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Abstract
In this paper, I have developed a multi item production inventory model for the non-
deteriorating items with constant demand rate under the limitation on set up cost. The
production price and set-up price are the most vital problem within the inventory sys-
tem of the marketplace in international. Here the production cost is dependent on the
demand as well as populations. Set up cost is dependent on the average inventory level.
Holding cost is the most challenging issue in the business world. In order to reduce
the holding cost, the holding cost function has been considered as on the number of
peoples. Due to uncertainty all the cost parameters are taken as the generalized triangu-
lar fuzzy number. Multi objective fuzzy inventory model has been solved by various
techniques like Fuzzy programming technique with hyperbolic membership func-
tion, Fuzzy non-linear programming technique and Fuzzy additive goal programming
technique. Numerical example is given to illustrate the inventory model. Sensitivity
analysis and the graphical representations have been shown to illustrate the reality of
the inventory model.

Keywords Inventory · Multi-item · Generalized triangular fuzzy number · Fuzzy
technique

1 Introduction

An inventory model deals with decisions that minimize the total average cost or maxi-
mize the total average profit. In that way to construct a real life mathematical inventory
model we use various assumptions and notations and approximations.

In the ordinary inventory system inventory cost i.e. set-up cost, holding cost, dete-
rioration cost, etc. are taken fixed amounts but in real life inventory systems these
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costs are not always fixed. So consideration of fuzzy variables is more realistic and
interesting.

Harris [1] first developed the inventory model in 1913. Ghare and Schrader [2]
developed a model for exponentially decaying inventory systems. Philip [3] consid-
ered a generalized EOQmodel for items with Weibull distribution. Sana [4] presented
a deterministic EOQ model with delay in payments and time varying deterioration
rate. Sarkar [5] studied a finite replenishment model with increasing demand under
inflation. Sarkar [6] discussed an EOQmodel with delay in payments and stock depen-
dent demand in the presence of imperfect production. Khanra, et al. [7] presented an
inventory model with time dependent demand and shortages under trade-credit pol-
icy. Sarkar, Saren and Wee [8] studied an inventory model with variable demand,
component cost and selling price for deteriorating items. Sarkar [9] developed an
EOQ model with delay in payments and time varying deterioration rate. Sarkar and
Sarkar [10] presented variable deterioration and demand-an inventory model. Sarkar,
Saren and Leopoldo [11] discussed an inventory model with trade-credit policy and
variable deterioration for fixed lifetime products. Mishra and Singh [12] considered
computational approach to an inventorymodelwith ramp-type demand and linear dete-
rioration. Ghosh, Sarkar and Chaudhuri [13] considered a multi-item inventory model
for deteriorating items in limited storage space with stock-dependent demand. Alfares
and Ghaithan [14] developed the inventory and pricing model with price-dependent
demand, time-varying holding cost, and quantity discounts. Das et al. [15] discussed
the preservation technology in inventory control system with price dependent demand
and partial backlogging. Liuxin et al. [16] presented optimal pricing and replenish-
ment policy for deteriorating inventory under stock-level-dependent, time-varying and
price-dependent demand. Chakraborty et al. [17] developed multi-warehouse partial
backlogging inventory systemwith inflation for non-instantaneous deterioratingmulti-
item under imprecise environment. Shaikh et al. [18] studied price discount facility
in an EOQ model for deteriorating items with stock-dependent demand and partial
backlogging. Sarkar, Mandal and Sarkar [19] studied on preservation of deteriorating
seasonal products with stock-dependent consumption rate and shortages. Singh et al.
[20] developed on partially backlogged EPQ model with demand dependent produc-
tion and non-instantaneous deterioration. Pandoet al. [21] discussed optimal lot-size
policy for deteriorating items with stock-dependent demand considering profit maxi-
mization. Mondal et al. [22] studied optimization of generalized order-level inventory
system under fully permissible delay in payment. Das [23] has developed a fuzzy
multi objective inventory model of demand dependent deterioration including lead
time. Poswal et al. [24] have preddsented the investigation and analysis of fuzzy EOQ
model for price sensitive and stock dependent demand under shortages.

In the real life system, any project costs more or less than the amount of exact
allocated. So fuzzy system is very important. The concept of fuzzy set theory was first
introduced by Zadeh [25] in 1965. Afterward Zimmermann [26] applied the fuzzy
set theory concept with some useful membership functions to solve the linear pro-
gramming problem with some objective functions. Roy and Maity [27] developed a
fuzzy inventory model with constraints. Multi item is also interesting in real life in the
inventory system. Roy and Maiti [28] discussed the multi-objective inventory mod-
els of deteriorating items with some constraints in a fuzzy environment. Maity [29]
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presented fuzzy inventory model with two warehouses under possibility measure in
fuzzy goal. Garai et al. [30] discussed expected Value of exponential fuzzy number
and its application to multi-item deterministic inventory model for deteriorating items.
Garai et al. [31] developed a multi-item inventory model with fuzzy rough coefficients
via fuzzy rough expectation. Das and Islam [32] studied multi-objective two echelon
supply chain inventorymodelwith customer demand dependent purchase cost and pro-
duction rate dependent production cost. Das and Islam [33] considered multi objective
fuzzy inventory model with deterioration, price and time dependent demand and time
dependent holding cost, also Das and Islam [34] discussed production cost and set-up-
cost dependent fuzzy multi objective inventory model under space constraints in the
fuzzy environment. Tayyab et al. [35] worked on the sustainable development frame-
work for a cleaner multi-item multi-stage textile production system with a process
improvement initiative. Malik and Sarkar [36] considered disruption management in a
constrained multi-product imperfect production system. Garai, Chakraborty and Roy
[37] presented multi-objective inventory model with both stock-dependent demand
rate and holding cost rate under fuzzy random environment. Soni and Suthar [38] con-
sidered EOQmodel of deteriorating items for fuzzy demand and learning in fuzziness
with finite horizon. Bera et al. [39] discussed two-phase multi-criteria fuzzy group
decision making approach for supplier evaluation and order allocation considering
multi-objective, multi-product and multi-period. Mandal [40] has developed bipo-
lar pythagorean fuzzy sets and their application in multi-attribute decision making
problems. Das [41] has developed multi item inventory model include lead time with
demand dependent production cost and set-up-cost in fuzzy environment. De and Roy
and Bhattacharya [42] have presented solving an EPQmodel with doubt fuzzy set in a
robust intelligent decision-making approach. Further we study the references [43–47].

The remaining portion of this researchwork is organized as follows: Sect. 2 presents
notation, assumption, and formulation of the inventory model as a nonlinear constraint
optimization problem. Section 3 develops the fuzzy model, due to uncertainty all the
cost parameters. Section 4 for the solution procedure is shown. Section 5 solves a
numerical example to verify the inventorymodel. In Sect. 6, sensitivity analysis and the
graphical representations have been shown to illustrate the inventory model. Finally,
Sect. 7 provides conclusions and some opportunities for future research.

2 Notation, Assumption and Formulation of the Inventory Model

2.1 Notation

Si : Set-up cost per order for ith item.
hi : Holding cost per unit per unit time for ith item.
M : Total expected set-up-cost.
P: Population in the neighborhood of sell center.
Ti : The length of cycle time for i th item, Ti > 0.
Di : Demand rate per unit time for the ith item.
Ii (t): Inventory level of the ith item at time t.
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Qi : The order quantity for the duration of a cycle of length Ti for ith item.
Ci

p: Unit production cost of the ith item.
T ACi (Qi , Di ): Total average profit per unit for the ith item.
˜T ACi (Qi , Di ): Fuzzy total average profit per unit for the ith item.

2.2 Assumptions

1. The inventory system with multi item.
2. The replenishment occurs instantaneously at infinite rate.
3. The lead time is negligible.
4. Shortages are not allowed.
5. Demand rate is constant.
6. The unit production cost Ci

p is inversely related to the demand rate Di and P . So

we take the following formCi
p(Di , P) � δi D

−ai
i P−bi , where δi > 0, 0 < bi < 1

and ai > 1 are constant real numbers.
7. The set-up-cost Si is proportionally related to the average inventory level. So we

take the form Si (Qi ) � αi

(
Qi ,
2

)βi
where 0 < βi < 1, 〈αi > 0〉 are constant real

numbers.
8. hi (P) � μi P−di t , where μi > 0, and 0 < di << 1 are constant real numbers.

2.3 Model Formation in Crisp Model of ith Item

The inventory level for ith item is shown in Fig. 1. During the time period [0, Ti ]
the stock reduces due to only demand rate. In that time period, the inventory level is
defined by the governing differential equation-

d Ii (t)

dt
� −Di , 0 ≤ t ≤ Ti (1)

With boundary condition, Ii (0) � Qi , Ii (Ti ) � 0.
Solving the above differential Eq. (1), we get

Ii (t) � Di (Ti − t), 0 ≤ t ≤ Ti (2)

Fig. 1 Inventory level for ith item
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and Qi � DiTi . (3)

The model related the various cost as following.

1. Average production cost
� Qiδi D

−ai
i P−bi

Ti

� δi D
1−ai
i P−bi

2. Averageholding cost

� 1

Ti

Ti∫
0
hi (P)Ii (t)dt

� μi D2
i

Qi

⎡
⎣ Qi

Didi logP
+

1

(di logP)2

⎛
⎝P

−
(
di Qi/Di

)

− 1

⎞
⎠

⎤
⎦

3. Average set-up-cost

� Si
Ti

� αi Q
βi−1
i Di

2βi

Total average cost in this inventory model is given by

T ACi (Qi , Di ) � δi D
1−ai
i P−bi

+
μi D2

i

Qi

⎡
⎣ Qi

Didi logP
+

1

(di logP)2

⎛
⎝P

−
(
di Qi/Di

)

− 1

⎞
⎠

⎤
⎦

+
αi Q

βi−1
i Di

2βi
(4)

Therefore the multi objective optimization problem in this inventory model is

Minimize T ACi (Qi , Di ) � δi D
1−ai
i P−bi

+
μi D2

i

Qi

⎡
⎣ Qi

Didi logP
+

1

(di logP)2

⎛
⎝P

−
(
di Qi/Di

)

− 1

⎞
⎠

⎤
⎦ +

αi Q
βi−1
i Di

2βi

Subject to,
∑ αi Q

βi−1
i Di

2βi
≤ M , Qi > 0, Di > 0, i � 1, 2, . . . . . . . . . .n (5)

3 FuzzyModel

Generally the parameters for holding cost, unit production cost, and set-up cost
are not particularly known to us. Due to uncertainty, we assume all the parame-
ters (αi , βi , ai , bi , μi , δi , di , P) as generalized triangular fuzzy number (GTFN)
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(
α̃i , β̃i , ãi , b̃i , μ̃i , δ̃i , d̃i , P̃

)
as following

α̃i �
(
α1
i , α2

i , α3
i ;ωαi

)
, 0 < ωαi ≤ 1; ãi �

(
a1i , a

2
i , a

3
i ;ωai

)
, 0 < ωai ≤ 1;

β̃i �
(
β1
i , β2

i , β3
i ;ωβi

)
, 0 < ωβi ≤ 1; b̃i �

(
b1i , b

2
i , b

3
i ;ωbi

)
, 0 < ωbi ≤ 1;

μ̃i �
(
μ1
i , μ2

i , μ3
i ;ωμi

)
, 0 < ωμi ≤ 1; d̃i �

(
d1i , d

2
i , d

3
i ;ωdi

)
, 0 < ωdi ≤ 1;

δ̃i �
(
δ1i , δ2i , δ3i ;ωδi

)
, 0 < ωδi ≤ 1; P̃

�
(
P1, P2, P3;ωP

)
, 0 < ωP ≤ 1 (i � 1, 2, . . . . . . . . . , n)

Then the above crisp inventory model (5) becomes the fuzzy model as

Minimize ˜T ACi (Qi , Di ) � δ̃i D
1−ãi
i P̃−b̃i

+
μ̃i D2

i

Qi

⎡
⎢⎣ Qi

Di d̃i log P̃
+

1(
d̃i log P̃

)2

⎛
⎝P̃

−
(
di Qi/Di

)

− 1

⎞
⎠

⎤
⎥⎦ +

α̃i Q
β̃i−1
i Di

2β̃i

Subject to
∑ α̃i Q

β̃i−1
i Di

2β̃i
≤ M , Qi > 0, Di > 0, i � 1, 2, . . . . . . . . . .n (6)

In defuzzification of fuzzy number technique, if we consider a GTFN Ã �
(a, b, c;ω), then the total λ- integer value of Ã � (a, b, c;ω) is

Iw
λ

(
Ã
)

� λω
c + b

2
+ (1 − λ)ω

a + b

2

Therefore we get approximated value of a GTFN Ã � (a, b, c;ω) is ω
( a+2b+c

4

)
by

taking λ � 0.5.

So we have the approximated values
(
α̂i , β̂i , âi , b̂i , μ̂i , δ̂i , d̂i , P̂

)
of the GTFN

parameters. So the above model (6) reduces to the multi objective inventory model
(MOIM) as following

Minimize ̂T ACi (Qi , Di ) � δ̂i D
1−âi
i P̂−b̂i

+
μ̂i D2

i

Qi

⎡
⎢⎣ Qi

Di d̂i log P̂
+

1(
d̃i log P̂

)2

⎛
⎝P̃

−
(
di Qi/Di

)

− 1

⎞
⎠

⎤
⎥⎦ +

α̂i Q
β̂i−1
i Di

2β̂i

Subject to
∑ α̂i Q

β̂i−1
i Di

2β̂i
≤ M , Qi > 0, Di > 0, i � 1, 2, . . . . . . . . . .n (7)
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4 Solution Procedure

4.1 Fuzzy Programming Technique with Hyperbolic Membership Function
(FPTHMF) for SolvingMOIM

Solve the MOIM (7) as a single objective NLP using only one objective at a time and
ignoring the others. So we get the ideal solutions. Using the ideal solutions the pay-off
matrix is defined as follows:

(
Q1

1, D
1
1

)
(
Q2

2, D
2
2

)

(Qn
n , D

n
n )

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

T AC1(Q1, D1) T AC2(Q2, D2) . . . T ACn(Qn , Dn)

T AC∗
1

(
Q1

1, D
1
1

)
T AC2

(
Q1

1, D
1
1

)
. . . T ACn

(
Q1

1, D
1
1

)
T AC1

(
Q2

2, D
2
2

)
T AC∗

2

(
Q2

2, D
2
2

)
. . . T ACn

(
Q2

2, D
2
2

)
. . . . . .

. . . . . .

T AC1
(
Qn

n , D
n
n

)
T AC2

(
Qn

n , D
n
n

)
. . . T AC∗

n

(
Qn

n , D
n
n

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Let Uk � max
{
T ACk

(
Qi

i , D
i
i

)
, i � 1, 2, . . . ., n

}
f or k � 1, 2, . . . ., n and

Lk � T AC∗
k

(
Qk

k , D
k
k

)
f ork � 1, 2, . . . ., n.

(8)

Hence Uk , Lk are identified, Lk ≤ T ACk

(
Qi

i , D
i
i

)
≤ Uk , f ori

� 1, 2, . . . ., n; k � 1, 2, . . . ., n.

Now objective functions of the problem (7) are considered as fuzzy
constraints. Therefore fuzzy non-linear hyperbolic membership functions
μH
T ACk

(T ACk(Qk , Dk)) for the kth objective functions T ACk(Qk , Dk) respec-
tively for k � 1, 2, . . . ., n are defined as follows:

μH
T ACk

(T ACk(Qk , Dk)) � 1

2
tanh

((
Uk + Lk

2
− T ACk(Qk , Dk)

)
σk

)
+
1

2
(9)

here αk are the parameters, σk � 3(
Uk − Lk

)/
2

� 6
Uk−Lk , k � 1, 2, . . . ., n.

Using the above membership function, fuzzy non-linear programming problems
are formulated as follows:

Max λ

Subject to
1

2
tanh

((
Uk + Lk

2
− T ACk(Qk , Dk)

)
σk

)
+
1

2
≥ λ, λ ≥ 0 (10)

And same constraints and restrictions as the problem (7).
The above non-linear programming problem after simplification we can be formu-

lated as

Max y

123



634 Annals of Data Science (2022) 9(3):627–643

Subject to y + σkT ACk(Qk , Dk) ≤ Uk + Lk

2
σk , y ≥ 0 (11)

And same constraints and restrictions as the problem (7).
The programming problems (11) can be solved by a suitable mathematical pro-

gramming algorithm and we get the solution of the MOIM (7).

4.2 Fuzzy Programming Technique (Multi-Objective onMax–Min and Additive
Operators)

In this technique for solving MOIM (7), first we have to reach equation no. (8)
which has been shown in the above. In this technique fuzzy membership functions
μT ACk (T ACk(Qk , Dk)) for the kth objective functions T ACk(Qk , Dk) respectively
for k � 1, 2, . . . ., n are defined as follows:

μT ACk (T ACk(Qk , Dk)) �

⎧⎪⎨
⎪⎩

1 for T ACk(Qk , Dk) < Lk

Uk−T ACk(Qk, Dk)
Uk−Lk for Lk ≤ T ACk(Qk , Dk) ≤ Uk

0 for T ACk(Qk , Dk) > Uk

(12)

4.2.1 Fuzzy Non-linear Programming Technique (FNLP) Based onMax–Min Operator

Using the above membership function, fuzzy non-linear programming problems are
formulated as follows:

Max α′

Subject to

T ACk(Qk , Dk) + α′(Uk − Lk
)

≤ Uk , for k � 1, 2, . . . ., n.

0 ≤ α′ ≤ 1, (13)

And same constraints and restrictions as the problem (7).
The non-linear programming problems (13) can be solved by a suitable mathemat-

ical programming algorithm and we get the solution of MOIM (7).

4.2.2 Fuzzy Additive Goal Programming Technique (FAGP) Based on Additive
Operator

In this technique, using (12) membership function, fuzzy non-linear programming
problems are formulated as follows:

Max
n∑

k�1

Uk − T ACk
(
Qk, Dk

)

Uk − Lk
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Subject to Uk − T ACk
(
Qk, Dk

) ≤ Uk − Lk , f or k � 1, 2, . . . ., n (14)

And same constraints and restrictions as the problem (7).
The non-linear programming problems (14) can be solved by a suitable mathemat-

ical programming algorithm and we get the solution of MOIM (7).

5 Numerical Example

Let us consider an inventory model which consist two items and M � Rs.10, 000
(Tables 1, 2).

Approximate value of the above parameter is.

Items Parameters

α̂i β̂i d̂i μ̂i δ̂i âi b̃i P̂

I 7000 0.54 0.0045 540 6400 4.8 0.027 94,500

II 6547.5 0.63 0.0024 640 9600 5.2 0.042 94,500

Table 1 Input imprecise data for shape parameters

Parameters Items

I II

α̃i (7000, 9000, 10000; 0.8) (6500, 7300, 8000; 0.9)

β̃i (0.5, 0.6, 0.7; 0.9) (0.6, 0.7, 0.8; 0.9)

d̃i (0.004, 0.005, 0.006; 0.9) (0.002, 0.003, 0.004; 0.8)

μ̃i (500, 600, 700; 0.9) (600, 800, 1000; 0.8)

δ̃i (7000, 8000, 9000; 0.8) (11000, 12000, 13000; 0.8)

ãi (7, 8, 9; 0.6) (12, 13, 14; 0.4)

b̃i (0.02, 0.03, 0.04; 0.9) (0.05, 0.06, 0.07; 0.7)

P̃ (100000, 105000, 110000; 0.9) (100000, 105000, 110000; 0.9)

Table 2 Optimal solutions of MOIM using different methods

Methods D∗
1 Q∗

1 T AC∗
1 D∗

2 Q∗
2 T AC∗

2

FPTHMF 1.56 6.28 5676.60 1.56 4.59 6102.19

FNLP 1.56 6.28 5676.60 1.56 4.59 6102.19

FAGP 1.56 6.28 5676.60 1.56 4.59 6102.19

Same results have been found in the all methods (Table 2)
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6 Sensitivity Analysis

In the sensitivity analysis optimal solutions have been found by using FNLP and FAGP
methods (Table 3).

From the above Figs. 2 and 3 shows that minimum cost of the both item is decreased
when values of b1, b2 are increased (Table 4).

From the above Figs. 4 and 5 shows that minimum cost of the both item is decreased
when values of a1,a2 are increased (Table 5).

From the above Figs. 6 and 7 shows that minimum cost of the both item is increased
when values of δ1,δ2 are increased (Table 6).

From the above Figs. 8 and 9 shows that minimum cost of the both item is increased
when values of μ1,μ2 are increased (Table 7).

From the above Figs. 10 and 11 shows that minimum cost of the both item is
decreased when values of d1,d2 are increased.

Table 3 Optimal solutions of MOIM by FNLP and FAGP methods for different values of b1, b2

Methods b1 (%) b2 (%) D∗
1 Q∗

1 T AC∗
1 D∗

2 Q∗
2 T AC∗

2

FNLP − 10 − 10 1.57 6.32 5703.67 1.58 4.62 6145.84

− 5 − 5 1.56 6.30 5690.09 1.57 4.61 6123.93

5 5 1.55 6.27 5663.05 1.56 4.58 6080.36

10 10 1.54 6.26 5649.59 1.55 4.56 6058.69

FAGP − 10 − 10 1.57 6.33 5707.12 1.58 4.62 6145.84

− 5 − 5 1.56 6.29 5690.20 1.57 4.61 6123.93

5 5 1.55 6.28 5662.13 1.56 4.58 6080.36

10 10 1.54 6.26 5649.59 1.55 4.56 6058.69

Fig. 2 optimal cost of 1st item
using different methods for
different values of b1

5620
5630
5640
5650
5660
5670
5680
5690
5700
5710

-10% -5% 5% 10%

For TAC1* cost func�on 

FNLP

FAGP
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Fig. 3 optimal cost of 2nd item
using different methods for
different values of b2

6000

6020

6040

6060

6080

6100

6120

6140

6160

-10% -5% 5% 10%

For TAC2* cost func�on

FNLP

FAGP

Table 4 Optimal solutions of MOIM by FNLP and FAGP methods for different values of a1, a2

Methods a1 (%) a2 (%) D∗
1 Q∗

1 T AC∗
1 D∗

2 Q∗
2 T AC∗

2

FNLP − 10 − 10 1.59 6.37 5880.88 1.60 4.67 6334.88

− 5 − 5 1.57 6.33 5773.84 1.58 4.63 6212.72

5 5 1.54 6.23 5587.77 1.55 4.56 6001.49

10 10 1.53 6.21 5506.45 1.53 4.53 5909.59

FAGP − 10 − 10 1.59 6.37 5880.88 1.60 4.67 6334.88

− 5 − 5 1.57 6.33 5773.84 1.58 4.63 6212.72

5 5 1.54 6.23 5587.77 1.55 4.56 6001.49

10 10 1.53 6.21 5506.45 1.53 4.53 5909.59

Fig. 4 minimizing cost of 1st
item using different methods for
different values of a1

5300

5400

5500

5600

5700

5800

5900

-10% -5% 5% 10%

For TAC1* cost func�on

FNLP

FAGP

7 Conclusion

In this article, I have considered a multi item production inventory model for the non-
deteriorating items with constant demand and the restriction on set up cost. I think
shops in more populated places sell more goods than shops in less populated places.
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Fig. 5 minimizing cost of 2nd
item using different methods for
different values of a2

5600

5700

5800

5900

6000

6100

6200

6300

6400

-10% -5% 5% 10%

For TAC2* cost func�on

FNLP

FAGP

Table 5 Optimal solutions of MOIM by FNLP and FAGP methods for different values of δ1, δ2

Methods δ1 (%) δ2 (%) D∗
1 Q∗

1 T AC∗
1 D∗

2 Q∗
2 T AC∗

2

FNLP − 10 − 10 1.52 6.19 5585.17 1.53 4.52 6007.44

− 5 − 5 1.54 6.24 5631.88 1.55 4.56 6055.84

5 5 1.57 6.33 5719.38 1.58 4.63 6146.45

10 10 1.59 6.38 5760.51 1.60 4.66 6189.03

FAGP − 10 − 10 1.52 6.19 5585.17 1.53 4.52 6007.44

− 5 − 5 1.54 6.24 5631.88 1.55 4.56 6055.84

5 5 1.57 6.33 5719.38 1.58 4.63 6146.45

10 10 1.59 6.38 5760.51 1.60 4.66 6189.03

Fig. 6 minimizing cost of 1st
item using different methods for
different values of δ1

5400

5500

5600

5700

5800

-10% -5% 5% 10%

for TAC1* cost func�on

FNLP

FAGP

Fig. 7 minimizing cost of 2nd
item using different methods for
different values of δ2

5900
5950
6000
6050
6100
6150
6200

-10% -5% 5% 10%

for TAC2* cost func�on

FNLP

FAGP
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Table 6 Optimal solutions of MOIM by FNLP and FAGP methods for different values of μ1, μ2

Methods μ1 (%) μ2 (%) D∗
1 Q∗

1 T AC∗
1 D∗

2 Q∗
2 T AC∗

2

FNLP − 10 − 10 1.56 6.84 5511.62 1.57 4.99 5953.05

− 5 − 5 1.56 6.55 5595.73 1.57 4.79 6029.11

5 5 1.55 6.05 5754.40 1.56 4.42 6172.32

10 10 1.54 5.83 5829.50 1.56 4.62 6239.96

FAGP − 10 − 10 1.56 6.84 5511.62 1.57 4.99 5953.05

− 5 − 5 1.56 6.55 5595.73 1.57 4.79 6029.11

5 5 1.55 6.05 5754.40 1.56 4.42 6172.32

10 10 1.54 5.83 5829.50 1.56 4.62 6239.96

Fig. 8 minimizing cost of 1st
item using different methods for
different values of μ1

5300

5400

5500

5600

5700

5800

5900

-10% -5% 5% 10%

for TAC1* cost func�on

FNLP

FAGP

Fig. 9 minimizing cost of 2nd
item using different methods for
different values of μ2

5800
5850
5900
5950
6000
6050
6100
6150
6200
6250

-10% -5% 5% 10%

for TAC2* cost func�on
FNLP

FAGP

Therefore some inventory costs (like as holding cost, deterioration etc.) are always
dependent on the number of population. Here the production cost in dependent on the
demand as well as populations. Set up cost is dependent on the average inventory level.
Holding cost is considered on depend on the number of population. I first formed crisp
inventorymodel and then using fuzzy number, form fuzzymodel.Multi objective fuzzy
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Table 7 Optimal solutions of MOIM by FNLP and FAGP methods for different values of d1, d2

Methods d1 (%) d2 (%) D∗
1 Q∗

1 T AC∗
1 D∗

2 Q∗
2 T AC∗

2

FNLP − 10 − 10 1.56 6.22 5687.14 1.56 4.57 6105.90

− 5 − 5 1.56 6.26 5681.86 1.56 4.58 6104.01

5 5 1.56 6.32 5671.23 1.56 4.60 6100.21

10 10 1.56 6.36 5665.87 1.56 4.61 6098.30

FAGP − 10 − 10 1.56 6.22 5687.14 1.56 4.57 6105.90

− 5 − 5 1.56 6.26 5681.86 1.56 4.58 6104.01

5 5 1.56 6.32 5671.23 1.56 4.60 6100.21

10 10 1.56 6.36 5665.87 1.56 4.61 6098.30

Fig. 10 minimizing cost of 1st
item using different methods for
different values of d1

5655

5660

5665

5670

5675

5680

5685

5690

-10% -5% 5% 10%

for TAC1* cost func�on

FNLP

FAGP

Fig. 11 minimizing cost of 2nd
item using different methods for
different values of d2

6094

6096

6098

6100

6102

6104

6106

-10% -5% 5% 10%

for TAC2* cost func�on
FNLP

FAGP

inventory model has been solved by various techniques like as FPTHMF, FNLP and
FAGP methods. Numerical example is given for two items to illustrate the inventory
model. Numerical example is solved by using LINGO13 software.
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In the future study, it is hoped to further incorporate the proposed model into more
realistic assumptions, such as probabilistic demand, introduce shortages etc. In the
future this inventory problem can be solved in different techniques.
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