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Abstract Tremendous efforts have thus been devoted on

the establishment of functional MRI informatics systems

that recruit a comprehensive collection of statistical/com-

putational approaches for fMRI data analysis. However, the

state-of-the-art fMRI informatics systems are especially

designed for specific fMRI sessions or studies of which the

data size is not really big, and thus has difficulty in han-

dling fMRI ‘big data.’ Given the size of fMRI data are

growing explosively recently due to the advancement of

neuroimaging technologies, an effective and efficient fMRI

informatics system which can process and analyze fMRI

big data is much needed. To address this challenge, in this

work, we introduce our newly developed informatics

platform, namely, ‘HAFNI-enabled largescale platform for

neuroimaging informatics (HELPNI).’ HELPNI imple-

ments our recently developed computational framework of

sparse representation of whole-brain fMRI signals which is

called holistic atlases of functional networks and interac-

tions (HAFNI) for fMRI data analysis. HELPNI provides

integrated solutions to archive and process large-scale

fMRI data automatically and structurally, to extract and

visualize meaningful results information from raw fMRI

data, and to share open-access processed and raw data with

other collaborators through web. We tested the proposed

HELPNI platform using publicly available 1000 Functional

Connectomes dataset including over 1200 subjects. We

identified consistent and meaningful functional brain net-

works across individuals and populations based on resting

state fMRI (rsfMRI) big data. Using efficient sampling

module, the experimental results demonstrate that our

HELPNI system has superior performance than other sys-

tems for large-scale fMRI data in terms of processing and

storing the data and associated results much faster.
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1 Introduction

Understanding the organization of brain function has

received significant interest since the establishment of

neuroscience. During the past two decades, functional

magnetic resonance imaging (fMRI), which is an in vivo

neuroimaging technique, has revolutionized the functional

mapping of the brain [1–8]. Specifically, task-based fMRI

(tfMRI) has been widely used to record functional brain

activities during a specific task performance and further to

identify brain regions that are functionally involved in the

task performance [2, 4, 5]. Meanwhile, resting state fMRI

(rsfMRI) has also received intense interest more recently to

acquire brain activities while participants are in a task-free

state. The coherence in the functional brain organization

which is free from the task performance constraint can be

reflected based on the spontaneous signal changes during

resting state [1, 3–8].
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Given the importance of fMRI (including both tfMRI

and rsfMRI) data for functional brain mapping, tremendous

efforts have been devoted on the establishment of fMRI

informatics systems which recruit a comprehensive col-

lection of statistical/computational approaches for fMRI

data analysis [9–14]. For example, MEDx is one of the

earliest tools which was produced to incorporate advances

in neuroimaging methods in 1993 [9]. Later on, FSL

(FMRIB’s Software Library) toolbox was developed to

bring more insights to the neuroscience analysis tools, and

since June 2000, it has helped researchers globally apply

FEAT, MELODIC, FABEER, BASIL, and VERBENA

tools for fMRI data processing and analysis [10, 11].

Moreover, statistical methods and tools have become one

of the main tools to study brain networks and connectivity.

For example, statistical parametric mapping (SPM) is one

of the most influential tools which has been designed for

brain imaging data sequence analysis from different

cohorts or time- series [12]. Analysis of functional neu-

roimages (AFNI) package is another tool to visualize and

statistically analyze fMRI datasets [13]. Furthermore, some

have dedicated their resources to create a concentrate

database to index the context and content of the fMRI lit-

erature in a searchable fashion, considering the multidis-

ciplinary nature of fMRI researches and thousands of

investigators around the globe. Fox and Lancaster have

discussed demands of such a system and proposed Brain-

Map to address required applications [14, 15]. Although

significant successes have been achieved for these fMRI

informatics systems [16, 17], a considerable limitation is

that all of those state-of-the-art systems are especially

Fig. 1 I The decomposed dictionary components from the fMRI data

during one single task and II the 14 corresponding reference weight

maps by applying the HAFNI method to the whole-brain fMRI

signals. This figure visualizes 14 selected dictionary components

which are either motor task-evoked networks (M1–M5) or resting

state networks (RSN1–RSN9). The green bars in (I) show 400

dictionary network components (indexed along x-axis) and the spatial

non-zero voxel numbers that each component’s reference weight map

contains (represented by the horizontal height of each bar). The

panels in (II) visualize the temporal time series (white curve) and

spatial distribution map (eight representative volume images) of each

network. The red curves represent the task contrast designs of the

motor tfMRI data. (Color figure online)

cFig. 2 HELPNI structure and connected components. a Web builder

through which the web application will be built. b HELPNI platform

big picture. c File infrastructure workflow consists of pre-archive and

archive in which data will be temporary stored and then after user

inspection and running required processes, data will be moved to their

permanent destination where pipelines processes will be run on.

d Client application and users transactions. Local and global users

connect to the web interface after logging into the system and passing

firewall, using their preferred client application. Then, they will be

able to process, share, download, and upload data interactively.

e Pipeline processing unit(s) that dynamically receive parameters and

executives from pipeline manager and after running predefined steps,

generate a user friendly report along with required notifications and

then will store the results into file storage
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designed for specific fMRI sessions or studies of which the

data size is not really big. As a consequence, there is dif-

ficulty for those systems to preprocess, analyze, and visu-

alize fMRI ‘big data’ simultaneously.

With the advancement of neuroimaging technologies,

the size of fMRI data is growing explosively. Given the

lack of a uniform resource center for fMRI data providers,

researchers, and developers, neuroimaging informatics

tools and resources clearinghouse (NITRC) were estab-

lished in 2006 to facilitate finding and computing neu-

roimaging resources for functional and structural

neuroimaging analyses to be a common place to share

required tools and data [18]. Although it was not for the

first time that a government-funded project became an

international neuroscience resource provider to cover pio-

neers worldwide, for example, neuroscience information

framework (NIF) in 2004 [19] as well as biomedical

informatics research network (BIRN) in 2001 [20], NITRC

was successful and popular to host and provide one of the

biggest fMRI databases named 1000 functional connec-

tomes (1000FC) resting state fMRI project. [https://www.

nitrc.org/projects/fcon_1000/]. Moreover, there are other

fMRI big datasets that are publicly available for research-

ers such as OpenfMRI [21] and human connectomes pro-

ject (HCP) [22]. HCP is a recent NIH-funded project

devised to map the brain’s communication network called

connectome. This project provides a collection of neural

data along with an interface to graphically navigate the

data. The OpenfMRI is a National Science Foundation

funded project established in 2010 to provide resources for

researches to upload their owned fMRI data and make them

publicly available.

In short, the availability of fMRI big data has globally

attracted increasing attention for researchers in the neu-

roimaging field to test various methods and algorithms based

on a ‘big data’ strategy. For instance, the velocity of studies

as well as the variety and volumes of neuroimages is

aggregating exponentially, which are among the biggest

challenges nowadays [23]. As Van Horn studied and men-

tioned [24], the calculated neuroimaging data from listed

articles in representative issues of neuroimage have been

increased drastically and it is being expected to grow expo-

nentially. The average size of raw data per study is expected

to be 15 GB in 2015 and 20 GB in 2020. Therefore, effective

and efficient fMRI informatics systems which can process

and analyze fMRI big data are much needed.

To deal with the abovementioned limitation of previous

fMRI informatics systems and to address the need of

effective fMRI informatics system which can process and

analyze fMRI big data for researches, in this paper, we

have developed a HAFNI-enabled largescale platform for

neuroimaging informatics (HELPNI) (http://bd.hafni.cs.

uga.edu/helpni). This system is established using the

extensible neuroimaging archive toolkit (XNAT) web

application and storage solutions [25], a widely used open

source system for storing, managing, and analyzing medi-

cal images and related meta-data [26]. RESTful application

programming interface makes it especially useful for data

sharing since the entire database’s contents are reachable

programmatically through the web application [26].

Specifically, the proposed HELPNI system in this work

implements our latest computational framework of sparse

representation of whole-brain fMRI signals which is called

‘holistic atlases of functional networks and interactions’

(HAFNI) [27]. The main idea of HAFNI is to aggregate all

of hundreds of thousands of tfMRI or rsfMRI signals

within a whole brain of one subject into a big data matrix,

which is subsequently factorized into an over-complete

dictionary basis matrix (represented by the panel (I) of

Fig. 1) and a reference weight matrix (represented by the

panel (II) of Fig. 1) via an effective online dictionary

learning algorithm [28, 29]. The time series of each over-

Fig. 3 An overview of HAFNI

implementation through

HELPNI and its workflow
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completed basis dictionary represents the functional BOLD

(blood-oxygen-level dependent) activities of a brain net-

work (the white curves in the panel (II) of Fig. 1) and its

corresponding reference weight vector stands for the spa-

tial map of this brain network (the volume images in the

panel (II) of Fig. 1). The HAFNI framework has been

found to be effective and efficient in inferring a compre-

hensive collection of concurrent functional networks in the

whole brain [27]. HELPNI covers the fMRI big data both

from big data matrix and high volume of subjects. This

happens first through employing HAFNI framework to

handle the big data matrix for each subject and second by

utilizing a database to store large-scale datasets, and then

using a scheduling engine to distribute analyzing tasks to

multiple machines and process multiple subjects simulta-

neously. HELPNI, as an advanced informatics system,

provided us with resources to identify large-scale (over all

1200?) functional connectomes subjects automatically via

automated computational pipeline based on our HAFNI

framework function, to store the results in an organized

data structure, and to generate detailed reports for data

analysis (containing registration, online dictionary learn-

ing, and identified functional brain networks results)

accessible through our web interface publicly. The

HELPNI system significantly expands the previous neu-

roimaging archive toolkit by adding HAFNI capabilities,

that is, HAFNI-enabled, while significantly enhancing

HAFNI by integrating the advanced informatics system.

The rest of this paper is organized as follows. We will

describe the methods of development in addition to

obtained results of HAFNI implementation in Sect. 2. We

will also discuss the significance of this system in com-

parison to the previous methods of fMRI analysis studies.

Results are provided in Sect. 3, and discussion and con-

clusion are in Sect. 4.

2 Method

In this section, we first provide a technical overview of

HELPNI system and then we discuss HAFNI implemen-

tation details and its workflow in our system. Subsequently,

we will discuss the 1000FC database we used as the test

bed in this paper.

2.1 Overview of HELPNI system

The main purpose of HELPNI is to store and manage large

diverse imaging datasets to facilitate neuroimaging

researches with complicated processes and large amount of

data. The interesting feature of this platform is the

extendibility, through which developers can customize

their desired analytical and visualization tools. The plat-

form uses XML schema to generate custom components,

modules, workflows for different tiers. As Fig. 2 elabo-

rates, the standardized workflow helps users to (a) capture

Fig. 4 The computational pipeline of sparse representation of whole-

brain fMRI signals using an online dictionary learning approach.

a The whole-brain fMRI signals are aggregated into a big data matrix,

in which each row represents the whole-brain fMRI BOLD data in

one time point and each column contains the time series of one single

voxel. b The target optimization function of dictionary learning and

sparse coding. c Illustration of the learned atomic dictionary, each

dictionary represents one functional network component. d The

coefficient matrix, each row in the matrix measures the weight

coefficient of the corresponding dictionary over the whole brain. That

is, each row defines the contribution of one dictionary to the

composition of all voxel-wise fMRI signals
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imaging/non-imaging data and meta-data (either from

neuroimaging machines or other databases manually);

(b) inspect data by means of pre-archiving feature; (c) an-

alyze data remotely or locally on-demand; (d) collaborate

easier using the predefined filter (in this way, collaborators

can be noticed when a related dataset were added to sys-

tem); and (e) control access and share data where datasets

and linked results can be shared publicly through the web

interface to facilitate collaboration.

In the HELPNI system, we implemented our recently

developed HAFNI framework for fMRI data analysis using

the extendible pipelines. Pipeline is a workflow described

in a XML document. Parameters could be specified within

the XML document or be sourced as another XML docu-

ment. So far we have implemented a few pipelines each of

which contains different sets of scripts for our HAFNI

framework. These pipelines can both extract input param-

eters from subjects automatically or ask users to provide

them manually. Pipeline engine works based on the Java

framework which parses parameters out of XML document

and it links sequence of activities into a defined process

flow and can manage data flow at each step. It can be

configured to send notification at desired step(s) for quality

control or to modify parameters, and then restart pipeline

from where it stopped. We have used pipeline to automate

the whole processes of fMRI data registration and online

dictionary learning (ODL) and to reduce the processing

time. It also helped to run the data over a very large set of

data in much less amount of time as we implemented it

over the 1000FC data. Pipelines can leverage from dis-

tributed computing, and in this way, a huge amount of

processes can result in much less computation time.

In this work, we used the 1000FC project datasets as test

bed for HELPNI system developing and testing. The

1000FC project contains 1200? resting state functional

MRI (rsfMRI) images collected from 33 locations. We

Table 1 The 1000 Functional Connectomes Project datasets summary

Baltimore (n = 23 [8 M/15F];

ages: 20–40; TR = 2.5; #

slices = 47; #

timepoints = 123)

Bangor (n = 20 [20 M/0F]; ages:

19–38; TR = 2; # slices = 34; #

timepoints = 265)

Beijing_Zang (n = 198 [76 M/

122F]; ages: 18–26; TR = 2;

# slices = 33; #

timepoints = 225)

Berlin_Margulies (n = 26

[13 M/13F]; ages: 23–44;

TR = 2.3; # slices = 34; #

timepoints = 195)

Cambridge_Buckner (n = 198

[75 M/123F]; ages: 18–30;

TR = 3; # slices = 47; #

timepoints = 119)

Cleveland CCF (n = 31 [11 M/20F];

ages: 24–60; TR = 2.8; #

slices = 31; # timepoints = 127)

Dallas (n = 24 [12 M/12F];

ages: 20–71; TR = 2; #

slices = 31; #

timepoints = 115)

Durham_Madden (n = 42 [n/a];

ages: n/a; TR = n/a; #

slices = n/a; X

timepoints = n/a)

ICBM (n = 86 [41 M/45F]; ages:

19–85; TR = 2; # slices = 23;

# timepoints = 128)

Leiden_2180 (n = 12 [12 M/0F];

ages: 20–27; TR = 2.18; #

slices = 38; # timepoints = 215)

Leiden_2200 (n = 19 [11 M/

8F]; ages: 18–28; TR = 2.2; #

slices = 38; #

timepoints = 215)

Leipzig (n = 37 [16 M/21F];

ages: 20–42; TR = 2.3; #

slices = 34; #

timepoints = 195)

Milwaukee_a (n = 18 [n/a]; ages:

n/a; TR = 2; # slices = 20; #

timepoints = 175)

Milwaukee_b (n = 46 [15 M/31F];

ages: 44–65; TR = 2; #

slices = 64; # timepoints = 175)

Munchen (n = 16 [10 M/6F];

ages: 63–73; TR = 3; #

slices = 33; #

timepoints = 72)

Newark (n = 19 [9 M/10F];

ages: 21–39; TR = 2; #

slices = 32; #

timepoints = 135)

NewHaven_a (n = 19 [10 M/9F];

ages: 18–48; TR = 1; #

slices = 16; #

timepoints = 249)

NewHaven_b (n = 16 [8 M/8F];

ages: 18–42; TR = 1.5; #

slices = 22; # timepoints = 181)

NewYork_a_ADHD (n = 25

[19 M/4F]; ages: 20–50;

TR = 2; # slices = 39; #

timepoints = 192)

NewYork_a (n = 84 [43 M/

41F]; ages: 7–49; TR = 2; #

slices = 39; #

timepoints = 192)

NewYork_b (n = 20 [8 M/12F];

ages: 18–46; TR = 2; #

slices = 33; #

timepoints = 175)

NewYork_Test-Retest_Reliability

(n = 25 [10 M/15F]; ages: 22–49;

TR = 2; # slices = 39; #

timepoints = 197)

Ontario (n = 11 [n/a]; ages: n/a;

TR = 3; # slices = 29; #

timepoints = 105)

Orangeburg (n = 20 [15 M/5F];

ages: 20–55; TR = 2; #

slices = 22; #

timepoints = 165)

Oulu (n = 103 [37 M/66F]; ages:

20–23; TR = 1.8; #

slices = 28; #

timepoints = 245)

Oxford (n = 22 [12 M/10F]; ages:

20–35; TR = 2; # slices = 34; #

timepoints = 175)

PaloAlto (n = 17 [2 M/15F];

ages: 22–46; TR = 2; #

slices = 29; #

timepoints = 235)

Pittsburgh (n = 17 [10 M/7F];

ages: 25–54; TR = 1.5; #

slices = 29; #

timepoints = 275)

Queensland (n = 19 [11 M/8F];

ages: 20–34; TR = 2.1; #

slices = 36; #

timepoints = 190)

SaintLouis (n = 31 [14 M/17F];

ages: 21–29; TR = 2.5; #

slices = 32; # timepoints = 127)

Taipei_a (n = 14 [n/a]; ages:

n/a; TR = 2; # slices = 32; #

timepoints = 295)

Taipei_b (n = 8 [n/a]; ages: n/a;

TR = 2; # slices = 33; #

timepoints = 175)

Atlanta (ages: 22–57; TR = 2; #

slices = 20; #

timepoints = 205)

AnnArbor_a (n = 25 [22 M/3F];

ages: 13–40; TR = 2; #

slices = 40; # timepoints = 295)

AnnArbor_b (n = 36 [17 M/

19F]; ages: 19–80;

TR = 0.75; # slices = 16; #

timepoints = 395)
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defined a workflow to obtain the result as we discuss here.

Figure 3 shows the implemented pipelines and workflow of

our process from the beginning of obtaining fMRI data

from NITRC to data process steps and finally result

reporting. The main three steps of this workflow are

(a) data preparation and modification; (b) data process and

Fig. 5 The identified group-wise consistent 10 RSN networks from 5

randomly selected datasets (Baltimore, Beijing, Berlin, Cambridge,

and Cleveland) in 1000 Functional Connectomes Project by HELPNI.

Each row represents the networks from one dataset; the last row

shows the RSN templates for comparison. Only the most informative

slice, which has been overlaid on the MNI152 template, is shown here

Fig. 6 The identified 10 RSN networks of individual subject from 5 datasets (Baltimore, Beijing, Berlin, Cambridge, and Cleveland) in 1000

Functional Connectomes Project by HELPNI. For each dataset, the 10 RSN networks from one randomly selected subject are shown here
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workflow; and (c) user interface and data access as detailed

in Sects. 2.2 and 2.3, respectively.

2.2 Data preparation and modification

At the very first step, users need to prepare data to import

to system. We first obtained data from 1000FC database

and modified the data structure as our own predefined

structure. After modifying hierarchy and trimming data,

images with correspondent meta-data should be uploaded

to pre-archive for primary tests and analysis. The required

format of data should be created in file system including ID

and sequence type as well as any special data type that

needs to be defined in system. To do so, we prepared

required meta-data including TR value, field strength,

gender, and handedness of each subject and experiment.

Then, data were transferred to pre-archive as a temporary

cache destination for further tests and review of quality

(Fig. 2c). Pre-archiving step keeps data integrated and

protects them from data loss or corruption. We also tested

our workflow to fix any possible flaw in implemented

algorithms. When data became ready and analytical

methods turn mature to be modeled in XML schema, we

imported data into the archive as final destination for

viewing purposes and/or running standard processes on

prepared data. We used curl to upload fMRI data through

REST API [30] from command line.

2.3 Data process and workflow

The next step in HELPNI platform is data processing. The

raw fMRI data need to be preprocessed before data anal-

ysis. We implemented the rsfMRI and tfMRI preprocessing

pipeline in HELPNI to address this demand. Our prepro-

cessing step includes skull removal, motion correction,

slice time correction, and special smoothing as well as

global drift removal [8]. We used Build and ArcBuild [26]

predefined XNAT tools for image session scan selection

and running processing steps, respectively.

Applying the major processing pipeline is the next step.

We integrated our HAFNI computational framework in

HELPNI. The basic idea of HAFNI framework [27] is to

aggregate all of the thousands of fMRI signals within the

whole brain from one subject into a big data matrix and

then decomposes it into an over-completed dictionary

matrix and a reference coefficient matrix. Specifically, each

column of the dictionary matrix represents a typical brain

activity pattern and the corresponding row in coefficient

matrix naturally reveals the spatial distribution of the

activity pattern. Typically, each subject brain’s signals

form an m 9 n matrix S, with m represents the fMRI time

points (observations) and n represents the number of vox-

els. In order to sparse represent the signal matrix S using D,

we aimed to learn a meaningful and over-completed dic-

tionary matrix D2 Rm�k (k[m, k\\ n), with k being the

dictionary atoms (i.e., components). The loss function is

defined in Eq. (1) with a l1 regularization that yields to a

sparse resolution of ai:

l si;Dð Þ, min
ai2Rm

1

2
jjsi � Daijj22 þ kjjaijj1 ð1Þ

Here ai is the coefficient matrix and k is a sparsity

regularization parameter. In order to prevent D from arbi-

trarily large values, the columns d1; d2; . . .dm are con-

strained by Eq. (2).

C, D2Rt�m s.t. 8j ¼ 1; . . .m; dTj dj � 1
n o

ð2Þ

min
D2C;a2Rm�n

1

2
jjS� Dajj2F þ kjjajj1 ð3Þ

Briefly, the problem can be transferred into a matrix

factorization problem in Eq. (3) and we adopted the state-

of-the-art online dictionary learning algorithm [29] for the

sparse representation of the whole-brain fMRI signals.

Once we obtained the learned dictionary matrix D and

coefficientmatrixa, wemapped each row in theamatrix back

to the brain volume and examine their spatial distribution

patterns, through which functional network components are

characterized on brain volumes [27]. At the conceptual level,

the sparse representation framework in Fig. 4 can achieve

both compact high-fidelity representation of the whole-brain

fMRI signals (Fig. 4c) and effective extraction ofmeaningful

patterns (Fig. 4d) [28, 29, 31–34]. For more details, please

refer to our recent literature report [27].

The system is designed to feed the preprocessing as the

input of online dictionary learning pipeline automatically

or manually after filtering the preprocessed data. For

Table 2 Spatial overlap

between identified group-wise

RSNs and templates in different

datasets

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Baltimore 0.88 0.94 0.82 0.74 0.75 0.78 0.65 0.61 0.67 0.71

Beijing 0.95 0.98 0.95 0.82 0.86 0.94 0.85 0.58 0.66 0.82

Berlin 0.81 0.95 0.86 0.80 0.72 0.77 0.71 0.60 0.73 0.82

Cambridge 0.86 0.98 0.92 0.76 0.93 0.79 0.80 0.56 0.69 0.78

Cleveland 0.82 0.89 0.80 0.77 0.72 0.75 0.72 0.58 0.53 0.75
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visualization purposes and to make the generated results

easy to explore, both preprocessing and ODL pipelines will

generate a PDF report at the end after which it will be

automatically uploaded to the web interface. These reports

contain generated results from the executed pipelines

identified by experiment ID appended to pipeline name.

For example, ODL report contains 400 png files sorted

sequentially.

Pipelines can also be set to send notification within

different steps of workflow. For example, user can be

notified when a specific step is done to evaluate the result

and then if it meets the quality, let the pipeline continue.

Otherwise, user can modify the input variables and restart

the pipeline. Also at the end of workflow, assigned users

will be notified of a successful run.

2.4 User interface and data access

Large-scale fMRI data usually need group-wise analysis

and collaborators need to work together. In HELPNI, users

can connect to system remotely and choose their desired

subset of archive through bundle feature in the system.

Users are also able to email other collaborators a link

containing selected subset of archive.

The standard user interface features useful tools

including a search box which provides searching through

all archived subjects and sessions and menus in which

users upon their permissions can access. Users need to

login to system to be able to modify or upload new data but

viewing and downloading 1000FC data as well as pre-

processing and ODL results are publicly available (http://

bd.hafni.cs.uga.edu/helpni). User can browse experiments

and data via three methods. One is by selecting project and

subject subsequently, and the other is through searching for

a subject name from search box, and the last is through

selecting a listing, where user can input certain information

of project/subject or image modality and then query a list

containing correspondent filtered data.

3 Results

We tested the proposed HELPNI platform by applying the

implemented computational framework of HAFNI on one

of the largest open source resting state fMRI (rsfMRI)

databases: 1000 Functional Connectomes project (known

as 1000FC) [6]. This database has gathered more than 1200

rsfMRI datasets independently collected from all over the

world containing over 130 Giga Bytes of data. Table 1 (see

http://fcon-1000.projects.nitrc.org) summarizes rsfMRI

datasets. Age, sex, and imaging center information are

provided for each of datasets and all subjects have been

uploaded to the HELPNI. As detailed in Sect. 2, HELPNIT
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automatically preprocessed the raw rsfMRI data, extracted

the rsfMRI signals from each subject, applied the HAFNI

computational framework, and returned and stored

meaningful experimental results. In this experiment, we

used 8-core Intel� Xeon� E5-2650 v2 2.60 GHz, 20 M

Cache CPU and 32 GB RDIMM, 1600MT RAM. With the

Fig. 7 The identified group-wise consistent 10 RSN networks from 5

datasets (Baltimore, Beijing, Berlin, Cambridge, and Cleveland) in

1000 Functional Connectomes Project by HELPNI with sampling

module. Each row shows the networks from one dataset and the last

row shows the RSN templates for comparison

Fig. 8 The identified 10 RSN networks of individual subject from 5 datasets (Baltimore, Beijing, Berlin, Cambridge, and Cleveland) in 1000

Functional Connectomes Project by HELPNI with sampling module. For each dataset, we randomly selected one subject’s result as example
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help of HELPNI, we identified consistent and meaningful

functional brain networks across individuals and popula-

tions based on rsfMRI big data which are detailed in

Sect. 3.1. Moreover, using HELPNI possess modularity

and plug-and-play capability, we developed an efficient

sampling module and integrated it with HAFNI framework

to speed up the HAFNI overall computational time and to

automatically calculate and obtain meaningful functional

brain networks in a much faster fashion. The detailed

results are demonstrated in Sect. 3.2.

3.1 Group-wise consistent functional brain networks

identification using HELPNI

With the help of HELPNI system and the implemented

HAFNI computational framework, we successfully identi-

fied 10 meaningful and consistent resting state networks

(RSNs) which are in agreement with previous studies

across all individuals and datasets in 1000FC database.

Figure 5 shows the identified 10 group-wise consistent

networks in five randomly selected datasets (that are Bal-

timore, Beijing, Berlin, Cambridge, and Cleveland dataset)

in 1000FC. Networks #1, #2, and #3 are all located in

visual areas and closely related to visual behavior. Network

#4 includes ventromedial frontal cortex, bilateral inferior-

lateral-parietal, and medial parietal areas and are often

referred as default mode network (DMN). Network #5

covers the cerebellum and corresponds to action-execution

function. Networks #6, #7, and #8 are related to sensori-

motor, auditory, and executive control function, respec-

tively. Networks #9 and #10 cover several front parietal

areas and are closely related to cognition/language para-

digms [35]. Figure 6 illustrates the identified 10 consistent

networks in five randomly selected individual subjects

from the same five datasets. We can see that the identified

10 functional networks are quite consistent across different

datasets and subjects and consistent with the templates in

previous studies [35]. Quantitatively, we calculate the

spatial overlap between the identified networks and tem-

plates which are detailed in Table 2 and Table 3. The

spatial overlap is calculated as the percentage of the

overlapping area between our identified networks and

templates [27]. Based on these results, we can see that our

developed HELPNI system is effective and efficient in

reconstructing meaningful functional brain networks from

rsfMRI data.

3.2 Integrating sampling module in HELPNI

One important characteristics of our HELPNI system is the

plug-and-play capability. Since the implemented pipelines

are modularly designed, we could easily develop and test

new modules to enhance established computational

framework. For example, in order to speed up the current

HAFNI framework in the HELPNI system, we developed

and integrated an efficient signal sampling module [36] to

improve the calculating speed while obtaining comparable

results. The average computation time of training a dic-

tionary for one individual brain is about 30 s using sam-

pling module, whereas the time cost without sampling is

340 s, which speeds up the HAFNI training procedure

more than 10 times. At the same time, the returned results

could identify the similar consistent and meaningful func-

tional brain networks across datasets and individuals as

discussed in Sect. 3.1. Figure 7 shows the same identified

10 group-wise consistent networks with sampling module

in the same five datasets (that is Baltimore, Beijing, Berlin,

Cambridge, and Cleveland dataset) in 1000FC. Figure 8

illustrates the identified 10 consistent networks in the same

five individual subjects in Sect. 3.1. Similar to original

HAFNI computational framework with no sampling mod-

ule, the identified 10 functional networks are quite con-

sistent with each other across different datasets and

populations and consistent with the templates in previous

studies [35]. Quantitatively, we calculated the spatial

overlap between the identified networks and templates

which are detailed in Tables 4 and 5. From these results,

we can see that the integrated sampling module in HAFNI

framework via HELPNI system significantly decreased the

computing time while achieved comparable results for

functional brain network identification at the same time. It

also demonstrates the plug-and-play capability of HELPNI

system to effectively detect meaningful functional brain

networks from raw neuroimaging data.

Table 4 Spatial overlap

between identified group-wise

RSNs with sampling module

and templates in different

datasets

#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

Baltimore 0.89 0.89 0.82 0.79 0.76 0.92 0.64 0.59 0.68 0.72

Beijing 0.94 1.00 0.95 0.89 0.88 0.97 0.88 0.63 0.74 0.87

Berlin 0.87 0.95 0.90 0.83 0.73 0.87 0.76 0.68 0.88 0.82

Cambridge 0.84 0.98 0.94 0.84 0.95 0.86 0.82 0.57 0.68 0.83

Cleveland 0.80 0.95 0.88 0.82 0.75 0.75 0.77 0.61 0.57 0.74
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4 Discussion and conclusion

In this work, we have designed and developed a neu-

roimaging informatics platform, HELPNI, to archive

large-scale fMRI datasets, to automate sequence of

complex processes for fMRI data analysis and finally to

use distributed and parallel computing resources to bust

up big data analysis time. HELPNI has leverage from

extensible neuroimaging archive toolkit to power up the

web application and storage part of the system and is

composed of three main parts of web application and

storage, pipeline analysis framework, and the big data

analytic tools. This novel platform integrated our recently

developed HAFNI computational framework for fMRI

data analysis in an accelerated way. As demonstrated in

this work, we used the open access 1000 functional

connectome datasets as a basic example to import 1200?

rsfMRI data into HELPNI system, to run the HAFNI

framework on the rsfMRI data, and to identify consistent

and meaningful functional brain networks across indi-

viduals and populations. Our experimental results

demonstrated that efficient sampling module can be

implemented together with HAFNI framework to speed

up the dictionary learning and identification of mean-

ingful functional brain networks.

The HELPNI platform is publicly accessible through

http://bd.hafni.cs.uga.edu/helpni where users can view all

of the archived fMRI data as well as the processed results.

Authorized users can also upload new data and run

pipelines over their desired fMRI images.

Considering the explained characteristics (Sect. 2) as

well as the task scheduling feature of our HELPNI

(Fig. 3e) in which tasks can be run in a distributed or

parallel fashion, HELPNI with plug-and-play capability

and modularity can significantly speed up the fMRI data

processing. Users can easily feed their workflow to the

HELPNI and it will schedule, distribute, and run all tasks

using all available resources and will notify users with the

final results. We are also implementing big data analytic

tools to empower the processing part through Hadoop and

Spark. Parallel optimization procedure has shown signifi-

cant improvement in sparse dictionary learning computa-

tion time [37].

The large-scale datasets can be imported to the HELPNI

system and various computational pipelines, and analyses

can be then run over the big data without corrupting the

original archived images. For example, in this paper, we ran

the HAFNI pipeline over all subjects in 1000FC project,

and the users could examine the results in a well-structured

report in addition to original image data. We also ran the

sampling pipeline on a subset of the dataset and stored them

in the same fashion. In this way, users can evaluate and

compare the results with sampling and no samplingT
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simultaneously. The HELPNI system saved much com-

puting time since there was no idle time in between of

processes using the task scheduling feature. In the future,

the distributed scheduling and big data analytics tools are

planning to be used to save more time by means of dis-

tributed system available at the University of Georgia. This

will provide fMRI community to use HELPNI system

integrated with other analytical tools on large-scale fMRI

datasets and to collaborate with other laboratories and

research centers.

Adding a few new features including auto classifying the

stored images based on the analysis results, fully imple-

menting the parallel algorithm for HAFNI and improve the

current user interface of HELPNI are scheduled as our future

improvements to HELPNI. Future applications of HELPNI

include testing other big datasets such as HCP and Open-

fMRI, implementing new modules such as population

clustering of learned dictionary HAFNI spatial maps, and

eventually discovering disease-specific biomarkers.
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