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Abstract In this article, we extend the statistical detection

performance evaluation of linear connectivity from

Sameshima et al. (in: Slezak et al. (eds.) Lecture Notes in

Computer Science, 2014) via brand new Monte Carlo

simulations of three widely used toy models under different

data record lengths for a classic time domain multivariate

Granger causality test, information partial directed coher-

ence, information directed transfer function, and include

conditional multivariate Granger causality whose be-

haviour was found to be anomalous.

Keywords Partial directed coherence � Directed transfer

function � Granger causality � Null hypothesis test

performance � Conditional multivariate Granger causality

1 Introduction

This paper compares the statistical performance of linear

connectivity detection [1] using four popular neural con-

nectivity estimators. In addition to the classic Gran-

ger causality test (GCT) from [2], we employ our recently

derived rigorous results [3, 4] about the asymptotic

behaviour of information PDC (iPDC) and information

DTF (iDTF) [5] that, respectively, generalize partial di-

rected coherence (PDC) [6] and directed transfer function

(DTF) [7] which correctly describe coupling effect size

issues. A fourth method was included in this extended

version of [8] and consists of the proposal put forward by

[9] (cMVGC) for detecting conditional Granger causality

between time series pairs and is applied here using their

published MVGC package. There have been many recent

papers [10–14] aimed at comparing contending connec-

tivity estimation procedures. In fact, almost every new

connectivity estimation procedure sports some form of

appraisal by counting the number of correct detection de-

cisions. What sets the present effort apart, as emphasized

by using the word statistical, is that we focus on methods

that have rigourous theoretically derived asymptotic de-

tection criteria.

In the comparisons, we used Monte Carlo simulations of

three widely used toy models from the literature and ver-

ified the performance of null connectivity hypothesis re-

jection as a function of data record length, K. To

complement the study, we also computed false positive

(FP) and false negative (FN) test rates for each estimator

alternative. In the MVGC package case, false detection

rates were computed with and without author-recom-

mended corrections [9].

2 Methods and results

2.1 Monte Carlo simulations

Following our recently proposed information PDC and

information DTF [5], and their corresponding rigorous

asymptotic statistics (see [3] and [4] for details), we first
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gauged their statistical performance against that of the

well-established time-domain GCT test [2]. For added

comparison here, we added results from conditional con-

nectivity detection obtained via the MVGC package [9].

Monte Carlo simulations were performed in the MATLAB

environment using its normally distributed pseudorandom

number generator to simulate systems with uncorrelated

zero mean and unit variance innovation noise as model

inputs. To test the performance of the latter four connec-

tivity estimators, for each toy model and at each data

record length, we selected values of K = {100, 200, 500,

1000, 2000, 5000, 10000} repeating 1000 simulations for

each case. For each simulation, a burn-in set of 5000 initial

data points were discarded to eliminate possible transients

before selecting the K value of interest. We used the

Nuttall-Strand algorithm for multivariate autoregressive

(MAR) model estimation and the Akaike information cri-

terion (AIC) for model order selection [15] for GCT, iPDC

and iDTF, while the Levinson–Wiggins–Robinson solution

of the multivariate Yule-Walker equations was used as is

default for cMVGC [9]. Detection threshold was set in

compliance to a ¼ 1%. For iPDC and iDTF, p values were

computed at 32 uniformly separated normalized frequency

points covering the whole interval with a connection being

deemed detected for a given pair of structures if its p value

resulted to be less than a for some frequency within the

interval. This connectivity decision criterion is somewhat

lax and tends to overestimate the presence of connectivity

for iPDC and iDTF. In particular for iPDC, one should
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Fig. 1 Diagram depicting the essential elements of Model 1

represented by Eq. 1 from [16]. The elements from x1 to x5 establish

closed-loop connections, with short and long connected paths, while

x6 and x7 are part of a completely separate substructure, i.e.

disconnected from fx1; . . .; x5g, but sharing a common frequency of

oscillation
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Fig. 2 A single-trial results of a iDTF and b iPDC estimations

obtained using a data simulation of Model 1 with K = 2000 points.

In both subfigures, a, b, the main diagonal subplots with gray

background contain power spectra, while each off-diagonal subplot

represents iDTF or iPDC measure in the frequency domain with

variables in columns representing the sources and in rows the target

structures, in which significant measure is drawn in red lines at

a ¼ 1%, and in green lines otherwise. c Note that, as theoretically

expected, according to iDTF estimation, all nodes of

fx1; x2; x3; x4; x5g set can reach one another, d while iPDC correctly

exposes, similar to GCT, the immediate adjacent node’s connectivity

pattern. See further discussion about the contrast between iDTF and

iPDC in [17]. (Color figure online)
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expect connectivity detection more often than GCT, i.e.

more FPs are likely.

The reader may access our open MATLAB codes for

GCT and for both iPDC and iDTF asymptotic statistics

used in this study at http://www.lcs.poli.usp.br/*baccala/

BIHExtension2014/.

The Web site, furthermore, contains the datasets of the

employed simulation results and a copy of the exact ver-

sion of the MVGC package used in the present compar-

isons [9]. This allows full reader accessing disclosure of the

data/procedures with the possibility of cross-checking and

replaying all results. Additional graphs and results are

available there and may be consulted for details; only the

overall representative behaviour is summed up here.

Next we describe the toy models and the allied

simulations results.

2.2 Model 1: Closed-loop model

It is an fN ¼ 7g-variable model, borrowed from [16]

(Fig. 1), with two completely disconnected substructures,

{x1; x2; x3; x4; x5} and {x6, x7}, which share a common

frequency of oscillation. The set of descriptive equations

is

x1ðtÞ ¼ 0:95
ffiffiffi

2
p

x1ðt � 1Þ � 0:9025x1ðt � 2Þ

þ 0:5x5ðt � 2Þ þ w1ðtÞ

x2ðtÞ ¼ �0:5x1ðt � 1Þ þ w2ðtÞ

x3ðtÞ ¼ 0:2x1ðt � 1Þ þ 0:4x2ðt � 2Þ þ w3ðtÞ

x4ðtÞ ¼ �0:5x3ðt � 1Þ þ 0:25
ffiffiffi

2
p

x4ðt � 1Þ

þ 0:25
ffiffiffi

2
p

x5ðt � 1Þ þ w4ðtÞ

x5ðtÞ ¼ �0:25
ffiffiffi

2
p

x4ðt � 1Þ þ 0:25
ffiffiffi

2
p

x5ðt � 1Þ þ w5ðtÞ

x6ðtÞ ¼ 0:95
ffiffiffi

2
p

x6ðt � 1Þ � 0:9025x6ðt � 2Þ þ w6ðtÞ

x7ðtÞ ¼ �0:1x6ðt � 2Þ þ w7ðtÞ;
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where wi stand for uncorrelated Nð0; 1Þ Gaussian

innovations.
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Fig. 3 The patterns (in this and all the figures of similar kind that

follow) containing subplots with variables in columns representing

the sources and the target structures in rows. Each subplot possesses

boxplots of the distribution of GCT -log10(p value) for 1000 Monte

Carlo simulations over different record lengths K = {100, 200, 500,

1000, 2000, 5000, 10000} along the x-axis of each subplot. Since

a ¼ 0:01, values above 2 (dashed-line) indicate rejection of the

null hypothesis of connectivity absence. Red crosses indicate p value

distribution outliers, and those above dashed-line represent false

positives (FPs) for nonexisting connections. (Color figure online)
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Results from a single-trial example of iDTF and iPDC

connectivity estimations in the frequency domain are de-

picted in Fig. 2a, b, respectively, with significant values,

at a ¼ 0:01, represented by red solid lines. The corre-

sponding connectivity graph diagrams are contained in

Fig. 2c, d, where arrow thickness represents estimate

magnitude. Note that iPDC reflects adjacent connections,

Fig. 2b, d, while iDTF, Fig. 2a, c, represents graph

reachability aspects of the directed structure [17, 18]. The

notion of reachability refers to the net influence from a

time series onto another through various signal pathways,

i.e. it measures how much of one series ends up influ-

encing another.

2.2.1 Granger causality test for Model 1

The boxplots of -log10(p value) in Fig. 3 summarize GCT

performance for Model 1 and K = {100, 200, 500, 1000,

2000, 5000, 10000} data record lengths. As expected, for

K[ 200, it properly detects connectivity between adjacent

structures with zero observed FNs for all pairs of existing

connections.

2.2.2 iPDC performance for Model 1

Figure 4 summarizes the asymptotic iPDC statistical per-

formances for the same data and record lengths as for GCT

in Fig. 3 with similar performance (Figs. 5, 6). Closer

comparison on identical trials for each estimator leads to

Fig. 7 depicting iPDC versus GCT performance

(K = 2000), further revealing a pattern of consistently

higher FP values for iPDC expectedly resulting from how

the test was performed with iPDC decision dictated by a

single maximum frequency above threshold. In Fig. 7, the

average slopes are above 45� consistent with the larger

number of FPs for iPDC.

At this point, one should note that for trial-by-trial

comparisons between methods only those against GCT are

present for the sake of conciseness. Pairwise behaviour for

other pairs of methods is easy to infer. GCT’s choice as a

reference was dictated by its canonical behaviour in terms

of the expected performance in the Neyman–Pearson hy-

pothesis testing framework. In the Web site, it is possible to

use available routines to examine the results that apply to

the comparison between other pairs of methods.

10
(p

iP
D

C 
)

7
0

5

10

15

0

2

4

0

2

4

6

0

2

4

0
2
4
6
8

0

5

10

10
0
20
0
50
0
10
00
20
00
50
00

10
00
0

0

2

4

6
0

2

4

0

2

4

0

2

4

6

0

2

4

6

0

2

4

6

0

2

4

6

0

2
4

6

5
0

5

10

15

0

2

4

0

2

4

0

2

4

0

2

4

6

0
2
4
6

0

5

10

15

4
0

5

10

15

0

2

4

0

2

4

6

0

2

4

0

2

4

6

0

2

4

0

2

4

6

3
0

5

10

15

0

5

10

15

0

2

4

6

0
2
4
6
8

0

2

4

0

2

4

0

2

4

6

2
0

5

10

15

0

2

4

6

0

2

4

6

0

5

10

15

0
2
4
6

0

2

4

0

2

4

1

Fig. 4 Model 1 boxplot performance summary of iPDC asymptotics. Most outliers for absent connections are above the a threshold decision line
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2.2.3 cMVGC behaviour for Model 1

Figure 5 summarizes the performance of pairwise conditional

MVGC in the form of boxplots. They asymptotically capture

the structure of Fig. 1 despite differences compared to GCT

and iPDC. These differences are easier to appreciate on the

trial-by-trial comparison with respect to GCT (Fig. 8), which

shows that cMVGC’s FP rates are sometimes well below the

imposed a ¼ 1% and even become more extreme after au-

thors’ recommended corrections [9] (K = 2000). Note how

point distributions in Fig. 8 hardly ever cluster round the 45�
line for connections reaching the x1 and x6 oscillators. For

connections leaving x6, the pattern is reversed. It is this failure

to meet the preset a ¼ 1% irrespective of which connection is

under consideration, which we call anomalous here.

2.2.4 iDTF performance for Model 1

Figure 6 summarizes the performance of the asymptotic

statistics for iDTF. The boxplots clearly show that for

larger sample sizes, iDTF correctly detects the reachability

structure shown in Fig. 2c. Note that the weakest, and in

this case, the farthest connection (x2 ! x1) requires longer

record lengths for proper detection.

2.3 Model 2: Five-variable model

Model 2 introduced by [6] is graphically represented in

Fig. 9 with its corresponding set of defining equations:

x1ðtÞ ¼ 0:95
ffiffiffi

2
p

x1ðt � 1Þ � 0:9025x1ðt � 2Þ þ w1ðtÞ

x2ðtÞ ¼ 0:5x1ðt � 2Þ þ w2ðtÞ

x3ðtÞ ¼ �0:4x1ðt � 3Þ þ w3ðtÞ

x4ðtÞ ¼ �0:5x1ðt � 2Þ þ 0:25
ffiffiffi

2
p

x4ðt � 1Þ

þ 0:25
ffiffiffi

2
p

x5ðt � 1Þ þ w4ðtÞ

x5ðtÞ ¼ �0:25
ffiffiffi

2
p

x4ðt � 1Þ þ 0:25
ffiffiffi

2
p

x5ðt � 1Þ þ w5ðtÞ;
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where wi, as before, stand for uncorrelated Gaussian in-

novations. Computations were performed for K = {100,

200, 500, 1000, 2000} long records over 1000 Monte Carlo

repetitions.

10
(p

cM
V

G
C

)

7
0

5

10

15

0

2

4

6

0

2

4

0

2

4

0
2
4
6
8

0

5

10

10
0
20
0
50
0
10
00
20
00
50
00

10
00
0

0

2

4

6
0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

2

4

0

5

10

15

5
0

5

10

15

0

2

4

0

2

4

6

0
2
4
6
8

0

2

4

0
2
4
6
8

0

5

10

15

4
0

5

10

15

0

2

4

0

5

10

0

2

4

0

2

4

6

0

2

4

0

2

4

3
0

5

10

15

0

5

10

15

0

2

4

0
2
4
6
8

0

2

4

0

2

4

0
2
4
6

2
0

5

10

15

0

2

4

0

2

4

0

5

10

15

0

2

4

0

2

4

0

2

4

1

Fig. 5 Model 1 boxplot performance summary of cMVGC asymp-

totics. Note that red cross outliers for the connections into x1 and x6

(see the first and sixth rows of subplots’ layouts) are consistently

below -log10(p value) = 2, and those from x6 consistently above for

all K, something that is reflected in Fig. 8. (Color figure online)
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2.3.1 GCT performance

As before, Model 2 also shows that GCT’s performance

improves with the increased record length (Fig. 10). At

K = 200, GCT already performs well with FN rate below

5 %, reaching overall FN rates below 2 % for K = 2000.

2.3.2 iPDC performance

For Model 2, FN rates are practically negligible when K[
200 for all measures of GCT, iPDC, and cMVGC (See

Figs. 10–12). Overall, the pattern of iPDC performance is

similar to that of GCT’s. Yet iPDC’s FP rates are slightly

higher than GCT’s. For example, performance for

K = 2000 is between 2.7 and 5.6 % (Fig. 13).

2.3.3 cMVGC asymptotic behaviour for Model 2

cMVGC performance for K = {100, 200, 500, 1000,

2000} is shown in Fig. 12. When taken with respect to

GCT (Fig. 14), FPs are consistently lower than GCT’s for

K = 2000 and, as in the case of the previous model, it does

not conform to a preset a ¼ 1% for FP rates. This is also

easy to appreciate for other values of K in Fig. 12 as most

outliers (red crosses) are below the -log10(p value) = 2

line for nonexisting connections.

Taking GCT as a reference, trial-by-trial comparisons of

iPDC and cMVGC, respectively, confirm the pattern of

higher FP for the former compared to a pattern of FP,

below 1 %, for cMVGC with or without correction (See

Figs. 13, 14). This is also suggestive of possible problems

encountered in how the MVGC package handles the FP

rate, which may be fortuitously benign to MVGC in this

example, but does not represent the general case, since it

does not hold for Model 1.

2.4 Model 3: Modified five-var model

To further probe the statistical behaviours of GCT, iPDC

and cMVGC, we simulated the modified five-channel toy

Model 3, originally introduced in [6], under the formula-

tion variant proposed by [19] and reproduced here for

reference (Fig. 15).

The corresponding set of equations is
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Fig. 6 Model 1 boxplot performance summary of iDTF asymptotics. Note that every node of fx1; x2; x3; x4; x5g set can directionally reach one

another, as depicted in Fig. 2c. Note also that FN rates decrease consistently for larger K
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x1ðtÞ ¼ 0:95
ffiffiffi

2
p

x1ðt � 1Þ � 0:9025x1ðt � 2Þ

þ e1ðtÞ þ a1e6ðtÞ þ b1e7ðt � 1Þ þ c1e7ðt � 2Þ

x2ðtÞ ¼ 0:5x1ðt � 2Þ

þ e2ðtÞ þ a2e6ðtÞ þ b2e7ðt � 1Þ þ c2e7ðt � 2Þ

x3ðtÞ ¼ �0:4x1ðt � 3Þ

þ e3ðtÞ þ a3e6ðtÞ þ b3e7ðt � 1Þ þ c3e7ðt � 2Þ

x4ðtÞ ¼ �0:5x1ðt � 2Þ þ 0:25
ffiffiffi

2
p

x4ðt � 1Þ þ 0:25
ffiffiffi

2
p

x5ðt � 1Þ
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additionally containing the large exogenous input e6ðtÞ and

the latent variable e7ðtÞ. In the simulations, eiðtÞ were

uncorrelated zero mean unit variance Gaussian innovation

noises, and the parameters were chosen as

ai �Uð0; 1Þ; bi ¼ 2 and ci ¼ 5; i ¼ 1; . . .; 5 according to

[19].

The proposal in [19] of introducing exogenous/latent

variables is an interesting idea which allows investigating

the influence of large common additive noise sources on

the performance of GCT, iPDC and cMVGC. Here, to

assess the impairment that the extra exogenous/latent

variables possibly inflict on null-hypothesis testing, we

repeated the procedure not just under the same conditions

of [19], but also using a broader range of data record sizes:

K ¼ f100; 200; 500; 1000; 2000; 5000; 10000g:

2.4.1 GCT performance in the presence of exogenous

noise, Model 3

The GCT performance for Model 3 can be appreciated in

Fig. 16. When compared with Model 2, GCT’s perfor-

mance deteriorates in the presence of exogenous noises.

Interestingly, its performance with respect to detecting

existing connections increases with longer data records,

while in the absence of connections, the FP rates increase

sharply especially for the K = 10000 case. For K = 500,
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Fig. 7 GCT and iPDC

connectivity comparative

detection performance

(K = 2000) where iPDC

-log10 (p value) for each one of

the 1000 simulations is plotted

against its GCT’s

-log10 (p value). Results for all

connections are clustered

slightly above the 45� line with

b ¼ 1:1157 � 0:0283

(median¼ 1:1216;

minimum¼ 1:0198; and

maximum¼ 1:1486). The

number of FP and FN detections

over the 1000 simulations are

also shown for iPDC (top left)

and GCT (bottom right) for

each subplot
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the overall FP rates are between 2.3 and 7.9 % with a

median of 3.8 %. At K ¼ 10000, the latter rates grow to a

range between 20.8 and 40.4 % with the median value of

26:6%. FN rates are negligible.

2.4.2 iPDC performance in the presence of exogenous

noise

iPDC performance in detecting connectivity is similar to

GCT’s (See Figs. 16, 17). As noted before, iPDC tends to

have higher FP rates compared with GCT due possibly to

the chosen frequency domain detection criterion of using a

single-frequency with significant p value as indicative of a

valid connection. Overall, FP rates range between 6.7 and

11.7 % (median 8:5%) at K ¼ 100 increasing to the range

ð30:8; 49:6%Þ range (median 40:1%) at K = 10000.

2.4.3 cMVGC performance for Model 3

Here (Fig. 18) the qualitative behaviour is the same as for

the other estimators. However, as for Model 1, false deci-

sion rates are out of control,—sometimes, much below

GCT’s, and sometimes, way above it, irrespective of cor-

rections which fail to restore Neyman–Pearson expected

behaviour. Again taking GCT as reference, Fig. 19 shows

the similarity of iPDC’s result to GCT’s with the same

pattern of larger FP values well above a=1%. The corre-

sponding results for cMVGC compared with GCT portray

a bias towards lower cMVGC FPs (Fig. 20).
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Fig. 8 cMVGC versus GCT

performance (K = 2000)

clusters along lines, with high

b ¼ 0:8329 � 0:5741

coefficient spread (median

¼ 0:8417; minimum ¼ 0:1762;

and maximum ¼ 2:3323),

confirming cMVGC’s abnomal

behaviour. Connections out of

x6 are consistently clustered

above the 45� line, which

contrasts with those reaching

the x1 and x6 consistently with

low cMVGC FP values (top left)

(except for x5 ! x1). cMVGC

abnormality is apparent as FP

values differ much from 10 as

should happen for a ¼ 1%.

cMVGC-corrected FPs

(separated by slash) do not

improve the situation

3

2

1 4 5

Fig. 9 Diagram depicting the essential elements of Model 2

introduced by [6]
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3 Discussion

This study presents simulation evidence about the perfor-

mances of statistical connectivity tests: two in time domain

and using two new frequency domain measures.

One should remind the reader that the frequency domain

tests, iDTF and iPDC, measure different aspects of con-

nectivity and are not immediately comparable as discussed

at length in [17, 18]. This contrasts with GCT, iPDC and

cMVGC which are geared towards describing the same

aspect of connectivity between adjacent structures [17].

Among the tests in the latter class, GCT proved to be the

one most in accord with the expected Neyman–Pearson

behaviour in the sense that observed FP rates are in accord

with the preset value of a justifying its employment as

reference in the trial-by-trial comparisons between meth-

ods as summed up herein.

Qualitatively iPDC closely mirrors GCT behaviour, and

predictably produces higher FP rates as a consequence of

how iPDC connectivity was detected by deeming just one

frequency above threshold as significant. Whereas one may

conceivably improve on how to employ iPDC for testing,
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Fig. 10 GCT performance for

Model 2 and K = {100, 200,

500, 1000, 2000} data record
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Fig. 11 iPDC performance for

Model 2 and K = {100, 200,

500, 1000, 2000} data record

lengths
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its use is recommended when there is frequency content of

physiological interest.

Added for comparison, cMVGC detection proved to be

biased towards a reduction of the FP rates in many cases.

By contrast, examination of its behaviour for other K

(available in more detail from our Web site) suggests that,

for small K, it tends to miss existing connections more

often than the other methods.

Perhaps more striking and more important, however, in

the sense of Neyman–Pearson detection for a compliance,

is that procedures are usually constructed to impart control

over FP decisions, which according to the present
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Fig. 12 cMVGC performance

for Model 2 and K = {100,

200, 500, 1000, 2000} data

record lengths
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Fig. 13 Comparative

performance between GCT and

iPDC detection performances at

K = 2000 time samples for

Model 2
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observations, is a condition that fails to be met by the

cMVGC implementation from [9] which was used here

without modification. It is also important to note that em-

ploying author-recommended decision corrections [9]

usually aggravates matters. It is this lack of compliance to

Neyman–Pearson criteria that we termed anomalous.

Whether this happens due to an eventual software glitch, or

reflects a more fundamental issue, is unknown. One should

note that on many instances, cMVGC produced fewer FPs,

something good in itself. This apparent quality is coun-

terbalanced by much worse performance for some links, as

in Model 1, in sharp contrast to other methods whose re-

sults attain the prescribed a and are balanced for all con-

nections to within the attainable accuracies of the Monte

Carlo simulations.

Based on its good asymptotic control of FP observa-

tions, it is fair to suggest that, at least provisionally, GCT,

as proposed by [2], be taken as a gold standard for de-

tecting connectivity between adjacent structures and that

iPDC and cMVGC should be used taking into account

adequate forewarning of their present observed limitations.

The present Monte Carlo simulations showed good large

sample fit and robustness for Models 1 and 2. In the

presence of large exogenous/latent variables (Model 3), we

observed poor performance for large samples possibly due

to the poor performance of the MAR model estimation

algorithms under low signal-to-noise ratio regardless of the

statistical procedure (K[ 5000). In this regard, Model 3

deserves the special comment that its comparatively worse

performance is not surprising since, strictly speaking, it

violates the usual assumptions behind the development of

all the test detection procedures discussed herein.
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Fig. 14 Comparative

performance between GCT and

cMVGC detection performances

at K = 2000 time samples for

Model 2
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Fig. 15 Diagram depicting the essential elements of model intro-

duced by [19] modified from Model 2 [6]. For each simulation, the

parameters ai were chosen randomly from a uniform distribution in

½0 1� interval, and all bi ¼ 2 and ci ¼ 5, while the innovations, ei,

were drawn from random variables with Nf0; 1g
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Finally, we propose that the present methodology rep-

resents the seed of a potential tool for systematically

comparing connectivity estimators. The reason for this is

twofold: (a) the framework provides a standardized ap-

proach whereby comparisons can be made systematically

and (b) may be used even in the absence of formally

rigorous statistical criteria, i.e. even if only ad hoc decision

rules are available and is therefore not restricted to methods

with theoretically well-established detection criteria. We

have future plans to include bootstrap-based connectivity

detection schemes under the same standardized framework

for comparison purposes.
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Model 3 and K = {100, 200,
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Fig. 19 Comparative

performance between GCT and

iPDC detection performances at

K ¼ 2000 time samples for

Model 3
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6. Baccalá LA, Sameshima K (2001) Partial directed coherence: a

new concept in neural structure determination. Biol Cybern

84:463–474
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