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Abstract
Pythagorean fuzzy graph, a broadly used extension of fuzzy and intuitionistic fuzzy graph, is helpful in representing structural
relationships between several objects where the relation between these objects is vague, while the Dombi operators with
operational parameters have excellent flexibility. Utilizing these two concepts, this research paper proposes the novel concept
of Pythagorean Dombi fuzzy graphs (PDFGs). Basically, graph terminology is employed for introducing Pythagorean fuzzy
analogs of various fundamental graphical ideas using Dombi operator. Further, under Pythagorean Dombi fuzzy environment,
regular, totally regular, strongly regular and biregular graphs are defined with appropriate illustration and some of their crucial
properties are examined. Meanwhile, the notion of edge regularity of PDFG is also initiated with substantial characteristics.
Finally, a numerical example related to evaluation of appropriate ETL software for a business intelligence project is presented
to better understand PDFGs.

Keywords Pythagorean fuzzy sets · T -norms and T -conorms · Pythagorean Dombi fuzzy graphs · Regularity of Pythagorean
Dombi fuzzy graphs

Introduction

In the past few years, many operators were initiated and the
most important among them appeared in numerous mono-
graphs concerning with fuzzy logic. Particularly, it includes
min-max, Einstein, Hamacher, Frank, product, Lukasiewicz,
Azcel-Alsina andDombi operators. The product andEinstein
operators are the special cases of Hamacher operator. From
practical perspectives, these parametrical families hold one’s
attention because by considering different value of parameter
a distinct argument can be formed.

Zadeh [1] recommended to utilize the product and the
minimum operator for defining fuzzy set. Hamacher [2]
emphasised that by taking the solution of associativity oper-
ational equality, these operators can be created. Later, he
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obtained the rational structure of disjunctive and conjunctive
operators in accordance with Kuwagaki’s results [3]. From
that moment on, the researchers working in the field of fuzzy
theory proposed a more general form, i.e., triangular norms
(t-norms) and triangular conorms (t-conorms). Menger [4]
introduced t-norms and t-conormswithin probabilisticmetric
framework, where numbers are employed to narrate the dis-
tance between two objects of the space. Schweizer and Sklar
[5] presented many axioms and results related to t-norms and
t-conorms that showed the rapid progress of this field. Fur-
thermore, these norms are certified as standard models for
union and intersection of fuzzy sets by Alsina et al. [6]. Sev-
eral extensions and summarizations of beneficial outcomes
ofT -operators for the similar cause can be seen inKlement et
al. [7] and [8], respectively. In every fuzzy logic application,
specifically fuzzy graph theory and decision-making proce-
dures, Zadeh’s min and max operators have been extensively
applied. From experimental and theoretical point of view,
other T -operators may perform better in some cases, espe-
cially in decision-making problems, such as product operator
may tend to choose over min operator [9]. One has to observe
and examine the characteristics of T -operators like suitabil-
ity of the model, simplicity and implementation of hardware
and software before the appropriate selection of these oper-
ators for a stated application. Since the study and work on
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these operators has broadened, multiple choices are available
for choosing T -operators that may be preferable for given
research.

A pictorial representation that bonds the items together
is known as ‘graph’. But if in the bonding there occurs
haziness, then the graph can be considered as fuzzy graph.
Rosenfeld [10] established the layout of fuzzy graphs by tak-
ing into account fuzzy relations on fuzzy sets (FSs) with
min and max operators. As the hesitancy part was not char-
acterized explicitly, Atanassov [11] extended fuzzy sets to
intuitionistic fuzzy sets (IFSs) by allocating membership μ

and non-membership grade ν to the items, satisfying the con-
strain μ + ν ≤ 1 with hesitancy part π = 1 − μ − ν. At
that time graph theory was widely applied in almost every
field of real life; hence Shannon and Atanassov [12] put for-
ward the idea of intuitionistic fuzzy graphs by considering
intuitionistic fuzzy relations on IFSs. Yager [13–15] inaugu-
rated Pythagorean fuzzy sets (PFSs), a new extension of IFSs,
to manage the complex uncertainty and impreciseness with
constrain μ2 + ν2 ≤ 1, where μ and ν represent member-
ship and non-membership grade, respectively. Afterward, for
explicating the dual features of an item, Zhang and Xu [16]
proposed the notion of Pythagorean fuzzy number (PFN).
The motivation of PFSs can be described as follows: in a
decision-making environment, a specialist gives the prefer-
ence information about an alternative with the membership
grade 0.6 and the non-membership grade 0.5; it is noted
that the intuitionistic fuzzy number (IFN) fails to address
this situation, as 0.6 + 0.5 > 1. But (0.6)2 + (0.5)2 ≤ 1.
Hence PFSs comprise and accommodate greater amount of
vagueness than IFSs. The comparison between IFN space
and PFN space is shown in Fig. 1. It has been success-
fully applied in numerous areas, including the internet stocks
investment [16], the service quality of domestic airline [17]
and the governor selection of the Asian Investment Bank
[18]. In the practical multi-criteria group decision-making
problems, Akram et al. [19] showed that PFS has much
stronger ability to model fuzziness. Under PF environment,
many researchers have initiated work in different directions
and acquired various eminent results [17]. Some operations
on PFSs [20] and Pythagorean fuzzy TODIM approach to
multi-criteria decision making [18] have been discussed.
Furthermore, the PFS has been investigated from differ-
ent perspectives, including aggregation operators [21,22].
Garg [23–26] explored applications of Pythagorean fuzzy
sets in decision-making problems. Graph theory has several
applications, including cluster analysis and optimization of
networks. Hence on the basis of its applications, Naz et al.
[27] proffered the idea of Pythagorean fuzzy graphs (PFGs)
using min and max operators and holding Pythagorean fuzzy
relations on PFSs. Verma et al. [28] opened up the concept
of strong Pythagorean fuzzy graphs and defined complement
as well. Energy under Pythagorean fuzzy environment was
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Fig. 1 Comparison of spaces of the IFN and the PFN

discussed by Akram and Naz [29]. Akram et al. [19,30–32]
proposed certain graphs and explored their crucial properties
under Pythagorean fuzzy circumstances. Recently, Akram
and Habib [33] discussed regularity of q-rung picture fuzzy
graphs with applications. Habib et al. [34] presented the
notion of q-Rung orthopair fuzzy competition graphs by con-
sidering the most wide spread max and min operators and
gave an application in the soil ecosystem.

Dombi [35] inaugurated Dombi operator with flexible
operational parameter in 1982. This operator is exceptional
as the sign of the parameter discovers whether the opera-
tor type is disjunctive or conjunctive. In decision-making
problems, it is very useful as by taking distinct values of
operational parameters, different arguments can be made
dependingupon the requirement or one’s need. For this prece-
dence, Chen andYe [36], Jana et al. [37], Shi andYe [38] used
Dombi operations and presented MCDM problem in single-
valued neutrosophic, neutrosophic cubic and bipolar fuzzy
environment, respectively. Liu et al. [39] profferedMCGDM
problem utilizing Dombi Bonferroni mean operator on IFSs.
He [40] investigated typhoon disaster assessment by con-
sidering Dombi operations in hesitant fuzzy environment.
From the existing studies, it is observed that Dombi oper-
ational parameters have flexible nature in decision-making
areas. Fuzzy graph theory can easily structure and model
decision-making problems with uncertainty. A very limited
effort is made for using Dombi operator in the field of graph
theory. Hence on the basis of it, Ashraf et al. [41] presented
the idea of Dombi fuzzy graph (DFG). As Pythagorean fuzzy
graph is more powerful and more practical tool having the
capability to deal with imprecise and incomplete information
in different decision-making disciplines, such as engineer-
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ing, mathematics, statistics, artificial intelligence, medical
and social sciences than fuzzy graphs. Therefore, the main
objective of this research article was to emphasize on the
fact that for generalizing the classical graphs to Pythagorean
fuzzy graphs, themin andmax operators are not preferable to
model certain real-world situations. Further, our aim was to
assemble the development introduced by Klement, Alsina,
Hamachar and other founders in the field of Pythagorean
fuzzy graph theory. The paper is accumulated to demonstrate
the usage of a T -operator, especially the Dombi operator. As
Dombi operators with operational parameters, have excellent
flexibility and have not yet been applied for Pythagorean
fuzzy graphs, hence motivated from these operators, this
paper introduces the notion of PDFGs as a generalization of
Dombi fuzzy graphs. Further, some substantial characteris-
tics like strongness, completeness, vertex and edge regularity
are inspected as they are extensively applied in designing
reliable computer networks and matrix representations.

The presented research article is structured as follows:
Sect. 2 describes the basic notions and terminologies which
will be utilized in the rest of sections. In Sect. 3, we pro-
pose the novel concept of Pythagorean Dombi fuzzy graphs
and define the complement, homomorphism, isomorphism,
completeness and strongness with appropriate illustration. In
Sect. 4, we introduce regular, totally regular, strongly regu-
lar, biregular, edge regular, totally edge regular Pythagorean
Dombi fuzzy graphs and examine some of their crucial char-
acteristics. Section 5 presents a decision-making algorithm in
Pythagorean Dombi fuzzy environment and solves a numer-
ical example to illustrate the developed method. Section 6
contains concluding remarks and points out directions for
future work.

Preliminaries

In this section, some prerequisite notations and terminologies
have been stated for better understating.

In crisp sense, a graph is an ordered pair G∗ = (V , E),

where V is a vertex set and E is the edge set of G∗. A vertex
connected by an edge to a vertex y is called a neighbor of
y. The number of edges incident to a vertex y is called the
degree of that vertex. A graph without loops and multiple
edges is called simple graph, whereas a graph in which each
pair of graph vertices is connected by an edge is known as
complete graph. The complement G∗ of a graph, G∗, is a
graph having vertex set same as in G∗, in which two ver-
tices are incident if and only if they are not incident in G∗.
If there occurs a one-one correspondence between the ver-
tices of two graphs G∗

1 = (V1, E1) = (V (G∗
1), E(G∗

1)) and
G∗

2 = (V2, E2) = (V (G∗
2), E(G∗

2)) which preserves adja-
cency, then the graphs G∗

1 and G∗
2 are called isomorphic. A

self-complementary graph is a graph which is isomorphic to

its complement. A regular and biregular graph is a graph,
where each vertex has the same number of neighbors and
each two vertices on the same side of the given bipartition
have the same degree as each other, respectively. A graph
with direction is called directed graph, where without direc-
tion is known as undirected graph.

Definition 1 [1]A fuzzy set (FS) on a universeX is an object
of the following form:

A = {〈s, μA (s)〉|s ∈ X },

where μA : X −→ [0, 1] represents the membership
grades of A .

Definition 2 [10] A fuzzy set onX ×X is said to be a fuzzy
relation (FR) on X , denoted by

B = {〈st, μB(st)〉|st ∈ X × X },

where μB : X ×X −→ [0, 1] represents the membership
grades of A .

Definition 3 [10] A fuzzy graph on a non-empty set X is a
pair G = (A ,B) with A a FS on X and B a FR on X
such that

μB(st) ≤ μA (s) ∧ μA (t)

for all s, t ∈ X , where A : X −→ [0, 1] and B :
X × X −→ [0, 1].

Definition 4 [11] An intuitionistic fuzzy set (IFS) on a uni-
verse X is an object of the form

A = {〈s, μA (s), νA (s)〉|s ∈ X },

where μA : X −→ [0, 1] and νA : X −→ [0, 1] rep-
resent the membership and non-membership grades of A ,

and μA , νA satisfies the condition 0 ≤ μA (s)+νA (s) ≤ 1
for all s ∈ X .

Definition 5 [12] An intuitionistic fuzzy set on X × X
is said to be an intuitionistic fuzzy relation (IFR) on X ,

denoted by

B = {〈st, μB(st), νB(st)〉|s ∈ X },

where μB : X × X −→ [0, 1] and νB : X × X −→
[0, 1] represent themembership and non-membership grades
of B, respectively, such that 0 ≤ μB(st) + νB(st) ≤ 1 for
all s, t ∈ X .
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Definition 6 [12] An intuitionistic fuzzy graph (IFG) on a
non-empty set X is a pair G = (A ,B) with A an IFS on
X and B an IFR on X such that

μB(st) ≤ μA (s) ∧ μA (t), νB(st) ≥ νA (s) ∨ νA (t)

and 0 ≤ μB(st) + νB(st) ≤ 1 for all s, t ∈ X , where
μB : X × X −→ [0, 1] and νB : X × X −→ [0, 1]
represent themembership and non-membership grades ofB,
respectively.

Definition 7 [13] A Pythagorean fuzzy set (PFS) on a uni-
verse X is an object of the form

A = {〈s, μA (s), νA (s)〉|s ∈ X },

where μA : X −→ [0, 1] and νA : X −→ [0, 1] repre-
sent the membership and non-membership grades ofA , and
μA , νA satisfies the condition 0 ≤ μ2

A (s) + ν2A (s) ≤ 1 for
all s ∈ X .

Definition 8 [27] A Pythagorean fuzzy set onX ×X is said
to be a Pythagorean fuzzy relation (PFR) onX , denoted by

B = {〈st, μB(st), νB(st)〉|s ∈ X },

where μB : X × X −→ [0, 1] and νB : X × X −→
[0, 1] represent themembership and non-membership grades
of B, respectively, such that 0 ≤ μ2

B(st) + ν2B(st) ≤ 1 for
all s, t ∈ X .

Definition 9 [27] A Pythagorean fuzzy graph (PFG) on a
non-empty set X is a pair G = (A ,B) with A a PFS on
X and B a PFR on X such that

μB(st) ≤ μA (s) ∧ μA (t), νB(st) ≥ νA (s) ∨ νA (t)

and 0 ≤ μ2
B(st) + ν2B(st) ≤ 1 for all s, t ∈ X , where

μB : X × X −→ [0, 1] and νB : X × X −→ [0, 1]
represent themembership and non-membership grades ofB,
respectively.

Definition 10 [7] A binary function T : [0, 1] × [0, 1] →
[0, 1] is known as t-norm if for all s, t, u ∈ [0, 1], it satisfies
the following:

1. T (s, 1) = s (boundary condition or neutral property),
2. T (s, t) = T (t, s) (commutativity),
3. T (s, T (t, u)) = T (T (s, t), u) (associativity),
4. T (s, t) ≤ T (u, v) if s ≤ u and t ≤ v (monotonicity).

Replacing 1 by 0 in condition 1, we obtain the concept of
dual t-conorm or s-norm.

There are the following common t-norms:

– The minimum operator M (s, t) = min(s, t).
– The product operator P(s, t) = st .

– TheDombi’s t-norm
1

1 + [(1 − s

s
)γ + (

1 − t

t
)γ ]

1

γ

, γ >

0.

The corresponding t-conorms are as follows:

– The maximum operator M ∗(s, t) = max(s, t).
– The probabilistic sumP∗(s, t) = s + t − st .

– TheDombi’s t-conorm
1

1 + [(1 − s

s
)−γ + (

1 − t

t
)−γ ]

1

−γ

,

γ > 0.

One more set of T -operators is T (s, t) = st

s + t − st

and S (s, t) = s + t − 2st

1 − st
, which can be acquired by

putting γ = 1 in Dombi’s t-norm and t-conorm. Addition-

ally, P(s, t) ≤ st

s + t − st
≤ M (s, t) and M ∗(s, t) ≤

s + t − 2st

1 − st
≤ P∗(s, t).

Definition 11 [41] A Dombi fuzzy graph on underlying set
V is an ordered pair G = (A ,B),whereA : V −→ [0, 1]
is a fuzzy subset in V and B : V × V −→ [0, 1] is a
symmetric fuzzy relation on A such that

μB(st) ≤ μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

for all s, t ∈ V , where μA and μB represent the member-
ship grades of A and B, respectively.

Definition 12 [27] A Pythagorean fuzzy preference relation
(PFPR) on the set of alternatives X = {x1, x2, . . . , xn}
is represented by a matrix Q = (ri j )n×n , where ri j =
(xi x j , μ(xi x j ), ν(xi x j )) for all i, j = 1, 2, . . . , n. For con-
venience, let ri j = (μi j , νi j ) where μi j indicates the degree
towhich the object xi is preferred to the object x j , νi j denotes
the degree to which the object xi is not preferred to the object

x j and πi j =
√
1 − μ2

i j − ν2i j is interpreted as a hesitancy

degree, with the following conditions:

μi j , νi j ∈ [0, 1], μ2
i j + ν2i j ≤ 1,

μi j = ν j i , μi i = νi i = 0.5, for all i, j = 1, 2, . . . , n.

For other applications and prerequisite terminologies, the
readers are referred to [42–48].
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Pythagorean Dombi fuzzy graphs

Definition 13 A Pythagorean Dombi fuzzy graph (PDFG)
on underlying set V is an ordered pair G = (A ,B), where
A = (μA , νA ) : V −→ [0, 1] is a Pythagorean fuzzy
subset in V and B = (μB, νB) : V × V −→ [0, 1] is a
symmetric Pythagorean fuzzy relation on A such that

μB(st) ≤ μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

νB(st) ≤ νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

and 0 ≤ μ2
B(st) + ν2B(st) ≤ 1 for all s, t ∈ V , where

μB and νB represent the membership and non-membership
grades of B, respectively.

Remark 1 We call A the Pythagorean Dombi fuzzy vertex
set of G andB the Pythagorean Dombi fuzzy edge set of G.

– If B is symmetric on A , then G = (A ,B) is called
PDFG.

– IfB is not symmetric onA , thenD = (A ,
−→
B ) is called

Pythagorean Dombi fuzzy digraph.

Example 1 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4, t5, t6} and E = {t1t2, t1t4, t1t6, t2t3, t2t5, t3t6,
t3t4, t4t5, t5t6}. Let A and B be Pythagorean Dombi fuzzy
vertex set and Pythagorean Dombi fuzzy edge set defined on
V and E , respectively.

A =
〈(

t1
0.50

,
t2

0.60
,

t3
0.80

,
t4

0.90
,

t5
0.50

,
t6

0.20

)
,

(
t1

0.60
,

t2
0.70

,
t3

0.40
,

t4
0.20

,
t5

0.70
,

t6
0.90

)〉
and

B =
〈(

t1t2
0.35

,
t1t4
0.45

,
t1t6
0.15

,
t2t3
0.50

,
t2t5
0.30

,
t3t6
0.15

,
t3t4
0.70

,
t4t5
0.40

,
t5t6
0.14

)
,

(
t1t2
0.74

,
t1t4
0.61

,
t1t6
0.91

,
t2t3
0.72

,
t2t5
0.80

,
t3t6
0.91

,
t3t4
0.45

,
t4t5
0.71

,
t5t6
0.90

)〉
.

By routine computations, one can see from Fig. 2 that G =
(A ,B) is a PDFG.

Definition 14 Let B = {(st, μB(st), νB(st))|st ∈ E} be a
Pythagorean Dombi fuzzy edge set in PDFG G; then

– The order of G is symbolized by O(G) and given by
O(G) = (

∑
t∈V μA (t),

∑
t∈V νA (t)).

– The size of G is symbolized by S (G) and given by
S (G) = (

∑
st∈E μB(st),

∑
st∈E νB(st)).

Example 2 From Example 1, we have

t1

t5

t6

t3

t2

t4

(0.50, 0.60)

(0.30
, 0.80

)

(0.50, 0.70)

(0.20, 0.90)

(0.90, 0.20)

(0.80, 0.40)

(0.60, 0.70)

(0.15, 0.91)

(0.
15,

0.9
1)

(0.35, 0.74)

(0.40, 0.71) (0.
70
, 0.

45
)

(0
.1
4,

0.
62

) 0(
.
05
,0

.
)2

7

(0
.4
5,

0.
61

)

Fig. 2 Pythagorean Dombi fuzzy graph

– Theorder ofGO(G) = (
∑

t∈V μA (t),
∑

t∈V νA (t)) =
(3.5, 3.5).

– The size ofGS (G) = (
∑

st∈E μB(st),
∑

st∈E νB(st))
= (3.14, 6.75).

Definition 15 Let B = {(st, μB(st), νB(st))|st ∈ E} be a
Pythagorean Dombi fuzzy edge set in PDFG G; then

– The degree of vertex s ∈ V is symbolized by (D)G(s)
and defined by (D)G(s) = ((D)μ(s), (D)ν(s)), where

(D)μ(s) =
∑

s,t �=s∈V
μB(st)

=
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

(D)ν(s) =
∑

s,t �=s∈V
νB(st)

=
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
.

– The total degree of vertex s ∈ V is symbolized by
(T D)G(s) and defined by (T D)G(s) = ((T D)μ(s),
(T D)ν(s)), where

(T D)μ(s) =
∑

s,t �=s∈V
μB(st) + μA (s)

=
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

+μA (s),

(T D)ν(s) =
∑

s,t �=s∈V
νB(st) + νA (s)
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=
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

+νA (s).

Example 3 From Example 1, we have

– The degree of the vertices in G are as follows:
(D)G(t1) = (0.95, 2.26), (D)G(t2) = (1.15, 2.26),
(D)G(t3) = (1.35, 2.08), (D)G(t4) = (1.55, 1.77),
(D)G(t5) = (0.84, 2.41), (D)G(t6) = (0.44, 2.72).

– The total degree of the vertices in G are as follows:
(T D)G(t1) = (1.45, 2.86), (T D)G(t2) = (1.75, 2.96),
(T D)G(t3) = (2.15, 2.48), (T D)G(t4) = (2.45, 1.97),
(T D)G(t5) = (1.34, 3.11), (T D)G(t6) = (0.64, 3.62).

Definition 16 The complement of a PDFG G = (A ,B) on
an underlying graph G∗ = (V , E) is a PDFG G = (A ,B)

which is defined by

1. μA (s) = μA (s) and νA (s) = νA (s).

2. μB(st) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
, if μB(st) = 0,

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
− μB(st), if 0 < μB(st) ≤ 1.

νB(st) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
, if νB(st) = 0,

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
− νB(st), if 0 < νB(st) ≤ 1.

Example 4 Consider a PDFG G over V = {t1, t2, t3, t4} as
displayed in Fig. 3 and defined by

A =
〈(

t1
0.40

,
t2

0.20
,

t3
0.90

,
t4

0.30

)
,

(
t1

0.70
,

t2
0.90

,
t3

0.30
,

t4
0.80

)〉
and

B =
〈(

t1t2
0.13

,
t1t3
0.35

,
t1t4
0.20

,
t2t3
0.15

,
t3t4
0.25

)
,

(
t1t2
0.91

,
t1t3
0.72

,
t1t4
0.83

,
t2t3
0.85

,
t3t4
0.80

)〉
.

By usingDefinition 16, one can obtain complement of PDFG
as presented in Fig. 4 and defined by

A =
〈(

t1
0.40

,
t2

0.20
,

t3
0.90

,
t4

0.30

)
,

(
t1

0.70
,

t2
0.90

,
t3

0.30
,

t4
0.80

)〉
and

t1

t3

t2

t4

(0.20, 0.90)

(0.30, 0. 0()08 .90, 0.30)

(0.40, 0.70)

(0
.3
5
, 0

.7
2
)

(0.13, 0.91)

(0
.2
0
,
0
.8
3
)

(0.25, 0.80)

(0
.1
5
,
0
.8
5
)

Fig. 3 Pythagorean Dombi fuzzy graph

B =
〈(

t1t2
0.02

,
t1t3
0.03

,
t1t4
0.01

,
t2t3
0.05

,
t3t4
0.04

,
t2t4
0.14

)
,

(
t1t2
0.01

,
t1t3
0.01

,
t1t4
0.03

,
t2t3
0.05

,
t3t4
0.02

,
t2t4
0.91

)〉
.

By routine computations, one can see from Fig. 4 that G =
(A ,B) is a PDFG.

Theorem 1 If G = (A ,B) is a PDFG, then G = G.

Proof Suppose thatG is a PDFG. Then by definition of com-
plement of PDFG, we have

μA (s) = μA (s) = μA (s) and νA (s)

= νA (s) = νA (s) for all s ∈ V .

If μB(st) = 0 and νB(st) = 0, then

μB(st) = μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

= μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
= μB(st),
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t1

t3

t2

t4

(0.20, 0.90)

(0.30, 0. 0()08 .90, 0.30)

(0.40, 0.70)

(0
.0
3
, 0

.0
1
)

(0.02, 0.01)

(0
.0
1
,
0
.0
3
)

(0.04, 0.02)
(0
.0
5
,
0
.0
5
)

(0.
14
, 0
.91

)

Fig. 4 Complement of Pythagorean Dombi fuzzy graph

νB(st) = νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
= νB(st).

If 0 < μB(st), νB(st) ≤ 1, then

μB(st) = μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
− μB(st)

= μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

−
(

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
− μB(st)

)

= μB(st),

νB(st) = νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
− νB(st)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

−
(

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
− νB(st)

)

= νB(st)

for all s, t ∈ V . Hence the complement of a complement
PDFG is a PDFG itself.

Definition 17 A homomorphism H : G1 → G2 of two
PDFGs G1 = (A1,B1) and G2 = (A2,B2) is a mapping
H : V1 → V2 satisfying

1. μA1(s) ≤ μA2(H (s)), νA1(s) ≤ νA2(H (s)),
2. μB1(st) ≤ μB2(H (s)H (t)), νB1(st) ≤ νB2(H (r)

H (s)) for all s ∈ V1, st ∈ E1.

Definition 18 An isomorphism H : G1 → G2 of two
PDFGs G1 = (A1,B1) and G2 = (A2,B2) is a bijective
mapping H : V1 → V2 satisfying

1. μA1(s) = μA2(H (s)), νA1(s) = νA2(H (s)),
2. μB1(st) = μB2(H (s)H (t)), νB1(st)=νB2(H (s)H

(t))for all s ∈ V1, st ∈ E1.

Definition 19 A weak isomorphism H : G1 → G2 of two
PDFGs G1 = (A1,B1) and G2 = (A2,B2) is a bijective
mapping H : V1 → V2 satisfying

1. H is a homomorphism,
2. μA1(s) = μA2(H (s)), νA1(s) = νA2(H (s)) for all s

∈ V1.

Definition 20 A co-weak isomorphism H : G1 → G2 of
two PDFGs G1 = (A1,B1) and G2 = (A2,B2) is a bijec-
tive mapping H : V1 → V2 satisfying

1. H is a homomorphism,
2. μB1(st) = μB2(H (s)H (t)), νB1(st) = νB2(H (s)

H (t)) for all st ∈ E1.

Definition 21 A PDFG G = (A ,B) is called self-
complementary if G ∼= G.

Proposition 1 If G = (A ,B) is a self-complementary
PDFG, then

∑
s �=t

μB(st) = 1

2

∑
s �=t

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

∑
s �=t

νB(st) = 1

2

∑
s �=t

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
.

Proof Assume that G is a self-complementary PDFG; then
there occurs an isomorphismH : V −→ V such that

μA (H (s)) = μA (s), νA (H (s)) = νA (s)

for all s ∈ V ,

μB(H (s)H (t)) = μB(st), νB(H (s)H (t)) = νB(st)

for all st ∈ E .

Using the definition of complement of G, we have

μB(H (s)H (t))

= μA (H (s))μA (H (t))

μA (H (s)) + μA (H (t)) − μA (H (s))μA (H (t))
−μB(H (s)H (t))

123



36 Complex & Intelligent Systems (2020) 6:29–54

μB(st)

= μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
−μB(H (s)H (t))∑

s �=t

μB(st)

=
∑
s �=t

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

−
∑
s �=t

μB(H (s)H (t))

∑
s �=t

μB(st) +
∑
s �=t

μB(H (s)H (t))

=
∑
s �=t

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

2
∑
s �=t

μB(st)

=
∑
s �=t

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
∑
s �=t

μB(st)

= 1

2

∑
s �=t

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
.

Likewise, for non-membership grade, we have

νB(H (s)H (t))

= νA (H (s)) + νA (H (t)) − 2νA (H (s))νA (H (t))

1 − νA (H (s))νA (H (t))
−νB(H (s)H (t))

νB(st)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
−νB(H (s)H (t))∑

s �=t

νB(st)

=
∑
s �=t

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

−
∑
s �=t

νB(H (s)H (t))

∑
s �=t

νB(st) +
∑
s �=t

νB(H (s)H (t))

=
∑
s �=t

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

2
∑
s �=t

νB(st)

=
∑
s �=t

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
∑
s �=t

νB(st)

= 1

2

∑
s �=t

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
.

This completes the proof. 
�
Proposition 2 Let G = (A ,B) be the PDFG on underlying
graph G∗ = (V , E). If

μB(st) = 1

2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
,

νB(st) = 1

2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

for all s, t ∈ V , then G is self-complementary.

Proof Assume that G is the PDFG that satisfies

μB(st) = 1

2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
,

νB(st) = 1

2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

for all s, t ∈ V , then the identity mapping I : V −→ V
is an isomorphism from G to G that satisfies the following
conditions:

μA (s) = μA (I(s)) and νA (s)

= νA (I(s)) for all s ∈ V .

Since the membership grade of an edge st is given by

μB(st)

= 1

2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
for all s, t ∈ V ,

we have

μB(I(s)I(t)) = μB(st)

= μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
−μB(st)

= μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

−1

2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
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= 1

2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)

= μB(st).

Likewise, the non-membership grade of an edge st is given
by

νB(st)

= 1

2

(
νA (s)+νA (t)−2νA (s)νA (t)

1−νA (s)νA (t)

)
for all s, t ∈ V ;

so we have

νB(I(s)I(t)) = νB(st)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
− νB(st)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

−1

2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

= 1

2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

= νB(st).

Since the conditions of isomorphismμB(I(s)I(t)) = μB(st)
and νB(I(s)I(t)) = νB(st) are satisfied by I, G = (A ,B)

is self-complementary. 
�
Proposition 3 If G1 = (A1,B1) and G2 = (A2,B2) are
two isomorphic PDFGs, then the complement of G1 and G2

are also isomorphic to each other and conversely.

Proof Assume that G1 and G2 are two isomorphic PDFGs.
Then by definition of isomorphism, there occurs a bijective
mapping H : V1 −→ V2 that satisfies

μA1(s) = μA2(H (s)), νA1(s)

= νA2(H (s)) for all s ∈ V1,

μB1(st) = μB2(H (s)H (t)), νB1(st)

= νB2(H (s)H (t)) for all st ∈ E1.

By using the definition of complement of PDFG, the mem-
bership grade of an edge st is

μB1(st)

= μA1(s)μA1(t)

μA1(s) + μA1(t) − μA1(s)μA1(t)
− μB1(st)

= μA2(H (s))μA2(H (t))

μA2(H (s)) + μA2(H (t)) − μA2(H (s))μA2(H (t))
−μB2(H (s)H (t))

= μB2(H (s)H (t)).

Also, the non-membership grade of an edge st is

νB1(st)

= νA1(s) + νA1(t) − 2νA1(s)νA1(t)

1 − νA1(s)νA1(t)

−νB1(st)

= νA2(H (s)) + νA2(H (t)) − 2νA2(H (s))νA2(H (t))

1 − νA2(H (s))νA2(H (t))

−νB2(H (s)H (t))

= νB2(H (s)H (t)).

Hence the complement of G1 is isomorphic to the comple-
ment of G2. Likewise, the converse part can be proved. 
�
Proposition 4 If G1 = (A1,B1) and G2 = (A2,B2) are
two weak isomorphic PDFGs, then the complement of G1

and G2 are also weak isomorphic.

Proof Assume that G1 and G2 are two weak isomorphic
PDFGs. Then by definition of weak isomorphism, there
occurs a bijective mapping H : V1 −→ V2 that satisfies

μA1(s) = μA2(H (s)), νA1(s)

= νA2(H (s)) for all s ∈ V1,

μB1(st) ≤ μB2(H (s)H (t)), νB1(st)

≤ νB2(H (s)H (t)) for all st ∈ E1.

Consider the membership condition of an edge; then we have

μB 1(st) ≤ μB 2(H (s)H (t))

−μB 1(st) ≥ −μB 2(H (s)H (t))

T (μA1(s), μA1(t)) − μB 1(st) ≥ T (μA1(s), μA1(t))

−μB 2(H (s)H (t))

T (μA1(s), μA1(t)) − μB 1(st) ≥ T (μA2(H (s)), μA2(H (t)))

−μB 2(H (s)H (t))

μB 1(st) ≥ μB 2(H (s)H (t)).

Now take the non-membership condition of an edge; then we
have

νB1(st) ≤ νB2(H (s)H (t))

−νB1(st) ≥ −νB2(H (s)H (t))

S (νA1(s), νA1(t)) − νB1(st) ≥ S (νA1(s), νA1(t))

−νB2(H (s)H (t))

S (νA1(s), νA1(t)) − νB1(st) ≥ S (νA2(H (s)), νA2(H (t)))

−νB2(H (s)H (t))

νB1(st) ≥ νB2(H (s)H (t)).

Hence we conclude that G1 and G2 are weak isomorphic. 
�
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(0
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)
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,0

.
)3

8

Fig. 5 Complete Pythagorean Dombi fuzzy graph

We state the following proposition without proof:

Proposition 5 If G1 = (A1,B1) and G2 = (A2,B2) are
two co-weak isomorphic PDFGs, then the complement of G1

and G2 are homomorphic.

Definition 22 A PDFG is said to be complete if

μB(st) = μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

νB(st)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
for all s, t ∈ V .

Example 5 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4} and E = {t1t2, t1t3, t1t4, t2t3, t2t4, t3t4}. Let
A and B be Pythagorean Dombi fuzzy vertex set and
Pythagorean Dombi fuzzy edge set defined on V and E ,
respectively.

A =
〈(

t1
0.30

,
t2

0.80
,

t3
0.70

,
t4

0.10

)
,

(
t1

0.80
,

t2
0.40

,
t3

0.50
,

t4
0.95

)〉
and

B =
〈(

t1t2
0.28

,
t1t3
0.27

,
t1t4
0.08

,
t2t3
0.60

,
t2t4
0.10

,
t3t4
0.10

)
,

(
t1t2
0.82

,
t1t3
0.83

,
t1t4
0.96

,
t2t3
0.63

,
t2t4
0.95

,
t3t4
0.95

)〉
.

By routine computations, one can see from Fig. 5 that
G = (A ,B) is a complete PDFG.

Definition 23 A PDFG is said to be strong if

μB(st) = μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

t1

t3

t2

t4

(0.70, 0.50)

(0.10, 0.95) (0.80, 0.40)

0(
.
1

2
,
0
.

)
1

9

(0
.6
0
,
0
.6
3
)

(0.30, 0.80)

(0
.08

, 0
.96)

(0.40, 0.85)

(0
.1
0,
0.
95

)

(0.27, 0.83)

t5

(0.10, 0.95)(0.09, 0.96)

Fig. 6 Strong Pythagorean Dombi fuzzy graph

νB(st)

= νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
for all st ∈ E .

Example 6 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4, t5} and E = {t1t2, t1t4, t1t5, t2t3, t2t4, t3t4, t4t5}.
Let A and B be Pythagorean Dombi fuzzy vertex set and
Pythagorean Dombi fuzzy edge set defined on V and E ,
respectively.

A =
〈(

t1
0.30

,
t2

0.70
,

t3
0.80

,
t4

0.10
,

t5
0.40

)
,

(
t1

0.80
,

t2
0.50

,
t3

0.40
,

t4
0.95

,
t5

0.85

)〉
and

B =
〈(

t1t2
0.27

,
t1t4
0.08

,
t1t5
0.21

,
t2t3
0.60

,
t2t4
0.10

,
t3t4
0.10

,
t4t5
0.09

)
,

(
t1t2
0.83

,
t1t4
0.96

,
t1t5
0.91

,
t2t3
0.63

,
t2t4
0.95

,
t3t4
0.95

,
t4t5
0.96

)〉
.

By routine computations, one can see from Fig. 6 that
G = (A ,B) is a strong PDFG.

Remark 2 Every complete PDFG is strong; one can easily
see from Example 5.

Definition 24 The complement of a strong PDFG G =
(A ,B) on an underlying graph G∗ = (V , E) is a PDFG
G = (A ,B) defined by
1. μA (s) = μA (s) and νA (s) = νA (s) for all s ∈ V .

2. μB (st) =

⎧
⎪⎪⎨
⎪⎪⎩

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
, if μB (st) = 0,

0, if 0 < μB (st) ≤ 1.

νB (st) =

⎧
⎪⎪⎨
⎪⎪⎩

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
, if νB (st) = 0,

0, if 0 < νB (st) ≤ 1.
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(0
.08

, 0
.96
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Fig. 7 Complement of a strong Pythagorean Dombi fuzzy graph

Example 7 Consider a strong PDFG G = (A ,B) as dis-
played in Fig. 6. Then by using the Definition 24, one can
obtain complement of a strong PDFG as presented in Fig. 7.

By routine computations, one can see from Fig. 7 that G
is a PDFG.

Regularity of Pythagorean Dombi fuzzy
graphs

In this section, we introduce the concept of regularity of
Pythagorean Dombi fuzzy graphs that can be helpful in real
scientific applications.

Definition 25 A PDFG G = (A ,B) on crisp graph G∗ =
(V , E) is said to be regular of degree (R1,R2) or (R1,R2)-
regular. If

(D)μ(s) =
∑

s,t �=s∈V
μB(st)

=
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
=R1,

(D)ν(s) =
∑

s,t �=s∈V
νB(st)

=
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

= R2 for all s ∈ V .

Example 8 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4} and E = {t1t2, t1t4, t2t3, t3t4}. LetA andB be
PythagoreanDombi fuzzy vertex set and PythagoreanDombi
fuzzy edge set defined on V and E , respectively.

A =
〈(

t1
0.50

,
t2

0.90
,

t3
0.80

,
t4

0.70

)
,

t1

t3

t2
(0.90, 0.30)

(0.80, 0.30)

(0.50, 0.70)

(0.70, 0.40)

(0.41, 0.46)

t4

(0
.4
1
,
0
.

)
6

4

(0
.4
1
,
0
.4
6
)

(0.41, 0.46)

Fig. 8 (0.82, 0.92)-regular Pythagorean Dombi fuzzy graph

(
t1

0.70
,

t2
0.30

,
t3

0.30
,

t4
0.40

)〉
and

B =
〈(

t1t2
0.41

,
t1t4
0.41

,
t2t3
0.41

,
t3t4
0.41

)
,

(
t1t2
0.46

,
t1t4
0.46

,
t2t3
0.46

,
t3t4
0.46

)〉
.

Since (D)G(t1) = (D)G(t2) = (D)G(t3) = (D)G(t4) =
(0.82, 0.92), G = (A ,B), presented in Fig. 8,
is (0.82, 0.92)-regular PDFG.

Definition 26 A PDFG G = (A ,B) on crisp graph G∗ =
(V , E) is said to be totally regular of degree (K1,K2) or
(K1,K2)-totally regular. If

(T D)μ(s) =
∑

s,t �=s∈V
μB (st) + μA (s)

=
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

+μA (s) = K1,

(T D)ν(s) =
∑

s,t �=s∈V
νB (st) + νA (s)

=
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
+νA (s)

= K2 for all s ∈ V .

Example 9 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4} and E = {t1t3, t1t4, t2t3, t2t4}. LetA andB be
PythagoreanDombi fuzzy vertex set and PythagoreanDombi
fuzzy edge set defined on V and E , respectively.

A =
〈(

t1
0.50

,
t2

0.50
,

t3
0.50

,
t4

0.50

)
,

(
t1

0.60
,

t2
0.60

,
t3

0.60
,

t4
0.60

)〉
and
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B =
〈(

t1t3
0.25

,
t1t4
0.33

,
t2t3
0.33

,
t2t4
0.25

)
,

(
t1t3
0.70

,
t1t4
0.74

,
t2t3
0.74

,
t2t4
0.70

)〉
.

Since (T D)G(t1) = (T D)G(t2) = (T D)G(t3) =
(T D)G(t4) = (1.08, 2.04), G = (A ,B), presented in Fig.
9, is (1.08, 2.04)-totally regular PDFG.

Theorem 2 Let G = (A ,B) be a (R1,R2)-regular PDFG.

Then the size S (G) = (
nR1

2
,
nR2

2
), where |V | = n.

Proof Assume that G is a PDFG with size given by

S (G) =
( ∑

st∈E
μB(st),

∑
st∈E

νB(st)

)
.

Since G is (R1,R2)-regular, the degree of the vertex

(
(D)μ(s), (D)ν(s)

)

=
( ∑

s,t �=s∈V
μB(st),

∑
s,t �=s∈V

νB(st)

)

( ∑
s∈V

(D)μ(s),
∑
s∈V

(D)ν(s)

)

=
( ∑

s∈V

∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

∑
s∈V

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

Since each edge is double times counted, one time for vertex
s and one time for t, we have

t1

t3

t2

(0.50, 0.60)

(0
.25

, 0
.70

)

t4

(0
.3
3
,
0
.

)
4

7

(0
.3
3
,
0
.7
4
) (0.25, 0.70)

(0.50, 0.60)

(0.50, 0.60)

(0.50, 0.60)

Fig. 9 (1.08, 2.04)-totally regular Pythagorean Dombi fuzzy graph

( ∑
s∈V

(D)μ(s),
∑
s∈V

(D)ν(s)

)

= 2

( ∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

( ∑
s∈V

R1,
∑
s∈V

R2

)
= 2

( ∑
st∈E

μB(st),
∑
st∈E

νB(st)

)

(nR1, nR2) = 2S (G)(
nR1

2
,
nR2

2

)
= S (G).

This completes the proof. 
�

Theorem 3 Let G = (A ,B) be a (K1,K2)-totally regular
PDFG. Then 2S (G)+O(G) = (nK1, nK2), where |V | =
n.

Proof Assume that G is a PDFG; then the total degree is
given by

(
(T D)μ(s), (T D)ν(s)

)

=
( ∑

s,t �=s∈V
μB(st)+μA (s),

∑
s,t �=s∈V

νB(st) + νA (s)

)
.

Since G is (K1,K2)-totally regular,

(K1,K2)

=
( ∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
+ μA (s),

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
+ νA (s)

)

( ∑
s∈V

K1,
∑
s∈V

K2

)

=
( ∑

s∈V

∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

+
∑
s∈V

μA (s),

∑
s∈V

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

+
∑
s∈V

νA (s)

)
.
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Since each edge is double times counted, one time for vertex
s and one time for t, we have

(nK1, nK2)

=
(
2

∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

+
∑
s∈V

μA (s),

2
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

+
∑
s∈V

νA (s)

)

(nK1, nK2)

= 2

( ∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
,

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

+
( ∑

s∈V
μA (s),

∑
s∈V

νA (s)

)

(nK1, nK2)

= 2

( ∑
st∈E

μB(st),
∑
st∈E

νB(st)

)

+
( ∑

s∈V
μA (s),

∑
s∈V

νA (s)

)

(nK1, nK2) = 2S (G) + O(G).

This completes the proof. 
�
Corollary 1 Let G = (A ,B) be a (R1,R2)-regular and
(K1,K2)-totally regular PDFG. ThenO(G) = n{(K1,K2)

− (R1,R2)} ( or n{(K1 − R1) + (K2 − R2)}).
Proof Assume that G is a (R1,R2)-regular PDFG. Then the
size of G is

S (G) =
(
nR1

2
,
nR2

2

)
or 2S (G) = (nR1, nR2).

As G is a (K1,K2)-totally regular PDFG, from Theorem 3,
we must have

2S (G) + O(G) = (nK1, nK2)

O(G) = (nK1, nK2) − 2S (G)

O(G) = (nK1, nK2) − (nR1, nR2)

O(G) = n{(K1,K2) − (R1,R2)}
O(G) = n{(K1 − R1) + (K2 − R2)}.

This completes the proof. 
�

Theorem 4 Consider G1 = (A1,B1) is isomorphic to G2 =
(A2,B2):

1. If G1 is regular PDFG, then G2 is also regular PDFG.
2. If G1 is totally regular PDFG, then G2 is also totally

regular PDFG.

Proof 1. Assume that G1 is isomorphic to G2 and G1 is
(R1,R2)-regular PDFG; then the degree of each vertex in
G1 is given by

(D)G1(s) = ((D)μ1(s), (D)ν1(s))

=
( ∑

st∈E
μB1(st),

∑
st∈E

νB1(st)

)

=
( ∑

s,t �=s∈V

μA1(s)μA1(t)

μA1(s) + μA1(t) − μA1(s)μA1(t)
,

∑
s,t �=s∈V

νA1(s) + νA1(t) − 2νA1(s)νA1(t)

1 − νA1(s)νA1(t)

)

= (R1,R2).

Since G1 ∼= G2, we must have

(R1,R2)

= ((D)μ1 (s), (D)ν1 (s))

=
( ∑

st∈E
μB 1 (st),

∑
st∈E

νB 1 (st)

)

=
( ∑

s,t �=s∈V

μA 1 (s)μA 1 (t)

μA 1 (s) + μA 1 (t) − μA 1 (s)μA 1 (t)
,

∑
s,t �=s∈V

νA 1 (s) + νA 1 (t) − 2νA 1 (s)νA 1 (t)

1 − νA 1 (s)νA 1 (t)

)

=
( ∑

s,t �=s∈V

μA 2 (H (s))μA 2 (H (t))

μA 2 (H (s)) + μA 2 (H (t)) − μA 2 (H (s))μA 2 (H (t))
,

∑
s,t �=s∈V

νA 2 (H (s)) + νA 2 (H (t)) − 2νA 2 (H (s))νA 2 (H (t))

1 − νA 2 (H (s))νA 2 (H (t))

)

=
( ∑

st∈E
μB 2 (H (s)H (t)),

∑
st∈E

νB 2 (H (s)H (t))

)

= ((D)μ2 (H (s)), (D)ν2 (H (s))).

Therefore,G2 is a (R1,R2)-regular PDFG. emAssume that
G1 is isomorphic to G2 and G1 is (K1,K2)-totally regular
PDFG, then the total degree of each vertex in G1 is given by

(T D)G1(s)

= ((T D)μ1(s), (T D)ν1(s))

=
( ∑

st∈E
μB1(st) + μA1(s),

∑
st∈E

νB1(st) + νA1(s)

)

=
( ∑

s,t �=s∈V

μA1(s)μA1(t)

μA1(s) + μA1(t) − μA1(s)μA1(t)
+ μA1(s),
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∑
s,t �=s∈V

νA1(s) + νA1(t) − 2νA1(s)νA1(t)

1 − νA1(s)νA1(t)
+ νA1(s)

)

= (K1,K2).

Since G1 ∼= G2, we must have

(K 1,K 2)

= ((T D )μ1 (s), (T D )ν1 (s))

=
( ∑

st∈E
μB 1 (st) + μA 1 (s),

∑
st∈E

νB 1 (st) + νA 1 (s)

)

=
( ∑

s,t �=s∈V

μA 1 (s)μA 1 (t)

μA 1 (s) + μA 1 (t) − μA 1 (s)μA 1 (t)
+ μA 1 (s),

∑
s,t �=s∈V

νA 1 (s) + νA 1 (t) − 2νA 1 (s)νA 1 (t)

1 − νA 1 (s)νA 1 (t)
+ νA 1 (s)

)

=
( ∑

s,t �=s∈V

μA 2 (H (s))μA 2 (H (t))

μA 2 (H (s)) + μA 2 (H (t)) − μA 2 (H (s))μA 2 (H (t))

+μA 2 (H (s)),
∑

s,t �=s∈V

νA 2 (H (s)) + νA 2 (H (t)) − 2νA 2 (H (s))νA 2 (H (t))

1 − νA 2 (H (s))νA 2 (H (t))

+νA 2 (H (s))

)

=
( ∑

st∈E
μB 2 (H (s)H (t)) + μA 2 (H (s)),

∑
st∈E

νB 2 (H (s)H (t)) + νA 2 (H (s))

)

= ((T D )μ2 (H (s)), (T D )ν2 (H (s))).

Therefore, G2 is a (K1,K2)-totally regular PDFG. 
�

Theorem 5 Let G = (A ,B) be a PDFG on underlying
graph G∗ = (V , E). If μA and νA are constant functions,
then following statements are equal:

1. G = (A ,B) is a regular PDFG.
2. G = (A ,B) is a totally regular PDFG.

Proof Assume that μA and νA are constant functions such
that μA (s) = C1 and νA (s) = C2 for all s ∈ V . Further,
suppose that G is a (R1,R2)-regular PDFG, then

(D)μ(s) =
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
= R1,

(D)ν(s) =
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
= R2.

So the total degree of vertex is given by

(T D)μ(s) =
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

+μA (s) = R1 + C1,

(T D)ν(s) =
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

+νA (s) = R2 + C2.

Hence G is a regular PDFG. Therefore, (1) ⇒ (2) is proved.
Now suppose that G is a (K1,K2)-totally regular PDFG,

then

(T D)μ(s) = K1
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
+ μA (s) = K1

∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
+ C1 = K1

∑
s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
= K1 − C1

(D)μ(s) = K1 − C1.

Likewise, for non-membership grade

(T D)ν(s) = K2∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
+ νA (s) = K2

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
+ C2 = K2

∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
= K2 − C2

(D)ν(s) = K2 − C2.

So G is a totally regular PDFG. Therefore, (2) ⇒ (1) is
proved. Hence we conclude that (1) and (2) are equal. 
�

Theorem 6 Let G = (A ,B) be a PDFG on underlying
graph G∗ = (V , E). If G is (R1,R2)-regular as well as
(K1,K2)-totally regular PDFG, then μA and νA are con-
stant functions.

Proof Assume that G is a (R1,R2)-regular and (K1,K2)-
totally regular PDFG. Then the degree of vertex is

(D)μ(s) =
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
= R1,

(D)ν(s) =
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
= R2,
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and the total degree of vertex is

(T D)μ(s) =
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

+μA (s) = K1,

(T D)ν(s) =
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

+νA (s) = K2,

Further, it follows that

(T D)μ(s) = K1
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
+ μA (s) = K1

R1 + μA (s) = K1

μA (s) = K1 − R1.

Likewise, for non-membership grade

(T D)ν(s) = K2∑
s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
+ νA (s) = K2

R2 + νA (s) = K2

νA (s) = K2 − R2.

Hencewe conclude thatμA = K1−R1 and νA = K2−R2

are constant functions. 
�
Remark 3 Converse of the Theorem 6 need not to be true as
seen in the following example:

Consider a graph G∗ = (V , E), where V = {t1, t2, t3}
and E = {t1t2, t2t3}. Let A and B be Pythagorean Dombi
fuzzy vertex set and Pythagorean Dombi fuzzy edge set
defined on V and E , respectively.

A =
〈(

t1
0.50

,
t2

0.50
,

t3
0.50

)
,

(
t1

0.60
,

t2
0.60

,
t3

0.60

)〉
and

B =
〈(

t1t2
0.32

,
t2t3
0.30

)
,

(
t1t2
0.70

,
t2t3
0.75

)〉
.

Since μA (ti ) and νA (ti ) are constant functions, where
i = 1, 2, 3. But (D)G(t2) = (0.32, 0.70) �= (0.30, 0.75) =
(D)G(t3) and (T D)G(t2) = (0.82, 1.30) �= (0.80, 1.35) =
(T D)G(t3).HenceG = (A ,B) in Fig. 10 is neither regular
nor totally regular PDFG.

Definition 27 A PDFG G = (A ,B) on n vertices is said to
be strongly regular if the following properties are satisfied:

t1

t3t2
(0.50, 0.60)

(0.
32
, 0
.70

)

(0.30, 0.75)
(0.50, 0.60)

(0.50, 0.60)

Fig. 10 G = (A ,B)

1. G is regular of degree R = (R1,R2);
2. the sum of the membership and non-membership grades

of the common neighbouring vertices of any pair of
adjoining vertices of G are equal and represented as
U = (U1,U2);

3. the sum of the membership and non-membership grades
of the common neighbouring vertices of any pair of non-
adjoining vertices of G are equal and represented as L =
(L1,L2).

A strongly regular PDFG G = (A ,B) is represented as
G = (n,R,U,L).

Example 10 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4, t5, t6} and E = {t1t2, t1t3, t1t4, t1t5, t2t3, t2t5,
t2t6, t3t4, t3t6, t4t5, t4t6, t5t6}. Let A and B be Pythagorean
Dombi fuzzy vertex set and Pythagorean Dombi fuzzy edge
set defined on V and E , respectively.

A =
〈(

t1
0.30

,
t2

0.30
,

t3
0.30

,
t4

0.50
,

t5
0.50

,
t6

0.50

)
,

(
t1

0.90
,

t2
0.90

,
t3

0.90
,

t4
0.60

,
t5

0.60
,

t6
0.60

)〉
and

B =
〈(

t1t2
0.15

,
t1t3
0.15

,
t1t4
0.20

,
t1t5
0.20

,
t2t3
0.15

,
t2t5
0.20

,

t2t6
0.20

,
t3t4
0.20

,
t3t6
0.20

,
t4t5
0.15

,
t4t6
0.15

,
t5t6
0.15

)
,

(
t1t2
0.70

,
t1t3
0.70

,
t1t4
0.65

,
t1t5
0.65

,
t2t3
0.70

,
t2t5
0.65

,

t2t6
0.65

,
t3t4
0.65

,
t3t6
0.65

,
t4t5
0.70

,
t4t6
0.70

,
t5t6
0.70

)〉
.

Since (D)G(ti ) = (0.7, 2.7) for all i = 1, 2, . . . , 6,
G is a (0.7, 2.7)-regular PDFG. Meanwhile, the sum of
the membership and non-membership grades of the com-
mon neighbouring vertices of each pair of the adjoining
and non-adjoining vertices of G are equal, i.e., U =
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t1

t3

t2

t4

(0.30, 0.90)

(0.50, 0.60)

(0.30, 0.90)

(
0
.2
0
,
0
.6
5
)

(0.15, 0.70)

(0.50, 0.60)

(0
.2
0,
0.
65
)

(0.15, 0.70)

t5 (0.15, 0.70)

(0.20, 0.65)
t6

(0.30, 0.90)

(0.50, 0.60)

(0.15, 0.70)

(0.2
0, 0

.65
)

(0.15, 0.70)

(0.15, 0.70)

(0
.20

, 0
.65)(0

.2
0
,
0
.6
5
)

Fig. 11 Strongly regular Pythagorean Dombi fuzzy graph

(U1,U2) = (0.8, 1) and L = (L1,L2) = (1.6, 2). Hence
G = (n,R,U,L) in Fig. 11 is a strongly regular PDFG.

Definition 28 A PDFG G = (A ,B) is known as bipartite
if V = {s1, s2, . . . , sn} can be partitioned into two non-
empty disjoint sets V1 and V2 such that μB(s j sk) = 0 and
νB(s j sk) = 0 if s j , sk ∈ V1 or s j , sk ∈ V2. Furthermore, if

μB(s j sk) = μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)
,

νB(s j sk) = νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)

for all s j ∈ V1 and sk ∈ V2,

then G = (A ,B) is known as complete bipartite, repre-
sented byKX1,X2 , whereX1 andX2 are the restrictions of
X to V1 and X to V2, respectively.

Definition 29 A bipartite PDFG G = (A ,B) is known as
biregular if each vertex in V1 and V2 have equal degree Ψ =
(Ψ1, Ψ2) and Υ = (Υ1, Υ2), respectively, where Ψ and Υ

are constants. Further, a biregular PDFG is represented by
G = (n, Ψ , Υ ).

Example 11 Consider a graph G∗ = (V , E) as displayed in
Fig. 12, where V = {t1, t2, t3, t4, t5} is partitioned into two
non-empty disjoint sets V1 = {t1, t2, t3} and V2 = {t4, t5}
such that E = {t1t4, t1t5, t2t4, t2t5, t3t4, t3t5}.

Since each vertex in V1 and V2 have equal degree Ψ =
(Ψ1, Ψ2) = (0.55, 1.48) and Υ = (Υ1, Υ2) = (0.83, 2.22),
respectively, G = (n, Ψ , Υ ) in Fig. 12, is a biregular PDFG.

Theorem 7 Let G = (A ,B) be a PDFG. If G is complete
with μA , νA , μB, νB as constant functions, then G =
(A ,B) is strongly regular PDFG.

t1 t3

t2

t4

(0 .40 , 0.70)

(0 .60 , 0.70)

(0 .50 , 0.60)

(0.25,0.70)
t5

(0 .50 , 0.80)

(0 .70 , 0.50)

(0.30, 0.78)

(0
.2
75
,0
.7
4)

(0.275,0.74)

(0.
30,

0.7
8)

(0
.2
5,
0.
70
)

Fig. 12 Biregular Pythagorean Dombi fuzzy graph

Proof Assume that G is a complete PDFG with V =
{s1, s2, . . . sn}. As μA , νA , μB and νB are constant func-
tions, μA (s j ) = C1, νA (s j ) = C2 for all s j ∈ V and
μB(s j sk) = C3, νB(s j sk) = C4 for all s j sk ∈ E . To
prove thatG = (A ,B) is a strongly regular PDFG, wemust
show that G is (R1,R2)-regular. Further, the adjoining and
non-adjoining vertices have equal common neighbourhood
U = (U1,U2) and L = (L1,L2), respectively.

As G is a complete PDFG, we must have

(D)G(s j ) = ((D)μ(s j ), (D)ν(s j ))

=
( ∑

s j sk∈E
μB (s j sk),

∑
s j sk∈E

νB (s j sk)

)

=
( ∑

s j ,sk �=s j∈V

μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)
,

∑
s j ,sk �=s j∈V

νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)

)

= ((n − 1)C3, (n − 1)C4).

Hence G is a ((n−1)C3, (n−1)C4)-regular PDFG. Further,
the sum of the membership and non-membership grades of
the common neighbouring vertices of any pair of adjoin-
ing vertices U = (U1,U2) = ((n − 2)C1, (n − 2)C2) are
equal. AsG is complete, the sumof themembership and non-
membership grades of the common neighbouring vertices of
any pair of non-adjoining vertices L = (L1,L2) = (0, 0) are
equal. Since all the properties are satisfied, we conclude that
G = (A ,B) is a strongly regular PDFG. 
�
Remark 4 If G = (A ,B) is a strongly regular disconnected
PDFG, then the sumof themembership and non-membership
grades of the common neighbouring vertices of any pair of
non-adjoining vertices is L = (L1,L2) = (0, 0).
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Remark 5 If G = (A ,B) is a strongly regular complete
bipartite PDFG with equal bipartition, then the sum of the
membership and non-membership grades of the common
neighbouring vertices of any pair of non-adjoining vertices
is L = (L1,L2) = (0, 0).

Theorem 8 Let G = (A ,B) be a PDFG. If G is strongly
regular and strong, then G is a (R1,R2)-regular PDFG.

Proof Assume that G is strongly regular PDFG; then by def-
inition G is (R1,R2)-regular. Further, as G is strong, then
G is also strong. Therefore, we must have

μB (s j sk)

=

⎧
⎪⎪⎨
⎪⎪⎩

μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)
, if μB (s j sk) = 0,

0, if 0 < μB (s j sk) ≤ 1.

νB (s j sk)

=

⎧
⎪⎪⎨
⎪⎪⎩

νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)
, if νB (s j sk) = 0,

0, if 0 < νB (s j sk) ≤ 1.

In G, the degree of a vertex s j is defined by

(D)G(s j ) = ((D)μ(s j ), (D)ν(s j ))

=
( ∑
s j sk∈E

μB(s j sk),
∑

s j sk∈E
νB(s j sk)

)

=
( ∑

s j ,sk �=s j∈V

μA (s j )μA (sk)

μA (s j )+μA (sk)−μA (s j )μA (sk)
,

∑

s j ,sk �=s j∈V

νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)

)

= (R1,R2).

As (D)G(s j ) = (R1,R2), G is (R1,R2)-regular PDFG. 
�
Corollary 2 Let G = (A ,B) be a PDFG. If G is strongly
regular and strong, then G is a (R1,R2)-regular PDFG.

Theorem 9 Consider G = (A ,B) be a strong PDFG; then
G is a strongly regular PDFG if and only if G is a strongly
regular PDFG.

Proof Suppose that G is a strongly regular PDFG; then
by definition, G is (R1,R2)-regular. Further, the adjoining
and non-adjoining vertices have equal common neighbour-
hood U = (U1,U2) and L = (L1,L2), respectively. To
prove that G is a strongly regular PDFG, we must show
that G is (R1,R2)-regular. Since G is a strongly regu-
lar and strong, then by Theorem 8, G is (R1,R2)-regular.
Moreover, assume that S1 = {(s j , sk)/(s j , sk) ∈ E} and
S2 = {(s j , sk)/(s j , sk) /∈ E} be the sets of all adjoining
and non-adjoining vertices of G, where s j and sk have equal

common neighbourhood U = (U1,U2) and L = (L1,L2),
respectively. Then S1 = {(s j , sk)/(s j , sk) ∈ E} and S2 =
{(s j , sk)/(s j , sk) /∈ E}, where s j and sk have equal common
neighbourhood L = (L1,L2) and U = (U1,U2), respec-
tively. Hence G is strongly regular PDFG.

Conversely, G is a strongly regular PDFG; then by def-
inition, G is (R1,R2)- regular. Further, the adjoining and
non-adjoining vertices have equal common neighbourhood
L = (L1,L2) and U = (U1,U2), respectively. To prove
that G is a strongly regular PDFG, we must show that
G is (R1,R2)-regular. Since G is a strongly regular and
strong, then by Corollary 2, G is (R1,R2)-regular. Fur-
thermore, assume that S1 = {(s j , sk)/(s j , sk) ∈ E} and
S2 = {(s j , sk)/(s j , sk) /∈ E} be the sets of all adjoining
and non-adjoining vertices of G, where s j and sk have equal
common neighbourhood: L = (L1,L2) and U = (U1,U2),

respectively. Then S1 = {(s j , sk)/(s j , sk) ∈ E} and S2 =
{(s j , sk)/(s j , sk) /∈ E}, where s j and sk have equal common
neighbourhood U = (U1,U2) and L = (L1,L2), respec-
tively. Hence G is strongly regular PDFG. 
�
Theorem 10 Let G = (A ,B) be a PDFG such that the
underlying graph G∗ = (V , E) is strongly regular graph;
then G is strongly regular PDFG if μA , νA , μB, and νB
are constant functions.

Proof Assume that G∗ = (n,R,U,L) is a strongly regular
graph. Also, assume that μA (s) = C1, νA (s) = C2 for all
s ∈ V and μB(st) = C3, νB(st) = C4 for all st ∈ E . Then
the degree of the vertex s is given by

(D)μ(s) =
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

=
∑

s,t �=s∈V
C3 = (D)G∗(s)C3 = RC3,

(D)ν(s) =
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

=
∑

s,t �=s∈V
C4 = (D)G∗(s)C4 = RC4.

This implies that (D)G(s) = ((D)μ(s), (D)ν(s)) =
(RC3,RC4).Therefore,G is a (RC3,RC4)-regular PDFG.
Likewise, since μA and νA are constant functions, the
parameters are (UC1,UC2) and (LC1,LC2). Hence G is
a strongly regular PDFG with parameters (RC3,RC4),
(UC1,UC2) and (LC1,LC2). 
�
Remark 6 Converse of the Theorem 10 need not be true as
seen in the example given below:

Consider a graphG∗ = (V , E),whereV = {t1, t2, t3, t4}
and E = {t1t2, t1t3, t1t4, t2t3, t2t4, t3t4}. Let A and B be
PythagoreanDombi fuzzy vertex set and PythagoreanDombi
fuzzy edge set defined on V and E , respectively.
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t1

t3

t2t4

(0.50,0.60)

(0.25, 0.72)

(0.15,0.73)

(0
.1
5
,
0
.7
3)

(0.25, 0.72)(0.
33,

0.7
4)

(0
.33

,0
.74

)

(0.50,0.60)

(0.50,0.60)

(0.50,0.60)

Fig. 13 Pythagorean Dombi fuzzy graph

A =
〈(

t1
0.50

,
t2

0.50
,

t3
0.50

,
t4

0.50

)
,

(
t1

0.60
,

t2
0.60

,
t3

0.60
,

t4
0.60

)〉
and

B =
〈(

t1t2
0.25

,
t1t3
0.15

,
t1t4
0.33

,
t2t3
0.33

,
t2t4
0.15

,
t3t4
0.25

)
,

(
t1t2
0.72

,
t1t3
0.73

,
t1t4
0.74

,
t2t3
0.74

,
t2t4
0.73

,
t3t4
0.72

)〉
.

By routine computations, one can see from Fig. 13
that G is a strongly regular PDFG with parameters R =
(0.73, 2.19), U = (1, 0.12) and L = (0, 0). Meanwhile, G∗
is a strongly regular graph with parameter (4, 3, 2, 0) and
μA , νA are constant functions. But μB, νB are not con-
stant functions.

Definition 30 Let G = (A ,B) be a PDFG and (D)1, (D)2,

. . . , (D)r be the degree of the vertices of G. Then the degree
sequence is represented by ((D)1, (D)2, . . . , (D)r ) =
((D)μ1 , (D)μ2 , . . . , (D)μr ; (D)ν1 , (D)ν2 , . . . , (D)νr ),

where (D)μ1 ≥ (D)μ2 ≥ . . . ≥ (D)μr and (D)ν1 ≥
(D)ν2 ≥ . . . ≥ (D)νr .

Definition 31 The set of different positive real values arising
in the degree sequence of a PDFG G is known as degree set.

Example 12 Consider a graph G∗ = (V , E), as shown in
Fig. 14, where V = {t1, t2, . . . , t6} and E = {t1t2, t1t6, t2t5,
t3t6, t3t4, t4t5}. Let A and B be Pythagorean Dombi fuzzy
vertex set and Pythagorean Dombi fuzzy edge set defined on
V and E , respectively.

A =
〈(

t1
0.50

,
t2

0.30
,

t3
0.80

,
t4

0.70
,

t5
0.50

,
t6

0.90

)
,

(
t1

0.60
,

t2
0.80

,
t3

0.30
,

t4
0.40

,
t5

0.60
,

t6
0.20

)〉
and

t1

t3t2

t4

(0.30, 0.80)

(0
.4
1
, 0
.1
8
)

(0.50, 0.60)

(0
.41
, 0
.18
)

(0
.20
, 0
.65
)

(0
.5
9,
0.
15
)

(0.50, 0.60)

(0.80, 0.30)

(0.70, 0.40)

t6
t5

(0.90, 0.20)

(0
.20
, 0
.65)

(0.59, 0.15)

Fig. 14 Pythagorean Dombi fuzzy graph

B =
〈(

t1t2
0.20

,
t1t6
0.41

,
t2t5
0.20

,
t3t6
0.59

,
t3t4
0.59

,
t4t5
0.41

)
,

(
t1t2
0.65

,
t1t6
0.18

,
t2t5
0.65

,
t3t6
0.15

,
t3t4
0.15

,
t4t5
0.18

)〉
.

The degree of the vertices are (D)G(t1) = (0.61, 0.83),
(D)G(t2)=(0.38, 1.25), (D)G(t3)=(1.29, 0.40), (D)G(t4)
= (1, 0.33), (D)G(t5) = (0.59, 1.50) and (D)G(t6) =
(1, 0.33). Hence the degree sequence of the member-
ship grades and the non-membership grades in Fig. 14
are (1.29, 1, 1, 0.61, 0.59, 0.38) and (1.25, 1.05, 0.83, 0.40,
0.33, 0.33), whereas the corresponding degree sets are
{1.29, 1, 0.61, 0.59, 0.38} and {1.25, 1.05, 0.83, 0.40, 0.33},
respectively.

Theorem 11 LetG bea (n,R,U,L) strongly regularPDFG;
then the degree sequence of n elements of G is a constant
sequence (R1,R1, . . . ,R1;R2,R2, . . . ,R2).

Proof Assume that G is a (n,R,U,L) strongly regular
PDFG; then by definition, G is a (R1,R2)-regular. Thus all
the vertices have same degree (D)G(si ) = (R1,R2), where
i = 1, 2, . . . , n.Hencewe conclude that the degree sequence
of G is a constant sequence (R1,R1, . . . ,R1;R2,R2,

. . . ,R2). 
�
Theorem 12 LetG bea (n,R,U,L) strongly regularPDFG;
then the degree set of the membership and non-membership
grades of G is a singleton set {R1} and {R2}, respectively.
Proof Assume that G is a (n,R,U,L) strongly regular
PDFG; then by definition, G is a (R1,R2)-regular. Thus all
the vertices have same degree (D)G(si ) = (R1,R2), where
i = 1, 2, . . . , n. As the degree sequence of G is a constant
sequence (R1,R1, . . . ,R1;R2,R2, . . . ,R2), then the cor-
responding membership and non-membership degree set is
{R1} and {R2}, respectively. 
�
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Remark 7 Converse of the Theorems 11 and 12 need not be
true as seen in the example given below.

Consider a graph G∗ = (V , E), where V = {t1, t2, t3}
and E = {t1t2, t1t3, t2t3}. Let A and B be Pythagorean
Dombi fuzzy vertex set and Pythagorean Dombi fuzzy edge
set defined on V and E , respectively.

A =
〈(

t1
0.40

,
t2

0.40
,

t3
0.50

)
,

(
t1

0.70
,

t2
0.70

,
t3

0.70

)〉
and

B =
〈(

t1t2
0.25

,
t1t3
0.25

,
t2t3
0.25

)
,

(
t1t2
0.65

,
t1t3
0.65

,
t2t3
0.65

)〉
.

By routine computations, one can see from Fig. 15
that G has constant membership and non-membership
degree sequence (0.5, 0.5, 0.5) and (1.3, 1.3, 1.3), respec-
tively, whereas, the corresponding membership and non-
membership degree set is {0.5} and {1.3}, respectively. ButG
is not strongly regular PDFG as the sum of the membership
and non-membership grades of the common neighbouring
vertices of any pair of adjoining vertices of G are not
equal.

Definition 32 Let B = {(st, μB(st), νB(st))|st ∈ E} be a
Pythagorean Dombi fuzzy edge set in PDFG G; then

• The degree of an edge st ∈ E is symbolized by (D)G(st)
and defined by (D)G(st) = ((D)μ(st), (D)ν(st)),
where

(D)μ(st) =
∑

sr∈E,t �=r

μB(sr) +
∑

tr∈E,s �=r

μB(tr)

= (D)μA (s) + (D)μA (t) − 2μB(st)

t1

t3

t2

(0
.2
5,
0.
65

)

(0.40, 0.70) (0.40, 0.70)

(0.50, 0.70)

(0
.25

, 0
.65)

(0.25, 0.65)

Fig. 15 Pythagorean Dombi fuzzy graph

= (D)μA (s) + (D)μA (t)

−2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
,

(D)ν(st) =
∑

sr∈E,t �=r

νB(sr) +
∑

tr∈E,s �=r

νB(tr)

= (D)νA (s) + (D)νA (t) − 2νB(st)

= (D)νA (s) + (D)νA (t)

−2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
.

• The total degree of an edge st ∈ E is symbol-
ised by (T D)G(st) and defined by (T D)G(st) =
((T D)μ(st), (T D)ν(st)), where

(T D)μ(st) =
∑

sr∈E,t �=r

μB (sr)+
∑

tr∈E,s �=r

μB (tr)+μB (st)

= (D)μA (s)+(D)μA (t) − μB (st)

= (D)μA (s) + (D)μA (t)

−
(

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
,

(T D)ν(st) =
∑

sr∈E,t �=r

νB (sr) +
∑

tr∈E,s �=r

νB (tr) + νB (st)

= (D)νA (s) + (D)νA (t) − νB (st)

= (D)νA (s) + (D)νA (t)

−
(

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
.

Example 13 Consider a PDFG G over V = {t1, t2, . . . , t13}
as displayed in Fig. 16.

Then the degree of an edge t7t8 is (D)G(t7t8) =
((D)μA (t7) + (D)μA (t8) − 2(D)μB (t7t8), (D)νA (t7) +
(D)νA (t8)−2(D)νB (t7t8)) = (0.44, 1.72).Meanwhile, the
total degree of an edge t7t8 is (T D)G(t7t8) = ((D)μA (t7)+
(D)μA (t8)−(D)μB (t7t8), (D)νA (t7)+(D)νA (t8)−(D)νB
(t7t8)) = (0.89, 2.22). Likewise, one can obtain the degree
and total degree of all remaining edges in G.

Remark 8 If G = (A ,B) is a strongly regular PDFG, then
the membership and non-membership degree sequence of
edge need not to be constant sequence as seen in the example
given below:

Consider a graph G∗ = (V , E),whereV = {t1, t2, t3, t4}
and E = {t1t2, t1t4, t2t3, t3t4}. LetA andB be Pythagorean
Dombi fuzzy vertex set and Pythagorean Dombi fuzzy edge
set defined on V and E , respectively.

A =
〈(

t1
0.50

,
t2

0.50
,

t3
0.50

,
t4

0.50

)
,

(
t1

0.60
,

t2
0.60

,
t3

0.60
,

t4
0.60

)〉
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t1
(0.5

1, 0
.52

)

t12 t6

t5

t4t3t2

t10

t11

t8t9

t7

(0.23, 0.67) (0.
45,

0.5
0)

(0.24, 0.90)(0
.23

, 0
.75)(0.25, 0.85)

(0.20, 0.80) (0.20, 0.89)t13

(0.26, 0.87)

(0.
25,

0.6
8)

(0
.2
4
,
0
.7
9
)

(0.18, 0.85)

(0
.1
5,
0.
92
)

(0.
19,

0.7
7)

0(
.
1

2
,
0
.

)
6

8(0
.1
5,
0.
90
)

(0.90, 0.20)

(0.60, 0.50) (0.70, 0.40) (0.30, 0.90)

(0.80, 0.50) (0.90, 0.20)

(0.60, 0.70)

(0.40, 0.70)

(0.70, 0.40)(0.50, 0.60)

(0.80, 0.30)(0.40, 0.90)

(0.30, 0.90)

Fig. 16 Pythagorean Dombi fuzzy graph

t1 t3

t2

t4

(0.50, 0.60)

(0.50, 0.60)

(0
.3
0,
0.
73
)

(0
.3
0,
0.
73
)

(0.50, 0.60)

(0.33, 0.70)

(0.33, 0.70)

(0.50, 0.60)

Fig. 17 Pythagorean Dombi fuzzy graph

B =
〈(

t1t2
0.33

,
t1t4
0.30

,
t2t3
0.30

,
t3t4
0.33

)
,

(
t1t2
0.70

,
t1t4
0.73

,
t2t3
0.73

,
t3t4
0.70

)〉
.

By routine computations, one can see from Fig. 17
that G is a strongly regular PDFG with parameters R =
(0.63, 1.43), U = (0, 0) and L = (1, 1.2). The edge degree
sequence of themembership grades and the non-membership
grades is (0.66, 0.66, 0.60, 0.60) and (1.46, 1.46, 1.4, 1.4),
respectively, whereas the corresponding edge degree sets
{0.66, 0.60} and {1.46, 1.4} are not constant sequence.

Theorem 13 Let G = (A ,B) be a strongly regular PDFG
with μB and νB as constant functions; then the edge degree
sequence and edge degree set are constant sequence and
singleton set, respectively.

Proof Assume that μB = C1 and νB = C2. Also, suppose
that G is a strongly regular PDFG; then by definition, G is
(R1,R2)-regular such that

(D)μ(s) =
∑

s,t �=s∈V

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)
= R1,

(D)ν(s) =
∑

s,t �=s∈V

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)
= R2.

Therefore, the degree of edge is (D)G(st) = ((D)μ(st),
(D)ν(st)), whereas

(D)μ(st) = (D)μA (s) + (D)μA (t)

−2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)

= R1 + R1 − 2C1 = 2R1 − 2C1 = 2(R1 − C1),

(D)ν(st) = (D)νA (s) + (D)νA (t)

−2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)

= R2 + R2 − 2C2 = 2R2 − 2C2 = 2(R2 − C2).

Hence the edge degree sequence of membership and non-
membership grades are constant sequence and its corre-
sponding edge degree set {2(R1 − C1)} and {2(R2 − C2)}
are singleton sets. 
�
Definition 33 A PDFG G = (A ,B) on crisp graph G∗ =
(V , E) is said to be edge regular of degree (R1,R2) or
(R1,R2)-edge regular. If

(D)μ(st) = (D)μA (s) + (D)μA (t) − 2μB(st)

= (D)μA (s) + (D)μA (t)

−2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
= R1,

(D)ν(st) = (D)νA (s) + (D)νA (t) − 2νB(st)

= (D)νA (s) + (D)νA (t)

−2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
= R2

for all st ∈ E.

Example 14 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4} and E = {t1t2, t1t4, t2t3, t3t4}. LetA andB be
PythagoreanDombi fuzzy vertex set and PythagoreanDombi
fuzzy edge set defined on V and E , respectively.

A =
〈(

t1
0.40

,
t2

0.20
,

t3
0.80

,
t4

0.70

)
,

(
t1

0.80
,

t2
0.90

,
t3

0.30
,

t4
0.40

)〉
and

B =
〈(

t1t2
0.15

,
t1t4
0.15

,
t2t3
0.18

,
t3t4
0.18

)
,

(
t1t2
0.80

,
t1t4
0.80

,
t2t3
0.50

,
t3t4
0.50

)〉
.
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t1

t3

t2
t4

(0.40, 0.80)

(0.20, 0.90)

(0
.1
5,
0.
80
)

(0
.1
8,
0.
50
)

(0.80, 0.30)

(0.70, 0.40)

(0.18, 0.50)

(0.15, 0.80)

Fig. 18 (0.33, 1.3)-edge regular Pythagorean Dombi fuzzy graph

Since the degree of each edge (D)G(s j sk) = (0.33, 1.3)
for all j, k = 1, 2, 3, 4, G in Fig. 18, is (0.33, 1.3)-edge
regular PDFG.

Definition 34 A PDFG G = (A ,B) on crisp graph G∗ =
(V , E) is said to be totally edge regular of degree (K1,K2)

or (K1,K2)-totally edge regular. If

(T D)μ(st) = (D)μA (s) + (D)μA (t) − μB(st)

= (D)μA (s) + (D)μA (t)

−
(

μA (s)μA (t)

μA (s)+μA (t)−μA (s)μA (t)

)
=K1,

(T D)ν(st) = (D)νA (s) + (D)νA (t) − νB(st)

= (D)νA (s) + (D)νA (t)

−
(

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
= K2

for all st ∈ E.

Example 15 Consider a graph G∗ = (V , E), where V =
{t1, t2, t3, t4} and E = {t1t2, t1t3, t1t4, t2t3, t2t4, t3t4}. Let
A and B be Pythagorean Dombi fuzzy vertex set and
Pythagorean Dombi fuzzy edge set defined on V and E ,
respectively.

A =
〈(

t1
0.70

,
t2

0.80
,

t3
0.90

,
t4

0.50

)
,

(
t1

0.50
,

t2
0.40

,
t3

0.20
,

t4
0.60

)〉
and

B =
〈(

t1t2
0.40

,
t1t3
0.40

,
t1t4
0.40

,
t2t3
0.40

,
t2t4
0.40

,
t3t4
0.40

)
,

(
t1t2
0.47

,
t1t3
0.47

,
t1t4
0.47

,
t2t3
0.47

,
t2t4
0.47

,
t3t4
0.47

)〉
.

t1 t3

t2

t4
(0.50, 0.60)

(0.90, 0.20)

(0
.4
0,
0.
47
)

(0.80, 0.40)

(0.70, 0.50)

(0.40, 0.47)

(0.40, 0.47)

(0
.40

, 0
.47

) (0.40, 0.47)

(0
.4
0,

0.
47

)

Fig. 19 (0.20, 2.35)-totally edge regular Pythagorean Dombi fuzzy
graph

Since the total degree of each edge (T D)G(s j sk) =
(0.20, 2.35) for all j, k = 1, 2, 3, 4, G in Fig. 19, is
(0.20, 2.35)-totally edge regular PDFG.

Theorem 14 Let G = (A ,B) be a (R1,R2)-regular PDFG
such that μB and νB are constant functions; then G is
(R1,R2)-edge regular PDFG.

Proof Assume that G is a (R1,R2)-regular PDFG such that

(D)μ(s j )

=
∑

s j ,sk �=s j∈V

μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)
=R1,

(D)ν(s j )

=
∑

s j ,sk �=s j∈V

νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)
=R2.

As μB and νB are constant functions, μB(s j sk) = C1 and
νB(s j sk) = C2 for all s j sk ∈ E . By using the definition
of edge degree (D)G(s j sk) = ((D)μ(s j sk), (D)ν(s j sk)),
whereas

(D)μ(s j sk) = (D)μA (s j ) + (D)μA (sk)

−2

(
μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)

)

= R1 + R1 − 2C1 = 2R1 − 2C1 = 2(R1 − C1) = R1,

(D)ν(s j sk) = (D)νA (s j ) + (D)νA (sk)

−2

(
νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)

)

= R2 + R2 − 2C2 = 2R2 − 2C2 = 2(R2 − C2) = R2.

Hence we conclude that G is a (R1,R2)-edge regular PDFG.

�
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Theorem 15 Let G = (A ,B) be both (R1,R2)-edge regu-
lar and (K1,K2)-totally edge regular PDFG; then μB and
νB are constant functions.

Proof Assume that G is a (R1,R2)-edge regular and (K1,

K2)-totally edge regular PDFG. Then the degree of edge is

(D)μ(st) = (D)μA (s) + (D)μA (t)

−2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
= R1,

(D)ν(st) = (D)νA (s) + (D)νA (t)

−2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
= R2,

and the total degree of edge is

(T D)μ(st) = (D)μA (s) + (D)μA (t)

−
(

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
= K1,

(T D)ν(st) = (D)νA (s) + (D)νA (t)

−
(

νA (s) + νA (t) − νA (s)νA (t)

1 − νA (s)νA (t)

)
= K2.

Further, it follows that

(T D)μ(st) = K1

(D)μA (s) + (D)μA (t)

−
(

μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
= K1

(D)μA (s) + (D)μA (t)

−2

(
μA (s)μA (t)

μA (s) + μA (t) − μA (s)μA (t)

)
+ μB(st) = K1

μB(st) = K1 − R1.

Likewise, for non-membership grade

(T D)ν(st) = K2

(D)νA (s) + (D)νA (t)

−
(

νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
= K2

(D)νA (s) + (D)νA (t)

−2

(
νA (s) + νA (t) − 2νA (s)νA (t)

1 − νA (s)νA (t)

)
+ νB(st) = K2

νB(st) = K2 − R2.

Hence we conclude that μB = K1 −R1 and νB = K2 −R2

are constant functions. 
�
Theorem 16 Let G = (A ,B) be a PDFG on a regular crisp
graphG∗ = (V , E).ThenμB andνB are constant functions
if and only if G = (A ,B) is both (R1,R2)-regular and
(K1,K2)-totally edge regular PDFG.

Proof Assume that G is a PDFG on a regular crisp graph
G∗. Also, suppose that μB and νB are constant functions;
then μB(s j sk) = C1 and νB(s j sk) = C2 for all s j sk ∈
E . By using the definition of vertex degree (D)G(s j ) =
((D)μ(s j ), (D)ν(s j )), we must have

(D)μ(s j ) =
∑

s j ,sk �=s j∈V

μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)

=
∑

s j sk∈E
μB(s j sk) =

∑
s j sk∈E

C1 = RC1 = R1,

(D)ν(s j ) =
∑

s j ,sk �=s j∈V

νA (s j ) + νA (sk) − 2νA (s j )νA (sk)

1 − νA (s j )νA (sk)

=
∑

s j sk∈E
νB(s j sk) =

∑
s j sk∈E

C2 = RC2 = R2.

Therefore, G = (A ,B) is a (R1,R2)-regular PDFG.
Further, by definition of total degree of edge, we have

(T D)μ(s j sk) =
∑

s j sl∈E,l �=k

μB(s j sl)

+
∑

sk sl∈E,l �= j

μB(sksl) + μB(s j sk)

=
∑

s j sl∈E
C1 +

∑
sk sl∈E

C1 + C1

= C1(R − 1) + C1(R − 1) + C1

= C1(2R − 1) = K1 for all s j sk ∈ E .

In the similar manner, we can easily show that (T D)ν(s j sk)
= K2 for all s j sk ∈ E .Hence we conclude thatG = (A ,B)

is both (R1,R2)-regular and (K1,K2)-totally edge regular
PDFG.

Conversely, assume that G is both (R1,R2)-regular and
(K1,K2)-totally edge regular PDFG. To prove that μB and
νB are constant functions, consider the definition of total
degree of edge, we have

(T D)μ(s j sk) = (D)μA (s j ) + (D)μA (sk)

− μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)

K1 = R1 + R1

− μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)

μB(s j sk) = 2R1 − K1 for all s j sk ∈ E .

In the similar manner, we can easily show that μB(s j sk) =
2R2 − K2 for all s j sk ∈ E . Hence μB and νB are constant
functions. 
�
Theorem 17 Let G = (A ,B) be a PDFG on a crisp graph
G∗ = (V , E). If μB and νB are constant functions, then G
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is (R1,R2)-edge regular if and only if G∗ is an edge regular
graph.

Proof Suppose that μB and νB are constant functions such
that μB(s j sk) = C1 and νB(s j sk) = C2 for all s j sk ∈ E .

Assume that G is (R1,R2)-edge regular. To prove that G∗ is
an edge regular graph, we suppose on contrary that G∗ is not
an edge regular graph, i.e., (D)G∗(s j sk) �= (D)G∗(slsn) for
at least one pair of s j sk, sl sn ∈ E . By definition of degree of
edge of PDFG, we have

(D)μ(s j sk) = (D)μA (s j ) + (D)μA (sk)

−2

(
μA (s j )μA (sk)

μA (s j ) + μA (sk) − μA (s j )μA (sk)

)

=
∑

s j sl∈E,l �=k

μB(s j sl )

+
∑

sksl∈E,l �= j

μB(sksl ) − 2μB(s j sk)

=
∑

s j sl∈E
C1 +

∑
sksl∈E

C1 − 2C1

= (D)G∗(s j )C1 + (D)G∗(sk)C1 − 2C1

= C1((D)G∗(s j ) + (D)G∗(sk) − 2)

= C1(D)G∗(s j sk).

Likewise, we can easily show that (D)ν(s j sk) = C2(D)G∗
(s j sk) for all s j sk ∈ E . Therefore, (D)G(s j sk) = (C1(D)G∗
(s j sk), C2(D)G∗(s j sk)) and (D)G(sl sn) = (C1(D)G∗(sl sn),
C2(D)G∗(sl sn)). As (D)G∗(s j sk) �= (D)G∗(sl sn), thus
(D)G(s j sk) �= (D)G(sl sn), Therefore, G is not (R1,R2)-
edge regular PDFG, a contradiction. Hence we conclude that
G∗ is an edge regular graph.

Conversely, assume that G∗ is an edge regular graph. To
show that G is (R1,R2)-edge regular PDFG, we suppose on
the contrary that G is not (R1,R2)-edge regular PDFG, i.e.,
(D)G(s j sk) �= (D)G(sl sn) for at least one pair of s j sk, sl sn ∈
E , ((D)μ(s j sk), (D)ν(s j sk)) �= ((D)μ(slsn), (D)ν(sl sn)).

Now (D)μ(s j sk) �= (D)μ(sl sn) implies that

∑
s j sp∈E,p �=k

μB(s j sp) +
∑

sksp∈E,p �= j

μB(sksp)

�=
∑

sl sm∈E,m �=n

μB(slsm) +
∑

snsm∈E,m �=l

μB(snsm).

As μB is a constant function, we have (D)G∗(s j sk) �=
(D)G∗(sl sn), a contradiction. Hence we conclude that G is a
(R1,R2)-edge regular PDFG. 
�

Numerical example to decision-making

In this section, a decision-making problem concerning the
evaluation of appropriate ETL (Extract, TransformandLoad)

software for a Business Intelligence (BI) project (adopted
from [47]) is solved to illustrate the applicability of the
proposed concept of PDFGs in realistic scenario. The algo-
rithm for the evaluation of appropriate ETL software for a
BI project within the framework of Pythagorean fuzzy pref-
erence relation (PFPR) [27] is outlined in Algorithm 1.

Evaluation of appropriate ETL software for a BI
project

Business Intelligence, a field of information systems archi-
tecture, allows implementation that includes collection,
transformation and restoringof data for assisting thedecision-
making experts in enterprises. The central part of BI is
established on data warehouses powered by ETL. With the
gradual development of BI usage, ETL, the initial point of
the project, has become a key factor that affects the failure
or success of the BI project. The main task of BI project is
the evaluation of most appropriate and suitable ETL soft-
ware which maximizes the profits, limits the costs, performs
well and is flexible to accommodate future advancements
in the project. A number of ETL software are available in
the market. Each software has its own technique for extract-
ing, loading and transforming of data. A decision-making
expert is hired that pairwise compares the five ETL soft-
waresSl (l = 1, 2, . . . , 5) for a new BI project on the basis
of the criterion ‘functionality and reliability’ and provides his
preference information in the form of PFPR Q = (qlp)5×5,

where qlp = (μlp, νlp) is the Pythagorean fuzzy element
assigned by the decision-making expert with μlp as the
degree to which the ETL software Sl is preferred over the
ETL softwareSp with respect to the given criterion and νlp
as the degree to which the ETL softwareSl is not preferred
over the ETL software Sp with respect to the given crite-
rion. The PFPR Q = (qlp)5×5 is expressed in the following
tabular form (Table 1).

The Pythagorean fuzzy directed network D correspond-
ing to PFPR Q given in Table 1, is presented in Fig.
20.

In order to compute the clumped PFE qlp = (μlp, νlp)

(l, p = 1, 2, . . . , 5) of the ETL software Sl , over all
the other ETL softwares, we utilize Pythagorean Dombi

Table 1 PFPR of the decision-making expert

Q S1 S2 S3 S4 S5

S1 (0.5, 0.5) (0.7, 0.5) (0.5, 0.6) (0.3, 0.8) (0.4, 0.3)

S2 (0.5, 0.7) (0.5, 0.5) (0.2, 0.9) (0.8, 0.4) (0.1, 0.8)

S3 (0.6, 0.5) (0.9, 0.2) (0.5, 0.5) (0.6, 0.6) (0.5, 0.4)

S4 (0.8, 0.3) (0.4, 0.8) (0.6, 0.6) (0.5, 0.5) (0.6, 0.7)

S5 (0.3, 0.4) (0.8, 0.1) (0.4, 0.5) (0.7, 0.6) (0.5, 0.5)
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Fig. 20 Directed network of PFPR

fuzzy arithmetic averaging (PDFAA) operator [48] given in
Equation 1

ql = PDFAA(ql1, ql2, . . . , qln)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√√√√√√√√

1 − 1

1 +
[
∑n

p=1
1

n

(
μ2
lp

1 − μ2
lp

)γ
] 1

γ

,

1

1 +
[∑n

p=1
1

n

(
1 − νlp

νlp

)γ ] 1

γ

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)

As in Dombi’s t-norm and t-conorm, we have taken γ = 1.
Therefore, in Equation 1, γ = 1 is considered to obtain
the combined overall preference value ql (l = 1, 2, . . . , 5),
which is given below:

q1 = (0.5264, 0.4878), q2 = (0.5770, 0.6032),

q3 = (0.7401, 0.3798),

q4 = (0.6377, 0.5166), q5 = (0.6341, 0.2752).

The score functions S(ql) of the combined overall prefer-
ence value ql (l = 1, 2, . . . , 5) is calculated by utilizing
S(ql) = μ2

l − ν2l [16], which is shown below:

S(q1) = 0.0386, S(q2) = −0.0262,

S(q3) = 0.3603, S(q4) = 0.1211 and S(q5) = 0.3589.

On the basis of score functions, we get the ranking of the
ETL softwaresSl , l = 1, 2, . . . , 5 as follows:

S3 � S5 � S4 � S1 � S2.

According to the ranking, it is concluded that S3 is the
most appropriate ETL software for a new project among
all.

If Pythagorean Dombi fuzzy geometric averaging
(PDFGA) operator [48] is applied instead of PDFAA oper-
ator, then the clumped PFE qlp = (μlp, νlp) (l, p =
1, 2, . . . , 5) of the ETL software Sl , over all the other ETL
softwares, is obtained by using Eq. 2:

ql = PDFGA(ql1, ql2, . . . , qln)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1

1 +
[∑n

p=1
1

n

(
1 − μlp

μlp

)γ ] 1

γ

,

√√√√√√√√

1 − 1

1 +
[
∑n

p=1
1

n

(
ν2lp

1 − ν2lp

)γ ] 1

γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

For γ = 1, we obtain

q1 = (0.4440, 0.6190), q2 = (0.2469, 0.7751),

q3 = (0.5921, 0.4756),

q4 = (0.5504, 0.6538), q5 = (0.4756, 0.4715).

The score functions S(ql) of the combined overall preference
value ql(l = 1, 2, . . . , 5) is calculated by utilizing S(ql) =
μ2
l − ν2l [16], which is shown below:

S(q1) = −0.1750, S(q2) = −0.5282,

S(q3) = 0.1165, S(q4) = −0.1034 and S(q5) = 0.0041.

On the basis of score functions, we get the ranking of the
ETL softwaresSl , l = 1, 2, . . . , 5 as follows:

S3 � S5 � S4 � S1 � S2.

According to the ranking, it is concluded thatS3 is the most
appropriate ETL software for a new project among all

We present our proposed method for decision-making in
the following Algorithm 1:
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Algorithm 1 The algorithm for evaluation of appropriate
ETL software for a BI project.
INPUT:A discrete set of feasible alternativesS = {S1,S2, . . . ,Sn},
a conflicting criterion in order to achieve the target and construction of
PFPR Q = (qlp)n×n corresponding to considered criterion.
OUTPUT: The selection of optimal alternative.

1. begin
2. Aggregate all qlp = (μlp, νlp) (l, p = 1, 2, . . . , n) corresponding

to the alternative Sl and get the PFE ql of the alternative Sl over
all the other alternatives by utilizing the PDFAA operator

ql = PDFAA(ql1, ql2, . . . , qln)

=
(√√√√√√√

1 − 1

1 +
[∑n

p=1
1

n

(
μ2
lp

1 − μ2
lp

)γ ] 1

γ

,

1

1 +
[∑n

p=1
1

n

(
1 − νlp

νlp

)γ ] 1

γ

)
, l = 1, 2, 3, . . . , n.

or PDFGA operator

ql = PDFGA(ql1, ql2, . . . , qln)

=
(

1

1 +
[ ∑n

p=1
1

n

(
1 − μlp

μlp

)γ ] 1

γ

,

√√√√√√√
1 − 1

1 +
[∑n

p=1
1

n

(
ν2lp

1 − ν2lp

)γ ] 1

γ

)
, l = 1, 2, 3, . . . , n.

3. Compute the score functions S(ql ) of the combined overall prefer-
ence value ql (l = 1, 2, . . . , n) by using S(ql ) = μ2

l − ν2l .

4. On the basis of score functions S(ql )(l = 1, 2, . . . , n), rank all the
alternatives Sl (l = 1, 2, . . . , n).

5. Output the optimal alternative.
6. end

The results computed in this section are compared (given
in Table 2) with the decision results in [47], where the
problem related to evaluation of ETL software is solved
by AHP-TOPSIS method. Table 2 exhibits that the deci-
sion results of [47] are consistent with our proposed PDFAA
and PDFGAmethod, which interprets the authenticity of the
method.

Table 2 Thedecision results of the alternatives using the differentmeth-
ods

Methods Ranking of alternatives

Hanine et al. [47] S3 � S4 � S5 � S2 � S1

Our proposed PDFAA method S3 � S5 � S4 � S1 � S2

Our proposed PDFGA method S3 � S5 � S4 � S1 � S2

Conclusions

Graphs are the wide-ranging models found almost every-
where in the human made and natural structures such as, for
modeling+ relationships and process dynamics in social, bio-
logical and physical systems. Pythagorean fuzzy models are
more practical and useful than fuzzy and intuitionistic fuzzy
models as it provide additional spaces between membership
and non-membership grades, for representing imprecise and
incomplete information which occur in real world scenar-
ios. In this paper, we have observed the excellent flexibility
of Dombi operators with operational parameters in graph
theoretical concepts under Pythagorean fuzzy environment.
Further, we have inspected some substantial characteristics
like strongness, completeness, vertex and edge regularity. As
vertex and edge regularity, particularly regular, totally reg-
ular, strongly regular and biregular graphs are extensively
applied in designing reliable computer networks and matrix
representations, they led many developments in structural
theory of graphs. Some necessary and sufficient conditions
have been initiated to justify above indicated characteris-
tics. By taking distinct values of operational parameters,
many decision-making problems can be easily handled. Our
work has adopted an incentive approach towards a decision-
making problem concerning the evaluation of appropriate
ETL software for a business intelligence project. Further
work will pay particular attention on (1) Interval-valued
Pythagorean fuzzy graphs; (2) Simplified interval-valued
Pythagorean fuzzy graphs and (3) Hesitant Pythagorean
fuzzy graphs.
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