𝜆
(
u𝛼̃
)
= a + 𝜆(b − a), M𝜆

(
v𝛼̃
)
= c + (1 − 𝜆)(d − c),

M𝜆
(
𝜋𝛼̃

)
= 𝜆(1 − b − c) + (1 − 𝜆)(1 − a − d),

(12)
S
New

(𝛼̃) = 2a − 1 + 2𝜆(b − a) + 2𝜃(1 − a − d)

+ 2𝜃𝜆(a + d − b − c).

2a − 1 = 1, 2(b − a) = 0,

2(1 − a − d) = 0,

2(a + d − b − c) = 0.

	   Then,

	   However, if 𝛼̃ = ([1, 1], [0, 0]) , then we can easily 
observe SNew(𝛼̃) = 1 for any � , � ∈ [0, 1].

	   Hence,

3.	 If SNew(𝛼̃) = −1 for any � , � ∈ [0, 1] . Using Eq. (12), we 
can obtain

	   Thus,

	   However, if 𝛼̃ = ([0, 0], [1, 1]) , then we can easily 
observe SNew(𝛼̃) = −1 for any � , � ∈ [0, 1].

	   Hence,

P r o p e r t y  2   L e t  𝛼̃ =
([
a1, b1

]
,
[
c1, d1

])
 a n d 

𝛽 =
([
a2, b2

]
,
[
c2, d2

])
 be two IVIFNs. If a1 ≥ a2 , b1 ≥ b2 

and c1 ≤ c2 , d1 ≤ d2 , then SNew(𝛼̃) ≥ SNew
(
𝛽
)
.

Proof  According to Eq. (10), by taking the partial deriva-
tive of SNew(𝛼̃) with respect to a , b , c , and d , we can obtain,

Notably, 0 ≤ � ≤ 1 , and 0 ≤ � ≤ 1 . Hence,

Then, SNew(𝛼̃) on a and b monotonously increases; SNew(𝛼̃) 
on c and d monotonously decreases.

Therefore, if

𝛼̃ = ([1, 1], [0, 0]).

SNew(𝛼̃) = 1 ⇔ 𝛼̃ = ([1, 1], [0, 0]) for any 𝜆, 𝜃 ∈ [0, 1].

2a − 1 = −1, 2(b − a) = 0,

2(1 − a − d) = 0,

2(a + d − b − c) = 0.

𝛼̃ = ([0, 0], [1, 1]).

SNew(𝛼̃) = −1 ⇔ 𝛼̃ = ([0, 0], [1, 1]) for any 𝜆, 𝜃 ∈ [0, 1].

𝜕SNew(𝛼̃)

𝜕a
= 2(1 − 𝜆)(1 − 𝜃),

𝜕SNew(𝛼̃)

𝜕b
= 2𝜆(1 − 𝜃),

𝜕SNew(𝛼̃)

𝜕c
= −2𝜆𝜃, and

𝜕SNew(𝛼̃)

𝜕d
= −2(1 − 𝜆)𝜃.

𝜕SNew(𝛼̃)

𝜕a
≥ 0,

𝜕SNew(𝛼̃)

𝜕b
≥ 0,

𝜕SNew(𝛼̃)

𝜕c
≤ 0,

𝜕SNew(𝛼̃)

𝜕d
≤ 0.

a1 ≥ a2, b1 ≥ b2, c1 ≤ c2, and d1 ≤ d2,
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then,

P r o p e r t y  3   L e t  𝛼̃ =
([
a1, b1

]
,
[
c1, d1

])
 a n d 

𝛽 =
([
a2, b2

]
,
[
c2, d2

])
 be two IVIFNs. For any � , � ∈ [0, 1] , 

SNew(𝛼̃) = SNew
(
𝛽
)

if and only if 𝛼̃ = 𝛽.

Proof  According to Eq.(10) , we obtain,

If SNew(𝛼̃) = SNew
(
𝛽
)
 for any � , � ∈ [0, 1],

then, we obtain

Evidently,

Then,

However, if 𝛼̃ = 𝛽  , then evidently, SNew(𝛼̃) = SNew
(
𝛽
)
 for 

any � , � ∈ [0, 1] . Hence,

MCDM in interval‑valued intuitionistic fuzzy 
environments

In this section, an MCDM problem in an interval-valued 
intuitionistic fuzzy environment is presented to illustrate the 
feasibility and effectiveness of the proposed method.

Let A =
{
A1,A2,… ,An

}
 be a set of alternatives, and let 

G =
{
G1,G2,… , Gm

}
 be a set of criteria. Assume that the 

weight of criteria Gj , j = 1, 2,… ,m is provided by the deci-
sion-makers and denoted as wj , wj ∈[0, 1] , and 

∑m

j=1
wj = 1 . 

The evaluation of alternatives Ai with respect to criterion Gj 
i s  p r ov i d e d  by  I V I F N s  a n d  d e n o t e d  a s 
r̃ij =

([
a�
ij
, b�

ij

]
,
[
c�
ij
, d�

ij

])
 , i = 1, 2,… , n . j = 1, 2,… ,m , 

which indicates the degree of alternative Ai that satisfies or 
does not satisfy criterion Gj . Therefore, the decision matrix 
D =

(
r̃ij
)
n×m

 is obtained, which is expressed by IVIFNs.

SNew(𝛼̃) ≥ SNew
(
𝛽
)
.

S
New

(𝛼̃) = 2a
1
− 1 + 2𝜆

(
b
1
− a

1

)
+ 2𝜃

(
1 − a

1
− d

1

)
+ 2𝜃𝜆

(
a
1
+ d

1
− b

1
− c

1

)
,

S
New

(
𝛽
)
= 2a

2
− 1 + 2𝜆

(
b
2
− a

2

)
+ 2𝜃

(
1 − a

2
− d

2

)
+ 2𝜃𝜆

(
a
2
+ d

2
− b

2
− c

2

)
.

2a1 − 1 = 2a2 − 1, 2
(
b1 − a1

)
= 2

(
b2 − a2

)
,

2
(
1 − a1 − d1

)
= 2

(
1 − a2 − d2

)
,

2
(
a1 + d1 − b1 − c1

)
= 2

(
a2 + d2 − b2 − c2

)
.

a1 = a2, b1 = b2, c1 = c2,

d1 = d2.

𝛼̃1 = 𝛼̃2.

SNew(𝛼̃) = SNew
(
𝛽
)
⇔ 𝛼̃ = 𝛽 for any 𝜆, 𝜃 ∈ [0, 1].

In summary, the MCDM procedure is designed to deter-
mine the best alternative. This procedure is discussed in the 
following steps.

Step 1: Normalize the IVIFN decision matrix
Using the formulae introduced in Ye [29], the normal-

ized IVIFN decision matrix D =
(
𝛼̃ij
)
n×m

 is obtained, where 
𝛼̃ij =

([
aij, bij

]
,
[
cij, dij

])
 and w = 

(
w1,w2, … ,wm

)T are the 
weight vector of the criteria.

Step 2: Calculate the weighted comprehensive score values
Choose the attitude parameter values � and � according to 

the decision-makers’ risk attitudes. Then, the weighted com-
prehensive score value Si of alternatives Ai , i = 1, 2,… , n 
can be obtained by the following formula:

Step 3: Obtain the ranking of the alternatives
The ranking of alternatives Ai , i = 1, 2,… , n can be 

obtained based on the weighted comprehensive score val-
ues Si , i = 1, 2,… , n.

Illustrative example

In this section, we present the application of the proposed 
decision-making method through a practical example intro-
duced in [49]. Comparative analyses of this method are also 
conducted to show the effectiveness of the proposed method.

A panel has four possible alternatives for company invest-
ment: (1) A1 is a car company, (2) A2 is a food company, 
(3) A3 is a computer company, and (4) A4 is an arms com-
pany. The investment company will make a decision accord-
ing to five criteria: (1) G1 is the productivity, (2) G2 is the 
technological innovation capability, (3) G3 is the marketing 
capability, (4) G4 is the management, and (5) G5 is the risk 
avoidance. The criteria are independent, and the criterion 
weights are provided by the decision-makers as follows: 
w = (0.2, 0.3, 0.15, 0.1, 0.25)T . Since the available invest-
ment companies involve several different industries, the 
decision-makers may not have sufficient knowledge to pro-
vide the membership degree and non-membership degree of 
the admissible alternatives evaluated under the given several 
attributes as crisp values. Therefore, their ranges can be pro-
vided. Using IVIFNs to express decision-makers’ evaluation 
information is considered the most effective method. The 
evaluation information is included in the IVIFN decision 
matrix D =

(
𝛼̃ij
)
4×5

 , which is a normalized one.

(13)

S
i

(
𝛼̃
i1
, 𝛼̃

i2
,… , 𝛼̃

im

)
= w

1
S
New

(
𝛼̃
i1

)
+ w

2
S
New

(
𝛼̃
i2

)
+⋯ + w

m
S
New

(
𝛼̃
im

)
.
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D =

⎛
⎜⎜⎜⎝

([0.4, 0.5], [0.1, 0.3]) ([0.5, 0.6], [0.1, 0.2]) ([0.3, 0.4], [0.2, 0.3]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.6], [0.1, 0.2])

([0.5, 0.6], [0.1, 0.2]) ([0.3, 0.4], [0.1, 0.3]) ([0.7, 0.8], [0.1, 0.2]) ([0.3, 0.4], [0.3, 0.4]) ([0.4, 0.5], [0.1, 0.2])

([0.6, 0.7], [0.1, 0.2]) ([0.7, 0.8], [0.1, 0.2]) ([0.5, 0.6], [0.3, 0.4]) ([0.4, 0.5], [0.3, 0.4]) ([0.3, 0.5], [0.3, 0.4])

([0.5, 0.6], [0.2, 0.3]) ([0.4, 0.5], [0.3, 0.4]) ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.2, 0.3]) ([0.6, 0.7], [0.1, 0.3])

⎞
⎟⎟⎟⎠

.

Process developed using the proposed method

To select the best potential company in which to invest, the 
decision-making process is developed through the follow-
ing steps.

Step 1: Normalize the IVIFN decision matrix

The normalized IVIFN decision matrix is provided by the 
decision-makers and shown in decision matrix D =

(
𝛼̃ij
)
4×5

.

Step 2: Calculate the weighted comprehensive score values
Select the attitude parameter values � , � ∈ [0, 1] according 

to the decision-makers’ risk attitudes. Then, the weighted 
comprehensive score values of alternatives Ai , i = 1, 2, 3, 4 
can be obtained according to Eq. (13). The computing results 
are shown in Table 1.

Step 3: Obtain the ranking of the alternatives
According to the weighted comprehensive score values 

shown in Step 2, the alternatives are ranked as follows: (1) 
if � = � =

1

3
 , then A3 ≻A4≻A1 ≻A2 , which implies that a 

computer company is the best alternative for the company 
to invest in; (2) if � = � =

1

2
 , then A1 ≻A3 ≻A4≻A2 , which 

implies that a car company is the best alternative for the 
company to invest in; and (3) if � = � =

2

3
 , then A1 ≻A2 ≻

A3 ≻A4 , and a car company is the best alternative for the 
company to invest in.

Table 1   The weighted comprehensive score values with different atti-
tude parameters

Attitude parameters Weighted comprehensive score value

� = � =
1

3
S
New

(
𝛼̃
1

)
= 0.2078, S

New

(
𝛼̃
2

)
= 0.14

S
New

(
𝛼̃
3

)
= 0.2378, S

New

(
𝛼̃
4

)
= 0.2122

� = � =
1

2
S
New

(
𝛼̃
1

)
= 0.345, S

New

(
𝛼̃
2

)
= 0.29

S
New

(
𝛼̃
3

)
= 0.3325, S

New

(
𝛼̃
4

)
= 0.3025

� = � =
2

3
S
New

(
𝛼̃
1

)
= 0.4844, S

New

(
𝛼̃
2

)
= 0.4433

S
New

(
𝛼̃
3

)
= 0.4244, S

New

(
𝛼̃
4

)
= 0.3956

Table 2   Ranking results 
obtained from different methods

Methods Score values Ranking results

Xu and Chen [42] method
S
1
(𝛼̃) =

a−c+b−d

2

S
1

𝛼̃1

= 0.3450 , S1
𝛼̃2

= 0.2800

S
1

𝛼̃3

= 0.3325 , S1
𝛼̃4

= 0.3025

A
1
≻ A

3
≻ A

4
≻ A

2

Ye [29] method
S
2
(𝛼̃) = a + b − 1 +

1

2
(c + d)

S
2

𝛼̃1

= 0.2150 , S2
𝛼̃2

= 0.1150

S
2

𝛼̃3

= 0.4150 , S2
𝛼̃4

= 0.4075

A
3
≻ A

4
≻ A

1
≻ A

2

Lakshmana Gomathi
Nayagam et al. [43] method
S
3
(𝛼̃) =

1

2
[a + b− d(1 − b) − c(1 − a)]

S
3

𝛼̃1

= 0.4358 , S3
𝛼̃2

= 0.3658

S
3

𝛼̃3

= 0.4685 , S3
𝛼̃4

= 0.4535

A
3
≻ A

4
≻ A

1
≻ A

2

Wang and Chen [26] method
S
4
(𝛼̃) =

a + b +
√
bd(1 − a − c) +

√
ac(1 − b − d)

2

S
4

𝛼̃1

= 0.6163 , S4
𝛼̃2

= 0.5696

S
4

𝛼̃3

= 0.6501 , S4
𝛼̃4

= 0.6399

A
3
≻ A

4
≻ A

1
≻ A

2

Wang and Chen [27] method
S
5
(𝛼̃) =

(a+b)(a+c)−(c+d)(b+d)

2

S
5

𝛼̃1

= 0.1735 , S
5

𝛼̃2

= 0.1165

S
5

𝛼̃3

= 0.1938 , S5
𝛼̃4

= 0.1633

A
3
≻ A

1
≻ A

4
≻ A

2

Lakshmana Gomathi
Nayagam et al. [47] method
S
6
(𝛼̃) =

a+b+c−d+ab+cd

3

S
6

𝛼̃1

= 0.4090,S
6

𝛼̃2

= 0.3543

S
6

𝛼̃3

= 0.4965,S6
𝛼̃4

= 0.4718

A
3
≻ A

4
≻ A

1
≻ A

2

Proposed method: S
New

(𝛼̃) � = � =
1

3

S𝛼̃
1
= 0.2078 , S𝛼̃

2
= 0.1400

S𝛼̃
3
= 0.2378 , S𝛼̃

4
= 0.2122

A
3
≻ A

4
≻ A

1
≻ A

2

� = � =
1

2

S𝛼̃
1
= 0.3450,S𝛼̃

2
= 0.2900

S𝛼̃
3
= 0.3325,S𝛼̃

4
= 0.3025

A
1
≻ A

3
≻ A

4
≻ A

2

� = � =
2

3

S𝛼̃
1
= 0.4844,S𝛼̃

2
= 0.4433

S𝛼̃
3
= 0.4244,S𝛼̃

4
= 0.3956

A
1
≻ A

2
≻ A

3
≻ A

4
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Comparative study and discussion

To validate the feasibility of the proposed approach, a com-
parative study with other approaches is conducted on the 
basis of the identical illustrative example introduced before 
“Process developed using the proposed method”. To com-
pare these approaches, the ranking results obtained from the 
different methods are listed in Table 2.

Table 2 shows that the ranking results derived from 
the approach of Xu and Chen [42] are identical to the 
ranking results of the proposed approach when � = � =

1

2
 . 

The ranking results derived from the approaches of Ye 
[29], Lakshmana Gomathi Nayagam et al. [43], Wang and 
Chen [26], and Lakshmana Gomathi Nayagam et al. [47] 
are identical to the proposed approach when � = � =

1

3
 . 

When � = � =
2

3
 , the method of Wang and Chen [27] and 

the proposed method are different from the other meth-
ods. However, the best alternative derived from Wang and 
Chen [27] is identical to those from Ye [29], Lakshmana 
Gomathi Nayagam et al. [43], Wang and Chen [26], and 
Nayagam et al. [47]. The best alternative is derived from 
Xu and Chen [42] method and the proposed approach 
when � = � =

1

2
 and � = � =

1

3
 are the same, thereby indi-

cating that the proposed approach is effective. However, 
the results derived from the proposed method vary when 
decision-makers have different risk attitudes. Identi-
cal rankings may be derived using different approaches 
because when the value is set to � = � =

1

2
 in the pro-

posed method, the ranking index is equivalent to that in 
Xu and Chen [42] method. The same ranking index results 
in identical outcomes. The ranking indexes are differ-
ent when the value is set to � = � =

1

3
 in the proposed 

method compared with the ranking indexes of Ye [29], 
Lakshmana Gomathi Nayagam et al. [43], Wang and Chen 
[26], and Lakshmana Gomathi Nayagam et al. [47]. These 
approaches derive the rankings of the alternatives on the 
basis of the score values of IVIFNs. Therefore, the index 
of the score values of IVIFNs may result in identical rank-
ing results.

In addition, Table 2 shows that the ranking results 
are different depending on decision-makers’ risk 
attitudes. Risk-averse decision-makers believe that 
A3 ≻ A4 ≻ A1 ≻ A2 . Risk-neutral decision-makers believe 
that A1 ≻ A3 ≻ A4 ≻ A2 , while risk-seeking decision-mak-
ers believe that A1 ≻ A2 ≻ A3 ≻ A4 . The risk attitudes of 
the decision-makers are confirmed to affect the decision 
results in the decision-making process. Based on this fact, 
the risk parameter and score function must be combined, 
and the proposed method in this paper has a wide practi-
cal application.

The comparative analysis indicates that the MCDM 
approach proposed in this study has the following advan-
tages over the other approaches,

1.	 Based on the membership degree, non-membership 
degree, hesitancy degree, and decision-makers’ risk 
attitudes, a new score function has been proposed to 
reflect that the decision results are highly affected by 
the decision-makers’ risk attitudes.

2.	 The proposed new score function is equivalent to Xu 
and Chen [42] method when the decision-makers’ risk 
attitudes are set to certain values. This finding confirms 
that Xu and Chen [42] method is a special case of the 
proposed method, and the proposed method has a wide 
practical application.

Conclusions

To examine decision-makers’ mentality, two mentality 
parameters are introduced in this paper. First, a new score 
function of IVIFNs is proposed that uses the introduced 
mentality parameters. Second, some properties of the 
proposed score function of IVIFNs are discussed to con-
firm the score function’s reasonability and effectiveness. 
Furthermore, the weighted comprehensive score value of 
IVIFNs is proposed, and an MCDM problem is developed 
in an interval-valued intuitionistic fuzzy environment. 
Finally, a numerical example and comparative analyses are 
provided to illustrate the feasibility and effectiveness of the 
proposed method.

This study provides several substantial contributions 
to MCDM problems, which are summarized as follows. 
(1) A new score function has been proposed to reflect 
decision-makers’ risk attitudes. The risk parameters of 
decision-makers are associated with the membership 
degree, non-membership degree, and hesitancy degree of 
IVIFNs. (2) The proposed MCDM method is more widely 
used than Xu and Chen [42] method in practice, as the 
latter is a special case of the proposed method. In the 
future, MCDM with large-scale social networks is worth 
examining, and the complex practical problems should 
be further studied.
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