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Abstract The paper presents first the formal semantics of a
parallel formalism inspired by biological cells, and then pro-
vides a faithful parallel implementation of this computational
model using a known distributed computing middleware and
taking care of various synchronization issues. Synchroniza-
tion is achieved using barriers and preconditions; both refer
to the fact that a membrane can apply its rules only after it
has received signals from the other related membranes. A
scalable parallel implementation is developed by using the
MapReduce paradigm in GridGain which allows the split-
ting of a task into multiple subtasks, the parallel execution
of these subtasks in parallel and the aggregation of the par-
tial results into a single, final result. This implementation is
appropriate for the description of this bio-inspired parallel
model, a model which is computationally equivalent to Tur-
ing machines and able to provide polynomial solutions to
NP-complete problems.

Keywords Bio-inspired parallel model · Membrane
computing · Semantics · Scalable implementation

Introduction

Membrane systems are essentially parallel and nondeter-
ministic computing models inspired by the compartments
of (eukaryotic) cells and their biochemical reactions. The
structure of a cell is represented by a set of hierarchically
embedded membranes, all of which are contained inside a
skin membrane. The molecular species (ions, proteins, etc.)
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Romania

floating inside and between cellular compartments are repre-
sented bymultisets of objects described bymeans of symbols
over a given alphabet. Chemical reactions are represented
by evolution rules which operate on the objects, as well as
on the compartmentalized structure (by dissolving, dividing,
creating, or moving membranes). Membrane systems (also
called P systems) perform parallel computations in the fol-
lowing way: starting from an initial configuration (the initial
membrane structure and the initialmultisets of objects placed
inside themembranes), a system evolves by applying the evo-
lution rules of each membrane in a nondeterministic manner.
A rule is applicable when all the objects which appear in its
left-hand side are available in the membrane where the rule
is placed.

Since membrane systems aim to abstract the function-
ing of living cells, several extensions come from both cell
biology and computer science. The computability power and
efficiency have been investigated using the approaches of
formal languages, automata and complexity theory. Mem-
brane systems are presented together with many variants
and examples in [10]. Several applications of these sys-
tems are presented in [7]. The state of the art is presented
in the handbook published recently by Oxford University
Press [11].

In this paper, we present a parallel implementation of
membrane systems using GridGain [12], a JVM-based appli-
cation middleware that supports the building of highly
scalable real-time and data intensive distributed applica-
tions working on any infrastructure, from a small local
cluster to large private grids and huge private, public and
hybrid clouds. The implementation using such an appeal-
ing distributed computing technology involves some specific
synchronization issues studied after defining the opera-
tional semantics and describing the parallel (sub)steps of
evolution.
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Operational semantics for membranes

In the basic model of membrane computing, objects are rep-
resented using symbols from a given alphabet, and each
symbol from this alphabet can appear inside a region in
many different copies. A membrane system is composed
of membranes which do not intersect, and which are all
contained within a skin membrane. Each membrane can
contain multisets of objects, evolution rules and other mem-
branes. The objects inside a membrane evolve in a maximal
parallel manner according to the evolution rules inside
the same membrane. According to [10], maximal parallel
“means that we assign objects to rules, nondeterministi-
cally choosing the objects and the rules, until no further
assignment is possible.” Essentially, a membrane system of
degree m is � = (O, μ,w1, . . . wm, (Rules(1), ρ1), . . . ,
(Rules(m), ρm), io), where:

– O is an alphabet of objects;
– μ is a membrane structure, with the membranes labeled
by natural numbers 1 . . .m in a one-to-one manner;

– wi are the initial multisets over O associated with the
membranes 1 . . .m;

– Rules(1), . . . , Rules(m) are finite sets of rules associ-
ated with the membranes 1 . . .m; the rules have the form
u → v, where u is a non-empty multiset of objects and v

is a multiset containing messages which are of the form
(a, here), (a, out), (a, in j ) and the dissolving symbol
δ;

– ρi is a partial order relation over Ri , specifying a priority
relation among the rules: (r1, r2) ∈ ρi iff r1 > r2 (i.e., r1
has a higher priority than r2);

– i0 is either a number between 1 and m specifying the
output membrane of �, or it is equal to 0 indicating that
the output is the outer region.

For a rule of form u → v, themessage (a, here) in v says that
a, once created, remains in the current membrane; (a, out)
says that a, once created, is sent into the parent membrane
(or into the environment, if the rule is inside the skin mem-
brane); (a, in j ) says that a is sent into the child membrane
with label j—if no such child membrane exists, the rule
cannot be applied. If the special symbol δ appears in v,
then the membrane which delimits the region is dissolved;
in this way, all the objects in this region become elements
of the surrounding membrane, while the rules of the dis-
solved membrane are removed. Since the skin is not allowed
to be dissolved, we consider that the rules of the skin do not
involve δ.

First we present an abstract syntax for membrane systems,
and then a structural operational semantics of these systems
by means of three sets of inference rules corresponding to

maximal parallel rewriting, parallel communication, and par-
allel dissolving. A similar approach is presented in [2].

In general, operational semantics provide a way of rig-
orously describing the evolution of a computing system.
Configurations are states of a system, and a computation con-
sists of a sequence of transitions from one configuration to
another, until a final configuration is reached.

Considering a set R of inference rules of the form
premises
conclusion , the evolution of a membrane system can be pre-
sented as a deduction tree. A structural operational semantics
of membrane systems emphasizes the deductive nature of
membrane computing by describing the transition steps
through a set of inference rules. A sequence of transition
steps represents a computation. A computation is successful
if this sequence is finite, namely there is no rule applicable
to the objects present in the last committed configuration. In
a halting committed configuration, the result of a successful
computation is the total number of objects present either in
the membrane considered as the output membrane, or in the
outer region.

Let O be a finite alphabet of objects over which we con-
sider the free commutative monoid O∗

c , whose elements are
multisets. The empty multiset is denoted by empty. Objects
can be enclosed in messages together with a target indi-
cation. We have here messages of typical form (w, here),
out messages (w, out), and in messages (w, inL). For the
sake of simplicity, hereinafter we consider that the messages
with the same target indication merge into one message:
∏

i∈I (vi , here) = (w, here),
∏

i∈I (vi , inL) = (w, inL),
∏

i∈I (vi , out) = (w, out), with w = ∏
i∈I vi , I a non-

empty set, and (vi )i∈I a family of multisets over O . In what
follows the set I = {1, . . . , n} of the first n positive integers
is denoted by [n].

We use the mappings rules and priority to associate to
a membrane label the set of evolution rules and the prior-
ity relation over rules (when this exists): rules(Li ) = Ri ,
priority(Li ) = ρi , and the projections L and w which return
from a membrane its label and its current multiset, respec-
tively.

The set M(�) of membranes for a P system �, and the
membrane structures are defined inductively, as
follows:

– if L is a label andw is a multiset over O∪(O×{here})∪
(O × {out}) ∪ {δ}, then 〈 L | w 〉 ∈ M(�); 〈 L | w 〉 is
called a simple (or elementary) membrane, and it has the
structure 〈〉;

– if L is a label, w is a multiset over O ∪ (O × {here}) ∪
(O × {inL(Mj )| j ∈ [n]}) ∪ (O × {out}) ∪ {δ}, and M1,
…, Mn ∈ M(�), n ≥ 1, where each membrane Mi has
the structure μi , then 〈 L | w ; M1, . . . , Mn 〉 ∈ M(�);
〈 L | w ; M1, . . . , Mn 〉 is called a composite membrane
having the structure 〈μ1, . . . , μn〉.
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We conventionally assume the existence of a set of sib-
ling membranes denoted by NULL such that M , NULL
= M = NULL, M and 〈 L | w ; NULL 〉 = 〈 L | w 〉.
The use of NULL significantly simplifies several defini-
tions and proofs. Let M∗(�) be the free commutative
monoid generated by M(�) with the operation (_, _) and
the identity element NULL . We define M+(�) as the
set of elements from M∗(�) without the identity element.
Let M+, N+ range over non-empty sets of sibling mem-
branes, Mi over membranes, M∗, N∗ range over possibly
empty multisets of sibling membranes, and L over labels.
The membranes preserve the initial labeling, evolution rules
and priority relation among them in all subsequent configu-
rations. Therefore, to describe a membrane we consider its
label and the current multiset of objects together with its
structure.

A configuration for a P system� is a membrane structure
together with the multisets of objects placed inside the mem-
branes. Each membrane has no messages and no dissolving
symbol δ, i.e., the multisets of all regions are elements in O∗

c .
We denote by C(�) the set of configurations for �.

An intermediate configuration is a configuration in which
wemay findmessages or the dissolving symbol δ. We denote
by C#(�) the set of intermediate configurations. We have
C(�) ⊆ C#(�).

Each membrane system � has an initial configuration
which is characterized by the initial multiset of objects
for each membrane and the initial membrane structure of
the system. For two configurations C1 and C2 of �, we
say that there is a transition from C1 to C2, and write
C1 ⇒ C2, if the following steps are executed in the given
order:

1. maximal parallel rewriting step each membrane evolves
in a maximal parallel manner;

2. parallel communication of objects through membranes
by sending and receiving messages;

3. parallel membrane dissolving, consisting in dissolving
the membranes containing δ.

The last two steps take place only if there are messages
and δ symbols resulting from the first step. If the first step is
not possible, then neither are the other two steps; we say that
the system has reached a halting configuration.

Maximal parallel rewriting step

We briefly present an operational semantics for membrane
systems, considering each of the three steps. First we for-

mally define the maximal parallel rewriting
mpr�⇒ L for a

multiset of objects in onemembrane, andwe extend it tomax-

imal parallel rewriting
mpr�⇒ over several membranes. Some

preliminary notions are required.

Definition 1 The irreducibility property w.r.t. the maximal
parallel rewriting relation for multisets of objects, mem-
branes, and for sets of sibling membranes is defined as
follows:

– a multiset of messages and the dissolving symbol δ are
L-irreducible;

– a multiset of objects w is L-irreducible iff there are no
rules in rules(L) applicable to w with respect to the pri-
ority relation priority(L);

– a simple membrane 〈 L | w 〉 ismpr-irreducible iff w is
L-irreducible;

– a non-empty set of sibling membranes M1, . . . , Mn is
mpr-irreducible iff Mi is mpr-irreducible for every i ∈
[n]; NULL ismpr-irreducible;

– a composite membrane 〈 L | w ; M1, . . . , Mn 〉 is mpr-
irreducible iff w is L-irreducible, and the set of sibling
membranes M1, . . . , Mn is mpr-irreducible.

The priority relation is a form of control on the applica-
tion of rules. In the presence of a priority relation, no rule
of a lower priority can be used during the same evolution
step when a rule with a higher priority is used, even if the
two rules do not compete for the same objects. We formal-
ize the conditions imposed by the priority relation on rule
applications in the definition below.

Definition 2 Let M be a membrane labeled by L , and
w a multiset of objects. A non-empty multiset R =
(u1 → v1, . . . , un → vn) of evolution rules is (L , w)-
consistent if:

– R is a multiset of rules from rules(L),
– w = u1 . . . unz, so each rule r ∈ R is applicable on w,
– (∀r ∈ R,∀r ′ ∈ rules(L)) r ′ applicable on w implies

(r ′, r) /∈ priority(L) (we have (r1, r2) ∈ priority(L) iff
r1 > r2 ),

– (∀r ′, r ′′ ∈ R) (r ′, r ′′) /∈ priority(L),
– the dissolving symbol δ has at most one occurrence in
the multiset v1 . . . vn .

Maximal parallel rewriting relations
mpr�⇒ L and

mpr�⇒ are
defined by the following inference rules:

For each w = u1 . . . unz ∈ O+
c such that z is L-

irreducible, and (L , w)-consistent rules (u1 → v1,…,
un → vn),

(R1)
u1 . . . unz

mpr�⇒L v1 . . . vnz
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For each w ∈ O+
c , w′ ∈ (O ∪ Msg(O) ∪ {δ})∗c , and

mpr-irreducible M∗ ∈ M∗(�),

(R2)
w

mpr�⇒L w′

〈 L | w ; M∗ 〉 mpr�⇒ 〈 L | w′ ; M∗ 〉

For each L-irreduciblew∈O∗
c , and M+, M ′+ ∈ M+(�),

(R3)
M+

mpr�⇒ M ′+
〈 L | w ; M+ 〉 mpr�⇒ 〈 L | w ; M ′+ 〉

For each w ∈ O+
c , w′ ∈ (O ∪ Msg(O) ∪ {δ})+c ,

M+, M ′+ ∈ M+(�),

(R4)
w

mpr�⇒L w′, M+
mpr�⇒ M ′+

〈 L | w ; M+ 〉 mpr�⇒ 〈 L | w′ ; M ′+ 〉

For each M, M ′ ∈ M(�), and M+, M ′+ ∈ M+(�),

(R5)
M

mpr�⇒ M ′, M+
mpr�⇒ M ′+

M, M+
mpr�⇒ M ′, M ′+

For each M, M ′ ∈ M(�), and mpr-irreducible M+ ∈
M+(�),

(R6)
M

mpr�⇒ M ′

M, M+
mpr�⇒ M ′, M+

We note that
mpr�⇒ for simple membranes can be described

by rule (R2) with M∗ = NULL .

Remark 1 M is mpr-irreducible iff it does not exist M ′ such
that M

mpr�⇒ M ′.

Proposition 1 Let � be a membrane system. If C ∈ C(�)

and C ′ ∈ C#(�) such that C
mpr�⇒ C ′, then C ′ is mpr-

irreducible.

The proof follows by structural induction on C .

The formal definition of
mpr�⇒ given above corresponds to

the intuitive description of maximal parallelism. The nonde-
terminism is given by the associativity and commutativity of
the concatenation operation over objects used inR1. The par-
allelism of the evolution rules in a membrane is also given

by R1 : u1 . . . unz
mpr�⇒ Lv1 . . . vnz says that the rules of

themultiset (u1 → v1, . . . , un → vn) are applied simulta-

neously. The fact that the membranes evolve in parallel is
described by rules R3 − R6.

Parallel communication among membranes

We say that a multiset w is here-free/out-free/ inL -free if it
does not contain any here/out/ inL messages, respectively.
For w a multiset of objects and messages, we introduce the
operations obj, here, out, and inL as follows:

obj(w) is obtained from w by removing all messages,

here(w)=
{
empty if w is here-free,
w′′ if w=w′(w′′, here)∧w′ is here-free;

out(w) =
{
empty if w is out-free,
w′′ if w = w′(w′′, out) ∧ w′ is out-free;

inL(w) =
{
empty if w is inL -free,
w′′ if w = w′(w′′, inL) ∧ w′ is inL -free.

We consider the extension of the operator w (pre-
viously defined over membranes) to non-empty sets of
sibling membranes by setting w(NULL) = empty and
w(M1, . . . , Mn) = w(M1) . . .w(Mn).

We recall that the messages with the same target merge in
one larger message.

Definition 3 The tar-irreducibilityproperty formembranes
and for sets of sibling membranes is defined as follows:

– a simple membrane 〈L|w〉 is tar-irreducible iff w is
here-free and L �= Skin ∨ (L = Skin ∧ wout − free);

– a non-empty set of sibling membranes M1, . . . , Mn is
tar-irreducible iffMi is tar -irreducible for every i ∈ [n];
NULL is tar-irreducible;

– a composite membrane 〈 L |w ; M1, . . . , Mn 〉, n ≥ 1, is
tar-irreducible iff: w is here-free and inL(Mi )-free for
every i ∈ [n], L �= Skin ∨ (L = Skin ∧ w is out-free),
w(Mi ) is out-free for all i ∈ [n], and the set of sibling
membranes M1, . . . , Mn is tar-irreducible;

NotationWe treat messages of the form (w′, here) as a par-
ticular communication inside a membrane, and we substitute
(w′, here) by w′. We denote by w the multiset obtained by
replacing (here(w), here) with here(w) in w. For instance,
if w = a (bc, here) (d, out) then w = abc (d, out), where
here(w) = bc. We note that inL(w) = inL(w), and
out(w) = out(w).

The parallel communication relation tar�⇒ is defined by
the following inference rules:

For each tar-irreducible M∗ ∈ M∗(�) and multiset
w such that here(w) �= empty, or L = Skin ∧
out(w) �= empty, or there exists Mi ∈ M∗ with
inL(Mi )(w)out(w(Mi )) �= empty,
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(C1) 〈 L | w ; M∗ 〉 tar�⇒ 〈 L | w′ ; M ′∗ 〉
where

w′ =
{
obj(w)out(w(M∗)) if L= Skin,

obj(w) (out(w), out)out(w(M∗)) otherwise;
and
w(M ′

i ) = obj(w(M ′
i )) inL(Mi )(w), for all Mi ∈ M∗

For each M1, . . . , Mn, M ′
1, . . . , M

′
n ∈ M+(�), and

each w,

(C2)
M1, . . . , Mn

tar�⇒ M ′
1, . . . , M

′
n

〈 L | w ; M1, . . . , Mn 〉 tar�⇒ 〈 L | w′′ ; M ′′
1 , . . . , M ′′

n 〉

where

w′′ =
⎧
⎨

⎩

obj(w)out(w(M ′
1, . . . , M

′
n)) if L = Skin,

obj(w) (out(w), out)out(w(M ′
1, . . . , M

′
n))

otherwise;

and each M ′′
i is obtained from M ′

i by replacing
its resources with
w(M ′′

i ) = obj(w(M ′
i )) inL(M ′

i )
(w), for all i ∈ [n]

For each M, M ′ ∈ M(�), and tar-irreducible M+ ∈
M+(�),

(C3)
M

tar�⇒ M ′

M, M+
tar�⇒ M ′, M+

For each M ∈ M(�), M+ ∈ M+(�),

(C4)
M

tar�⇒ M ′, M+
tar�⇒ M ′+

M, M+
tar�⇒ M ′, M ′+

Remark 2 M is tar-irreducible iff there does not exist M ′
such that M

tar�⇒ M ′.

Proposition 2 Let � be a membrane system. If C ∈ C#(�)

with messages and C
tar�⇒ C ′, then C ′ is tar-irreducible.

Parallel membrane dissolving

If the special symbol δ occurs in the multiset of objects
of a membrane labeled by L , that membrane is dissolved,

its evolution rules and the associated priority relation are
lost, and its contents (objects and membranes) are added
to the contents of the surrounding membrane. We say that
a multiset w is δ-free if it does not contain the special
symbol δ.

Definition 4 The δ-irreducibility property for membranes
and for sets of sibling membranes is defined as follows:

– a simplemembrane is δ-irreducible iff it has nomessages
and is δ-free;

– a non-empty set of sibling membranes M1, . . . , Mn is δ-
irreducible iff every membrane Mi is δ-irreducible, for
1 ≤ i ≤ n; NULL is δ-irreducible;

– a composite membrane 〈 L | w ; M+ 〉 is δ-irreducible
iff w has no messages, M+ is δ-irreducible, and w(M+)

is δ-free.

Parallel dissolving relation δ�⇒ is defined by the follow-
ing inference rules:

For each δ-irreducible M∗ ∈ M∗(�), 〈 L2 | w2δ ; M∗ 〉,
and label L1,

(D1)
〈 L1 | w1 ; 〈 L2 | w2δ ; M∗ 〉 〉 δ�⇒ 〈 L1 | w1w2 ; M∗ 〉

For each M+ ∈ M+(�), M ′∗ ∈ M∗(�), δ-free multiset
w2, multisets w1, w

′
2, and labels L1, L2

(D2)
〈 L2 | w2 ; M+ 〉 δ�⇒〈 L2 | w′

2 ; M ′∗ 〉
〈 L1 | w1 ; 〈 L2 | w2 ; M+ 〉 〉 δ�⇒〈 L1 | w1 ; 〈 L2 | w′

2 ; M ′∗ 〉 〉

For each M+ ∈ M+(�), M ′∗ ∈ M∗(�), multisets
w1, w2, w

′
2, and labels L1, L2

(D3)
〈 L2 | w2δ ; M+ 〉 δ�⇒〈 L2 | w′

2δ ; M ′∗ 〉
〈 L1 | w1 ; 〈 L2 | w2δ ; M+ 〉 〉 δ�⇒〈 L1 | w1w

′
2 ; M ′∗ 〉

For each M+ ∈ M+(�), M ′∗, N ′∗ ∈ M∗(�), δ-
irreducible 〈 L | w ; N+ 〉, and multisets w′, w′′,

(D4)
〈 L | w ; M+ 〉 δ�⇒ 〈 L | w′ ; M ′∗ 〉

〈 L | w ; M+, N+ 〉 δ�⇒ 〈 L | w′ ; M ′∗, N+ 〉
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(D5)
〈 L | w ; M+ 〉 δ�⇒ 〈 L | ww′ ; M ′∗ 〉 〈 L | w ; N+ 〉 δ�⇒ 〈 L | ww′′ ; N ′∗ 〉

〈 L | w ; M+, N+ 〉 δ�⇒ 〈 L | ww′w′′ ; M ′∗, N ′∗ 〉

Remark 3 M is δ-irreducible iff there does not exist M ′ such
that M

δ�⇒ M ′.

Proposition 3 Let � be a membrane system. If C ∈ C#(�)

is tar-irreducible and C
δ�⇒ C ′, then C ′ is δ-irreducible.

It is worth noting that C ∈ C(�) iff C is tar-irreducible
and δ-irreducible. According to the standard description in
membrane computing, a transition step between two config-
urations C,C ′ ∈ C(�) is given by: C ⇒ C ′ iff C and C ′ are
related by one of the following relations:

either C
mpr�⇒; tar�⇒ C ′,

or C
mpr�⇒; δ�⇒ C ′,

or C
mpr�⇒; tar�⇒; δ�⇒ C ′.

The three alternatives in defining C ⇒ C ′ are given by
the existence of messages and dissolving symbols along the
system evolution. Starting from a configuration without mes-
sages and dissolving symbols, we apply the “mpr” rules and
get an intermediate configuration which is mpr-irreducible;
if we have messages, then we apply the “tar” rules and get
an intermediate configuration which is tar-irreducible; if we
have dissolving symbols, then we apply the dissolving rules
and get a configurationwhich is δ-irreducible. After applying
“mpr”-step there are either messages, δ symbols or both. If
we have messages (could be only here messages) we should
apply the“tar” step; otherwise, for δ objects we should apply
δ step. If the last configuration has no messages or dissolv-
ing symbols, then we say that the transition relation ⇒ is
well defined as an evolution step between the first and last
configurations.

Proposition 4 The relation⇒ is well defined over the entire
set C(�) of configurations.

Examples of inference trees are presented in [2].

Synchronization issues in membrane systems

It is evident from the operational semantics that there are
several synchronization aspects related to the evolution of a
membrane system.

The relationship between the synchronous and the asyn-
chronous approaches in computing systems, particularly in

massively parallel and multiprocessor computing systems,
will remain a challenging topic for many years to come.
There are reasons to think that the asynchronous approach
has some advantages; however, the synchronous methodol-
ogy prevails in the modern computing systems architecture.
As if this is not enough, different fields treat the concepts of
synchrony and asynchrony somewhat differently. The main
terms (parallelism, concurrency, time) should be clarified
to discuss the synchronous and asynchronous issues. In our
approach we work with a “causal” time (defined as the par-
tial order on some events resulting from their cause–effect
relationships) rather a physical time (defined as an indepen-
dent physical variable related to a clock). The concept of
causal time was formulated initially by Aristotle (If noth-
ing happens, no time); it can be useful in systems dealing
with events defining cause–effect relationships. The abstract
model of a finite state machine corresponds to the model
of an asynchronous system evolving in logical time; a pos-
sible conversion to a synchronous approach is given by a
barrier synchronization (as an engineering solution) to man-
age unpredictable variations of the delays introduced by
real physical components. An algorithm (its program) con-
sists of a sequence of steps which perform some actions.
Asynchrony is usually treated as the dependence of the
number of steps required to obtain the result on the input
data. In the case of a fully sequential algorithm (program),
such treatment of asynchrony is important only for perfor-
mance evaluation. Parallel algorithms and programs present
new and challenging tasks. Certain steps of an algorithm
can be performed concurrently. Representing an algorithm
(program) in the form suitable for concurrent implementa-
tion is reduced to the cause–effect relationships between the
operations (processes, commands) in the algorithm. Thus, a
parallel specification is a procedure for introducing logical
time into the algorithm. An implementation of a global syn-
chronous system can be given by delivering a termination
signal from the processors (processes) of the system. Diffi-
culties appearwhen several processes have a shared resource,
and non-synchronized events may occur. A possible solution
of a synchronous implementation that eliminates the prob-
lems of physical asynchrony is as follows:

– every process can be in two phases: active and passive;
– a process can run only when active;
– to transit from passive to active a process has to receive
a signal;
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– after an active process executes, it signals other passive
processes;

Initially we activate some processes, which after their
executions signal passive processes. This repeats until all
processes have terminated. Following this scenario, deadlock
can occur if the process dependency graph contains cycles.
In this scenario, process can be synchronized using a bar-
rier. A process barrier is an concurrent abstraction through
which multiple processes can be synchronized. Thus, a pas-
sive process can be considered a process that is waiting at
the barrier, and by passing the barrier it becomes an active
one.

We can apply this type of synchronization to membrane
systems, by allowing a membrane to evolve only after it has
passed the barrier. To model this, we use a set of antecedents
and a set of descendants for each membrane when describ-
ing the system. To apply its rules, a membrane needs to
receive signals from all of its antecedents. After it applies
its rules, the membrane signals all of its descendants. The set
of antecedents specifies howmany times a signal needs to be
received by eachmembrane. The set of descendants specifies
the membranes that need to be signaled after the application
of rules.

Using this mechanism, we can control the relative evo-
lution speed of the antecedents of a membrane. This
approach allows to specify that a certain membrane can
repeat its step several times before sending its signal to
the descendents. In this way we can have a parameter-
ized synchronization between membranes, and this aspect
could be very useful in modeling biological phenomena.
The evolution of a membrane can be described by the
following steps which are repeated until no rule can be
applied:

1. collect signals from all the antecedents;
2. apply the rules after receiving all the signals;
3. signal all descendants.

A scalable implementation of membrane systems

We have selected GridGain [12] as our platform because it
provides all the required features, and it is easily deployed on
multiple platforms. GridGain systems develop (open source)
cloud applications that facilitate the development of highly
scalable applications that work natively on any managed
infrastructure (from a single Android device to large grids
or clouds). GridGain software supports all major operating
systems and provides native support for Java and Scala pro-
gramming languages.

Using GridGain, we present a highly scalable distrib-
uted implementation of membrane systems in which we
emphasize the notion of computation and synchronization.
Distributed computations with GridGain are performed in
parallel fashion, gaining high performance and low latency.
GridGain allows the user to distribute computations and
data processing across multiple computers in a cluster, a
grid or a cloud. Distributed parallel processing is based
on the ability of executing any computation on any set of
cluster nodes. To achieve scalability we make use ofMapRe-
duce. The paradigm is defined by two main steps: map and
reduce. The map step allows splitting a task into multi-
ple jobs that execute in parallel on the nodes. The reduce
step aggregates the result of each job and returns the task
result.

GridGain is a Java-based open source computing infra-
structure released under LGPL license. It provides a zero
deployment model, meaning that a node can be deployed
by running a script, or by creating a node instance. A
valuable feature of the system is its support for advanced
load balancing and scheduling by providing early and
late load balancing that are defined by load balancing
and collision (scheduling) resolution. Another important
feature is pluggable fault tolerance with several popular
implementations available out of the box. It allows the
failover of logic and not only the data. The most notable
features of GridGain we use are: tasks and jobs mod-
eled according to the MapReduce paradigm, communica-
tion between tasks and jobs, as well as on-demand class
loading.

The simulation of a membrane system can be viewed as a
task. The jobs associated with this task define the execution
of each membrane. Hence, the number of jobs is equal to
the number of membranes. To model the proposed synchro-
nization mechanism between membranes, a communication
between jobs is required. We employ a synchronization
mechanism based on certain preconditions expressing the
consistency of the global state of the system. This syn-
chronization mechanism has been introduced to control the
dependency relation betweenmembranes.We propose a syn-
chronous model of execution used to coordinate membrane
evolution.

Themain steps of the simulation are: (1) build amembrane
system from an specification file; (2) using the generated
membrane system, construct and execute a grid job: (i)Map:
create a job for each membrane; (ii) reduce: gather all the
responses from the jobs and create the resulting membrane
system. The simulation repeats step 2 as long as a rule is
applied. Each generated job contains an object that describes
a membrane from the system. The job is responsible for the
correct simulation of the evolution of the membrane. Thus,
it needs to synchronize with other membranes, and also to
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Fig. 1 Membrane class public class Membrane {
private List<MembraneLabel> childrenLabels ;
private List<Rule> rules ;
private HashMultiset contents ;
private HashMultiset incomingObjects ;
private MembraneLabel label ;
private MembraneLabel parentLabel ;
private HashMap<MembraneLabel , Integer> antecedents ;
private List<MembraneLabel> descendants ;
private int appliedRules ; //number o f app l i ed r u l e s in t h i s s t ep

public Membrane ( )
// t e s t i f the membrane conta ins a mu l t i s e t
public boolean contains ( HashMultiset multiset )
// s t o r e a mu l t i s e t t ha t r e s u l t e d in t h i s e vo l u t i on s t ep
public void enqueMultiset ( HashMultiset multiset )
//add the o b j e c t s t ha t r e s u l t e d in t h i s e vo l u t i on s t ep
public void endEvolution ( )
// re turn the l i s t o f a p p l i c a b l e r u l e s
public List<Rule> getApplicableRules ( )

}

Fig. 2 Rule class public class Rule extends RuleConstraint {
List<RuleConstraint> constraints ;

public Rule ( )
public void apply ( Membrane membrane ) {

for ( RuleConstraint constraint : constraints ) {
constraint . apply ( membrane ) ;

}
}
public boolean check ( Membrane membrane ) {

boolean isApplicable = true ;
Iterator<RuleConstraint> iter = constraints . iterator ( ) ;
while ( isApplicable && iter . hasNext ( ) ) {

isApplicable = isApplicable && iter . next ( ) . check ( membrane ) ;
}
return isApplicable ;

}
}

apply different rules. The result of the job consists of the final
state of the simulated membrane.

We have used a modular design for the entities of the
system in which we separated the objects defining the grid
behavior from those defining the membrane systems. Thus,
we implement several abstractions thatmodel various notions
such as: membranes, rules, membrane objects, etc. For the
grid behavior we define the following concepts: task, job,
barrier.

In Fig. 1 we describe the members and main meth-
ods of class Membrane. The object is responsible only for
operations that modify the contents of a membrane. The
evolution logic is implemented using the Rule and Evo-
lutionVisitor objects. To model the rules of a membrane
system we used an extensible approach. Each rule can be
seen as a list of constraints; a constraint is responsible for

checking if its precondition is valid (via method check), and
for applying its postcondition on a membrane (via method
apply).

Themainmethods of theRule class are presented in Fig. 2.
Using these abstractionswe can implement ruleswith various
ingredients, only by describing constraints and aggregating
them into a new type of Rule. The evolution of a mem-
brane is performed by theEvolutionVisitor class. Themethod
localMembraneEvolution defines the logic of a single step of
evolution. A step is simulated by the repeated application of
rules.

A grid task is defined by the class PsTask (Fig. 3),
which follows the MapReduce paradigm. The method split
takes as input a membrane system, and for each mem-
brane creates a job that will be executed on the grid.
The method reduce receives a list of job results that
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Fig. 3 PsTask class public class PsTask{
public MembraneSystem reduce ( List results ) {

MembraneSystem result = new MembraneSystem ( ) ;
int appliedRules = 0 ;
for ( GridJobResult gridJobResult : results ) {

Membrane data = gridJobResult . getData ( ) ;
result . getMembranes ( ) . put ( data . getLabel ( ) , data ) ;
appliedRules += data . getAppliedRules ( ) ;

}
result . setAppliedRules ( appliedRules ) ;
return result ;

}
protected List<GridJob> split ( MembraneSystem arg ) {

List<PsJob> jobs = new ArrayList<PsJob>() ;
for ( Membrane mbr : arg . getMembranes ( ) . values ( ) ) {

jobs . add (new PsJob ( mbr ) ) ;
}
return jobs ;

}
}

contain membranes, and assembles them in a membrane
system.

A grid job is described by the PsJob object. This object
contains a membrane which holds the data, and a barrier
used for synchronization. The main method of this class is
execute, in which the evolution of a membrane is executed.
The evolution consists of a three-step loop: (i) wait at the
barrier for incoming signals, (ii) after receiving the signals,
apply the rules, and (iii) after applying the rules, signal the
descendants. The result of the job is amaximally parallel step
of the membrane.

Membrane synchronization is achieved using a special
form of barrier. The barrier waits to be signaled from each
antecedentmembrane a specified number of times. After this,
it releases the job that called the method waitAt. The barrier
also listens for termination signals. When it receives such
a signal it informs the waiting job that it should finish its
execution.

Example

We provide a simple example to illustrate the simulator.
The system is composed of two membranes. Membrane m1
containsa2000 and has rulesa → b, andb2 → d, whilemem-
brane m2 contains a40000b1000c5000 and has rules a2 → b,
and c2 → d. The signaling part is denoted by the contents
of wait, and signal. Those include a sequence of membranes
and the number of times they have to signal. Notice that
m2 has to wait to be signaled by m1 two times before it
can apply a rule. The parent of m2 is m1, which is the skin
membrane.

/∗ PsGrid input f i l e ∗/
membrane m1 /∗name of the membrane∗/ :

skin /∗name of the parent∗/{
children {

m1 /∗name of ch i l d ren∗/
}
contents {

a ˆ{2000}/∗ contents of the membrane∗/
}
rules {

/∗ ru l e s of the membrane∗/
[ aˆ{1} ==> b ˆ{1} ]
[ bˆ{2} ==> d ˆ{1} ]

}
wait {

/∗ the antecedents ∗/
}
signal{

m2 /∗ the descendants∗/
}

}
membrane m2 : m1{

children {
}
contents {

a ˆ{40000}b ˆ{1000}c ˆ{5000}
}
rules {

[ aˆ{2} ==> b ˆ{1} ]
[ cˆ{2} ==> d ˆ{1} ]

}
wait {

m1 ˆ{2}
}
signal{
}

}

Wealso present the log from each node of the grid. The log
shows the order in which membrane jobs arrive at each node,
and the actions they execute. The number of rule applications
executed in a certain step iswritten at the endof the lines (after
#). Notice that the job ends if it receives a terminate signal,
or if the membrane did not apply any rules in this step.
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[ 2 0 : 2 6 : 5 6 , 8 4 3 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Received membrane with
contents : m1 : [ a ˆ{2000} ] [ [ Rule : in m1 [ a −> b ] , Rule : in m1 [ b

ˆ{2} −> d ] ] ] #0
[ 2 0 : 2 6 : 5 6 , 8 4 3 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Received membrane

with contents : m2 : [ b ˆ{1000} c ˆ{5000} a ˆ{40000} ] [ [ Rule : in m2 [ a
ˆ{2} −> b ] , Rule : in m2 [ cˆ{2} −> d ] ] ] #0

[ 2 0 : 2 6 : 5 6 , 8 4 3 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Waiting at barrier : m2
[ 2 0 : 2 6 : 5 6 , 8 4 3 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Waiting at barrier : m1
[ 2 0 : 2 6 : 5 6 , 8 4 3 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Passing the barrier : m1
[ 2 0 : 2 6 : 5 6 , 8 7 5 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Sending signal to

descendants
[ 2 0 : 2 6 : 5 6 , 8 9 0 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] After evolution : m1 : [ b

ˆ{2000} ] [ [ Rule : in m1 [ a −> b ] , Rule : in m1 [ b ˆ{2} −> d ] ] ]
#2000

[ 2 0 : 2 6 : 5 6 , 8 9 0 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Waiting at barrier : m1
[ 2 0 : 2 6 : 5 6 , 8 9 0 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Passing the barrier : m1
[ 2 0 : 2 6 : 5 6 , 8 9 0 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Passing the barrier :

m2
[ 2 0 : 2 6 : 5 6 , 9 0 6 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Sending signal to

descendants
[ 2 0 : 2 6 : 5 6 , 9 2 1 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] After evolution : m1 : [ d

ˆ{1000} ] [ [ Rule : in m1 [ a −> b ] , Rule : in m1 [ b ˆ{2} −> d ] ] ]
#1000

[ 2 0 : 2 6 : 5 6 , 9 2 1 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Waiting at barrier : m1
[ 2 0 : 2 6 : 5 6 , 9 2 1 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Passing the barrier : m1
[ 2 0 : 2 6 : 5 6 , 9 2 1 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] Sending signal to

descendants
[ 2 0 : 2 6 : 5 6 , 9 2 1 ] [ INFO ] [ gridgain−#6%null%][ PsJob ] After evolution : m1 : [ d

ˆ{1000} ] [ [ Rule : in m1 [ a −> b ] , Rule : in m1 [ b ˆ{2} −> d ] ] ]
#0

[ 2 0 : 2 6 : 5 7 , 0 6 2 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Sending signal to
descendants

[ 2 0 : 2 6 : 5 7 , 0 6 2 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] After evolution : m2 : [
d ˆ{2500} b ˆ{21000} ] [ [ Rule : in m2 [ aˆ{2} −> b ] , Rule : in m2 [ c
ˆ{2} −> d ] ] ] #22500

[ 2 0 : 2 6 : 5 7 , 0 6 2 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Waiting at barrier : m2
[ 2 0 : 2 6 : 5 7 , 0 6 2 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Passing the barrier :

m2
[ 2 0 : 2 6 : 5 7 , 0 6 2 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] Sending signal to

descendants
[ 2 0 : 2 6 : 5 7 , 0 6 2 ] [ INFO ] [ gridgain−#10%null%][ PsJob ] After evolution : m2 : [

d ˆ{2500} b ˆ{21000} ] [ [ Rule : in m2 [ aˆ{2} −> b ] , Rule : in m2 [ c
ˆ{2} −> d ] ] ] #0

The simulator has a simple but flexible graphical inter-
face. A screenshot after executing a simulation is presented
in Fig. 4. The first row presents the initial configuration of
the membrane system. The second row presents the contents
of the membranes after the simulation.

Even though this example is simple, the implementation
can benefit from several features of GridGain and provide
a complex parallel implementation of membrane systems.
The main points are that the implementation is faithful to the
formal description of the membrane systems, and it is also
scalable to a high number of membranes (which is the case
in cell biology simulations).

Conclusion

Hierarchies are often used in modeling and simulation for
computational biology. A hierarchical perspective of the
cell considers components structured into classes of simi-
lar kinds, e.g. golgi, ER, and nucleus form organelles, i.e.
membrane-bound compartments of the cell. New models
of membrane systems need to be simulated on complex

hardware systems to provide a valuable feedback to biolo-
gists. Membrane computing is a branch of natural computing
using an explicit hierarchical description coming exactly
from the structure and functioning of the living cell. The
main areas where membrane computing has been used
as a modeling framework (biology and bio-medicine, lin-
guistics, economics, computer science, etc.) are presented
in [7]. In that volume, several implementations (mainly using
sequential computational environments) for simulating vari-
ous types of cell-like membrane systems are presented in [8].
We consider the simulation of membrane systems using
sequential computers as inappropriate, because membrane
systems are intrinsically parallel and nondeterministic com-
putational devices and their computation trees are difficult to
store and handle with one processor. Therefore, it is neces-
sary to look for parallel and scalable implementations able
to simulate as close as possible the formal description of the
membrane systems.

In this paper we present a faithful parallel implemen-
tation of membrane systems using GridGain, emphasizing
on the synchronization problems appearing in membrane
computing. Thus we hope to offer a suitable simulator for
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Fig. 4 PsGrid screen after
executing the example

membrane systems, opening a new possibility of usingmem-
brane computing as a parallel and nondeterministicmodeling
framework for addressing structural and dynamical aspects
of complex systems modeling phenomena in cell biology
where huge number of elements are used.

In the papers devoted to membrane systems it is not men-
tioned how themembranes (or groups ofmembranes) interact
or synchronize. The usual thinking is that membrane sys-
tems are synchronized locally (a step of a membrane is given
by the parallel application of rules) and behave asynchro-
nously at the global level. We emphasize here the global
aspects, by adding a form of parameterized barrier synchro-
nization between membranes. A parallel implementation of
membrane systems is presented in [6]. It uses a cluster of
64 dual processors, and an MPI library to describe the com-
munication and synchronization of parallel processes. In that
parallel simulator, the rules are implemented as threads. At
the system initialization phase, one thread is created for each
rule.Within onemembrane, several rules can be applied con-
currently. This parallelism between rule applications within
onemembrane ismodeledwithmultithreading. Rule applica-
tions are performed in terms of rounds. To synchronize each
thread (rule) within the system, two barriers implemented
as mutexes are associated with a thread. At the beginning
of each round, the barrier that the rule thread is waiting on
is released by the primary controlling thread. After the rule
application is done, the thread waits for the second barrier,

and the primary thread locks the first barrier. During the fol-
lowing round it would repeat the above procedure, releasing
and locking alternating barriers. Since many rules are exe-
cuting concurrently and they are sharing resources, a mutual
exclusion algorithm is necessary. The communication and
synchronization between membranes are implemented using
theMessagePassing Interface library of functions for parallel
computation. The execution is performed in terms of rounds;
at the end of each round, every membrane exchanges mes-
sages with all its children and parent before proceeding to
the next round. Another concern is the termination detection
problem.

Recently several simulators have been produced to model
the behavior of various classes ofmembrane systems, includ-
ing a web-based one [3]. An executable specification for
P systems [1] is implemented in Maude, a software sys-
tem supporting rewriting and equational logic. A parallel
simulation of P systems has been done using GPU in [9],
while in [4] is proposed a simulation of active membranes
using CUDA architectures. Some fundamental distributed
algorithms applied in this special framework and used in
these implementations of membrane systems are presented
in [5].
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