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Abstract Big data is the term for a collection of datasets

so huge and complex that it becomes difficult to be pro-

cessed using on-hand theoretical models and technique

tools. Brain big data is one of the most typical, important

big data collected using powerful equipments of functional

magnetic resonance imaging, multichannel electroenceph-

alography, magnetoencephalography, Positron emission

tomography, near infrared spectroscopic imaging, as well

as other various devices. Granular computing with multiple

granular layers, referred to as multi-granular computing

(MGrC) for short hereafter, is an emerging computing

paradigm of information processing, which simulates the

multi-granular intelligent thinking model of human brain.

It concerns the processing of complex information entities

called information granules, which arise in the process of

data abstraction and derivation of information and even

knowledge from data. This paper analyzes three basic

mechanisms of MGrC, namely granularity optimization,

granularity conversion, and multi-granularity joint com-

putation, and discusses the potential of introducing MGrC

into intelligent processing of brain big data.

Keywords Big data � Brain big data � Multi-granular

computing � Data science

1 Introduction of big data and data science

To gain an insight of philosophy into the nature of brain

data and the significance of processing it, we would firstly

introduce a broad view on some related concepts such as

physical space, social space, data space, natural sciences,

social sciences, and data sciences.

There have been for a long history the physical space

and social space to describe the phenomena in natural

world and human society, respectively, and the research on

the spaces leads to natural science and social science. In

recent years, the ubiquitous digitalization of both natural

world and human society has produced huge amount of

data. Along with ‘‘big data’’ becoming a hot topic for

researchers, entrepreneurs and government officials, people

realize that a data space has come into existence.

The connection and interaction among people is the one

of the key sources of human intelligence; in other words,

the interactions of elements in social space produce human

intelligence. So, similarly, it is expected that the relations

and interactions of entities in data space would produce

other forms of intelligence such as machine intelligence

and web intelligence [1].

The data space is ‘‘relatively independent’’ of physical

space and social space, since it remains stable in a way

despite being a reflection of them. Once the data have been

generated, they will not evolve accordingly as the descri-

bed objects change if no special mechanism is arranged.

One dataset as a mirror of entities from natural world or

human society would yield new results if interacted with

others, and then the results may have reaction on natural
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world or human society with the assistance of automatic

control devices or human beings. The data may have

powerful reaction to the real world even if it is fabricated,

e.g., rumors spread via mobile phones and the Internet

played a vicious role in the London riot 2011 [2].

It would be agreed that research on data space will lead

to data science which has many differences from natural

and social science with respect to research objectives,

research methodologies, and technologies. In some cir-

cumstances, data science can be used interchangeably with

big data [3]. To get the best out of big data, funding

agencies should develop shared tools for optimizing dis-

covery and train a new breed of researchers, says Matt-

mann [4]. Data Science need not be always for big data;

however, the fact that data are scaling up makes big data an

important aspect of data science [3].

‘‘Big data’’ is the most highlighted term in the past

2 years, and it can be expected with much confidence that

it would continue to be popular in the next a few years for

its promising utility in many fields such as commerce and

business, biology, public administration, material science,

and cognition in human brain, just to name a few. People

from the society of academia, industry, and the open source

community have done a lot of work concerning big data

analytics.

The studies of big data by academia society could be

classified into two categories: basic researches and appli-

cation researches.

The basic researches of big data are about basic con-

cepts, rules, procedures, and so on. Fisher discussed the

challenges lying in the interactions in big data analytics [5].

A community white paper developed by leading research-

ers across the United States discussed the application of big

data in several typical fields and proposed a data analysis

pipeline [6]. Recently, Wu presented a HACE theorem that

characterizes the features of the big data revolution, and

proposed a 3-tiered big data processing model [7]. A close-

up view about big data was demonstrated by Chen and

Zhang, which included applications, opportunities, and

challenges of big data; the state-of-the-art techniques and

technologies; as well as several underlying methodologies

to handle the data deluge [8]. Han presented a novel sky-

line algorithm on big data showing significant advantage

over the existing skyline algorithms [9], and there are many

other researches falling into this category such as [10–13].

Application researches on big data refer to the applica-

tions of big data analytics in many different fields. In

commerce and business, Chen introduced in detail the

evolution of business intelligence, analytics, and the impact

of big data in typical areas [14]. In biology, powerful

computers and numerous tools for data analysis is crucial

in drug discovery and other areas, and biologists get neither

their feet nor their hands wet [15]. In public administration,

the Trento big data platform offers the service of repre-

senting the mean availability of cars in regions of Munich

at noon, which can be easily used to improve customer

satisfaction, by identifying bottlenecks [16]. In materials

science, advances in data analysis have placed the field on

the verge of a revolution in how researchers conduct their

work, analyze properties and trends in their data, and even

discover new materials [17].

There are also quite a few research works which address

some challenges in big data analytics with keywords like

‘‘huge data,’’ ‘‘large scale dataset,’’ and ‘‘high speed

streaming data,’’, but no ‘‘big data’’. These works surely

should be noticed and appreciated by big data researchers

and practitioners [18–20].

The international IT giants such as Google, IBM,

Microsoft, Oracle, and EMC have developed their own big

data solution systems and platforms, which are Dremel,

InfoSphere BigInsights and InfoSphere Streams, HDIn-

sight, ExaData, Greenplum and so forth [21–26]. Most of

the big data platforms are based on Hadoop. Apache also

supports other projects related to Hadoop such as HBase,

Hive, Pig, Mahout, and Spark, each of which has special

effect in dealing with different challenging aspects in big

data processing (BDP) [27]. In addition to the projects

supported by Apache, there are other open source big data

projects, such as Cloudera Impala [28] and RHIPE [29].

The rest of the paper is organized in the following

fashion. Section 2 discusses brain big data and its appli-

cations. Section 3 introduces the three mechanisms of

MGrC and discusses their relationship with five major

theoretical models of MGrC. Some key issues of BDP

based on MGrC are also analyzed in this section. In Sect. 4,

we propose the potential of using MGrC to explore brain

big data. The conclusions are drawn in Sect. 5.

2 Brain big data

Among the methods of generating data from natural world

and human society, using equipments of fMRI, EEG, and

MEG to collect brain data is of great concern from the

interdisciplinary researchers of computing, neuroscience,

and cognitive psychology [30]. Because the techniques of

noninvasive studies of human brain function have been in

widespread use to detect metabolic activity and neuronal

activity throughout the brain of different subjects all

around the world, huge amount of complex datasets are

collected every day. There is no doubt that the brain data

are a significant category of big data, which hold great

potential to unlock mysteries of the human mind [31].

Brain data are in the forms of pulse curve, 2D images

[32], and 3D structures reconstructed from 2D images [33],

as shown in Fig. 1. Pulse curves are generated by EEG; 2D
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images are produced by fMRI, MEG, OCT, etc., and 3D

structures are reconstructed from 2D images using com-

puter graphics technology. Furthermore, 4D models of the

brain can be based on imaging and modeling its 3D

structure at a sequence of time-points [33]. We can see that

brain data are more complex than regular information

tables, which lead to difficulties in modeling and process-

ing of them.

Researches on brain data can achieve a new under-

standing of the brain, new treatments for brain diseases

(such as Alzheimer’s and Parkinson’s [34]), and new brain-

like computing technologies [35]. The significance of brain

data research had been realized so clearly that governments

of the EU and USA started their own brain projects [35,

36]. There have been some successful researches on this

field. Ryali described a novel method based on logistic

regression using a combination of L1 and L2 norm regu-

larization to identify relevant discriminative brain regions

and accurately classify fMRI data [37]. Zhong and Chen

proposed Data-Brain, a new conceptual model of brain

data, to explicitly represent various relationships among

multiple human brain data sources, with respect to all

major aspects and capabilities of human information pro-

cessing systems [32].

3 Multi-granularity computing for big data

‘‘GrC is a superset of the theory of fuzzy information

granulation, rough set theory and interval computations,

and is a subset of granular mathematics,’’ stated Zadeh in

1997. Granules are any subsets, classes, objects, clusters,

and elements of a universe as they are drawn together by

distinguishability, similarity, or functionality [38]. Yao

considers GrC to be a label of theories, methodologies,

techniques, and tools that make use of granules in the

process of problem solving [39]. GrC has become one of

the fastest growing information processing paradigms in

the domain of computational intelligence and human-cen-

tric systems [38]. There are two fundamental issues in GrC:

granulation and granular structure. Different semantic

aspects and algorithm aspects of granulation will lead to

different granular structures of the universe. Chen defined

five classes of modal-style operators to construct granular

structure and hierarchical structure of data based on the

lattice of concepts [40].

Evolved from GrC, MGrC emphasizes jointly utilizing

multiple levels of information granules (IG) in problem

solving, instead of considering only one optimal granular

layer.

3.1 Three basic mechanisms and five theoretical

models of MGrC

MGrC considers multiple levels of IG when solving a

problem, and there have been a lot researches in this regard

[41–45, 62–69]. Three basic mechanisms of MGrC can be

summarized from these research works with regard to the

way in which multi-granular levels are used in problem

solving. They are granularity optimization, granularity

conversion, and multi-granularity joint computation. In

granularity optimization, the most suitable granular level of

a domain is chosen for the multi-granular information/

knowledge representation model (MGrR), and the most

efficient and satisfactory enough solution is generated on it

[41–43]. Granularity conversion means the working gran-

ularity layer will be switched between adjective layers or

jump to a higher or lower granular layer, in accordance

with the requirements of solving a problem [44, 45]. Multi-

granularity joint computation takes a problem-oriented

MGrR as input, and every layers of the MGrR are

employed jointly to achieve a correct solution to the

problem. Each of the three mechanisms has its particular

type of problem to deal with.

The three basic mechanisms is a new perspective on

GrC. Then, what is the relationship between the three

mechanisms and models to implement GrC such as fuzzy

set, rough set, quotient space, cloud model, and deep

learning? We will see that some models suit certain

mechanisms better, which are to be introduced in detail as

follows.

Fig. 1 Forms of brain data. a Pulse curves (EEG)—http://www.trueimpact.ca/introduction-to-electroencephalogram-eeg/, b 2D images

(fMRI)—http://irc.cchmc.org/research/fmri/cochlear.php, c 3D structures (reconstructed)—http://cloakunfurled.com/tag/fmri/
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3.1.1 Granularity optimization

The theories of fuzzy set and rough set are good choices for

the mechanism of granularity optimization.

The fuzzy set theory presented by Zadeh in 1965 starts

with definitions of membership function, with the more

functions defined about an attribute, the attribute is gran-

ulated into the finer fuzzy IG. The reason for fuzzy IG is

that crisp IG (e.g., an interval is partitioned by exact val-

ues) does not reflect the fact that the granules are fuzzy in

almost all of human reasoning and concept formation [46,

47]. The number of concepts formed through fuzzy gran-

ulation reflects the corresponding granularity being rela-

tively fine or coarse, and decision on the number is an

application-specific optimization problem.

The rough set theory developed by Pawlak in 1982 is an

effective model to acquire knowledge in information sys-

tem with upper approximation and lower approximation as

its core concepts, making decisions according to the defi-

nition of distinguishable relation and attribute reduct.

Researchers of related fields have made great variety of

improvements to the classic rough set theory mainly by

redefining the distinguishable relation and approximation

operators [48–50], and integrated it with other knowledge

acquisition models, which yield rough neural computation

[51], rough fuzzy set and fuzzy rough set [52], and so on.

Rough set can be used to granulate a set of objects into

IGs. The grain size of the IG is determined by how many

attributes and how many discrete values each attribute takes

in the subset of the whole attribute set, which is selected to do

the granulation. Generally, the more attributes and the more

values each attribute takes, the finer the resulting IGs.

In the perspective of knowledge transformation [53], the

process of data analyzing and problem solving by fuzzy

sets or rough sets is actually to find a mapping from the

information represented by the original finest-grained data

to the knowledge hidden behind a set of optimized coarser

and more abstract IGs.

3.1.2 Granularity conversion

The quotient space theory proposed by Zhang is a model

for problem solving with the basic idea of conceptualizing

the world at different granularities and shifting the focus of

thinking onto a different abstract level [54, 55]. It is not

hard to tell that quotient space is meant to solve problems

with need of granularity conversion. In the quotient space

theory, a problem space is described by a triplet (X, f,

T) with X as its domain, f as its attributes, and T its

structure. Suppose R is an equivalence relation on X, [X] is

a quotient set under R. Taking [X] as a new domain, we

have a new problem space ([X], [f], [T]). The worlds with

different granularities are represented by a set of quotient

spaces. Based on the descriptions, the construction of dif-

ferent-grain-sized quotient spaces and problem solving on

these spaces are researched [55].

The quotient space theory has attracted the attention of

researchers from the fields of information science, auto-

matic control, and applied mathematics [56, 57]. Integrat-

ing the idea of fuzzy mathematics into quotient space

theory, Zhang proposed fuzzy quotient space theory sub-

sequently, which provides a powerful mathematical model

and tool for GrC [58, 59]. Fuzzy quotient space theory

introduces fuzzy equivalence relation into the construction

of quotient space, in which different threshold values of the

membership function will lead to quotient spaces of dif-

ferent grain sizes. By setting different threshold values, an

MGrR can be derived.

The cloud model proposed by Li realizes the uncertain

transformation between qualitative concepts and quantita-

tive values and can be further used to realize the bidirectional

cognition, i.e., from concept intension to extension and from

extension to intension [60], as shown in Fig. 2. Since a

concept definitely has the property of granularity, mapping

of quantitative values to a suitable grain-sized qualitative

concept is also the process of granularity optimization.

Inspired by the idea of MGrC, Liu constructed an MGrR

using cloud model with an Adaptive Gaussian Cloud

Transformation (A-GCT) algorithm [61]. Multi-granular

concepts are generated by clustering academicians of

Chinese Academy of Engineering (ACAE) with regard to

age based on the definition of parameter concept clarity, as

shown in Fig. 3.

Therefore, granularity conversion can be implemented

using cloud model with A-GCT algorithm and a set of

different values of parameter concept clarity.

C(25,3,0.3)

Forward Cloud transformation

Backward Cloud Transformation

10 15 20 25 30 35 40
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Cloud drops x

C
er

ta
in

ty
 d

eg
re

e 
 µ

Fig. 2 Transforming between

the concept of ‘‘yong’’ C

(Ex = 25, En = 3, He = 0.3)

and cloud drops

4 G. Wang, J. Xu

123



3.1.3 Multi-granularity joint computation

Deep learning is a breakthrough of learning by neural

networks in recent years. Starting with Hiton publishing his

research on Science magazine in 2006, whose major con-

tribution is using deep auto-encoder networks to learn low-

dimensional codes for data of high dimensionality [62],

other research works of closely related topics are reported

afterward [63–65]. The structure of restricted Boltzmann

machines (RBMs) and a deep belief network based on

RBMs are shown in Fig. 4. Deep learning also draws the

attention from IT industry. Researchers from Google and

Stanford University consider the problem of building high-

level, class-specific feature detectors from only unlabeled

data, and train a face detector on a cluster with 1,000

machines (16,000 cores) for three days, without having to

label images as containing a face or not. The experiment

obtains 15.8 % accuracy, a leap of 70 % relative

improvement over the previous state-of-the-art [66]. Deep

learning was selected as the first of the 10 breakthrough

technologies 2013 [67].

The core idea of deep learning is training a deep

architecture with many layers of neural network, and the

constraints between the adjacent layers are set beforehand.

Although deep learning does not make the most popular

topic in machine learning until 2006, the research with the

similar idea can be traced back to 1990s, for example, Jang

presented an adaptive-network-based fuzzy inference sys-

tem (ANFIS) to implement fuzzy inference with a 5-lay-

ered neural network [68], as depicted in Fig. 5. Using a

hybrid learning procedure, ANFIS can construct an input–

output mapping based on both human knowledge (in the

form of fuzzy if–then rules) and stipulated input–output

data pairs. And we proposed a triple-valued or multiple-

valued logic neural network (TMLNN) to represent and

process triple-valued or multiple-valued logic knowledge

using neural network [69], as illustrated in Fig. 6. The

fundamental element of TMLNN is a novel neuron model,

triple-valued or multiple-valued logic neuron (TMLN).

Each TMLN can represent a triple-valued or multiple-

valued logic rule by itself. There are two triple-valued or

multiple-valued logic neurons: TMLN-AND (triple-valued

or multiple-valued ‘‘logic and’’ neuron) and TMLN-OR

(triple-valued or multiple-valued ‘‘logic or’’ neuron).

The application of deep learning to pattern recognition

reflects that human firstly takes as input the pixels of an

object projected onto the retina and then detects the edges

of the object, recognizes the parts of it, and finally forms

the high-level abstract concept of the object [70], as shown

in Fig. 7a. This means that visual concept formation pro-

cedure is local-to-global, which seems to be contradictory

to the topologically global first visual perception theory

developed by Chen in 1982 [71]. According to the results

of experiments conducted by Chen’s team, the human

40         50           60           70          80           90        100
age 

concept 
level

Level 4

Level 3

Level 2

Level 1

young

old

young
old

middle-aged

young

old
young of old

long-lived

Fig. 3 MGrR generated by A-GCT in the experiment of ACAE [61]

(a) (b)

Fig. 4 Example of RBMs and

graphic model of a deep belief

network based on RBMs.

a Pretraining consists of

learning a stack of RBMs, each

having only one layer of feature

detectors [62] and b graphical

model of a deep belief network

with observed vector x and

hidden layers h1, h2 and h3 [63]
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visual system is sensitive to global topological properties,

as illustrated in Fig. 7b.

However, after a careful analysis, we realize that the two

theories are NOT contradictory. In fact, they reflect the

different facets of human visual cognition. Chen’s theory

focuses on the last phase of the whole visual concept for-

mation, since the experiments are conducted using nonin-

vasive measurement on human brain cortex. However,

visual concept formation in deep learning considers all the

organs of visual system and the whole perception process.

What can be learnt from Chen’s global first theory and

deep learning from the standpoint of MGrC for BDP is that

original finest-grained data (compared to the pixels pro-

jected on retina) are the information source for sure, but we

should not stick to it. Exploiting components of higher

level abstraction (compared to edges and parts) and the

relation among them (compared to the topological relations

of visual stimuli) is helpful to efficient problem solving.

Deep learning itself is a typical model of multi-granu-

larity joint computation, and it could be expanded to a

more general structure for multi-granularity joint compu-

tation (MGrJC). Major differences between MGrJC and

deep learning are that the input of deep learning is the

finest-grained data when MGrJC takes an MGrR as its

input, and a layer-wise learner of deep learning is usually a

neural network when MGrJC intends to generalize it to any

type of learning model.

Although we introduce fuzzy set and rough set in section

granularity optimization, and quotient space and cloud

model in section granularity conversion, this does not mean

that the GrC models are limited to the corresponding

mechanisms. Actually, fuzzy set and rough set could be

used in granularity conversion, and quotient space and

cloud model could be used in granularity optimization as

(a) (b)

Fig. 5 Type-3 fuzzy reasoning

and its equivalent ANFIS

architecture [68]. a Type-3

fuzzy reasoning and b
equivalent ANFIS (type-3

ANFIS)

(a) (b) (c)

Fig. 6 Triple-valued or

multiple-valued logic neural

network [70]. a Triple-valued or

multiplevaluedlogic neuron

(TMLN),b multiple-layer

TMLNN and c TMLNN for

multiple-valuedlogic ‘‘exclusive

or‘‘

Fig. 7 Topologically ‘‘global first’’ visual perception theory and deep

learning. a Human visual perception work flow in deep learning

perspective [70] and b the visual system was more sensitive to the

topological distinction between a connected component with a hole

and one with no hole [71]
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well. The relationship between the three mechanisms and

five models is summarized in Table 1.

3.2 Key issues for BDP

There are quite a few issues that remain unaddressed

despite much effort having been made to BDP, among

which some are caused by the same reason: always getting

start analytics from the original or finest-grained data.

3.2.1 Issue 1: Lacking BDP models of human level

machine intelligence (HLMI)

The founder of Fuzzy Set theory, Zadeh argues that the

precisiated natural language computing, which originated

from CW (computing with words), is the cornerstone of

HLMI [72]. The current BDP models fail to simulate

human thinking to grasp the proper granularity of infor-

mation when solving a problem, and thus consequently lose

the opportunity to build human-centric data processing

systems. The research team led by Chen founded the

topologically ‘‘global first’’ visual perception theory in

1982 [71]. Always dealing data from the finest granularity

does not accord with this human perception law.

3.2.2 Issue 2: Lacking measures to effectively reduce

the size of data in BDP

Volume is the most highlighted challenge when compared

to other aspects in BDP, and many difficulties are directly

caused by it. To cope with this problem, a straightforward

idea is reducing the data size but preserving as much as

possible its information, which could avoid excessive

reliance on the finest-grained data and reduce the cost in

storage and communication.

3.2.3 Issue 3: Lacking the methods to offer effective

solution to big data problems with various

constraints

There are some situations where a user does not insist on

precise answer to a particular problem regarding BDP,

since a coarser-grained imprecise result would make him/

her happy enough. There are other situations where the

precise answer is not available in time due to the problem

complexity, data amount and complexity, and the capacity

of computing and communication, but if the problem

granularity is shifted to a coarser granular level, an

imprecise yet acceptable result may be obtained in time.

Therefore, it is necessary to introduce a term ‘‘effective

solution’’, which means that the solution meets the

requirements of the user regarding granularity and timeli-

ness simultaneously, or in other words, that the solution has

a fine enough granularity with respect to the user’s quest

and it is delivered in time.

MGrC are able to tackle the issues listed above. For

Issue 1, computation with information described in natural

language ultimately reduces to computation with granular

values, which is the province of GrC [72]. Therefore,

MGrC will help BDP move toward HLMI. For Issue 2,

multi-granular representation of original data is a form of

simplification or abstraction; hence the considerable

reduction in data volume can be realized. And when it

comes to Issue 3, the most highlighted feature of

employing MGrC in BDP is that it can manage to offer

effective solution under various constraints.

4 MGrC for brain big data

As mentioned in Sect. 2, the targets for brain BDP achieve

a new understanding of the brain, new treatments for brain

disease, and new brain-like computing technologies. So the

targets are mainly qualitative rather than quantitative, that

is, we do not need a solution of precise value or mathe-

matic function, but a result that can be described with

words. This is the very province of MGrC.

There have been some related works on pulse signal

processing and remote sensing images with GrC method-

ology, from which the future research on processing brain

big data with MGrC can benefit a lot. For example, Gacek

and Pedrycz developed a general framework of a granular

representation of ECG signals [73], which share many

common features with the EEG form of brain data. Fur-

thermore, Gacek recently discussed the granular represen-

tation of time series with a number of representation

alternatives and the question of forming adjustable tem-

poral slices, and presented an optimization criterion of a

sum of volumes of IG [74]. Meher and Pal presented a new

rough-wavelet granular space-based model for land cover

classification of multispectral remote sensing image [75],

which can be used for reference to analyze 2D brain image

data.

The three mechanisms of MGrC have great potentials

for brain BDP in three facets. Firstly, the brain big data is

Table 1 Applicability of the MGrC models to the three MGrC

mechanisms

Fuzzy

set

Rough

set

Quotient

space

Cloud

model

Deep

learning

Granularity

optimization

Good Good OK OK No

Granularity

conversion

OK OK Good OK No

Multi-granularity

joint computation

OK OK OK OK Good
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of multi-granular in nature. As shown in Fig. 8a, EEG

signals can be granulated like other kinds of time series

[74] and be processed subsequently. For 2D and 3D brain

data, they can be viewed hierarchically considering two

factors. One is the organizational granularity of brain, e.g.,

we could view the brain in this hierarchy: whole

brain ? lobes ? gyrus and sulcus ? neurons, with lobes,

gyrus and sulus shown in Fig. 8b, c, respectively. The other

is the measurement granularity of activation degrees in

particular region of the subject’s brain, e.g., we could

granulate the activation degrees as follows: stron-

gest ? very strong ? strong ? weak ? very weak.

Secondly, the computation performed on brain big data

needs to be multi-granular and produce results of variable

precision. As previously mentioned, the targets for brain

BDP could be described with words; thus, they are of

multi-granularity. For example, researches on the cure of a

kind of brain disease may focus on the changes of certain

gyrus and sulcus, while another kind of brain disease needs

the neurons of temporal lobe to be investigated. Therefore,

granularity optimization mechanism is useful for the for-

mer disease and granularity conversion is useful for the

latter. And if the brain disease is the result of multiple

causes, then multi-granularity joint computation may be

required.

Thirdly, identify the proof or signs of the granular

thinking in human brain, and offer valuable inspiration to

computing technologies. The existence of granular thinking

of human beings is already a common sense shared by the

cognition and computing society, but to our best knowl-

edge, the process of granularity optimization, granularity

conversion, or MGrJC in human thinking has not been

explicitly depicted by the equipments of fMRI, EEG,

MEG, etc. Therefore, many details of the granular thinking

in human brain still remain unknown. Using MGrC to

identify and interpret the MGrC occurring in human brain

is meaningful for future work.

5 Conclusion

In this paper, we firstly review data space, data science, and

researches on BDP, and talk about the source, form, sig-

nificance, and research works of brain big data. We propose

the three mechanisms of MGrC and discuss their relation-

ship with five major models of MGrC, i.e., fuzzy set, rough

set, quotient space, cloud model, and deep learning. We also

discussed the key issues of current BDP and the reasons why

MGrC can tackle them. Then we propose the potential of

exploring brain big data with MGrC. Future research may

include representing the brain big data from real world with

MGrR and conducting intelligent computation based on it to

offer effective solution to the problems to do successful

research in brain BDP.
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