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Abstract Alzheimer’s disease (AD) is a progressive

neurodegenerative disorder, causing changes in memory,

thinking, and other dysfunction of brain functions. More

and more people are suffering from the disease. Early

neuroimaging techniques of AD are needed to develop.

This review provides a preliminary summary of the various

neuroimaging techniques that have been explored for

in vivo imaging of AD. Recent advances in magnetic res-

onance (MR) techniques, such as functional MR imaging

(fMRI) and diffusion MRI, give opportunities to display

not only anatomy and atrophy of the medial temporal lobe,

but also at microstructural alterations or perfusion distur-

bance within the AD lesions. Positron emission tomogra-

phy (PET) imaging has become the subject of intense

research for the diagnosis and facilitation of drug devel-

opment of AD in both animal models and human trials due

to its non-invasive and translational characteristic. Fluo-

rodeoxyglucose (FDG) PET and amyloid PET are applied

in clinics and research departments. Amyloid beta (Ab)

imaging using PET has been recognized as one of the most

important methods for the early diagnosis of AD, and

numerous candidate compounds have been tested for Ab
imaging. Besides in vivo imaging method, a lot of ex vivo

modalities are being used in the AD researches. Mul-

tiphoton laser scanning microscopy, neuroimaging of

metals, and several metal bioimaging methods are also

mentioned here. More and more multimodality and multi-

parametric neuroimaging techniques should improve our

understanding of brain function and open new insights into

the pathophysiology of AD. We expect exciting results will

emerge from new neuroimaging applications that will

provide scientific and medical benefits.
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1 Introduction

Alzheimer’s disease (AD) is a progressive neurodegener-

ative disorder that gradually destroys brain cells, causing

changes in memory, thinking, and other dysfunction of

brain functions [1]. AD is considered to a prolonged pre-

clinical stage where neuropathological changes precede the

clinical symptoms [2]. An estimation of 35 million people

worldwide is living with this disease. If effective treat-

ments are not discovered in a timely fashion, the number of

AD cases is anticipated to rise to 113 million by 2050 [3].

Amyloid beta (Ab) and tau are two of the major

biomarkers of AD, and have important and different roles

in association with the progression of AD pathophysiology.

Jack et al. established hypothetical models of the major

biomarkers of AD. By renewing and modifying the models,

they found that the two major proteinopathies underlying

AD biomarker changes, Ab and tau, may be initiated

independently in late onset AD where they hypothesize that

an incident Ab pathophysiology can accelerate an ante-

cedent limbic and brainstem tauopathy [4]. MRI technique
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was used in the article, which revealed that the level of Ab
load was associated with a shorter time-to-progression of

AD [5]. This warrants an urgent need to develop early

neuroimaging techniques of AD neuropathology that can

detect and predict the disease before the onset of dementia,

monitor therapeutic efficacy in halting and slowing down

progression in the earlier stage of the disease.

There have been various reports on the imaging assess-

ments of AD. Some measurements reflect the pathology of

AD directly, including positron emission tomography

(PET) amyloid imaging and cerebrospinal fluid (CSF) beta-

amyloid 42 (Ab42), while others reflect neuronal injury

associated with AD indirectly, including CSF tau (total and

phosphorylated tau), fluorodeoxy-D-glucose (FDG)-PET,

and MRI. AD Neuroimaging Initiative (ADNI) has been to

establish the optimal panel of clinical assessments, MRI and

PET imaging measures, as well as other biomarkers from

blood and CSF, to inform clinical trial design for AD

therapeutic development. At the same time, it has been

highly productive in generating a wealth of data for eluci-

dating disease mechanisms occurring during early stages of

preclinical and prodromal AD [6].

Single neuroimaging often reflects limit information of

AD. As a result, multimodal neuroimaging is widely used

in neuroscience researches, as it overcomes the limitations

of individual modalities. Multimodal multiparametric

imaging mean the combination of different imaging tech-

niques, such as PET, MRI, simultaneously or separately.

The multimodal multiparametric imaging enables the

visualization and quantitative analysis of the alterations in

brain structure and function, such as PET/CT, and PET/

MRI. [7]. In this review article, we summarize and discuss

the main applications, findings, perspectives as well as

advantages and challenges of different neuroimaging in

AD, especially MRI and PET imaging.

2 Magnetic resonance imaging

MRI demonstrates specific volume loss or cortical atrophy

patterns with disease progression in AD patients [8–10].

There are several MRI techniques and analysis methods

used in clinical and scientific research of AD. Recent

advances in MR techniques, such as functional MRI

(fMRI) and diffusion MRI, depict not only anatomy and

atrophy of the medial temporal lobe (MTL), but also

microstructural alterations or perfusion disturbance within

this region.

2.1 Functional MRI

Because of the cognitive reserve (CR), the relationship

between severity of AD patients’ brain damage and

corresponding clinical symptoms is not always paralleled

[11, 12]. Recently, resting-state fMRI (RS-fMRI) is pop-

ular for its ability to map brain functional connectivity non-

invasively [13]. By using RS-fMRI, Bozzali et al. reported

that the CR played a role in modulating the effect of AD

pathology on default mode network functional connectiv-

ity, which account for the variable clinical symptoms of

AD [14]. Moreover, AD patients with higher educated

experience were able to recruit compensatory neural

mechanisms, which can be measured using RS-fMRI.

Arterial spin-labeled (ASL) MRI is another functional

brain imaging modality, which measures cerebral blood

flow (CBF) by magnetically labeled arterial blood water

following through the carotid and vertebral arteries as an

endogenous contrast medium. Several studies have con-

cluded the characteristics of CBF changes in AD patients

using ASL-MRI [15–17].

At some point in time, sufficient brain damage accu-

mulates to result in cognitive symptoms and impairment.

Mild cognitive impairment (MCI) is a condition in which

subjects are usually only mildly impaired in memory with

relative preservation of other cognitive domains and

functional activities and do not meet the criteria for

dementia [18], or as the prodromal state AD [19]. MCI

patients are at a higher risk of developing AD and up to

15 % convert to AD per year [18]. Binnewijzend et al. have

reported the pseudocontinuous ASL could distinguish both

MCI and AD from healthy controls, and be used in the

early diagnosis of AD [20]. In their continuous study, they

used quantitative whole brain pseudocontinuous ASL to

compare regional CBF (rCBF) distribution patterns in

different types of dementia, and concluded that ASL-MRI

could be a non-invasive and easily accessible alternative to

FDG-PET imaging in the assessment of CBF of AD

patients [21].

2.2 Structure MRI

Structural MRI (sMRI) has already been a reliable imaging

method in the clinical diagnosis of AD, characterized as

gray matter reduction and ventricular enlargement in

standard T1-weighted sequences [9]. Locus coeruleus (LC)

and substantia nigra (SN) degeneration was seen in AD. By

using new quantitative calculating method, Chen et al.

presented a new quantitative neuromelanin MRI approach

for simultaneous measurement of locus LC and SN of

brainstem in living human subjects [22]. The approach they

used demonstrated advantages in image acquisition, pre-

processing, and quantitative analysis. Numerous transgenic

animal models of amyloidosis are available, which can

manipulate a lot of neuropathological features of AD pro-

gression from the deposition of b-amyloid [23]. Braakman

et al. demonstrated the dynamics of amyloid plaque
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formation and development in a serial MRI study in a

transgenic mouse model [24]. Increased iron accumulation

in gray matter is frequently observed in AD. Because of the

paramagnetic nature of iron, MRI shows nice potential in

the investigating iron levels in AD [25]. Quantitative MRI

was shown high sensitivity and specificity in mapping

cerebral iron deposition, and helped in the research on AD

diagnosis [26].

The imaging patterns are always associated with the

pathologic changes, such as specific protein markers.

Spencer et al. manifested the relationship between quanti-

tative T1 and T2 relaxation time changes and three

immunohistochemical markers: b-amyloid, neuron-specific

nuclear protein (a marker of neuronal cell load), and

myelin basic protein (a marker of myelin load) in AD

transgenic mice [27].

High-field MRI has been successfully applied to imag-

ing plaques in transgenic mice for over a decade without

contrast agents [24, 28–30]. Sillerud et al. devised a

method using blood–brain barrier penetrating, amyloid-

targeted, superparamagnetic iron oxide nanoparticles

(SPIONs) for better imaging of amyloid plaque [31]. Then,

they successfully used this SPION-MRI to assess the drug

efficacy on the 3D distribution of Ab plaques in transgenic

AD mouse [32].

2.3 Diffusion MRI

Diffusion-weighted imaging (DWI) is a sensitive tool that

allows quantifying of physiologic alterations in water dif-

fusion, which result from microscopic structural changes.

Diffusion tensor imaging (DTI) is a well-established and

commonly employed diffusion MRI technique in clinical

and research on neuroimaging studies, which is based on a

Gaussian model of diffusion processes [33]. In general, AD

is associated with widespread reduced fractional anisotropy

(FA) and increased mean diffusivity (MD) in several

regions, most prominently in the frontal and temporal

lobes, and along the cingulum, corpus callosum, uncinate

fasciculus, superior longitudinal fasciculus, and MTL-as-

sociated tracts than healthy controls [34–37]. Acosta-

Cabronero et al. reported increased axial diffusivity and

MD in the splenium, which were the earliest abnormalities

in AD [38]. FA and radial diffusivity (DR) differences in

the corpus callosum, cingulum, and fornix were found to

separate individuals with MCI who converted to AD from

non-converters [39]. DTI was also found to be a better

predictor of AD-specific MTL atrophy when compared to

CSF biomarkers [40]. These findings suggested the

potential clinical utility of DTI as early biomarkers of AD

and its progression. However, an increase in MD and DR

and a decrease in FA with advancing age in selective brain

regions have been previously reported [41, 42]. Diffusion

MRI can be also used in the classifying of various stages of

AD. Multimodal classification method, which combined

fMRI and DTI, separated more MCI from healthy controls

than single approaches [43].

In recent years, tau has emerged as a potential target for

therapeutic intervention. Tau plays a critical role in the

neurodegenerative process forming neurofibrillary tangles,

which is a major hallmark of AD and correlates with

clinical disease progression. Wells et al. applied multi-

parametric MRI, containing high-resolution structure MRI

(sMRI), a novel chemical exchange saturation transfer

(CEST) MRI, DTI, and ASL, and glucose CEST to mea-

sure changes of tau pathology in AD transgenic mouse

[44].

Besides DWI MRI, perfusion-weighted imaging (PWI)

is another advanced MR technique, which could measure

the cerebral hemodynamics at the capillary level. Zimny

et al. evaluated the correlation of MTL with both DWI and

PWI in AD and MCI patients [45].

3 Positron emission tomography

PET is a specific imaging technique applying in researches

of brain function and neurochemistry of small animals,

medium-sized animals, and human subjects [46–48]. As a

particular brain imaging technique, PET imaging has

become the subject of intense research for the diagnosis

and facilitation of drug development of AD in both animal

models and human trials due to its non-invasive and

translational characteristic. PET with various radiotracers

is considered as a standard non-invasive quantitative

imaging technique to measure CBF, glucose metabolism,

and b-amyloid and tau deposition.

3.1 FDG-PET

To date, 18F-FDG is one of the best and widely used

neuroimaging tracers of PET, which employed for research

and clinical assessment of AD [49]. Typical lower FDG

metabolism was shown in the precuneus, posterior cingu-

late, and temporal and parietal cortex with progression to

whole brain reductions with increasing disease progress in

AD brains [50, 51]. FDG-PET imaging reflects the cerebral

glucose metabolism, neuronal injury, which provides

indirect evidence on cognitive function and progression

that cannot be provided by amyloid PET imaging.

Schraml et al. [52] identified a significant association

between hypometabolic convergence index and phenotypes

using ADNI data. Some researchers also used 18F-FDG-

PET to analyze genetic information with multiple

biomarkers to classify AD status, predicting cognitive

decline or MCI to AD conversion [53–55]. Trzepacz et al.
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[56] reported multimodal AD neuroimaging study, using

MRI, 11C-PiB PET, and 18F-FDG-PET imaging to predict

MCI conversion to AD along with APOE genotype. Zhang

et al. [57] compared the genetic modality single-nucleotide

polymorphism (SNP) with sMRI, 18F-FDG-PET, and CSF

biomarkers, which were used to differentiate healthy con-

trol, MCI, and AD. They found FDG-PET is the best

modality in terms of accuracy.

3.2 Amyloid beta PET

Ab, the primary constituent of senile plaques, and tau

tangles are hypothesized to play a primary role in the

pathogenesis of AD, but it is still hard to identify the

fundamental mechanisms [58–60]. Ab plaque in brain is

one of the pathological hallmarks of AD [61, 62]. Accu-

mulation of Ab peptide in the cerebral cortex is considered

one cause of dementia in AD [63]. Numerous studies have

involved in vivo PET imaging assessing cortical b-amyloid

burden [64–66].

Ab imaging using PET has been recognized as one of

the most important methods for the early diagnosis of AD

[67]. Numerous candidate compounds have been tested for

Ab imaging, such as 11C-PiB [68], 18F-FDDNP [69], 11C-

SB-13 [70], 18F-BAY94-9172 [71], 18F-AV-45 [72], 18F-

flutemetamol [73, 74], 11C-AZD2184 [75], and 18F-

ADZ4694 [76], 11C-BF227 and 18F-FACT [77].

Several amyloid PET studies examined genotypes,

phenotypes, or gene–gene interactions. Ramanan et al. [78]

reported the GWAS results with 18F-AV-45 reflecting the

cerebral amyloid metabolism in AD for the first time.

Swaminathan et al. [79] revealed the association between

plasma Ab from peripheral blood and cortical amyloid

deposition on 11C-PiB. Hohman et al. [80] reported the

relationship between SNPs involved in amyloid and tau

pathophysiology with 18F-AV-45 PET.

Among the PET tracers, 11C-PiB, which has a high

affinity for fibrillar Ab, is a reliable biomarker of under-

lying AD pathology [68, 81]. It shows cortical uptake well

paralleled with AD pathology [82, 83], has recently been

approved for use by the Food and Drug Administration

(FDA, April 2012) and the European Medicines Agency

(January 2013). 18F-GE-067 (flutemetamol) and 18F-

BAY94-9172 (florbetaben) have also been approved by the

US FDA in the last 2 years [84, 85].

18F-Florbetapir (also known as 18F-AV-45) exhibits

high affinity specific binding to amyloid plaques. 18F-AV-

45 labels Ab plaques in sections from patients with

pathologically confirmed AD [72].

It was reported in several research groups that 18F-AV-45

PET imaging showed a reliability of both qualitative and

quantitative assessments in AD patients, and Ab? increased

with diagnostic category (healthy control\MCI\AD)

[82, 86, 87]. Johnson et al. used 18F-AV-45 PET imaging to

evaluate the amyloid deposition in both MCI and AD

patients qualitatively and quantitatively, and found that

amyloid burden increased with diagnostic category

(MCI\AD), age, and APOEe4 carrier status [88]. Payoux

et al. reported the equivocal amyloid PET scans using 18F-

AV-45 associated with a specific pattern of clinical signs in a

large population of non-demented older adults more than

70 years old [89].

More and more researchers consider combination and

comparison of multiple PET tracers targeting amyloid

plaque imaging together. Bruck et al. compared the prog-

nostic ability of 11C-PiB PET, 18F-FDG-PET, and quan-

titative hippocampal volumes measured with MR imaging

in predicting MCI to AD conversion. They found that the

FDG-PET and 11C-PiB PET imaging are better in pre-

dicting MCI to AD conversion [90]. Hatashita et al. used

11C-PiB and FDG-PET imaging to identify MCI due to

AD, 11C-PiB showed a higher sensitivity of 96.6 %, and

FDG-PET added diagnostic value in predicting AD over a

short period [91].

Besides, new Ab imaging agents were radiosynthesized.

Yousefi et al. radiosynthesized a new Ab imaging agent

18F-FIBT, and compared the three different Ab-targeted

radiopharmaceuticals for PET imaging, including 18F-

FIBT, 18F-florbetaben, and 11C-PiB [92]. 11C-AZD2184

is another new PET tracer developed for amyloid senile

plaque imaging, and the kinetic behavior of 11C-AZD2184

is suitable for quantitative analysis and can be used in

clinical examination without input function [75, 93, 94].

4 Multimodality imaging: PET/MRI

Several diagnostic techniques, including MRI and PET, are

employed for the diagnosis and monitoring of AD [95].

Multimodal imaging could provide more information in the

formation and key molecular event of AD than single

method. It drives the progression of neuroimaging research

due to the recognition of the clinical benefits of multimodal

data [96], and the better access to hybrid devices, such as

PET/MRI [97].

Maier et al. evaluated the dynamics of 11C-PiB PET,

15O-H2O-PET, and ASL-MRI in transgenic AD mice and

concluded that the AD-related decline of rCBF was caused

by the cerebral Ab angiopathy [98]. Edison et al. system-

atically compared 11C-PiB PET and MRI in AD, MCI

patients, and controls. They thought that 11C-PiB PET was

adequate for clinical diagnostic purpose, while MRI

remained more appropriate for clinical research [99]. Zhou

et al. investigated the interactions between multimodal

PET/MRI in elder patients with MCI, AD, and healthy

controls, and confirmed the invaluable application of

32 Q. Zhao et al.

123



amyloid PET and MRI in early diagnosis of AD [100]. Kim

et al. reported that Ab-weighted cortical thickness, which

incorporates data from both MRI and amyloid PET imag-

ing, is a consistent and objective imaging biomarker in AD

[101].

5 Other imaging modalities

Multiphoton non-linear optical microscope imaging systems

using ultrafast lasers have powerful advantages such as label-

free detection, deep penetration of thick samples, high sensi-

tivity, subcellular spatial resolution, 3D optical sectioning,

chemical specificity, and minimum sample destruction [102,

103]. Coherent anti-Stokes–Raman scattering (CARS), two-

photon excited fluorescence (TPEF), and second-harmonic

generation (SHG) microscopy are the most widely used

biomedical imaging techniques [104–106].

Some researchers have reported in vivo imaging of

senile plaque and collagen using multiphoton laser scan-

ning microscopy or auto-fluorescence and SHG images in

AD mouse model [107, 108]. Lee et al. developed a mul-

timodal multiphoton non-linear optical microspectroscopy

imaging system based on a small-diameter probe with

gradient-index lenses combing CARS, TPEF, and SHG

into one platform for imaging distinct molecular structures

and components of brain tissue associated with AD trans-

formation [109].

Metal dyshomeostasis is frequently observed in AD due

to anomalous binding of metals such as iron (Fe), copper

(Cu), and zinc (Zn), or impaired regulation of redox-active

metals inducing the neuronal damage. Neuroimaging of

metals in a variety of intact brain cells and tissues is

emerging as an important tool for increasing our under-

standing of the role of metal dysregulation in AD. Braidy

et al. reviewed the metal bioimaging in AD [110]. Several

imaging techniques, such as laser ablation inductively

coupled mass spectrometry (MS), X-ray fluorescence

microscopy, MALDI imaging mass spectrometry (MALDI-

MS), and Fourier transform infrared spectroscopy,, have

been used to study in AD [111–114]. Several limitations of

metal bioimaging, such as lower spatial resolution and

detection sensitivity, make it not as valuable as PET and

MRI imaging.

6 Perspective of neuroimaging in precision imaging

Precision medicine is a phrase that is often used to describe

how genetic information about a person’s disease is being

used to diagnose or treat their disease. Understanding the

genetic changes that are in AD formation is leading to more

effective treatment strategies. The prospect of a

personalized or precision medicine for AD, and for its

incorporation in therapeutic trial design, is predicated on

the ability to use an individual’s genetic profile to refine

predisposition to disease, characteristics such as likely rate

of progression, and predicted therapeutic and side effect

responses to various therapeutic strategies [115]. At pre-

sent, the genetic data associated with AD clinical drug

development were mainly focused on APOE, which was

commonly used as stratification factor or covariate to

adjust for heterogeneity [116, 117].

Ultimately, imaging-genetic endophenotype studies may

provide a link between genetics and disease topography by

elucidating those areas of the brain most associated with

known and potential pathological genotypes. APOE geno-

type may be one important factor contributing to hetero-

geneity in sporadic AD, as non-e4 status among EOAD

patients correlates with atypicality [118].

7 Conclusion

This review provides a preliminary summary of the various

neuroimaging techniques that have been explored for

in vivo imaging of AD. MRI and PET imaging are still the

mainly used technique in the detection, assessment of AD.

From a scientific perspective, more and more multi-

modality and multiparametric neuroimaging techniques

should improve our understanding of brain function and

open new insights into the pathophysiology of AD. We

expect exciting results will emerge from new neuroimaging

applications that will provide scientific and medical

benefits.
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