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Abstract In the present paper, the methods provided in
literature to compute the convolution integral in Cummins’
equation are compared. Direct computation of the convo-
lution integral is revised to avoid truncation errors and to
save computational cost. The three methods compared are the
direct computation of the convolution integral, the approxi-
mation of the integral by a state space and the approximation
of the impulse response function by Prony’s coefficients.
These methods are used to simulate the movement of the
water inside an oscillating water column (OWC) and a decay
test in heave of a spar buoy. Cummins’ equation results in a
system of ordinary differential equations with all the meth-
ods. All systems are computed using the same numerical
scheme obtaining a fair comparison of the computational cost
involved in each method. The results of the OWC are com-
pared against CFD results and the results of the buoy against
laboratory experiments. Results obtained by direct computa-
tion of the convolution integral show sensitivity to the time
step used to precompute the impulse response function, while
using state space or Prony’s approximations are dependent on
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the set of frequencies required for the identification of their
coefficients. State space and Prony’s approximations evaluate
the radiation force, including it in the matrix of the system,
while direct integration computes it outside of the matrix.
This modification in the matrix makes these approximations
more sensitive to the data used to evaluate the radiation force.

Keywords Cummins’ equation - Radiation - Direct
convolution integral - State space - Prony’s approximation

1 Introduction

The movement of a floating structure in the time domain can
be modelled by Cummins’ equation (Cummins 1962). This
equation takes into account information from the excitation
forces produced by waves moving the structure and radiation
forces produced by the movement of the structure itself, also
known as fluid memory effect. Other external forces, such as
those produced by moorings and power take off (PTO) sys-
tems, can also be included in the equation, but these forces are
outside the scope of the present work. When the movement of
the structure is only produced by incident waves, Cummins’
equation is an order-two differential equation with a convo-
lution integral in it. The presence of the convolution integral
in Cummins’ equation makes the solution complicated in
the time domain (Kashiwagi 2004). There are methods in
the literature to avoid this problem, which can be divided
into two main families: approximation of the radiation term
by a state space (Jefferys 1984), and approximation of the
impulse response function (irf) by a sum of complex expo-
nentials using Prony’s method (Duclos et al. 2001; Paul 1998;
de Prony 1795). A recent review of models used in the study
of wave energy converters (WECs) is shown in Folley et al.
(2012).
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The first method to compute the convolution integral being
considered in the present work is the direct solution of the
convolution integral, hereinafter, IRF. Table 1 presents the
abbreviations used throughout the paper. This method is
reported as computationally expensive, as it has to be com-
puted every time step with different data in the computation
of the convolution integral. The common practice in literature
to evaluate this infinite convolution integral is truncating it to
a high enough value (Kurniawan et al. 2011; Perez and Fos-
sen 2008; Ricci et al. 2008; Yu and Falnes 1995; Taghipour
etal. 2008). Direct computation of the convolution integral is
the method employed in commercial software SIMO (SIMO
2008), developed by Marintek, which has been used to eval-
uate the performance of different WECs (Babarit et al. 2012;
Karimirad 2013; Muliawan et al. 2013). Another piece of
software using the direct computation of the convolution
integral is FAST (Jonkman 2007). This is a popular piece
of software used to study wind turbines, including a module,
HydroDyn, solving the hydrodynamics of floating wind tur-
bines and directly integrating the convolution integral. It has
been applied in Philippe et al. (2013), amongst others. The
last FAST release, i.e. v8.03, includes also the solution of the
radiation term approximated by state spaces as described in
Duarte et al. (2013). In that work, the authors compare the
results and computational costs, concluding that solving the
convolution integral is not only more accurate, but also com-
putationally more expensive than using state spaces. In order
to save computational time, a change of variables can be used
in the convolution integral, changing the scope of the func-
tions. This change allows computation of the irf only once
and storage of the results to be used in the computation of
the convolution integral, instead of computing the irf every
time the convolution integral is computed (Kurniawan et al.
2011).

The second method of approximation of the convolution
integral considered in this work is approximation by a state
space, a method hereinafter called SS. This method can be
argued to be the most popular method to compute the con-
volution integral in Cummins’ equation. Several approaches
have been applied in the literature to identify the matrices
of the state space and they can be classified into two main
families: frequency domain methods (Jefferys 1984; McCabe
et al. 2005) and time domain methods (Kristiansen and Ege-
land 2003; Kristiansen et al. 2005; Yu and Falnes 1995,
1998). A review of these techniques can be found in Perez
and Fossen (2008) and Taghipour et al. (2008). Recently,
Perez and Fossen (2011) stated some important aspects that
all methods identifying the coefficients applied to marine
structures should fulfill. Applications of these methods can
be found, for example, in the study of OWCs (Alves 2012;
Iturrioz et al. 2014; Kurniawan et al. 2012), the study of one
body heave converter involving control strategies (Abraham
and Kerrigan 2013; Fusco and Ringwood 2011; Schoen et al.
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Table 1 Abbreviations

Abbreviations

ODE Ordinary differential equation

OwWC Oscillating water column

WEC ‘Wave energy converter

irf Impulse response function

IRF Method used to compute the radiation
term in Cummins’ equation by direct
integration of the convolution integral

SS Method used to compute the radiation
term in Cummins’ equation by a state
space

Prony Method used to compute the radiation
term in Cummins’ equation by Prony’s
coefficients

RAO Response amplitude operator

DOF Degree of freedom

BEM Boundary element method

TF Transfer function

SWL Still water level

2011) or the study of more than one body (de Andres et al.
2013; Yu et al. 2010). This method is also used in naval
applications, for example in Spyrou and Tigkas (2011). As
mentioned before, state spaces have been recently imple-
mented to avoid solving the convolution integral in FAST
(Duarte et al. 2013). Another model to study offshore floating
vertical axis wind turbines (VAWTSs), known as FlIoVAWT,
which uses state space approximation, is presented by Shires
etal. (2013).

The third method available in the literature to evaluate the
convolution integral of Cummins’ equation is the approxi-
mation of the irf by a sum of complex exponentials using
Prony’s method. Prony’s method was developed by de Prony
(1795), and it was applied to the approximation of the con-
volution integral by Duclos et al. (2001) and Paul (1998).
This method is hereinafter called Prony. This methodology
is used in the study of the SEAREV (Babarit and Clément
2006; Babarit et al. 2006) and to study a spar buoy used to
extract wave energy (Grilli et al. 2007). More recently, it has
also been used with a heaving buoy WEC (Bailey and Bryden
2012), a heaving buoy attached via a tether to a direct-drive
generator (Crozier et al. 2013) and a submerged wave energy
point absorber (Guanche et al. 2013).

This paper presents a comparative analysis of these avail-
able methods. Previous works (Kurniawan et al. 2011; Ricci
et al. 2008; Taghipour et al. 2008) have presented simi-
lar studies where IRF and SS methods are compared. In
Taghipour et al. (2008). Simulink is used to compute the
problem embedding the solution of the convolution integral
as an S-function with the trapezoidal integration method pro-
grammed in C. As a conclusion, SS approximation is reported
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to be between 8 and 80 times faster than IRF. In Kurniawan
et al. (2011), Matlab is used to calculate the convolution
integral and different methods to evaluate the ODEs sys-
tem generated by the SS method are tested. Kurniawan et al.
(2011) conclude that IRF is slow, but the accuracy of the
method is guaranteed when time step is small enough. In
order to compute the irf, Kurniawan et al. (2011) truncate
the infinite integral to a high-frequency value. This approach
may yield errors if the truncating high frequency is not prop-
erly selected. In this article, this kind of error is avoided since
the integral is analytically calculated until infinity (Kashi-
wagi 2000, 2004). In Ricci et al. (2008), the identification of
state space is done in the time domain, while in this article
this identification is done in the frequency domain following
Perez and Fossen (2011). Furthermore, the resulting ODE
system obtained using SS and Prony’s method is computed
using a Sth order Runge—Kutta method, while the direct inte-
gration of the radiation term is done using backward Euler
and Crank—Nicholson methods. So far, the models used to
compute the convolution integral have been always compared
using different methods to obtain the solution of the resulting
system of equations.

The purpose of this article was to summarise and compare
the three methods used in the literature. The methods under
study are the direct solution of the convolution integral, IRF,
approximation of the convolution integral by state spaces,
SS, and approximation of the irf by Prony’s method, Prony.
In this paper, the results obtained are compared using the
same technique to calculate the resulting system of first-order
ODE:s.

The programs used to calculate the convolution integral
by the three methods were written by the authors. In all three
cases, the convolution integral, matrices and the computa-
tion of irf for a predefined set of times is done in Python
and the results are written in files. Programs, made in For-
tran, read these files and compute the ODEs using ODEPACK
(Hindmarsh 1983), or VODE (Brown et al. 1989). Also, wave
excitation force is computed in Python and saved into a file.
This way, in the study of the movements of one WEC under
several wave conditions, the only file that needs to be changed
is the one containing the wave excitation force information.
The matrices and irf information, if needed, would be com-
puted only once for the complete set of wave conditions under
study.

The computational cost, shown in tables throughout the
paper, only contains the cost of the computation of the ODEs
systems. Exceptionally, in the case of the response amplitude
operator (RAO), the cost of the whole process is shown. The
solution of the system provided by Prony’s method contains
complex values, so the complex version of VODE (Brown
etal. 1989), ZVODE, is used. VODE is based on ODEPACK.
A comparison between ODEPACK and VODE has been
performed providing both the same results at very similar

computational costs. All computations have been performed
in just one core and always in the same computer, a desktop
computer. As ODEPACK and VODE use variable time step
methods, the same restrictions to the computation of the time
step were applied in all cases. Therefore, for the first time, the
different techniques used to evaluate the convolution integral
can be compared in a fair way in this work.

In this article, different methodologies have been applied
to the study the OWC and a spar buoy. A first set of tests
compare the results obtained in the study of an OWC, as
presented by Iturrioz et al. (2014), with results from numer-
ical models. Results and the computational effort required
for each method are compared with data from an in-house
CFD software IH-2VOF (Losada et al. 2008) and WADAM
(WADAM 2014). The first study case in this paper is the
comparison of the results with those of a decay test obtained
with IH-2VOF. Decay tests are suitable for the purpose of
comparing the methods in literature (IRF, SS and Prony)
to evaluate the radiation term, as only radiation and hydro-
static forces are considered. The second test, used for the
OWC, is to compare the RAO obtained from each method
with the one calculated with WADAM. Finally, results are
compared with those produced by IH-2VOF for irregular
waves.

[H-2VOF evaluates the 2D Reynolds Averaged Navier—
Stokes (RANS) equations (Liu et al. 1999; Hsu et al. 2002),
based on the decomposition of the instantaneous velocity
and pressure fields and the & — ¢ equations for the turbu-
lent kinetic energy (k) and the turbulent dissipation rate (¢).
The model has been under a continuous development process
based on an extensive validation procedure carried out for
low-crested structures (Garcia et al. 2004; Losada et al. 2005;
Lara et al. 2006), wave breaking on permeable slopes (Lara
et al. 2006), overtopping on rubble mound breakwaters and
low-mound breakwaters (Lara et al. 2008; Losada et al. 2008;
Guanche et al. 2009), pore pressure damping in rubble mound
breakwaters (Guanche et al. 2015) and the study of OWCs
(Armesto et al. 2014; Iturrioz et al. 2014). The detailed val-
idations provided by the aforementioned studies have tested
the capability of the IH-2VOF model to satisfactorily repro-
duce the wave—structure interactions.

After the validations using the OWC, a second set of com-
parisons uses a decay test of the spar buoy based on the
Hywind offshore wind project, and results from all meth-
ods are compared with results from laboratory. A sensitivity
analysis is performed for the time step, the memory of the
fluid and the frequencies obtained from different runs of
WADAM.

This paper is organised in three parts. The first part
describes the different numerical approximations considered:
IRF, SS and Prony. In the second part, the results yielded by
each of the methods are given and discussed. The last part
presents the conclusions of the study.

@ Springer
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2 Numerical model

Cummins’ equation is a differential equation of order two
with a convolution integral that provides the movement of a
floating structure in time domain. In the present paper, only
the movements in one degree of freedom (DOF), heave, are
considered. Therefore, Cummins’ equation can be written as

t
(M 4+Ax)Z(t) +/ K(t —1)z(t)dr+Cz(t) = F™(),
0
ey

where z(¢) is the heave position of the structure, M is the mass
of the structure, Ao, the added mass at infinity frequency, K
the irf, also known as retardation function and fluid memory,
C the restoring hydrostatic coefficient and F*¢ the external
forces, which can include wave forces, mooring forces, PTO
forces, current forces, wind forces, etc. In this study, the only
external forces used are the wave forces. The wave excitation
forces are provided by the boundary element method (BEM)
for the computed frequencies. In order to be able to repro-
duce realistic situations as those produced by IH-2VOF or
at the laboratory, friction forces should be included in the
model. The friction force is a hydrodynamic force that takes
into account the viscous and turbulent losses produced at the
submerged part of the body. Friction forces are included at
the right-hand side of the Eq. (1). This friction force depends
on the velocity of the movement and, in the adopted formu-
lation (Iturrioz et al. 2014) it has two components, one linear
and one nonlinear:

Fr() = kz(t) = (ki + knz () [z (0], @

where kj is the linear coefficient and &y the nonlinear coef-
ficient, which require calibration.

The three alternatives used in literature to compute the
convolution integral in Cummins’ equation are reviewed in
the following sections.

2.1 Solving the convolution integral (IRF method)

Before solving the convolution integral of Cummins’ equa-
tion, the irf, K (), needs to be computed. For every instant,
t, the following infinite integral needs to be computed:

K@) = %/0 B(w) cos(wt)dw, 3)

where B is the damping coefficient for every frequency.
In order to compute the previous value, damping coeffi-
cients are needed for all possible frequencies {B(w) : w €
[0, 00)}. BEM, such as WAMIT/WADAM (WADAM 2014;
WAMIT 2014) provides these coefficients for a set of pre-
defined frequencies {a)n}ffzo. BEM models require more
elements/panels as frequency grows. There is an upper limit
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for the frequencies that produce accurate results for a given
panel size of 8 panels per wavelength. The set of damping
values, {B(wn)}”yzo, can be extended to infinity by an expo-
nential function (Kashiwagi 2000, 2004). A similar approach
is proposed to extend the function by means of a geometric
function in Greenhow (1986) and Perez and Fossen (2008).
The effects of both extensions, exponential and geometric,
are to increase the initial value of K (¢) and to smooth the
function afterwards. This can be seen in Figure 2 for the expo-
nential tail proposed by Kashiwagi (2000, 2004) and used in
this work and in Figure 4 of Perez and Fossen (2008) for the
geometric tail. This is achieved by finding the exponential
function of form ae’® that better approximates the obtained
values of the damping at given frequencies, {w;, },]1\/:0, in the
sense of least square. The extended damping function, B, can
be expressed as

B(w;)
aebw

for w < 0*

B(w) = for w > w*.

“

The w* frequency is defined in this work as the crossing
frequency between BEM data, {B(wn)}g’:(), and the expo-
nential, assuming that for high frequencies the data provided
by BEM programs could be contaminated by the size of the
panel (Kurniawan et al. 2011). Figure 1 shows the damping
of the DOF heave for the volume of water trapped in the
OWC studied by Iturrioz et al. (2014) and its extrapolating
function (dashed line).

Truncating the infinite integral, to a high value of fre-
quency, is common practice in the literature (Kurniawan et al.
2011; Perez and Fossen 2008; Ricci et al. 2008; Yu and Falnes
1995) to compute the irf. The solution adopted in this work

x10°

WADAM | |

- -—pe DO

[Kgs™]

0 ~ P -

0 5 10 15 20
o [rad/s]

Fig. 1 Damping of the oscillating body in heave. Continuous line rep-
resents BEM data until the crossing frequency o* and dashed line
represents the exponential function ae?® evaluated from w*
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(Kashiwagi 2004) avoids the truncation, as the integral of the
exponential function is analytically evaluated to infinity.

The first step to compute the irf is to split Eq. (3) into a
finite integral and an infinite integral:

K@) = %/ ff(a)) cos(wt)dw
T Jo

*

— % [ / Y B(w) cos(wt)dw+ / - ae’® cos(a)t)da)i|.
0 w*

&)

The resulting finite integral can be calculated numeri-
cally, by means of the trapezoidal method, for example using
trapz in Matlab or Python (numpy). The infinite integral
has a finite result as the exponential is negative. A primi-
tive, F, can be found applying twice integration by parts; see
Appendix:

%eb‘” [cos(wr) + £ sin(wr)]
2
(1 + ;—2)

This primitive goes to zero when w goes to infinity; then,

F(w) =

(6)

/Oo ae’ cos(wt)dw = F(w)|32 = —F (o). @)

w* —
s

Consequently, it is possible to accurately compute the irf
for every desired time without truncating the infinite integral
in Eq. (3). For example, the OWC used in Iturrioz et al. (2014)
is used in this study to illustrate the results. Figure 2 shows
the irf for the heave of the considered body and for time
t €0, 10]. The figure shows the value of each integral (finite
and infinite) for every time step and the sum of both into
the irf, K(¢). The error derived when truncating the infinite
integral to the value of w* can be seen. It is clear that the irf is

400
— — — Finite integral
so0f |7 Infinite integral
—K() irf
— 200
I(I)
&en
2 100 |
ol
-100

t [s]

Fig. 2 Impulse response function K (¢) for the volume studied in Itur-
rioz et al. (2014) for r € [0, 10]

significantly high at the beginning and negligible after 3s in
this particular case. Then for r > 3, the irf can be neglected.

Therefore, the influence of the convolution integral, 7 (),
is limited after a certain time ¢* (Chitrapu and Ertekin 1995;
de Kat 1988; Nolte and Ertekin 2014), which means that
K (t) can be neglected for ¢ > t*. Hence, K(t — 7) can be
neglected for 7 <t — t*, reducing the computational effort.
Consequently,

~0

*

t t—t
1(t) :/ K(t —1)i(t)dr :/ K(t — 1)z(t)dr
0 0

t t
+/ K(t—r)i(t)dT%/ K(t—1)z(r)dr.
t—r* t—r*
3

Applying a simple change of variables (s = ¢ — 7) to the
last integral, Eq. (8) can be rewritten for a more convenient
interval, [0, *]:

0

t
1(:):/ K(t — 1)2(t)dr :/ K (s)2(t — s)(—ds)
t—t*

t*
*
:/ K(s)z(t — s)ds. 9
0

To avoid computing the convolution integral every time
step, a collection of values of K(t) for ¢ € [0, t*] (using
an appropriate At, can be precomputed), as done by Kur-
niawan et al. (2011). If N =¢*/At, the convolution integral
can be rewritten applying the trapezoidal integration method,
as done in Kashiwagi (2004) and Taghipour et al. (2008), as:

t*
I1(1) =/ K(s)z(t—s)ds
0

_ A [K(O)i(t)JrI;(t*)z'(t—t*)

N—1
+ D KA - nAt):| . (10)

n=1

This way, the irf only needs to be computed once for a
given set of time steps and can be applied to simulate every
wave condition (Kurniawan et al. 2011). This implies a huge
saving in computational effort, as the irf is not required to
be computed every time step. This methodology can cause
errors if At is not small enough, especially with rapid changes
in z, as is the case on studying waves close to the structure
natural period.

Once the convolution integral, I (¢), is computed, Cum-
mins’ equation can be converted into a system of two
first-order ODEs. Defining k1 = z and k> = z, then Cummins’
equation can be written as

@ Springer
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ki(t) = ka(t) an 90 : . . . . .
k2(t) == M{‘vf;)oo - Monokl (t) + 11[/;+A(2) : 80 = “wadam ]
. . . . . . . 70 F state-space 4
Finally, solving the Cummins’ equation, in (11) is equiv-
alent to solving a system of first-order ODEs, which in this B 60 | ]
study is done by ODEPACK (Hindmarsh 1983) and VODE = 50 f _
(Brown etal. 1989). The order of the system is twice the num- %, w0l |
ber of DOFs under study. In this case, one DOF is studied, ~
so the order of the system is two. 30 T
20 + g
2.2 Approximation of the convolution integral by a state 10 . . . . . .
space (SS method) 1 2 3 4 5 6 7 8

Inthe SS method, the convolution integral in Cummins’ equa-
tion, is approximated by a state space (Taghipour et al. 2008;
Yu and Falnes 1995). The irf represents the memory of the
fluid and using Laplace transformation it can be written as
the transfer function (TF), K (s), in the frequency domain.
This TF is approximated in the frequency domain (Perez and
Fossen 2009, 2011; Taghipour et al. 2008) by a parametric
function, K (w), expressed as

P(s,®)  pus"+pm—18"""+-+po
O(s, w) $"+gn_15" 14+ - +qo
(12)

K(s)~K(s)=

where s =iw is the Laplace complex variable. The coeffi-
cients of the polynomials P (s, w) and Q(s, w) are deter-
mined by means of a least square fitting to a set of known
values. Those values are obtained from the application of
the hydrodynamic BEM for a range of frequencies. The out-
put obtained from BEM are the damping coefficients, B(w),
added mass coefficients, A(w), and the added mass at infi-
nite frequency, A. Then a set of Kyagam (@) values can be
defined:

Kyadam (iw) = B(w) +i[A(®) + Ax]. (13)

TF in the frequency domain, K (), and irf in the time
domain, K (¢), are related by a Fourier transform:

K(io) ~ K (io) = ;/m K (t)e '“"dr. (14)
0

Figure 3 shows the approximation obtained in the case
studied in Iturrioz et al. (2014).

For instance, the SS method is used to approximate the
convolution integral /() in Alves (2012), Iturrioz et al.
(2014) and Yu and Falnes(1995, 1998). In Taghipour et al.
(2008), different ways to express the linear equation systems
are presented. It also includes the approximation of a convo-
lution integral by a state space representation:

@ Springer

o [rad s’l]

Fig. 3 Identification of TF, K (iw), for the volume studied in Iturrioz
etal. (2014)

Xe(t) = Acxe(t) 4+ Beue(t)

Ye(t) = Cexe (1), (15)

where A_ is the state matrix, B, the input matrix, C, the out-
put matrix, x.(¢) the state vector, u.(¢) the input vector and
v (1) the output vector of the state-space that approximates
the convolution integral. The input of the system is the heave
velocity of the body. These statements can be expressed as
follows:

uet) = £(1)

' | (16)
ye(t) = 1(1) = / K(t — 7)z(t)dr.

0

The state and input and output matrices, given in Eq. (15),
are built by conveniently placing the coefficients of the
polynomials P (s, w) and Q(s, w) obtained in the TF approx-
imation in them (Taghipour et al. 2008).

However, the heave velocity of the body, z(¢), that feeds
the convolution state space subsystem needs to be obtained
from solving Cummins’ equation for every time step. For this
purpose, another state space system will be defined: the gen-
eral state space system (Alves 2012; Yu and Falnes 1995).
It describes the general equation of motion of the body, tak-
ing into account all the forces considered in it (Cummins
1962), including the convolution integral, 7 (), by means of
the convolution state space subsystem:

%(t) = Ax(t) + Bu(t)

¥(0) = Cx(1). {17

In this general system, the input is the excitation force,
u(t) = F®(t), and the output is the heave displacement of
the body, y(¢#) = z(¢). The input matrices A., B, and C, in
Eq. (15) are included in general matrix A (Yu and Falnes
1995).
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Once again, Cummins’ equation is written as a system
of first-order ODEs. In this case, the order of the system is
twice the number of DOFs under study plus the sum of the
orders of all the state space equations used to approximate the
convolution integral of every coupling of DOFs. For example,
in the study of a 6 DOFs system, there are 36 convolution
integrals to approximate, which may be reduced depending
on the symmetry of the body.

2.3 Approximation of the convolution integral by
Prony’s estimation (Prony method)

The irf, Eq. (3), can be approximated by a sum of exponential
functions using Prony’s approximation (Duclos et al. 2001;
Paul 1998). This method provides a set {;, B; }le € C? such
that

P
K@)~ > e, (18)
i=1

Figure 4 shows the approximation by Prony’s method of
the irf presented in Fig. 2. Then the convolution integral can
be approximated by

P
HOEDIAGE (19)
i=1
where
t
Ii(t):/ ;P Dxydr; i=1,2,...,P. (20)
0

Using Leibniz’s integral rule it can be seen that

400

—K(t) irf
= = =Prony

300 r

0 0.5 1 1.5 2 2.5 3
t [s]

Fig. 4 Approximation by Prony’s method to the irf, K (), for the vol-
ume studied in Iturrioz et al. (2014) and 7 € [0, 3]

Ii(t) = Bili(t) + aiz(t), i=1,2,...,P. (21)

Equation (21) represents a system of first-order ODEs.
Using the approximation from Eq. (19), Cummins’ equation
can be written as

P
(M + As)i(t) + D 1i(1) + Cz(t) = F°(1). (22)

i=1
Defining k| =z and k> =z, Cummins’ equation can be

written as a system of two ODEs:

ki(t) = ka(t)

. P I;
ko) = — =IO C (1) +

J— (23)
MIA"

So, by writing together Eqgs. (21) and (23), it can be
concluded that solving Cummins’ equation is, once again,
equivalent to solving a system of ODEs. In this case, the
order of the system is twice the number of DOFs under study
plus the sum of the orders of all the Prony’s functions used
to approximate the convolution integral of every coupling of
DOFs. Prony’s coefficients are complex values; therefore, a
solver to deal with complex-valued ODE systems, such as
ZNVODE, is required. The imaginary part of the solution of
the systems is smaller than 1019 in all tested cases and it
has been neglected.

3 Comparison

In order to compare the results yielded by each method and
the computational time employed in their solution, two sets
of tests are performed. In the first set, the OWC employed in
Iturrioz et al. (2014) is used to analyse different cases. The
heave of the OWC is studied as the heave movement of the
mass of water inside the OWC at still water level (SWL).
The first case is a decay test where results are compared
with those obtained by IH-2VOF (Losada et al. 2008). In
the second test, the RAO is produced with each radiation
method, and the result compared with the RAO given by
the BEM model used. Sensitivity of the results to #* and the
value of At used to precompute the irf are presented in this
second test. The last case of study employing the OWC is an
irregular sea state. This case requires the calibration of linear
and nonlinear friction coefficients to compare the results with
those obtained by IH-2VOF (Iturrioz et al. 2014). In all cases,
the computational cost of solving the final system of ODEs
obtained with each method is compared.

In the second set, the three methods were used in the study
of a heave decay of the SPAR buoy based on the Hywind
offshore wind project. The results are compared with data
from laboratory experiments.
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In order to study the sensitivity of each method to 0.12 —
the set of frequencies provided, different sets of frequen- 0.1 ‘-—‘_—-‘-.ISSF
cies have been employed. Three different cases have been 0.08 L - == Prony
considered:

0.06| A
— An interpolation of the results given by the BEM model 0041
002}

M [m]

to 512 equally spaced frequencies between the minimum
and the maximum frequencies used by the BEM model o}
(for OWC, w €[1.532, 12.566], Aw =0.0216). This set

is called ‘Interpolated’. oo
— An interpolation of the results given by the BEM model to o0tk

512 equally spaced frequencies between the minimum fre- -0.06 |

quency and 0.6 times the maximum frequency used by the -008 |

BEM model (forOWC, w € [1.532, 7.540], Aw =0.0118).
This set is called “Truncated high’.

— An interpolation of the results given by the BEM model to Fig. 5 Comparison of the results produced by IH-2VOF, state space,

. . . IRF and Prony’s method using At = 0.02 s for a decay test with fluid

512 equally spaced frequencies between 1.5 times the min- memory 1* = 3 §
imum frequency and the maximum frequency used by the
BEM model (for OWC, w € [2.299, 12.566], Aw =0.0201). 3.1.1 Decay
This set is called “Truncated low’.

t[s]

The first comparison uses a decay test in heave, where the free

This way, the influence of selected frequencies in the BEM surface is initially located outside of the equilibrium condi-
execution can be evaluated. tion. The free surface is released and the system will evolve
until the equilibrium condition is reached. The results pro-
duced by the three methods are compared with in-house CFD
software IH-2VOF, (Losada et al. 2008). In order to adjust
the results, calibration coefficients for the linear and non-
linear frictions are included, k; =25.0 and k, =1 (Iturrioz
et al. 2014). All methods produce results in good agreement
with IH-2VOF, starting from an initial elevation of 0.12m,
as can be seen in Fig. 5. In Fig. 5, the time step considered is
At = 0.02 s and fluid memory is t* =3 s when solving IRF

3.1 Oscillating water column

In this section, the study carried out for an OWC device
is described. All OWC cases were analysed with volume,
V =20 x 30 x 68cm?>, and added mass at infinity frequency
Ao =31.43kg (Iturrioz et al. 2014). The computational cost
of solving the final system of ODEs obtained with each
method and for every test is presented. The solution of all the
systems of ODEs is done using the implicit Adams method and Prony. The effects of Az and r* for IRF are presented

with relative tolerance of 10~ and absolute tolerance of 10~ later. ) )
(Brown et al. 1989: Hindmarsh 1983) All simulations, IRF, SS and Prony, have been repeated

In the case of the SS. the Matlab MSS FDI toolbox using the different sets of frequencies described above: ‘Inter-
polated’, ‘“Truncation high’ and “Truncation low’. The results
of those frequency schemes can be found in Fig. 6, where all
cases yield very similar results. The natural period of each
case is extracted from the corresponding decay test and the
results are presented in Table 2. The only method showing
slight variability in the results is the approximation by SS.
Both IRF and Prony show no difference in the resulting nat-
ural period in any case. The results obtained from the three
methods employed are very similar to one another. A sum-
mary of the executed cases for the heave decay of the OWC
can be seen in Table 3.

In order to highlight the differences, the integral of the

The SS converges with third-order polynomials, while  yelocity of the free surface has been also computed for each
Prony only requires second-order ones to converge. This (g

means that for IRF, the system of ODEs is of order 2,

while in the SS the order is 5 and in Prony the order is r
only 4. D(1) :/0 n(t)de. (24)

provided by Perez and Fossen (2009) was translated to
Python and used. This toolbox is used in the identifica-
tion of radiation-force models and fluid memory effects.
The following characteristics were used in the MSS FDI
toolbox:

— Method of resolution using the identification toolbox: 2
— Maximum order of the identification: 20

— Identification threshold: 0.99

— Number of iterations for the identification = 50.
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State space

Table 4 Integral of the velocity of the free surface along the executed
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Fig. 6 Comparison of the results obtained by each method when pre-
processing the BEM data using Ar =0.02 s for a decay test with fluid
memory t*=3s 0.005 - : : E : : : =
Table 2 Natural period, in seconds, obtained by each method and every
pre-processing studied to compute the corresponding decay test 0 . . . . L . .
0.5 1 1.5 2 2.5 3 35 4

SS IRF Prony
Interpolated 1.145 1.15 1.166
Truncated high 1.143 1.15 1.166
Truncated low 1.146 1.15 1.166

Table 3 Summary of the executed cases for the heave decay of the
OWC

Radiation method Frequencies t* (s) At (s)
owcC SS Interpolated 3 0.02
Truncated high 3 0.02
Truncated low 3 0.02
IRF Interpolated 3 0.02
10 0.02
3 0.01
Truncated high 3 0.02
Truncated low 3 0.02
Prony Interpolated 3 0.02
Truncated high 3 0.02
Truncated low 3 0.02

The comparison of the integrated values, D(t), is shown
in Table 4, where the only method yielding different results
is the SS.

T [s]
Fig. 7 Comparative results obtained by BEM, IRF, SS and Prony’s
method using Ar = 0.02 s

Table 5 Computational effort, in seconds, required by each method to
compute the corresponding RAO

SS IRF (t* = 10s) IRF (t* = 35) Prony

CPU (s) 32 55 37 32

3.1.2 RAO

A set of 47 frequencies, between 1.53 and 12.56rad/s, were
used in the BEM model. In order to reproduce the RAO,
47 simulations of regular waves were executed, using the
frequencies studied in the BEM model.

Each regular wave train is simulated for 300 s using
At =0.02 s in all cases. To compute the RAO, only the
last half of each simulation is used, since the steady state
is reached. The obtained results are presented in Fig. 7. The
corresponding computational costs are shown in seconds in
Table 5. These computational costs include the whole sim-
ulation process: the computation of the irf, the state space
identification, if required, or the Prony’s approximation, if
required, and the simulations of the 47 wave conditions.
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Fig. 8 Comparative results produced by BEM and IRF when using
two different values for the memory of the fluid, * = 3sand r* = 10s

Two values for the memory of the fluid are considered
when computing the irf, t* =3s and t* = 10s. These val-
ues are selected by inspection of Fig. 2. The RAOs obtained
with this time history reduction are very similar one another
as shown in Fig. 8. Using t* = 3s significantly reduces the
computational cost of IRF to a similar cost as SS or Prony.

The largest error in Fig. 7 is caused by the direct cal-
culation of the convolution integral. When computing this
integral, the irf is precomputed for a set of time steps in
[0, #*] with a fixed time step, Atz. This error is larger when
more rapid changes in the velocity are produced, such as at
the natural period of the OWC. This can be seen in Fig. 7.
To reduce this error a smaller time step, At, is needed. The
results obtained for time steps Ar =0.02s and At =0.01s
are presented in Fig. 9, where the improvement is clearly
observed. However, dividing the time step by two doubles
the computational effort.

The RAOs have been repeated using the different sets
of frequencies described before: ‘Interpolated’, ‘Truncation
high’ and ‘Truncation low’. In case of IRF, two temporal dis-
cretizations are included Ar=0.02s and Ar=0.01s. The
results can be seen in Fig. 10, where the differences in the
amplitude at the natural period are in the order of 6 % when
using the different sets of frequencies for the SS method.

The IRF has also shown a 10 % error with the RAO given
by the BEM model, when using a large value of Az. Neither
IRF nor Prony seems to be sensitive to the change of frequen-
cies. On the other hand, SS and Prony have not shown any
sensitivity to the time step used, At =0.02s and Ar =0.01s.
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Fig. 9 Comparative results produced by BEM and IRF when using
two different values for the time interval, At = 0.02s and At = 0.01s

A summary of the executed cases for the RAOs of the OWC
is presented in Table 6.

3.1.3 OWC under irregular waves

The in-house CFD model IH-2VOF (Losada et al. 2008) is
used to compare the results of the OWC under the action of
an irregular sea state. In this case, a peak period of T, =3.2s
with significant wave height, H; =0.06m, is run for 150s
using Ar=0.02s. The calibration of the linear and non-
linear friction coefficients produced the values k; = 147.01
and kp =0 (Tturrioz et al. 2014). The computational effort
required for each method to compute the resulting system of
ODE:s is presented in Table 7. SS and Prony require similar
computational cost, which is almost half the computational
time required by the best case of IRF. The results obtained
are compared in Fig. 11, where solutions from all methods
are expressed. The results are similar to one another even
using At =0.02s.

The movements of the OWC under irregular waves are
computed using the superposition principle. Data from the
BEM code are obtained for a set of frequencies. A different
set of frequencies is obtained from the spectral decomposi-
tion of irregular waves, so interpolation is required from the
known frequencies used in the BEM model. Small discrep-
ancies can result specially in the interpolated phase as they
are 2w periodic. The time series presented is ¢ € (50, 100),
so small differences in the interpolated phases could cause
small discrepances in the phase, as in Fig. 11. So, this time lag
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Table 6 Summary of the executed cases for the RAOs of the OWC

Radiation method Frequencies t* (s) At (s)
OowC SS Interpolated 3 0.02
Truncated high 3 0.02
Truncated low 3 0.02
IRF Interpolated 3 0.02
3 0.01
Truncated high 3 0.02
3 0.01
Truncated low 3 0.02
3 0.01
Prony Interpolated 3 0.02
Truncated high 3 0.02
Truncated low 3 0.02

is the same in all three methods, because the lag comes from
the wave excitation force, which is the same in all methods.

Previous tests have shown the sensitivity of IRF to the time
step, but in this case the agreement is very good because the
peak period of the waves is far from the natural period of the
volume.

Table 7 Computational effort required by each method to compute the
resulting system of ODEs for each method in the case of irregular waves

SS IRF (t* = 105s) IRF (t* = 35) Prony

CPU (s) 0.164 0.484 0.284 0.16

3.2 SPAR buoy

In this section, the analysis carried out for a SPAR buoy is
described. A SPAR buoy based on the Hywind offshore wind
project is used in this calibration because of the availability
of laboratory results. In this study, three different BEM files
have been applied: one using equidistant frequencies between
0.1 and Srad/s every 0.1rad/s called ‘Original’; one using
equidistant periods between 1 and 60s every second called
‘Equal’; and finally, one with variable increments between 1
and 60s, smaller close to the natural period and larger incre-
ments for the rest of periods called ‘Variable’. Infinity added
mass has been externally computed to adjust the laboratory
peak period in all the cases. Furthermore, linear and nonlinear
coefficients are also used to adjust the damping measured at
the laboratory, with the same coefficients in all simulations,
k=2 x 10* and ky =4 x 10* (Iturrioz et al. 2014).
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Fig. 11 Comparative of the results produced by IH-2VOF and those by IRF, state space and Prony’s method using At = 0.02s
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Fig. 12 Comparison of the results from a decay test in heave in the laboratory and those produced by different methods to compute the radiation
(top state space, middle IRF, bottom Prony) for the three BEM files

For every radiation method, all BEM cases have been stud-
ied. Figure 12 presents the results of a decay test of the SPAR
buoy in heave (initial condition z =9 m). Laboratory results
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are compared with those obtained from interpolated BEM
data, 512 equidistant frequencies, when using the different
methods to calculate the convolution integral presented in this
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Table 8 Natural period, in seconds, obtained by each method and every
BEM file to compute the corresponding decay test of the SPAR buoy

SS IRF Prony
Original 30.464 30.91 30.918
Equal 30.464 30.91 30.918
Variable 30.447% 30.91 30.9322

2 The cases where convergence is not reached in the identification of
the SS or Prony

Table 9 Computational effort, in seconds, required by each method to
compute the system of ODEs for the corresponding data from BEM

SS IRF (#* = 305s) Prony
Original 0.76 (8) 0.17 (2) 0.46 (22)*
Equal 1.97 (8) 0.18 (2) 0.37 (18)
Variable 3.22 (22)* 0.16 (2) 0.39 (18)

The order of the resulting ODEs system is presented in between paren-
theses.

4 The cases where convergence is not reached in the identification of
the SS or Prony

article. Table 11 shows that SS yields small errors when cap-
turing the natural period, while IRF and Prony approximate it
well. Table 8 presents the natural periods obtained from each
method for every BEM file. Results in the table show small
sensitivity on the BEM files in the case of SS and Prony, in
which convergence is not reached in the identification of the
coefficients marked with the letter a symbol. The different
BEM files and the interpolation seem to have no effect on
the final result obtained with each method. Computational
costs employed for each method are shown in Table 9, in
which the letter a represents the cases where convergence is
not reached in the identification of the coefficients.

The data used to interpolate the coefficients of SS and
Prony in the study of the OWC are also used for the SPAR
buoy. This means that the maximum order employed in
these simulations is 20. The total order of the ODEs sys-
tem obtained by each method is shown in parentheses in the
table. It is obvious that the order of IRF is always 2, but there
is a variability in the order used in SS and Prony. This vari-
ability is reflected in the computational effort required by
each method. The changes in the data used from the BEM
model have no influence on the matrix of the system in the
IRF method. This is explained because the radiation force is
calculated in the RHS of the system, and small discrepancies
are not reflected in the solution of the system. On the other
hand, SS and Prony compute the radiation term modifying
the matrix of the ODEs system. Small changes in the matrix
coefficients can modify the properties of the matrix. Such
changes will be reflected in the computation of the ODEs
system. In the presented analysis of the SPAR buoy, the com-

putational cost of IRF remains almost constant, always lower
than the computational cost of SS and Prony.

For the case of ‘Equal’, the test cases have been repeated
using the 6 DOFs of the platform instead of only heave. The
order of the matrix for IRF is obviously 12 and the compu-
tational cost required is 2.6s. For SS, the order is 112 with
a computational effort of 1011 s. Prony requires an order of
the matrix of 76 and a computational effort of 4.8s. The
final ODEs system generated by every method is computed
by the implicit Adams method that uses variable time steps.
The use of variable time steps requires less computational
steps when the matrix of the system has appropriate eigen-
values. These eigenvalues change as the coefficients of the
matrix vary, due to the different results of the approximations
in SS and Prony. IRF and Prony’s methods require similar
numbers of evaluations, while SS requires between 2 and
8 times more evaluations of the system matrix for the simu-
lated cases. Every execution simulates 18005, writing results
every 0.1s.

Once the comparison of different BEM files was com-
pleted, a new set of simulations were executed only with
BEM file ‘Equal’ (periods between 1 and 60s every second).
The simulations comprise different interpolations of the set
of frequencies given by the BEM model. The first interpo-
lation is between the initial and final frequencies given by
BEM (0.1 and 6.28rad/s). In the second interpolation the
upper frequencies are truncated to 1.5rad/s (T =4.19s) and
in the third interpolation the lower frequencies are truncated
only to 0.175rad/s (T =35.95s), as the natural frequency is
slightly larger than 0.2rad/s. A summary of the executed
cases for the SPAR can be seen in Table 10. Figure 13 shows
that interpolation and low-frequency truncation seem to have

Table 10 Summary of the executed cases for the SPAR

Radiation method BEM Frequencies
SPAR SS Original
Equal Interpolated
Truncated high
Truncated low
Variable
IRF Original
Equal Interpolated
Truncated high
Truncated low
Variable
Prony Original
Equal Interpolated
Truncated high
Truncated low
Variable
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Fig. 13 Comparative results from a decay test in heave in the laboratory and those yielded by different methods to compute the radiation (top SS,
middle IRF, bottom Prony) for the BEM files with equidistant periods. Different frequencies interpolations are presented

Table 11 Natural period, in seconds, obtained by each method and
every pre-processing studied to compute the corresponding decay test

Table 12 Computational effort, in seconds, required by each method to
compute the corresponding interpolated and truncated data BEM model

of the SPAR buoy “equal”

SS IRF Prony SS IRF (t* = 305) Prony
Interpolated 30.464 3091 30.932 Interpolated 1.97 (8) 0.18 (2) 0.37 (18)
Truncated high 31.226 3091 30.914 Truncated high 0.37 (22)* 0.16 (2) 0.36 (18)
Truncated low 30.464 3091 30.932 Truncated low 2.06 (8) 0.17 (2) 0.37 (18)

no effect on the results for any method. On the other hand,
the high-frequency truncation seems to have a strong effect
on the results of SS. This effect starts with the identification
process, as it fails to converge when the 4 larger frequencies
are removed from the interpolation. Natural periods obtained
for every decay test are presented in Table 11. As can be
observed, this time the IRF is the only method that yields the
same results in all cases. The differences obtained by SS or
Prony are tiny, except in the case of ‘Truncated high’ for the
SS. This was not unexpected as, convergence was not reached
in the approximation of the polynomials in that case. The pro-
posed truncations, of low and high frequencies, seem to have
no influence on the solutions obtained by the IRF method.
On the other hand, the results provided by SS and Prony
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The time needed to calculate the final system is presented with the order
of the system between parentheses.

¢ The cases where convergence is not reached in the identification of
the state space

have shown some small impact on the pre-processing per-
formed. The computational cost of these sets of comparisons
can be seen in Table 12 and they follow the same pattern as
in Table 9, IRF being the fastest one.

4 Conclusions

The three methods employed in the literature to evaluate the
convolution term of Cummins’ equation have been imple-
mented and compared. The computation of the irf has been
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extended to infinity, interpolating the data obtained by a
BEM and analytically solving the integral to infinity avoiding
truncation errors (Kashiwagi 2004). The systems of ODEs
resulting in each method are computed using the same numer-
ical algorithm. The solutions obtained by all methods are
similar to one another.

In order to save computational time, the irf values are
precomputed for a predefined interval with a fixed time step
(Kurniawan et al. 2011). The results obtained by IRF have
shown sensitivity to the value of the chosen time step. Large
time steps yielded errors around the natural period of the
structure under study. On the other hand, their results have
not shown sensitivity to different BEM files or to the pre-
processing performed to BEM data.

SS method has shown two issues. The first one is the sensi-
tivity of the results to the pre-processing of BEM data in both
the decay test and RAOs of the OWC. The differences in the
results have always been very small. The second issue is that
using the same parameters for identification, the method con-
verged for BEMs cases ‘Original’ and ‘Equal’, but failed to
converge in the case ‘Variable’. The only thing that changed
for different BEM cases is the set of predefined frequencies
chosen.

The Prony method has also shown sensitivity in the results
when pre-processing BEM data in the case of the spar buoy,
but differences in the results are very small.

The change on the data used from the BEM model has
no influence on the matrix of the system in the IRF method.
Radiation force is evaluated at the right-hand side of the sys-
tem, and small discrepancies are not reflected on the solution
of the system, as the matrix characteristics remain the same.
SS and Prony calculated the radiation term modifying the
matrix and, therefore, the characteristics of the ODEs system.
In conclusion, small changes will be reflected in the solution
of the system. Hence, both systems show errors appearing in
the solution of the radiation term.

The simulations performed by SS and Prony’s approxima-
tions have been computationally cheaper than those by IRF
in the cases of the OWC. On the other hand, IRF was compu-
tationally cheaper than Prony and SS approximations in the
case of the SPAR decay. This seems to highlight that SS and
Prony are quicker when the identification is carried out with
polynomials of low order and IRF is quicker if high order is
needed for the identification. When using more DOFs in the
study, the order of the system increases much more in SS and
Prony than in IRF, which makes IRF quicker.

With the increase of computational capabilities given
by actual computers, the authors recommend the use of
direct integration method to compute the radiation term in
Cummins’ equation, avoiding the uncertainties seen in the
identification of the coefficients in the SS and Prony’s meth-
ods. However, a mention has to be made to highlight that the
solution given by SS or Prony’s methods should be consid-

ered in those cases where the access to modern computational
capabilities is reduced.
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Appendix: Primitive of the infinite integral

The equation to be solved is
/ ae’ cos(wt)dw. (25)

Applying integration by parts with
u = cos(wt); dv=ae’® = du=—tsin(wt) ; v= %eh“’,
(26)

the following is obtained:

t
/aeb“’ cos(wt)dw = cos(a)t)%eb“’ + 5 / ae’® sin(wt).
(27)

Again, integration by parts over the resulting integral with

u = sin(wr); dv = ae’® = du =t cos(wt); v = %eb‘”,
(28)

results in
t
/ ae®® sin(wt) = sin(a)t)%ebw - / ae’® cos(wt) (29)
Writing all together and applying algebra,

t
/ ae®® sin(or) = %ebw cos(wr) + Z—zsin(wt)

2
ae® sin(wt)

f2
= (1 + b—z)/aebw sin(wt)

g gbe cos(wt) + at sin(wt)
= —e [0} — w
b b2

:>/aeb“’ sin(wt)

4 obo cos(wt) + % sin(wt)
=2 b (30)

(1+,’)—22).
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