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Abstract Reconstructing neurons from 3D image-stacks

of serial sections of thick brain tissue is very time-con-

suming and often becomes a bottleneck in high-throughput

brain mapping projects. We developed NeuronStitcher, a

software suite for stitching non-overlapping neuron frag-

ments reconstructed in serial 3D image sections. With its

efficient algorithm and user-friendly interface, Neu-

ronStitcher has been used successfully to reconstruct very

large and complex human and mouse neurons.
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Digital reconstructions of neurons from very large three-

dimensional (3D) brain images are crucial for modern

neuroscience [1–3]. Despite recent great advances in neu-

ron labeling, brain clearing, and high-resolution 3D tissue-

imaging [4, 5] to study mammalian brains, many

neuroscientists still rely on physical sectioning of brains

followed by imaging such sections using either light

microscopy in 3D or electron microscopy in 2D. The

acquired images of serial sections are then stacked and

aligned to generate a very big image volume, from which

neurons are reconstructed and quantified (e.g., Fig. 1a–d).

Dendrites and axons severed at the section boundaries will

need to be stitched. This is often a challenging bottleneck

for proper reconstruction of locally dense dendritic and

axonal trees.

It is quite labor intensive to stitch neuron segments

manually over multiple sections. Automated methods may

provide a significant increase in the throughput to neuronal

reconstruction. However, this is a non-trivial task for

algorithms because there could be missing tissues as well

as distortions during sectioning, making stitching neuronal

segments across multiple sections much more challenging

in comparison with stitching overlapping tiles within single

sections [6, 7] (Fig. 1c). Several studies [8–12] aimed at

aligning traced neuron fragments (Supplement, Section 1)

because a neuron reconstruction often gives a concise and

less noisy description of neuron morphology than the

respective raw image. These methods demonstrated various

levels of suitability in identifying an alignment. Yet, most

of these tools are not readily available in their Open Source

form, and thus a thorough evaluation is difficult. Moreover,

none of the existing methods was explicitly designed to

handle the artifacts such as tissue loss or noise. Hence, their

performance is sensitive to the quality of neuron recon-

struction (Supplement, Section 4).

To address these challenges, we developed Neu-

ronStitcher, a software package that automatically assem-

bles complicated neuron fragments reconstructed from

adjacent serial sections. NeuronStitcher utilizes a triangle-
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matching algorithm to estimate the initial match of severed

neurites on the sectioning plane based on their relative

location and branch orientations (Supplement, Sec-

tion 2.3). Then, the reconstruction alignment process is

iterated until the final matched neurites are smoothly

stitched (Supplement, Section 2.4). To make Neu-

ronStitcher perform well for neurites that have varying

quality, we have also developed three methods to remove

noise when determining severed neurites (Supplement,

Section 2.2).

Fig. 1 Illustration of the 3D neuron stitching problem and results.

Three continuous sections containing 2 neurons in a mouse brain are

shown. The objective was to align neuron reconstructions (b) from
adjacent 3D sections (a) and stitch them into complete neuron

reconstructions (c, d). Different colors (red, green, and blue) were

assigned to the reconstructions in each section. All the snapshots were

generated from a view perpendicular to the section plane except the

two side-view pictures shown on the right and bottom of (c). (e)
Zoom-in views of two regions in (c) and (d) with the stitched neurites

highlighted by arrows. (Color figure online)
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We evaluated the accuracy of NeuronStitcher using

carefully generated ‘‘ground truth’’ reconstructions from a

piece of mouse brain tissue containing a labeled pyramidal

neuron within the hippocampal CA1 region (Supplement,

Section 4.1). Specifically, the whole neuron was first

imaged and thereafter semi-automatically reconstructed in

3D by an expert as the ground truth reconstruction (Fig-

ure S 10(a)). Then, we evenly sliced the neuron into three

serial sections in the z direction, each of which was imaged

individually. The reconstructions of neuron fragments from

all individual sections were generated by an expert and

then stitched together using NeuronStitcher (Figure S

10(b)). A careful comparison of the ground truth recon-

struction to the stitched reconstruction showed that 98%

bifurcations of the 3D reconstructed, tree-like neuron

morphology in the ground truth had their correspondence

in the stitched reconstruction (Supplement, Section 4.1),

and the minor amount (2%) of missing correspondence

happened at the section interfaces and was due to the

sectioning process.

We also considered an alternative way to produce the

‘‘ground truth’’ to evaluate the accuracy of NeuronStitcher

(Supplement, Section 4.3). We chose 5 densely arborized

reconstructions from mouse visual cortex. To generate the

simulated data, each reconstruction was digitally ‘‘sec-

tioned’’ into two halves. One half was then randomly

rotated and shifted in parallel with the sectioning plane.

Several different gaps (1, 2, 4, and 8 lm) were added to

simulate the different levels of tissue loss during sectioning.

Both the vertices and edges within the sectioning gaps were

removed (Figure S 17). To test NeuronStitcher, it was used

to stitch the two portions of data back together. Our auto-

matic matching found the correct matching and alignment

in most cases (Figure S 18). Even when a considerable

amount of tissue was lost (8 lm gap), the alignment was

still close to the ground truth (10.4 lm). In such a case,

most of the severed neurites were correctly matched (75%

precision, 62% sensitivity) by using the default parameters.

Notably, the errors due to the substantial information loss in

the big gaps should be anticipated (Figure S 18(c)-(e)). We

also tested NeuronStitcher with different parameter con-

figurations, which showed that NeuronStitcher was robust

to varying parameters. For instance, when the gap size was

1 lm, the distance to the truth was 1.3 ± 0.4 lm, the pre-

cision was 90 ± 6%, and the sensitivity was 87 ± 15% on

average for all the 58 sets of parameters tested.

In our experiments, we applied NeuronStitcher to stitch

two images of a mouse V1 neuron from confocal micro-

scopy and another two biocytin-filled human neurons

imaged by bright field microscopy (Supplement, Sec-

tion 4.2, Table S 2). In total, 16 pairs of sections were

stitched (the results of 3 adjacent pairs in Fig. 1 and more

results in Figures S 11-15). Among all automatically

matched neurites, 356 (86.6%) were accepted by an expert

(Table S 3). NeuronStitcher typically finished the compu-

tation within seconds, requiring less than 100 Mb memory.

The time for a user to visually check and adjust results

depended on the complexity of the reconstruction. For our

testing datasets, the average time for stitching (including

automated computation, visual inspection, parameter fine-

tuning, and manually adjustment of the result) an adjacent

pair of serial sections was 1300800 (median: 904100, mini-

mum: 001300, and maximum: 3603100) (Table S 3).

The quality of neuron reconstructions and the selected

parameters might influence the performance of Neu-

ronStitcher. To broaden the utility of NeuronStitcher to

work with a variety of data acquisition processes, we

designed an interactive graphical user interface to (1) allow

a visual evaluation on the stitching results and live

adjustments of matching parameters; and (2) enable man-

ual corrections of incorrect matching results (Supplement,

Section 3). The software was implemented in C/C?? as a

plugin of Vaa3D [13, 14], which is a publicly available

Open Source platform with a user-friendly interface for

3D? image analysis and visualization (http://www.vaa3d.

org). The screenshot of the GUI and the guidance of the

tool can be found in Supplement, Section 3, Figures S 6–9,

and Videos S 1–4.
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