
Schwab, Stein Res Math Sci (2022) 9:36
https://doi.org/10.1007/s40687-022-00327-1

RESEARCH

Deep solution operators for variational
inequalities via proximal neural networks
Christoph Schwab and Andreas Stein∗

*Correspondence:
andreas.stein@sam.math.ethz.ch
Seminar for Applied
Mathematics, ETH Zürich, Zürich,
Switzerland

Abstract

Following Bauschke and Combettes (Convex analysis and monotone operator theory in
Hilbert spaces, Springer, Cham, 2017), we introduce ProxNet, a collection of deep neural
networks with ReLU activation which emulate numerical solution operators of
variational inequalities (VIs). We analyze the expression rates of ProxNets in emulating
solution operators for variational inequality problems posed on closed, convex cones in
real, separable Hilbert spaces, covering the classical contact problems in mechanics,
and early exercise problems as arise, e.g., in valuation of American-style contracts in
Black–Scholes financial market models. In the finite-dimensional setting, the VIs reduce
to matrix VIs in Euclidean space, and ProxNets emulate classical projected matrix
iterations, such as projected Jacobi and projected SOR methods.

1 Introduction
Variational Inequalities (VIs for short) in infinite-dimensional spaces arise in variational
formulations of numerous models in the sciences. We refer only to [7,17,26] and the
references there for models of contact problems in continuum mechanics, [20] and the
references there for applications from optimal stopping in finance (mainly option pric-
ing with “American-style,” early exercise features) and [4] and the references there for
resource allocation and game theoretic models. Two broad classes of approaches toward
numerical solution of VIs can be identified: deterministic approaches, which are based
on discretization of the VI in function space, and probabilistic approaches, which exploit
stochastic numerical simulation and an interpretation of the solution of the VI as condi-
tional expectations of optimally stopped sample paths. The latter approach has been used
to design ML algorithms for the approximation of the solution of one instance of the VI
in [3].
Deep neural network structures arise naturally in abstract variational inequality prob-

lems (VIs) posed on the product of (possibly infinite-dimensional) Hilbert spaces, as
review, e.g., in [5]. Therein, the activation functions correspond to proximity operators of
certain potentials that define the constraints of theVI.Weak convergence of this recurrent
NN structure in the limit of infinite depth to feasible solutions of the VI is shown under
suitable assumptions. An independent, but related, development in recent years has been
the advent ofDNN-based numerical approximationswhich are based on encoding known,

123 © The Author(s) 2022, corrected publication 2022. This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

0123456789().,–: volV

http://crossmark.crossref.org/dialog/?doi=10.1007/s40687-022-00327-1&domain=pdf
http://orcid.org/0000-0003-3829-1467
http://creativecommons.org/licenses/by/4.0/

36 Page 2 of 35 Schwab, Stein ResMath Sci (2022) 9:36

iterative solvers for discretized partial differential equations, and certain fixed point itera-
tions for nonlinear operator equations.Wemention only [9], that developed DNNs which
emulate the ISTA iteration of [6], or the more recently proposed generalization of “deep
unrolling/unfolding” methodology [22]. Closer to PDE numerics, recently [11] proposed
MGNet, a neural network emulation ofmultilevel, iterative solvers for linear, elliptic PDEs.
The general idea behind these approaches is to emulate by aDNNa contractivemap, say

�, which is assumed to satisfy the conditions of Banach’s Fixed Point Theorem (BFPT),
and whose unique fixed point is the solution of the operator equation of interest. Let us
denote the approximate map realized by emulating � with a DNN by �̃. The universality
theorem for DNNs in various function classes implies (see, e.g., [16,25] and the references
there) that for any ε > 0 a DNN surrogate �̃ to the contraction map exists, which is
ε-close to �, uniformly on the domain of attraction of �.
Iteration of the DNN �̃ being realized by composition, any finite number K of steps

of the fixed point iteration can be realized by K-fold composition of the DNN surrogate
�̃. Iterating �̃, instead of �, induces an error of order O(ε/(1 − L)), uniformly in the
number of iterations K , where L ∈ (0, 1) denotes the contraction constant of �. Due
to the contraction property of �, K may be chosen as O(| log(ε)|) in order to output an
approximate fixed pointwith accuracy ε upon termination. TheK -fold composition of the
surrogate DNN �̃ is, in turn, itself a DNN of depth O(depth(�̃)| log(ε)|). This reasoning
is valid also in metric spaces, since the notions of continuity and contractivity of the map
� do not rely on availability of a norm. Hence, a (sufficiently large) DNN �̃ exists which
may be used likewise for the iterative solution of VIs in metric spaces. Furthermore, the
resulting fixed-point-iteration nets obtained in this manner naturally exhibit a recurrent
structure, in the case (considered here) that the surrogate �̃ is fixed throughout theK -fold
composition (more refined constructionswith stage-dependent approximations {�̃(k)}Kk=1
of increasing emulation accuracy could be considered, but shall not be addressed here).
In summary, with the geometric error reduction in FPIs which is implied by the con-

traction condition, finite truncation at a prescribed emulation precision ε > 0 will imply
O(| log(ε)|) iterations, and exact solution representation (of the fixed point of �̃) in the
infinite depth limit. In DNN calculus, finitely terminated FPIs can be realized via finite
concatenation of theDNNapproximation �̃of the contractionmap�. The corresponding
DNNs exhibit depthO(| log(ε)|), and naturally a recurrent structure due to the repetition
of the Net �̃ in their construction. Thereby, recurrent DNNs can be built which encode
numerical solutionmaps of fixed point iterations. This idea has appeared in various incar-
nations in recent work; we refer to, e.g., MGNet for the realization of Multi-grid iterative
solvers of discretized elliptic PDEs [11]. The presently proposed ProxNet architectures
are, in fact, DNN emulations of corresponding fixed point iterations of (discretized) vari-
ational inequalities.
Recent work has promoted so-called Deep Operator Nets which emulate Data-to-

Solution operators for classes of PDEs.Wemention only [19] and the references there. To
analyze expression rates of deep neural networks (DNNs) for emulating data-to-solution
operators for VIs is the purpose of the present paper. In line with recent work (e.g., [19,21]
and the references there), we take the perspective of infinite-dimensional VIs, which are
set on closed cones in separable Hilbert spaces. The task at hand is then the analysis of
rates of expression of the approximate data-to-solution map, which relates the input data
(i.e., operator, cone, etc.) to the unique solution of the VI.

Schwab, Stein Res Math Sci (2022) 9:36 Page 3 of 35 36

1.1 Layout

The structure of this paper is as follows. In Sect. 2, we recapitulate basic notions and
definitions of proximal neural networks in infinite-dimensional, separable Hilbert spaces.
A particular role is taken by so-called proximal activations, and a calculus of ProxNets,
which we shall use throughout the rest of the paper to build solution operators of VIs.
Section 3 addresses the conceptual use of ProxNets in the constructive solution of VIs.We
build in particular ProxNet emulators of convergent fixed point iterations to construct
solutions ofVIs. Section 3.2 introduces quantitative bounds for perturbations of ProxNets.
Section 4 emphasizes that ProxNets may be regarded as (approximate) solution operators
to unilateral obstacle problems in infinite-dimensional Hilbert spaces. Section 5 presents
DNN emulations of iterative solvers of matrix LCPs which arise from discretization of
unilateral problems for PDEs. Section 6 presents several numerical experiments, which
illustrate the foregoing developments.More precisely, we consider the numerical solution
of free boundary value problems arising in the valuation of American-style options, and
in parametric obstacle problems. Section 7 provides a brief summary of the main results
and indicates possible directions for further research.

1.2 Notation

We use standard notation. By L(H,K), we denote the Banach space of bounded, linear
operators from the Banach space H into K (surjectivity will not be required). Unless
explicitly stated otherwise, all Hilbert and Banach-spaces are infinite-dimensional. By
bold symbols, we denote matrices resp. linear maps between finite-dimensional spaces.
We use the notation conventions

∑0
i=1 · = 0 and �0

i=1· = 1 for the empty sum and
empty product, respectively. Vectors in finite-dimensional, Euclidean space are always
understood as column vectors, with� denoting transposition of matrices and vectors.

2 Proximal neural networks (ProxNets)
We consider the following model for an artificial neural network : For finite m ∈ N, let
H and (Hi)0≤i≤m be real, separable Hilbert spaces. For every i ∈ {1, . . . , m}, let Wi ∈
L(Hi−1,Hi) be a bounded linear operator, let bi ∈ Hi, let Ri : Hi → Hi be a nonlinear,
continuous operator, and define

Ti : Hi−1 → Hi, x �→ Ri(Wix + bi). (1)

Moreover, let W0 ∈ L(H0,H), Wm+1 ∈ L(Hm,H), bm+1 ∈ H and consider the neural
network (NN) model

� : H0 → H, x �→W0x +Wm+1(Tm ◦ · · · ◦ T1)(x)+ bm+1. (2)

The operatorW0 ∈ L(H0,H) allows to include skip connections in the model, similar to
deep residual neural networks as proposed in [12,13]. This article focuses in particular on
NNs with identical input and output spaces as in [5, Model 1.1], that arise as special case
of model (2) withH0 = Hm = H and are of the form

� : H→ H, x �→ (1− λ)x + λ(Tm ◦ · · · ◦ T1)(x), (3)

36 Page 4 of 35 Schwab, Stein ResMath Sci (2022) 9:36

for a relaxation parameter λ > 0 to be adjusted for each application. The relation H0 =
Hm = H allows us to investigate fixed points of � : H→ H, which are in turn solutions
to variational inequalities. The nonlinear operators Ri act as activation operators of the
NNs and are subsequently given by suitable proximity operators on Hi. We refer to �

and � as proximal neural networks or ProxNets for short and derive sufficient conditions
on the operators Ti, resp. Wi and Ri, so that � defines a contraction on H. Hence, the
unique fixed point x∗ = �(x∗) ∈ H solves a variational inequality, that is turn uniquely
determined by the network parameters Wi, bi and Ri for i ∈ {1, . . . , m}. On the other
hand, any well-posed variational inequality onHmay be recast as fixed-point problem for
a suitable contractive ProxNet � : H→ H.
As an example, consider an elliptic variational inequality onH, with solutionu ∈ K ⊂ H,

whereK is a closed, convex set. The set of contractive mappings onH is open; therefore,
we may construct a one-layer ProxNet � : H→ H, such that u is the unique fixed-point
of �. Therein, W1 ∈ L(H) stems from the bilinear form of the variational inequality,
λ > 0 is a relaxation parameter chosen to ensure a Lipschitz constant below one, and R1
is theH-orthogonal projection onto K, see Sect. 4.1 for a detailed construction.
This enables us to approximate solutions to variational inequality problems as fixed-

point iterations of ProxNets andderive convergence rates.Due to the contraction property
of �, the fixed-point iteration xn = �(xn−1), n ∈ N converges to x∗ = �(x∗) for any
x0 ∈ H at linear rate. Moreover, as the set of contractions on H is open, the iteration is
stable under small perturbations of the network parameters. Aswe show in Sect. 5.3 below,
the latter property allows us to solve entire classes of variational inequality problems using
only one ProxNet with fixed parameters.

2.1 Proximal activations

Definition 2.1 Let i ∈ {0, . . . , m} be a fixed index, ψi : Hi → R ∪ {∞} and dom(ψi) :=
{x ∈ Hi|ψi(x) < ∞}. We denote by 	0(Hi) the set of all proper, convex, lower semi-
continuous functions onHi, that is

	0(Hi) :=
{

ψi : Hi → R ∪ {∞}
∣
∣
∣ lim inf

y→x
ψi(y) ≥ ψi(x) for all x ∈ Hi and dom(ψi) = ∅

}

.

For any ψi ∈ 	0(Hi), the subdifferential of ψi at x ∈ Hi is

∂ψi(x) := {v ∈ Hi| (y− x, v)+ f (x) ≤ f (y) for all y ∈ Hi} ⊂ Hi, x ∈ Hi,

and the proximity operator of ψi is

proxψi : Hi → Hi, x �→ argmin
y∈Hi

ψi(y)+
‖x − y‖2Hi

2
. (4)

It is well-known that proxψi is a firmly nonexpansive operator, i.e., 2proxψi − id is non-
expansive, see, e.g., [2, Proposition 12.28]. As outlined in [5, Section 2], there is a natural
relation between proximity operators and activation functions in neural networks: Virtu-
ally any commonly used activation function such as rectified linear unit, tanh, softmax,
etc., may be expressed as proximity operator on Hi = R

d , d ∈ N, for an appropriate

Schwab, Stein Res Math Sci (2022) 9:36 Page 5 of 35 36

ψi ∈ 	0(Hi) (see [5, Section 2] for examples). We consider a set of particular proximity
operators given by

A(Hi) := {Ri = proxψi |ψi ∈ 	0(Hi) such that ψi is minimal at 0 ∈ Hi}, (5)

cf. [5, Definition 2.20]. Apart from being continuous and nonexpansive, any Ri ∈ A(Hi)
satisfies Ri(0) = 0 [5, Proposition 2.21]. Therefore, in the case Hi = R, the elements in
A(R) are also referred to as stable activation functions, cf. [10, Lemma 5.1]. With this in
mind, we formally define proximal neural networks, or ProxNets.

Definition 2.2 Let � : H0 → H be the m-layer neural network model in (2). If Ri ∈
A(Hi) holds for any i ∈ {1, . . . , m}, � is called a proximal neural network or ProxNet.

2.2 ProxNet calculus

Before investigating the relation of � in (3) to variational inequality models, we record
several useful definitions and results for NN calculus in the more general model � from
Eq. (2).

Definition 2.3 Let j ∈ {1, 2}, mj ∈ N, let H(j),H(j)
0 , . . . ,H(j)

m be separable Hilbert spaces
such thatH(2) = H(1)

0 , and let �j bemj-layer ProxNets as in (2) given by

�j : H(j)
0 → H(j), x �→W (j)

mj+1
(
T (j)
m ◦ · · · ◦ T (j)

1

)
(x)+ b(j)m+1.

The concatenation of �1 and �2 is defined by the map

�1 •�2 : H(2)
0 → H(1), x �→ (�1 ◦�2)(x). (6)

Remark 2.4 Due to W (j)
0 ≡ 0, there are no skip connections after the last proximal acti-

vation in �j ; hence, �1 • �2 is in fact a ProxNet as in (2) with 2m layers and no skip
connection.

Definition 2.5 Let m ∈ N, j ∈ {1, 2}, let H(j),H(j)
0 , . . . ,H(j)

m be separable Hilbert spaces
such thatH(1)

0 = H(2)
0 , and let �j bem-layer ProxNets as in (2) given by

�j : H(j)
0 → H(j), x �→W (j)

0 x +W (j)
m+1

(
T (j)
m ◦ · · · ◦ T (j)

1

)
(x)+ b(j)m+1.

The parallelization of �1 and �2 is given forH0 := H(1)
0 = H(2)

0 by

P(�1,�2) : H0 → H(1) ⊕H(2), x �→ (�1(x),�2(x)).

Proposition 2.6 The parallelization P(�1,�2) of two ProxNets �1 and �2 as in Defini-
tion 2.5 is a ProxNet.

Proof We setH(j)
m+1 := H(j) for j ∈ {1, 2}, fix i ∈ {1, . . . , m} and observe thatH(1)

i ⊕H(2)
i

equipped with the scalar product (·, ·)H(1)
i ⊕H(2)

i
:= (·, ·)H(1)

i
+ (·, ·)H(2)

i
is again a separable

36 Page 6 of 35 Schwab, Stein ResMath Sci (2022) 9:36

Hilbert space. We define

W0 : H0 �→ H(1) ⊕H(2), x �→ (W (1)
0 x,W (2)

0 x),

W1 : H0 �→ H(1)
1 ⊕H(2)

1 , x �→ (W (1)
1 x,W (2)

1 x),

Wi : H(1)
i−1 ⊕H(2)

i−1 �→ H(1)
i ⊕H(2)

i , (x, y) �→ (W (1)
i x,W (2)

i y), i ∈ {2, . . . , m+ 1},
bi := (b(1)i , b(2)i) ∈ H(1)

i ⊕H(2)
i , i ∈ {1, . . . , m+ 1},

Ri : H(1)
i ⊕H(2)

i �→ H(1)
i ⊕H(2)

i , (x, y) �→ (R(1)
i x, R(2)

i y), i ∈ {0, 1, . . . , m}.

Note that all Wi are bounded, linear operators. Moreover, if R(j)
i = prox

ψ
(j)
i
∈ A(H(j)

i)

holds for ψ
(j)
i ∈ 	0(H(j)

i) and j ∈ {1, 2}, then Ri = proxψi , where ψi ∈ 	0(H(1)
i ⊕H(2)

i) is
defined by ψi(x, y) := ψ

(1)
i (x)+ ψ

(2)
i (y). Hence, Ri ∈ A(H(1)

i ⊕H(2)
i) and it holds that

P(�1,�2) : H0 → H(1) ⊕H(2), x �→W0x +Wm+1(Tm ◦ · · · ◦ T1)(x)+ bm+1,

with Ti := Ri(Wi · +bi) for i ∈ {1, . . . , m}, which shows the claim. ��

3 ProxNets and variational inequalities
3.1 Contractive ProxNets

We formulate sufficient conditions on the neural networkmodel in (3) so that� : H→ H
is a contraction. The associated fixed-point iteration converges to the unique solution of
a variational inequality, which is characterized in the following.

Assumption 3.1 Let � be a ProxNet as in (3) with m ∈ N layers such that Wi ∈
L(Hi−1,Hi), bi ∈ Hi, and Ri ∈ A(Hi) for all i ∈ {1, . . . , m}. It holds that λ ∈ (0, 2)
and the operatorsWi satisfy

L� :=
m∏

i=1
‖Wi‖L(Hi−1 ,Hi) < min(1, 2/λ− 1).

Theorem 3.2 Let� be as in (3), let x0 ∈ H and define the iteration xk+1 := �(xk), k ∈ N0.
Under Assumption 3.1, the sequence (xk , k ∈ N0) converges for any x0 ∈ H to the unique
fixed-point x∗ ∈ H. For any finite number k ∈ N, the error is bounded by

‖x∗ − xk‖H ≤ ‖�(x0)− x0‖
1− L�,λ

Lk�,λ, L�,λ := |1− λ| + λL� ∈ [0, 1). (7)

It holds that

(x∗1 , . . . , x∗m) := (T1x∗, (T2 ◦ T1)x∗, . . . , (Tm−1 ◦ · · · ◦ T1)x∗, x∗) ∈ H1 × · · · ×Hm

is the unique solution to the variational inequality problem: find x1 ∈ H1, . . . , x0 = xm ∈
Hm, such that

Wixi−1 + bi − xi ∈ ∂ψi(xi), i ∈ {1, . . . , m}. (8)

Schwab, Stein Res Math Sci (2022) 9:36 Page 7 of 35 36

Moreover, x∗ is bounded by

‖x∗‖H ≤ C∗
m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ ‖bi‖Hi ,

C∗ :=
⎧
⎨

⎩

1
1−L�

< ∞, λ ∈ (0, 1],
λ

2−λ(1+L�) < ∞, λ ∈ (1, 2).

Proof By the non-expansiveness of Ri : Hi → Hi for i ∈ {1, . . . , m}, it follows for any
x, y ∈ H

‖�(x)−�(y)‖H ≤ |1− λ|‖x − y‖H + λ‖(Tm ◦ · · · ◦ T1)x − (Tm ◦ · · · ◦ T1)y‖Hm

≤ |1− λ|‖x − y‖H
+ λ‖(Wm ◦ (Tm−1 ◦ · · · ◦ T1))x − (Wm ◦ (Tm−1 ◦ · · · ◦ T1))y‖Hm

≤ |1− λ|‖x − y‖H
+ λ‖Wm‖L(Hm−1 ,Hm)‖(Tm−1 ◦ · · · ◦ T1)x − (Tm−1 ◦ · · · ◦ T1)y‖Hm−1

≤ |1− λ|‖x − y‖H + λ

(m∏

i=1
‖Wi‖L(Hi−1 ,Hi)

)

‖x − y‖H0

= (|1− λ| + λL�)︸ ︷︷ ︸
:=L�,λ

‖x − y‖H.

As λ ∈ (0, 2) and L� < min(1, 2/λ−1) by Assumption 3.1, it follows that L�,λ < 1, hence,
� : H→ H is a contraction. Existence and uniqueness of x∗ ∈ H and the first part of the
claim then follow by Banach’s fixed-point theorem for any initial value x0 ∈ H.
By [2, Proposition 16.44], it holds for any i ∈ {1, . . . , m}, xi, yi ∈ Hi and ψi ∈ 	0(Hi)

that

xi = proxψi (yi) ⇔ yi − xi ∈ ∂ψi(xi).

Now, let x∗0 := x∗ and x∗i := (Ti ◦ · · · ◦ T1)(x∗) for i ∈ {1, . . . , m}. This yields �(x∗0) =
(1 − λ)x∗ + λx∗m = x∗ and hence, x∗m = x∗. Recalling that Ri = proxψi with ψi ∈ 	0(Hi)
for all i ∈ {1, . . . , m}, it hence follows that

Wix∗i−1 + bi − x∗i ∈ ∂ψi(x∗i),

cf. [5, Proposition 4.3]. Finally, to bound x∗, we use that

‖x∗‖H ≤ ‖�(x∗)−�(0)‖H + ‖�(0)‖H ≤ L�,λ‖x∗‖H + λ‖(Tm ◦ · · · ◦ T1)(0)‖Hm.

36 Page 8 of 35 Schwab, Stein ResMath Sci (2022) 9:36

As Ri ∈ A(Hi), it holds Ri(0) = 0 and therefore, ‖Ri(x)‖Hi ≤ ‖x‖Hi for all x ∈ Hi, which
in turn shows

‖(Tm ◦ · · · ◦ T1)(0)‖Hm ≤ ‖Wm‖L(Hm1 ,Hm)‖(Tm−1 ◦ · · · ◦ T1)(0)‖Hm−1 + ‖bm‖Hm

≤ ‖Wm‖L(Hm1 ,Hm)

· (‖Wm−1‖L(Hm−2 ,Hm−1)‖(Tm−2 ◦ · · · ◦ T1)(0)‖Hm−2 + ‖bm−1‖Hm−1
)+ ‖bm‖Hm

≤
m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ ‖bi‖Hi .

The claim follows with L� < min(1, 2/λ− 1), since

1− L�,λ =
⎧
⎨

⎩

λ(1− L�) > 0, λ ∈ (0, 1],

2− λ(1+ L�) > 0, λ ∈ (1, 2).

��

3.2 Perturbation estimates for ProxNets

We introduce a perturbed version of the ProxNet � in (3) in this subsection. Besides
changing the network parameters Wi, bi and Ri, we also augment the input space H and
allow an architecture that approximates each nonlinear operator Ti itself by a multilayer
network. These changes allow us to consider ProxNet as an approximate data-to-solution
operator for infinite-dimensional variational inequalities and to control perturbations of
the network parameters. For instance, we show in Example 3.4 that augmented ProxNets
mimic the solution operator to Problem (8), that maps the bias vectors b1, . . . , bm to the
solution x1, . . . , xm.
Let H̃0, . . . , H̃m−1 be arbitrary separable Hilbert spaces and let H̃ := H̃0. Then, for

i ∈ {0, . . . , m−1} the direct sumHi⊕H̃i equipped with the inner product (·, ·)Hi+ (·, ·)H̃i

is again a separable Hilbert space. For notational convenience, we set H̃m := {0 ∈ Hm}
and use the identificationHm ⊕ H̃m = Hm = H. We consider the ProxNet

�̃ : H⊕ H̃→ H, (x, x̃) �→ (1− λ)x + λ(T̃m ◦ · · · ◦ T̃1)(x, x̃), (9)

wherewe allow that the operators T̃i are itselfmulti-layer ProxNets: For any i ∈ {1, . . . , m},
let mi ∈ N and let H(i)

0 := Hi−1 ⊕ H̃i−1, H(i)
1 , . . . ,H(i)

mi−1,H
(i)
mi := Hi ⊕ H̃i be separable

Hilbert spaces. For ji ∈ {1, . . . , mi}, consider the operators T̃ (i)
ji (·) = R(i)

ji (W
(i)
ji ·+b

(i)
ji) given

by

R(i)
ji ∈ A(H(i)

ji), W (i)
ji ∈ L(H(i)

ji−1,H
(i)
ji), b(i)ji ∈ H(i)

ji .

We then define T̃i as

T̃i : Hi−1 ⊕ H̃i−1 → Hi ⊕ H̃i, (xi−1, x̃i−1) �→ (T̃ (i)
mi ◦ · · · ◦ T̃ (i)

1)(xi−1, x̃i−1),

which in turn determines �̃ in (9). By construction, �̃ is a ProxNet of the form (2) with
∑m

i=1mi ≥ m layers. As compared to�, we augmented the input and intermediate spaces
by H̃i. The composite structure of themaps T̃i allows to choose input vectors x̃i−1 ∈ H̃i−1

Schwab, Stein Res Math Sci (2022) 9:36 Page 9 of 35 36

such that thefirst component of T̃i(xi−1, x̃i−1) approximatesTi(xi−1) uniformly on a subset
ofHi−1. As we show in Sect. 5.3 below, this enables us to solve large classes of variational
inequalities with only one fixed ProxNet �̃, that in turn approximates a data-to-solution
operator, instead of employing different fixed maps � : H→ H for every problem.
To formulate reasonable assumptions on �̃, we denote for any i ∈ {1, . . . , m− 1} by

PHi : Hi ⊕ H̃i �→ Hi, (xi, x̃i) �→ xi,

PH̃i : Hi ⊕ H̃i �→ H̃i, (xi, x̃i) �→ x̃i

the projections to the first and second component for an element inHi⊕H̃i, respectively.
Moreover, we define the closed ball B(i)

r := {xi ∈ Hi| ‖xi‖Hi ≤ r} ⊂ Hi with radius r > 0.

Assumption 3.3 Let� and �̃ be proximal neural networks defined as in Eqs. (3) and (9),
respectively. There are constants L̃ ∈ (0, 1), δ ≥ 0 and �1 ≥ �0 ≥ �2 > 0 such that

1. � satisfies Assumption 3.1 with λ ∈ (0, 1] and L� ≤ L̃ ∈ (0, 1).
2. It holds that

⎛

⎝ max
i∈{0,1,...,m}

i∏

j=1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠�0 +
m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ (‖bi‖Hm + δ) ≤ �1,

m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ ‖bi‖Hi ≤ (1− L̃)�2,

as well as

�2 + δ

(1− L̃)

m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ ≤ �0.

3. There is a vector x̃0 ∈ H̃0, such that for i ∈ {1, . . . , m}, any xi−1 ∈ B(i−1)
�1

⊂ Hi−1 and
x̃i := PH̃i T̃i(xi−1, x̃i−1) it holds

‖Ti(xi−1)− PHi T̃i(xi−1, x̃i−1)‖Hi ≤ δ.

Before we derive error bounds, we provide an example to motivate the construction of
�̃ and Assumption 3.3.

Example 3.4 (Bias-to-solution operator) Let� be as in Assumption 3.1 withm = 2 layers
and network parameters Ri,Wi, bi for i ∈ {1, 2}. We construct a ProxNet �̃ that takes the
bias vectors b1, b2 of � as inputs to represent � for any choice of bi ∈ Hi and therefore,
may be concatenated to map any choice of b1, b2 to the respective solution (x1, x2) of (8).
In other words, we approximate the bias-to-solution operator

Obias : H1 ⊕H2 �→ H1 ⊕H2, (b1, b2) �→ (x1, x2).

36 Page 10 of 35 Schwab, Stein ResMath Sci (2022) 9:36

To this end, we set H̃0 = H1 ⊕H2, H̃1 = H2,m1 = m2 = 1, bi,1 = 0 ∈ Hi ⊕ H̃i and

W (1)
1 : H⊕H1 ⊕H2 → H1 ⊕H2, (x, x1, x2) �→ (W1x + x1, x2)

W (2)
1 : H1 ⊕H2 → H2, (x1, x2) �→W2x1 + x2,

R(1)
1 : H1 ⊕H2 → H1 ⊕H2, (x1, x2) �→ R1(x1)+ x2,

R(2)
1 : H2 → H2, x2 �→ R2(x2).

Note that R(1)
1 = prox

ψ
(1)
1

withψ
(1)
1 (x1, x2) := ψ1(x1) for any (x1, x2) ∈ H1⊕H2, whereψ1

determines R1 = proxψ1 . Hence, R(1)
1 ∈ A(H1 ⊕ H̃1), and it follows with x̃0 := (b1, b2) ∈

H1 ⊕H2 for any x ∈ H and x1 ∈ H1 that

T1(x) = R1(W1x + b1) = PH1 (R1(W1x + b1), b2) = PH1R
(1)
1 (W (1)

1 (x, x̃0)) = PH1 T̃1(x, x̃0),

T2(x) = R2(W2x1 + b2) = R(2)
1 (W (2)

1 (x1, b2)) = PH2R
(2)
1 (W (2)

1 (x1, PH̃1 T̃1(x1, x̃0)).

Therefore, the last part of Assumption 3.3 holds with δ = 0 for arbitrary large�1 > 0 and
hence, the constants �0,�1,�2 do not play any role in this example. The generalization
tom > 2 layers follows by a similar construction of �.
Now, let (x1, x2) be the solution to (8) for any choice (b1, b2) ∈ H1⊕H2. It follows from

Theorem 3.2 that the operator

Õbias : H1 ⊕H2 → H, (b1, b2) �→ �̃(·, b1, b2) • · · · • �̃(·, b1, b2)︸ ︷︷ ︸
k times

(x0)

satisfies x2 ≈ Õbias(b1, b2) and x1 ≈ T1(Õbias(b1, b2)) for any fixed x0 ∈ H and any tuple
(b1, b2) ∈ H1 ⊕H2, for a sufficiently large number k of concatenations of �̃(·, b1, b2).

The augmented ProxNet �̃ may also be utilized to consider parametric families of
obstacle problems, as shown in Example 4.4 below. Therein, the parametrization is with
respect to the proximity operators Ri instead of the bias vectors bi, and we construct an
approximate obstacle-to-solution operator in the fashion of Example 3.4. In the finite-
dimensional case (where the linear operators Wi correspond to matrices), the input of
�̃ may even be augmented by a suitable space of operators, see Sect. 5.3 below for a
detailed discussion. We conclude this section with a perturbation estimate that allows us
to approximate the fixed-point of � by the augmented NN �̃.

Theorem 3.5 Let � and �̃ be proximal neural networks as in Eqs. (3) and (9) that satisfy
Assumption 3.3, and denote by x∗ ∈ H the unique fixed-point of � from Theorem 3.2. Let
x0 ∈ B(0)

�2
be arbitrary, let x̃0 be as in Assumption 3.3 and define the sequence x̃k+1 :=

�̃(̃xk , x̃0) for k ∈ N0, where x̃0 := x0. Then, there is a constant C > 0 which is independent
of δ > 0 and x̃0, such that for any k ∈ N, it holds

‖x∗ − x̃k‖H ≤ C
(
L̃kλ + δ

)
,

where L̃λ := (1− λ)+ λ̃L < 1.

Schwab, Stein Res Math Sci (2022) 9:36 Page 11 of 35 36

Proof Let x ∈ B(0)
�0

and let x̃0 ∈ H̃0 be as in Assumption 3.3. We define v0 := x, vi :=
PHi (T̃i ◦ · · · ◦ T̃1)(x, x̃0) ∈ Hi for i ∈ {1, . . . , m− 1}, and vm := (T̃m ◦ · · · ◦ T̃1)(x, x̃0) ∈ H.
With x̃i := PH̃i T̃i(xi−1, x̃i−1) and the convention that PHm = id, we obtain the recursion
formula

vi = PHi T̃i(vi−1, x̃i−1), i ∈ {1, . . . , m}. (10)

We now show by induction that ‖vi‖Hi ≤ �1 for i ∈ {0, . . . , m}. By Assumption 3.3 it
holds

‖v0‖H0 = ‖x‖H
≤ �0

=
⎛

⎝
0∏

j=1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠�0 +
0∑

j=1

⎛

⎝
0∏

=j+1
‖W‖L(H−1 ,H)

⎞

⎠ (‖bj‖Hj + δ)

≤ �1.

Now, let

‖vi‖Hi ≤
⎛

⎝
i∏

j=1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠�0 +
i∑

j=1

⎛

⎝
i∏

=j+1
‖W‖L(H−1 ,H)

⎞

⎠ (‖bj‖Hj + δ)

hold for a fixed i ∈ {0, . . . , m− 1}. Assumption 3.3 yields with Eq. (10)

‖Ti+1(vi)− vi+1‖Hi+1 = ‖Ti+1(vi)− PHi+1 T̃i+1(vi, x̃0)‖Hi+1 ≤ δ.

Using ‖Ri+1(x)‖Hi+1 ≤ ‖x‖Hi+1 for x ∈ Hi+1 then yields together with the triangle
inequality and the induction hypothesis

‖vi+1‖Hi+1 ≤ δ + ‖Ti+1(vi)‖Hi+1

≤ δ + ‖Wi+1‖L(Hi ,Hi+1)‖vi‖Hi + ‖bi+1‖Hi+1

≤
⎛

⎝
i+1∏

j=1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠�0 +
i+1∑

l=1

⎛

⎝
i+1∏

j=l+1
‖W‖L(H−1 ,H)

⎞

⎠ (‖bj‖Hj + δ)

≤ �1,

and hence, vi ∈ B(i)
�1

for all i ∈ {0, . . . , m}. With Assumption 3.3 and Eq. (10), we further
obtain for each x ∈ B(0)

�0

1
λ
‖�(x)− �̃(x, x̃0)‖Hm

= ‖(Tm ◦ · · · ◦ T1)(x)− vm‖H
≤ ‖(Tm ◦ · · · ◦ T1)(x)− Tm(vm−1)‖H + ‖Tm(vm−1)− T̃m(vm−1, x̃m−1)‖H
≤ ‖Wm‖L(Hm−1 ,Hm)‖(Tm−1 ◦ · · · ◦ T1)(x)− vm−1‖Hm−1 + δ,

36 Page 12 of 35 Schwab, Stein ResMath Sci (2022) 9:36

and by iterating this estimate over i ∈ {1, . . . , m}

‖�(x)− �̃(x, x̃0)‖Hm ≤ λδ

m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ =: λδC�. (11)

Now, let x∗ ∈ H be the unique fixed-point of� as in Theorem 3.2, let xk = �(xk−1) and
x̃k = �̃(̃xk−1, x̃0) for any k ∈ N and a given initial value x0 = x̃0 ∈ H with ‖x0‖H ≤ �2.
We obtain as in the proof of Theorem 3.2

‖x1‖H ≤ ‖�(x0)−�(0)‖H + ‖�(0)‖H

≤ L�,λ‖x0‖H + λ

m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ ‖bi‖Hi

≤ (1− λ)�2 + λ

⎛

⎝L̃�2 +
m∑

i=1

⎛

⎝
m∏

j=i+1
‖Wj‖L(Hj−1 ,Hj)

⎞

⎠ ‖bi‖Hi

⎞

⎠

≤ �2,

(12)

where we have used that L�,λ = (1−λ)+λL� ≤ (1−λ)+ λ̃L and Assumption 3.3. Hence,
we have ‖xk‖H ≤ �2 inductively for all k ∈ N. In the next step, we show that ‖̃xk‖H ≤ �0
by induction over k . First, we obtain with ‖x0‖ ≤ �2 ≤ �0, (11) and (12) that

‖̃x1‖H = ‖�̃(x0, x̃0)‖H ≤ ‖�̃(x0, x̃0)−�(x0)‖H + ‖�(x0)‖H ≤ λδC� +�2.

Thus, ‖̃x1‖H ≤ �0 followswithAssumption 3.3 on the relation of�0 and�2 as λ(1−L̃) <

1. Using the induction hypothesis ‖̃xk − xk‖H ≤ λδC�

∑k−1
j=0 L̃j�,λ for a fixed k ∈ N,

‖xk‖H ≤ �2, and L�,λ ≤ L̃λ := (1− λ)+ λ̃L < 1 yields similarly

‖̃xk+1‖H ≤ ‖�̃(̃xk , x̃0)−�(̃xk)‖H + ‖�(̃xk)−�(xk)‖H + ‖�(xk)‖H
≤ λδC� + L�,λ‖̃xk − xk‖H +�2

≤ λδC�

k∑

j=0
L̃jλ +�2,

and hence, ‖̃xk‖H ≤ λδC�/(λ(1 − L̃)) + �2 ≤ �0 holds by induction for all k ∈ N. We
apply the bounds from Theorem 3.2 and (11) and conclude the proof by deriving

‖x∗ − x̃k‖ ≤ ‖x∗ − xk‖ + ‖�(xk−1)−�(̃xk−1)‖ + ‖�(̃xk−1)− �̃(̃xk−1, x̃0)‖

≤ ‖x1 − x0‖
1− L�,λ

Lk�,λ + L�,λ‖xk−1 − x̃k−1‖H + λδC�

≤ ‖�(x0)− x0‖
1− L̃λ

L̃kλ + λδC�

k−1∑

j=0
L̃jλ

≤ max(2�0, λC�)
1− L̃λ

(
L̃kλ + δ

)
.

��

Schwab, Stein Res Math Sci (2022) 9:36 Page 13 of 35 36

4 Variational inequalities in Hilbert spaces
In the previous sections, we have considered a ProxNet model and derived the associated
variational inequalities. Now, we use the variational inequality as starting point and derive
suitable ProxNets for its (numerical) solution. Let (H, (·, ·)H) be a separable Hilbert space
with topological dual space denoted byH′, and let H′ 〈·.·〉H be the associated dual pairing.
Let a : H×H→ R be a bilinear form, let f : H→ R be a functional, and letK ⊂ H be a
subset ofH. We consider the variational inequality problem

find u ∈ K : a(u, v − u) ≥ f (v − u), ∀v ∈ K. (13)

Assumption 4.1 The bilinear form a : H ×H → R is bounded and coercive on H, i.e.,
there exists constants C−, C+ > 0 such that for any v, w ∈ H it holds

a(v, w) ≤ C+‖v‖H‖w‖H and a(v, v) ≥ C−‖v‖2H.

Moreover, f ∈ H′ and K ⊂ H is nonempty, closed and convex.

Problem (13) arises in various applications in the natural sciences, engineering and
finance. It is well-known that there exists a unique solution u ∈ K under Assumption 4.1,
see, e.g., [14, Theorem A.3.3] for a proof. We also mention that well-posedness of Prob-
lem (13) is ensured under weaker conditions as Assumption 4.1; in particular, the coerciv-
ity requirement may be relaxed as shown in [8]. For this article, however, we focus on the
bounded and coercive case in order to obtain numerical convergence rates for ProxNet
approximations.

4.1 Fixed-point approximation by ProxNets

Theorem 4.2 Let Assumption 4.1 hold, and define H1 := H0 := H. Then, there exists
a one-layer ProxNet � as in Eq. (3) such that u ∈ K is the unique fixed-point of �.
Furthermore, for a given u0 ∈ H define the iteration uk := �(uk−1), k ∈ N.
Then, there are constants L�,λ ∈ (0, 1) and C = C(u0) > 0 such that

‖u− uk‖ ≤ CLk�,λ, k ∈ N. (14)

Proof We recall the fixed-point argument, e.g., in [14, Theorem A.3.3], for proving exis-
tence and uniqueness of u since it is the base for the ensuing ProxNet construction:
Assumption 4.1 ensures that a(v, ·), f ∈ H′ for any v ∈ H. The Riesz representation
theorem yields the existence of A ∈ L(H) and F ∈ H such that for all v, w ∈ H

(Av, w)H = a(v, w) and (F, v)H = f (v).

SinceK is closed convex, theH-orthogonal projectionPK : H→ K ontoK is well-defined
and for any ω > 0 there holds

u solves (13) ⇐⇒ u = PK(ω(F − Au)+ u).

Hence, u is a fixed-point of the mapping

Tω : H→ H, v �→ PK(ω(F − Av)+ v).

36 Page 14 of 35 Schwab, Stein ResMath Sci (2022) 9:36

By Assumption 4.1, it is now possible to choose ω > 0 sufficiently small, so that Tω is a
contraction on H, which proves existence and uniqueness of u. The optimal relaxation
parameter in terms of the bounds C−, C+ is ω∗ = C−/C2+, leading to ‖Tω∗‖2L(H) =
(1− C2

1/C
2
2) < 1, see, e.g., [14, Theorem A.3.3].

To transfer this constructive proof of existence and uniqueness of solutions to the
ProxNet setting, we denote by ιK the indicator function of K given by

ιK : H→ (−∞,∞], v �→
⎧
⎨

⎩

0, if v ∈ K,

∞, otherwise.

Since K is closed convex, it holds that ιK ∈ 	0(H) and proxιK = PK (cf. [2, Examples
1.25 and 12.25]). Now, let m = 1, H1 = H, W1 := I − ωA ∈ L(H), b1 := ωF ∈ H, and
R1 := proxιK , where ω > 0 is such that I − ωA is a contraction.
The ProxNet emulation � of the contraction map reads: for a parameter λ ∈ (0, 1],

� : H→ H, v �→ (1− λ)v + λR1(W1v + b1)︸ ︷︷ ︸
:=T1(v)

.

Since ‖W1‖L(H) < 1, Assumption 3.1 is satisfied for every λ ∈ (0, 1]. Theorem 3.2 yields
that the iteration uk := �(uk−1) converges for any u0 ∈ H to a unique fixed-point
u∗ ∈ H with error bounded by (14) and L�,λ := (1 − λ) + λ‖W1‖L(H) ∈ (0, 1). Since
�(v) = (1− λ)v+ λT1(v), it follows that u∗ is in turn the unique fixed-point of T1, hence
u = u∗, which proves the claim. ��

Remark 4.3 In the fashion of Example 3.4, we may construct an augmented ProxNet
�̃ : H ⊗ H → H such that �̃(v, F) = �(v) for any v ∈ H, where F ∈ H is the Riesz
representer of f ∈ H′ in Problem (13). The only difference is that F has to be multiplied
with ω in the first linear transform to obtain b1 = ωF instead of F as bias vector. The
parameters of �̃ in this construction are independent of F ; hence, Theorem 3.5 yields that
for any f ∈ H′ (resp. F ∈ H) and x0 ∈ H it holds

‖u− ũk‖ ≤ CLk�,λ, k ∈ N,

where ũk := �̃(uk−1, F). ��

The previous remark shows that one fixed ProxNet is sufficient to solve Problem (13)
for any f ∈ H′. A similar result is achieved if the set K ⊂ H associated Problem (13) is
parameterized by a suitable family of functions:

Example 4.4 (Obstacle-to-solutionoperator) LetH be aHilbert space of real-valued func-
tions over a domain D ⊂ R

d such that C(D) ∩ H is a dense subset, e.g., H = L2(D)
or H = H1(D), and let K := {v ∈ H| v ≥ g almost everywhere} for a sufficiently
smooth function g : D → R. With this choice of K, (13) is an obstacle problem and
PK(v) = max(v, g) holds for any v ∈ H∩C(D).We construct a ProxNet approximation to
the obstacle-to-solution operator Oobs : H → H, g �→ u corresponding to Problem (13)
with K = {v ∈ H| v ≥ g almost everywhere}.

Schwab, Stein Res Math Sci (2022) 9:36 Page 15 of 35 36

Assume �(v) = PK(W1v + b1) for W1 ∈ L(H) and b1 ∈ H are as in Theorem 4.2 and
let K0 := {v ∈ H| v ≥ 0 almost everywhere}. To obtain a ProxNet that uses the obstacle
g ∈ H as input, we define

�̃ : H⊕H→ H, (v, g) �→ T̃1(v, g) = (T̃ (1)
2 ◦ T̃ (1)

1)(v, g)

via T̃ (1)
j1 (v, g) := R(1)

j1 (W (1)
j1 (v, g)+ b(1)j1) which are, for j1 ∈ {1, 2}, defined by

W (1)
1 : H⊕H→ H⊕H, (v1, v2) �→ (W1v1 − v2, v2),

b(1)1 := (b1, 0) ∈ H⊕H, R(1)
1 := prox

ψ
(1)
1
, ψ

(1)
1 (v, g) := ιK0 (v),

W (1)
2 : H⊕H→ H, (v1, v2) �→ v1 + v2, b(1)2 := 0 ∈ H, R(1)

2 := id ∈ A(H).

Note that this yields W (1)
1 ∈ L(H ⊕ H), W (1)

2 ∈ L(H), and R(1)
1 (v1, v2) = (PK0v1, v2)

for all v1, v2 ∈ H. It now follows for any given v, g ∈ H and K := {v ∈ H| v ≥
g almost everywhere}

�(v) = PK(W1v + b1)

= PK0 (W1v + b1 − g)+ g

= R(1)
2 (W (1)

2 (PK0 (W1v + b1 − g), g)+ b(1)2)

= T̃ (1)
2
(
(PK0 (W1v + b1 − g), g)

)

= T̃ (1)
2 ◦ (R(1)

1 (W (1)
1 (v, g)+ b(1)1))

= �̃(v, g).

As in Example 3.4, we concatenate �̃ to obtain for a fixed choice of x0 ∈ H the operator

Õobs : H→ H, g �→ [
�̃(·, g) • · · · • �̃(·, g)] (x0).

Convergence of Õobs(g) to u for any g ∈ H (with arbitrary a-priori fixed x0 ∈ H) with a
contraction rate that is uniformwith respect to g ∈ H is again guaranteed as the number of
concatenations tends to infinity. Therefore, as in Example 3.4, there exists one ProxNet �̃
that approximately solves a family of obstacle problemswith obstacle ‘parameter’ g ∈ H.��

A combination of the ProxNets fromRemark 4.3 and Example 4.4 enables us to consider
both, f and K in (13), as input variables of a suitable NN �̃ : H ⊕ H ⊕ H → H. This
allows, in particular, to construct an approximation of the data-to-solution operator to
Problem (13) that maps (F, g) ∈ H⊕H to u.

5 Example: linear matrix complementarity problems
Common examples for Problem (13) arise in financial and engineering applications, where
the bilinear form a : H ×H → R stems from a second-order elliptic or parabolic differ-
ential operator. In this case,H ⊂ Hs(D), whereHs(D) is the Sobolev space of smoothness
s > 0 with respect to the spatial domain D ⊂ R

n, n ∈ N. Coercivity and boundedness of
a as in Assumption 4.1 often arise naturally in this setting. To obtain a computationally
tractable problem, it is necessary to discretize (13), for instance by a Galerkin approxima-
tion with respect to a finite dimensional subspaceHd ⊂ H. To illustrate this, we assume

36 Page 16 of 35 Schwab, Stein ResMath Sci (2022) 9:36

that dim(Hd) = d ∈ N is a suitable finite-dimensional subspacewith basis {v1, . . . , vd} and
consider an obstacle problem with K = {v ∈ H| v ≥ g almost everywhere} for a smooth
function g ∈ H.
Following Example 4.4, we introduce the set K0 := {v ∈ H| v ≥ 0 almost everywhere}

and note that Problem (13) is equivalent to finding u = u0 + g ∈ K

with u0 ∈ K0 such that: a(u0, v − u0) ≥ f (v − u0)− a(g, v − u0), ∀v ∈ K0. (15)

5.1 Discretization andmatrix LCP

Any element v ∈ Hd may be expanded as v =∑d
i=1 wivi for a coefficient vector w ∈ R

d .
To preserve non-negativity of the discrete approximation to (15), we assume that v ∈ K0 if
and only if the basis coordinates are nonnegative, i.e., if w ∈ R

d≥0. This property holds, for
instance, in finite element approaches. We write the discrete solution as ud =

∑d
i=1 xivi.

Then, ud ∈ K0 if and only if x ∈ R
d≥0. Consequently, the discrete version of (15) is to

find x ∈ R
d≥0 : (y− x)�Ax ≥ (y− x)�c, ∀y ∈ R

d≥0, (16)

where the matrix A ∈ R
d×d and the vector c ∈ R

d are given by

Aij := a(vj, vi) and ci :=H′ 〈f, vi〉H − a(g, vi), i, j ∈ {1, . . . , d}. (17)

Problem (16) is equivalent to the linear complementary problem (LCP) to find x ∈ R
d

such that for A ∈ R
d×d and c ∈ R

d as in (17) it holds

Ax ≥ c, x ≥ 0, x�(Ax − c) = 0, (18)

see, e.g., [14, Lemma 5.1.3]. If a : H × H → R is bounded and coercive as in Assump-
tion 4.1, it readily follows that

C−‖x‖22 ≤ x�Ax ≤ C+‖x‖22, x ∈ R
d, (19)

where the constants C+ ≥ C− > 0 stem from Assumption 4.1 and ‖·‖2 is the Euclidean
norm on R

d . This implies in particular that the LCP (18) has a unique solution x ∈ R
d ,

see [23, Theorem 4.2]. Equivalently, we may regard Problem (16), resp. (18), as varia-
tional inequality on the finite-dimensional Hilbert space Rd equipped with the Euclidean
scalar product (·, ·)2. Well-posedness then follows directly from Assumption 4.1 with the
identificationH = R

d and the discrete bilinear form a : Rd × R
d → R, (x, y) �→ x�Ay.

5.2 Solution of matrix LCPs by ProxNets

The purpose of this section is to show that several well-known iterative algorithms to
solve (finite-dimensional) LCPs may be recovered as particular cases of ProxNets in the
setting of Sect. 2. To this end, we fix d ∈ N and use the notationH := R

d for convenience.
We denote by {e1, . . . , ed} ⊂ R

d the canonical basis of H. To approximately solve LCPs
by ProxNets, and to introduce a numerical LCP solutionmap, we introduce the scalar and
vector-valued Rectified Linear Unit (ReLU) activation function.

Schwab, Stein Res Math Sci (2022) 9:36 Page 17 of 35 36

Definition 5.1 The scalar ReLU activation function � is defined as � : R → R, x �→
max(x, 0). The component-wise ReLU activation in R

d is given by

�(d) : Rd → R
d, x �→

d∑

i=1
�((x, ei)H)ei. (20)

Remark 5.2 The scalar ReLU activation function � satisfies � = proxι[0,∞)
with ι[0,∞) ∈

	0(R) (see [5, Example 2.6]). This in turn yields �(d) ∈ A(Rd) for any d ∈ N by [5,
Proposition 2.24].

Example 5.3 (PJORNet) Consider the LCP (18) with matrix A and triangular decompo-
sition

A = D+ L+U, (21)

whereD ∈ R
d×d contains the diagonal entries ofA, and L,U ∈ R

d×d are the (strict) lower
and upper triangular parts of A, respectively. The projected Jacobi (PJOR) overrelaxation
method to solve LCP (18) is given as:

Algorithm 1 Projected Jacobi overrelaxation method
Given: initial guess x0 ∈ R

d , relaxation parameter ω > 0 and tolerance ε > 0.
1: for k = 0, 1, 2, . . . do
2: xk+1 = max

(
(Id − ωD−1A)xk + ωD−1c, 0

)

3: if ‖xk+1 − xk‖2 < ε then
4: return xk+1
5: end if
6: end for

The max-function in Algorithm 1 acts component-wise on each entry of a vector inR
d .

Hence, one iteration of the PJORmay be expressed as a ProxNet inModel (3) withm = 1,
λ = 1 and �(d) from Eq. (20) as

�PJOR : Rd → R
d, x �→ T1(x) := �(d)((Id − ωD−1A)

︸ ︷︷ ︸
=:W1

x + ωD−1c︸ ︷︷ ︸
:=b1

).

If A satisfies (19) for constants C+ ≥ C− > 0, it holds that

‖W1‖2L(H) = ‖Id − ωD−1A‖22
= sup

x∈Rd ,‖x‖2=1
x�x − ωx�D−1(A� + A)x + ω2(xD−1A)�D−1Ax

≤ 1− 2ω min
i∈{1,...,d}

1
Aii

C− + ω2 max
i∈{1,...,d}

1
A2
ii
‖A‖22

≤ 1− 2ω
C−
C+

+ ω2 ‖A‖22
C2−

=: �(ω).

The choice ω∗ := C3−/(C+‖A‖22) minimizes � such that �(ω∗) < 1. Moreover, �(0) = 1,
� is strictly decreasing on [0,ω∗], and increasing for ω > ω∗. Hence, there exists ω > 0

36 Page 18 of 35 Schwab, Stein ResMath Sci (2022) 9:36

such that for anyω ∈ (0,ω) themapping�PJOR : Rd → R
d is a contraction.An application

of Theorem 3.2 then shows that Algorithm (1) converges linearly for suitable ω > 0 and
any initial guess x0. In the special case that A is strictly diagonally dominant, choosing
ω = 1 is sufficient to ensure convergence, i.e., no relaxation before the activation is
necessary.

Example 5.4 (PSORNet) Another popular algorithm to numerically solve LCPs is the
projected successive overrelaxation (PSOR) method in Algorithm 2.

Algorithm 2 Projected successive overrelaxation algorithm
Given: initial guess x0 ∈ R

d , relaxation parameter ω > 0 and tolerance ε > 0.
1: for k = 0, 1, 2, . . . do
2: for i = 1, 2, . . . , d do
3: yk+1i = 1

Aii

(
ci −∑i−1

j=0 Aijxk+1j −∑d
j=i+1 Aijxkj

)

4: xk+1i = max((1− ω)xki + ωyk+1i , 0)
5: end for
6: if ‖xk+1 − xk‖2 < ε then
7: return xk+1
8: end if
9: end for

To represent thePSOR-iterationby aProxNet as in (3),weuse the scalarReLUactivation
� from Definition 5.1 and define for i ∈ {1, . . . , d}

Ri : Rd → R
d, x �→ �((x, ei)H)ei +

d∑

j=1, j =i
xjej . (22)

In contrast to �(d) in Eq. (20), the activation operator Ri takes the maximum only with
respect to the ith entry of the input vector. Nevertheless, Ri ∈ A(Rd) holds again by [5,
Proposition 2.24]. Now, define bi ∈ R

d andWi ∈ R
d×d by

bi = (0, . . . , 0, ω
ci
Aii︸ ︷︷ ︸

ith entry

, 0, . . . , 0), (Wi)lj =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1− ω l = j = i,

1 l = j ∈ {1, . . . , d}\{i},
−ω

Aij
Aii

, l = i, j ∈ {1, . . . , d}\{i},
0, elsewhere,

and let Ti(x) := Ri(Wix+bi) for x ∈ R
d . Given the kth iterate xk and xk+11 , . . . , xk+1i−1 from

the inner loop of Algorithm 2, it follows for zk,i−1 := (xk+11 , . . . , xk+1i−1 , xki , . . . , xkd)
� that

xk+1i = zk,ii , zk,i = Ti(zk,i−1), i ∈ {1, . . . , d}, k ∈ N. (23)

As zk−1,d = zk,0 = xk for k ∈ N, this shows xk+1 = �PSOR(xk) for

�PSOR : Rd → R
d, x �→ (Td ◦ · · · ◦ T1)(x). (24)

Schwab, Stein Res Math Sci (2022) 9:36 Page 19 of 35 36

Provided (19) holds, we derive similarly to Example 5.3

‖Wi‖22 = sup
x∈Rd ,‖x‖2=1

x�x − 2
ω

Aii
x�A[i]xi + ω2

A2
ii
(x�A[i])2

≤ 1− 2ω
1
Aii

C− + ω2

A2
ii
‖A‖2,

whereA[i] denotes the ith rowofA. Hence,ω∗ := C3−/(C+‖A‖22) is sufficient to ensure that
�PSOR is a contraction, and convergence to a unique fixed-point follows as inTheorem3.2.

Remark 5.5 Both, the PJORNet and PSORNet from Examples 5.3 and 5.4, may be aug-
mented as in 3.4 to take c ∈ R

d as additional input vector, and therefore to solve the
LCP (18) for varying c. That is, concatenation of the PJORNet/PSORNet again yields an
approximation to the solution operator ORHS : Rd → R

d, c �→ x associated with the
LCP (18) forfixedA. This is of particular interest, for instance, in the valuationofAmerican
options, where a collection of LCPs with varying model parameters has to be solved, see
[14, Chapter 5] and the numerical examples in Sect. 6. Recall that ci :=H′ 〈f, vi〉H−a(g, vi) if
the matrix LCP stems from a discretized obstacle problem as introduced in the beginning
of this section. Hence, by varying c it is possible to modify the right hand side f , as well as
the obstacle g , of the underlying variational inequality (cf. Example 4.4 and Sect. 6.3). ��

5.3 Solution of parametric matrix LCPs by ProxNets

In this section,we construct ProxNets that takearbitraryLCPs (A, c) infinite-dimensional,
Euclidean space as input, and output approximations of the solution x to (18) with any
prescribed accuracy. Consequently, these ProxNets realize approximate data-to-solution
operators

O : {A ∈ R
d2 | there are C−, C+ > 0 s.t. A satisfies (19)} × R

d → R
d, (A, c) �→ x.

(25)

The idea is to construct a NN that realizes Algorithm (1) that achieves prescribed error
threshold ε > 0 uniformly for LCP data (A, c) from a set A�, meaning the weights of
the NN may not depend on A as in the previous section. To this end, we use that the
multiplication of real numbers may be emulated by ReLU-NNs with controlled error and
growth bounds on the layers and size of the ReLU NN. This was first shown in [27], and
subsequently extended to themultiplication of an arbitrary number n ∈ N of real numbers
in [24].

Proposition 5.6 [24, Proposition 2.6] For any δ0 ∈ (0, 1), n ∈ N and � ≥ 1, there exists
a ProxNet

∏̃n
δ0 ,� : Rn → R of the form (2) such that

sup
(x1,...,xn)∈[−�,�]n

∣
∣
∣
∣
∣

n∏

i=1
xi −

∏̃n

δ0 ,�
(x1, . . . , xn)

∣
∣
∣
∣
∣

≤ δ0,

ess sup
(x1,...,xn)∈[−�,�]n

sup
j∈{1,...,n}

∣
∣
∣
∣
∣
∂xj

n∏

i=1
xi − ∂xj

∏̃n

δ0 ,�
(x1, . . . , xn)

∣
∣
∣
∣
∣
≤ δ0,

(26)

36 Page 20 of 35 Schwab, Stein ResMath Sci (2022) 9:36

where ∂xj denotes the weak derivative with respect to xj. The neural network
∏̃n

δ0 ,� uses only
ReLUs as in Definition 5.1 as proximal activations. There exists a constant C, independent
of δ0 ∈ (0, 1), n ∈ N and � ≥ 1, such that the number of layers mn,δ0 ,� ∈ N of

∏̃n
δ0 ,� is

bounded by

mn,δ0 ,� ≤ C
(

1+ log(n) log
(
n�n

δ0

))

. (27)

Remark 5.7 For our purposes, it is sufficient to consider the cases n ∈ {2, 3}; therefore,
we assume without loss of generality that there is a constant C , independent of δ0 ∈ (0, 1)
and � ≥ 1, such that for n ∈ {2, 3} it holds

mn,δ0 ,� ≤ C
(

1+ log
(

�

δ0

))

.

Moreover, we may assume without loss of generality thatm2,δ0 ,� = m3,δ0 ,�, as it is always
possible to add ReLU-layers that emulate the identity function to the shallower network
(see [24, Section 2] for details).

With this at hand, we are ready to prove a main result of this section.

Theorem 5.8 Let � ≥ 2 be a fixed constant, d ≥ 2 and define for any given � ≥ 2 the
set

A� :=
{

(A, c) ∈ R
d×d × R

d
∣
∣
∣
A satisfies (19) with � ≥ C+ ≥ C− ≥ �−1 > 0,
and ‖c‖∞ ≤ �

}

.

(28)

For the triangular decompositionA = D+L+U as in (21), define zA := vec(D−1+L+U) ∈
R
d2 , where vec : Rd×d → R

d2 is the row-wise vectorization of a R
d×d-matrix. Let x∗ be

the unique solution to the LCP (A, c), and let x̃0 ∈ R
d be arbitrary such that ‖̃x0‖2 ≤ �.

For any ε > 0, there exists a ProxNet

�̃ : Rd ⊕ R
d2 ⊕ R

d → R
d (29)

as in (9) and a kε ∈ N such that

‖x∗ − x̃kε‖2 ≤ ε

holds for the sequence x̃k := �̃(̃xk−1, zA , c) generated by �̃ and any tuple (A, c) ∈ A�.
Moreover, kε ≤ C1(1 + | log(ε)|), where C1 > 0 only depends on � and �̃ has m ≤
C2(1+ | log(ε)| + log(d)) layers, where C2 > 0 is independent of �.

Proof Our strategy is to approximate �PJOR from Example 5.3 for given (A, c)∈ A� by
�̃(·, zA , c). We achieve this by constructing �̃ based on the approximate multiplication
NNs from Proposition 5.6 and show that�PJOR and �̃ satisfy Assumption 3.3 to apply the
error estimate from Theorem 3.5.

Schwab, Stein Res Math Sci (2022) 9:36 Page 21 of 35 36

We start by defining the map �̃ : Rd ⊕ R
d2 ⊕ R

d → R
d via

�̃(x, zA , c)i =

max

⎛

⎝(1− ω)xi − ω
∑

j=1,j =i

∏̃3

δ0 ,�

(

xj,
1
Aii

,Aij

)

+ ω
∏̃2

δ0 ,�

(
1
Aii

, ci
)

, 0

⎞

⎠ ,

for i ∈ {1, . . . , d}, 0 < ω := �−6 ≤ C3−
C+‖A‖22

= ω∗ and δ0 ∈ (0, d−3/2].
We show in the following that �̃ is indeed a ProxNet. To bring the input into the

correct order for multiplication, we define for i ∈ {1, . . . , d} the binary matrix W(i) ∈
R
(2d+1)×(d2+2d) by

W(i)
lj :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 l = j ∈ {1, . . . , d},
1 l ∈ {d + 1, . . . , 2d}, j = d + d(i − 1)+ (l − d),

1 l = 2d + 1, j = d + d2 + i,

0 elsewhere.

Hence, we obtain

W(i)

⎛

⎜
⎝

x
zA
c

⎞

⎟
⎠ =

(

x�,
(
Aij
)
j<i ,

1
Aii

,
(
Aij
)
j>i , ci

)�
.

Now, let e1, . . . , e2d+1 ⊂ R
2d+1 be the canonical basis of R2d+1 and define E(i)

i :=
e�i ∈ R

1×(2d+1), E(i)
j := [ej ed+i ed+j]� ∈ R

3×(2d+1) for j ∈ {1, . . . , d}\{i} and E(i)
d+1 :=

[ed+i e2d+1]� ∈ R
2×(2d+1). By Remark 5.7, we may assume that

∏̃3
δ0 ,� and

∏̃2
δ0 ,� have

an identical number of layers, denoted by mδ0 ,� ∈ N. Moreover, it is straightforward to
construct a ProxNet Idmδ0 ,�

: R → R with mδ0 ,� layers that corresponds to the identity
map, i.e., Idmδ0 ,�

(x) = x for all x ∈ R. We use the concatenation from Definition 2.3 to
define

�̃
(i)
i := Idmδ0 ,�

• (E(i)
i W(i)) : Rd2+2d → R

�̃
(i)
j :=

∏̃2

δ0 ,�
• (E(i)

j W(i)) : Rd2+2d → R, j ∈ {1, . . . , d}\{i},

�̃
(i)
d+1 :=

∏̃3

δ0 ,�
• (E(i)

d+1W
(i)) : Rd2+2d → R.

Note that this yields

�̃
(i)
i (x, zA , c) = xi, �̃

(i)
j (x, zA , c) =

∏̃3

δ0 ,�

(

xj,
1
Aii

,Aij

)

, �̃
(i)
d+1(x, zA , c) =

∏̃2

δ0 ,�

(
1
Aii

, ci
)

.

Furthermore, we setm1 := mδ0 ,� + 1 and define T̃ (+,i)
m1 : Rd2+d → R, x �→ �(W(+,i)x),

where � : R→ R is the (scalar) ReLU activation andW(+,i) ∈ R
1×(d+1) is given by

W(+,i)
j :=

⎧
⎪⎪⎨

⎪⎪⎩

1− ω j = i,

−ω j ∈ {1, . . . , d}\{i},
ω j = d + 1.

36 Page 22 of 35 Schwab, Stein ResMath Sci (2022) 9:36

As �̃
(i)
1 , . . . , �̃(i)

d+1 have the same input dimension, the same number ofmδ0 ,� layers, and
no skip connections, we may parallelize as in Definition 2.5 to ensure

�̃(x, zA , c)i = max

⎛

⎝(1− ω)xi − ω
∑

j=1,j =i

∏̃3

δ0 ,�

(

xj,
1
Aii

,Aij

)

+ ω
∏̃2

δ0 ,�

(
1
Aii

, ci
)

, 0

⎞

⎠

=
(
T̃ (+,i)
m1 • P

(
�̃

(i)
1 , . . . , �̃(i)

d+1
))

(x, zA , c).

It holds that �̃i := T̃ (+,i)
m1 • P

(
�̃

(i)
1 , . . . , �̃(i)

d+1
)
is a ProxNet as in Eq. (9) with �̃i :

R
d2+2d → R andm1 = mδ0 ,� + 1 layers for any i ∈ {1, . . . , d}. We parallelize once more

and obtain that �̃ := P(�̃1, . . . , �̃d) is a ProxNet withmδ0 ,�+1 layers that may be written
as �̃ = T̃ (1)

1 ◦· · ·◦ T̃ (1)
m1 for suitable one-layer networks T̃

(1)
1 : Rdj−1 → R

dj and dimensions
dj ∈ N for j ∈ {0, 1, . . . , m1} such that d0 = d2 + 2d and dm1 = d.
Wenowfix (A, c)∈ A� and let�PJOR := R(W1 ·+ b1) be as in Example 5.3withω = �−6,

W1 = Id − ωD−1A and b1 := ωD−1c. This shows that �PJOR has Lipschitz constant
L� = ‖W1‖2 ≤

√
1− 2�−4 +�−8 = 1−�−4 < 1 and ‖b1‖2 ≤ ω�2 ≤ �−4.

Note that |ci|, 1/Aii, |Aij| ≤ � for any i, j ∈ {1, . . . , d}. Therefore, Proposition 5.6 yields
for x̃0 := (zA , c) and any x ∈ R

d with ‖x‖∞ ≤ � that

‖�(x)− �̃(x, zA , c)‖22
= ‖T1(x)− T̃1(x, zA , c)‖22

= ω2
d∑

i=1

⎛

⎝ ci
Aii

−
∏̃2

δ0 ,�

(

ci,
1
Aii

)

−
d∑

j=1,j =i

Aij

Aii
xj −

∏̃3

δ0 ,�

(

Aij ,
1
Aii

, xj
)
⎞

⎠

2

≤ ω2d3δ20 .

Hence, since δ0 ∈ (0, d−3/2] and ω = �−6, �PJOR and �̃ satisfy Assumption 3.3 with

L̃ := 1−�−4 ∈ (0, 1), δ := ωd3/2δ0 ≥ 0, �1 := � ≥ 2,

�0 := �1 − ‖b1‖2 − δ ≥ �−�−4 − ωd3/2δ0 ≥ 123
64

,

�2 := �0 − δ/(1− L̃) ≥ �0 − �−6

�−4 ≥
123
64

− 1
4

> 0.

Theorem 3.5 then yields that there exists a constant C > 0 such that for all k, δ holds

‖x∗ − x̃k‖H ≤ C
(
L̃k + δ

)
.

Here, C ≤ max(2�0, 1)/(1− L̃) ≤ 2�5 is independent of k . Given ε > 0, we choose

kε =:
⌈
log(ε)− log(2C)

log(̃L)

⌉

, δ0 := min
(
1, ε

2Cω

)

d3/2
≥ min

(
1, ε�

4
)

d3/2

to ensure ‖x∗ − x̃kε‖ ≤ ε. Hence, kε ≤ C1(1 + | log(ε)|), where C1 = C1(�) > 0 is
independent of d. Moreover, Inequality (27) in Proposition 5.6 and the choice δ0≤ d−3/2

shows that mδ0 ,� ≤ C2(1 + | log(ε)| + log(d)), where C2 > 0 is independent of �. The
claim follows since �̃ hasm1 = mδ0 ,� + 1 layers by construction. ��

Schwab, Stein Res Math Sci (2022) 9:36 Page 23 of 35 36

For fixed � and ε, the ProxNets �̃ emulate one step of the PJOR algorithm for any
LCP (A, c) ∈ A� and a given initial guess x̃0. This in turn allows to approximate the
data-to-solution operator O from (25) to arbitrary accuracy by concatenation of suitable
ProxNets. The precise statement is given in the main result of this section:

Theorem 5.9 Let � ≥ 2 be fixed, let A� be given as in (28), and let the data-to-solution
operator O be given as in (25). Then, for any ε > 0, there is a ProxNet Õε : A� → R

d such
that for any LCP (A, c) ∈ A� there holds

‖O(A, c)− Õε(A, c)‖2 ≤ ε.

Furthermore, let ‖·‖F denote the Frobenius norm on R
d×d. There is a constant C̃ > 0,

depending only on�andd, such that for any ε > 0andany two (A(1), c(1)), (A(2), c(2)) ∈ A�

there holds

‖Õε(A(1), c(1))− Õε(A(2), c(2))‖2 ≤ C̃
(
‖A(1) − A(2)‖F + ‖c(1) − c(2)‖2

)
. (30)

We give an explicit construction of the approximate data-to-solution operator Õε in the
proof of Theorem 5.9 at the end of this section. To show the Lipschitz continuity of Õε

with respect to the parametric LCPs inA�, we derive an operator version of the so-called
Strang Lemma:

Lemma 5.10 Let � ≥ 2, d ≥ 2, and let (A(1), c(1)), (A(2), c(2)) ∈ A�. For l ∈ {1, 2},
let A(l) = D(l) + L(l) + U(l) be the decomposition of A(l) as in (21) and define zA(l) :=
vec((D(l))−1 + L(l) + U(l)) ∈ R

d2 . For target emulation accuracy ε > 0, let �̃ be the
ProxNet as in (29), let x̃0 ∈ R

d be such that ‖̃x0‖2 ≤ � and define the sequences

x̃(l),k := �̃(̃x(l),k−1, zA(l) , c(l)), k ∈ N, x̃(l),0 := x̃0, l ∈ {1, 2}. (31)

Then, there is a constant C̃ > 0, depending only on � and d, such that for any k ∈ N0
and arbitrary, fixed ε > 0 it holds that

‖̃x(1),k − x̃(2),k‖2 ≤ C̃
(
‖A(1) − A(2)‖F + ‖c(1) − c(2)‖2

)
. (32)

Proof By construction of �̃ in Theorem 5.8, we have for x ∈ R
d , l ∈ {1, 2}, and i ∈

{1, . . . , d} that

�̃(x, zA(l) , c(l))i

= max

⎛

⎝(1− ω)xi − ω

d∑

j=1,j =i

∏̃3

δ0 ,�

(

xj,
1

A(l)
ii

,A(l)
ij

)

+ ω
∏̃2

δ0 ,�

(
1

A(l)
ii

, c(l)i

)

, 0

⎞

⎠ .

Therefore, we estimate by the triangle inequality

|�̃(x, zA(1) , c(1))i − �̃(x, zA(2) , c(2))i|

≤ ω

d∑

j=1,j =i

∣
∣
∣
∣
∣

∏̃3

δ0 ,�

(

xj,
1

A(1)
ii

,A(1)
ij

)

−
∏̃3

δ0 ,�

(

xj,
1

A(2)
ii

,A(2)
ij

)∣
∣
∣
∣
∣

36 Page 24 of 35 Schwab, Stein ResMath Sci (2022) 9:36

+ ω

∣
∣
∣
∣
∣

∏̃2

δ0 ,�

(
1

A(1)
ii

, c(1)i

)

−
∏̃2

δ0 ,�

(
1

A(2)
ii

, c(2)i

)∣
∣
∣
∣
∣

≤ ω

d∑

j=1,j =i

∣
∣
∣
∣
∣

∏̃3

δ0 ,�

(

xj,
1

A(1)
ii

,A(1)
ij

)

−
∏̃3

δ0 ,�

(

xj,
1

A(1)
ii

,A(2)
ij

)∣
∣
∣
∣
∣

ω

d∑

j=1,j =i

∣
∣
∣
∣
∣

∏̃3

δ0 ,�

(

xj,
1

A(1)
ii

,A(2)
ij

)

−
∏̃3

δ0 ,�

(

xj,
1

A(2)
ii

,A(2)
ij

)∣
∣
∣
∣
∣

+ ω

∣
∣
∣
∣
∣

∏̃2

δ0 ,�

(
1

A(1)
ii

, c(1)i

)

−
∏̃2

δ0 ,�

(
1

A(1)
ii

, c(2)i

)∣
∣
∣
∣
∣

+ ω

∣
∣
∣
∣
∣

∏̃2

δ0 ,�

(
1

A(1)
ii

, c(2)i

)

−
∏̃2

δ0 ,�

(
1

A(2)
ii

, c(2)i

)∣
∣
∣
∣
∣
.

Since (A(l), c(l)) ∈ A� for l ∈ {1, 2}, it holds for any i, j ∈ {1, . . . , d} that 1/A(l)
ii , A

(l)
ij ,

c(l)i ∈ [−�,�]. Hence, for any x with ‖x‖∞ ≤ � we obtain by � ≥ 2 and the second
estimate in (26)

|�̃(x, zA(1) , c(2))i − �̃(x, zA(2) , c(2))i|

≤ ω

d∑

j=1,j =i

(

δ0 +
∣
∣
∣
∣
∣

xj
A(1)
ii

∣
∣
∣
∣
∣

)
∣
∣
∣A(1)

ij − A(2)
ij

∣
∣
∣

+ ω
(
δ0 + |xjA(2)

ij |
)
∣
∣
∣
∣
∣

1
A(1)
ii

− 1
A(2)
ii

∣
∣
∣
∣
∣

+ ω

⎛

⎝δ0 + 1
A(1)
ij

⎞

⎠
∣
∣
∣c(1)i − c(2)i

∣
∣
∣

+ ω
(
δ0 + |c(2)i |

)
∣
∣
∣
∣
∣

1
A(1)
ii

− 1
A(2)
ii

∣
∣
∣
∣
∣

≤ ω2(δ0�2 +�4)

⎛

⎝
d∑

j=1

∣
∣
∣A(1)

ij − A(2)
ij

∣
∣
∣+

∣
∣
∣c(1)i − c(2)i

∣
∣
∣

⎞

⎠

≤ ω(δ0�2 +�4)

⎛

⎜
⎝d1/2

⎛

⎝
d∑

j=1

∣
∣
∣A(1)

ij − A(2)
ij

∣
∣
∣
2
⎞

⎠

1/2

+
∣
∣
∣c(1)i − c(2)i

∣
∣
∣

⎞

⎟
⎠ .

We have used the mean-value theorem to obtain the bound
∣
∣
∣
∣
∣

1
A(1)
ii

− 1
A(2)
ii

∣
∣
∣
∣
∣
≤ �2

∣
∣
∣A(1)

ii − A(2)
ii

∣
∣
∣

in the second last inequality and the Cauchy–Schwarz inequality in the last step.We recall
from the proof of Theorem 5.8 that ω = �−6 and δ0 ≤ d−3/2; hence, there is a constant
C = C(�, d) > 0, depending only on the indicated parameters, such that for any x ∈ R

d

with ‖x‖∞ ≤ � it holds

‖�̃(x, zA(1) , c(1))− �̃(x, zA(2) , c(2))‖2 ≤ C
(
‖A(1) − A(2)‖F + ‖c(1) − c(2)‖2

)
. (33)

Schwab, Stein Res Math Sci (2022) 9:36 Page 25 of 35 36

Moreover, for any x, y ∈ R such that ‖x‖∞, ‖y‖∞ ≤ �, it holds by the mean-value
theorem and the second estimate in (26)

|�̃(x, zA(1) , c(1))i − �̃(y, zA(1) , c(1))i|
≤
∣
∣
∣�̃(x, zA(1) , c(1))i − �̃(y, zA(1) , c(1))i − ((Id − ωD−1A)(x − y))i

∣
∣
∣

+ ∣∣((Id − ωD−1A)(x − y))i
∣
∣

= ω

∣
∣
∣
∣
∣
∣

d∑

j=1,j =i

∏̃3

δ0 ,�

(

xj,
1

A(1)
ii

,A(1)
ij

)

−
∏̃3

δ0 ,�

(

yj,
1

A(1)
ii

,A(1)
ij

)

− A(1)
ij

A(1)
ii

(xj − yj)

∣
∣
∣
∣
∣
∣

+ ∣∣((Id − ωD−1A)(x − y))i
∣
∣

≤ ωδ0

d∑

j=1,j =i
|xj − yj| +

∣
∣((Id − ωD−1A)(x − y))i

∣
∣ .

Hence, Young’s inequality yields for any ε > 0 that

‖�̃(x, zA(1) , c(1))− �̃(y, zA(1) , c(1))‖22

≤
d∑

i=1

(

1+ 1
ε

)

ω2δ20

⎛

⎝
d∑

j=1,j =i
|xj − yj|

⎞

⎠

2

+ (1+ ε)‖(Id − ωD−1A)(x − y)‖22

≤
((

1+ 1
ε

)

ω2δ20d(d − 1)+ (1+ ε)‖Id − ωD−1A‖22
)

‖x − y‖22,

(34)

where we have used the Cauchy–Schwarz inequality in the last step. From the proof of
Theorem 5.8, we have as before that ω = �−6, δ0 ≤ d−3/2, and, furthermore ‖Id −
ωD−1A‖2 ≤ 1−�4. Setting ε := �−4 therefore shows that �̃(·, zA(1) , c(1)) : Rd → R

d is
a contraction on (Rd, ‖ · ‖2) with Lipschitz constant L̃1 > 0 bounded by

L̃1 ≤
((

�−12 +�−8) d−1 + (1−�−8)
)1/2≤

√

1+�−12 − �−8
2

≤
√

1− 7
16

�−8 ∈ (0, 1).

(35)

Note that we have used d ≥ 2 and � ≥ 2 in the last two steps to obtain (35). Now,
let (̃x(l),k) for l ∈ {1, 2} and k ∈ N0 denote the iterates as defined in (31) and recall from
the proof of Theorem 3.5 that ‖̃x(l),k‖∞ ≤ ‖̃x(l),k‖2 ≤ �. Therefore, we may apply the
estimates in (33) and (34) to obtain

‖̃x(1),k − x̃(2),k‖2 ≤ ‖̃x(1),k − �̃(̃x(2),k−1, zA(1) , c(1))‖2 + ‖�̃(̃x(2),k , zA(1) , c(1))− x̃(2),k‖2
≤ L̃1‖̃x(1),k−1 − x̃(2),k−1‖2 + C

(
‖A(1) − A(2)‖F + ‖c(1) − c(2)‖2

)

≤ C
(
‖A(1) − A(2)‖F + ‖c(1) − c(2)‖2

) k−1∑

j=1
L̃j1

≤ C
1− L̃1

(
‖A(1) − A(2)‖F + ‖c(1) − c(2)‖2

)
.

The claim follows for C̃ := C
1−L̃1 < ∞, since C = C(�, d), and L̃1 is bounded indepen-

dently with respect to ε and k by (35). ��

36 Page 26 of 35 Schwab, Stein ResMath Sci (2022) 9:36

Proof of Theorem 5.9 For fixed � and ε, let the ProxNet �̃ : Rd ⊕ R
d2 ⊕ R

d → R
d and

kε ∈ N be given as in Theorem 5.8. We define the operator Õε by concatenation of �̃ via

Õε(A, c) :=
⎡

⎢
⎣�̃(·, zA , c) • · · · • �̃(·, zA , c)︸ ︷︷ ︸

kε -fold concatenation

⎤

⎥
⎦ (0), (A, c) ∈ A�.

Note that the initial value x̃0 := 0 ∈ R
d satisfies ‖̃x0‖∞ ≤ � for arbitrary � > 0.1 Thus,

applying Theorem 5.8 with x̃0 = 0 yields for any LCP (A, c) ∈ A� with solution x∗ ∈ R
d

that

‖O(A, c)− Õε(A, c)‖2 = ‖x∗ − x̃kε‖2 ≤ ε.

To show the second part of the claim, we set x̃1,0 = x̃2,0 := 0 and observe that
x(1),kε , x(2),kε in Lemma 5.10 are given by x(l),kε = Õε(A(l), c(l)) for l ∈ {1, 2}. Hence, the
estimate (30) follows immediately for any ε > 0 and (A(1), c(1)), (A(2), c(2)) ∈ A� from (32),
by setting k = kε . ��

6 Numerical experiments
6.1 Valuation of American options: Black–Scholes model

To illustrate an application for ProxNets, we consider the valuation of anAmerican option
in the Black–Scholes model. The associated payoff function of the American option is
denoted by g : R≥0 → R≥0, and we assume a time horizon T = [0, T] for T > 0. In
any time t ∈ T and for any spot price x0 ≥ 0 of the underlying stock, the value of the
option is denoted by V (t, x) and defines a mapping V : T × R≥0 → R≥0. Changing to
time-to-maturity and log-price yields the map v : T × R → R≥0, (t, x) �→ V (T − t, ex),
which is the solution to the free boundary value problem

∂tv − σ 2

2
∂xxv −

(

r − σ 2

2

)

∂xv + rv ≥ 0 in (0, T]× R,

v(t, x) ≥ g(ex) in (0, T]× R,
(

∂tv − σ 2

2
∂xxv −

(

r − σ 2

2

)

∂xv + rv
)

(g − v) = 0 in (0, T]× R,

v(0, ex) = g(ex) in R,

(36)

see, e.g., [14, Chapter 5.1]. The parameters σ > 0 and r ∈ R are the volatility of the
underlying stock and the interest rate, respectively. We assume that g ∈ H1(R≥0) and
construct in the following a ProxNet-approximation to the payoff-to-solution operator at
time t ∈ T given by

Opayoff,t : H1(R≥0)→ H1(R), g �→ v(t, ·). (37)

As V and v, and thereforeOpayoff,t , are in general not known in closed-form, a common
approach to approximate v for a given payoff function g is to restrict Problem (36) to
a bounded domain D ⊂ R and to discretize D by linear finite elements based on d

1We could have also used any other x̃0 = 0 ∈ R
d such that ‖̃x0‖∞ ≤ � to define Õε for given � and ε, but decided to

fix the �-independent initial guess x̃0 := 0 for simplicity.

Schwab, Stein Res Math Sci (2022) 9:36 Page 27 of 35 36

equidistant nodal points. The payoff function is interpolated with respect to the nodal
basis, and we collect the respective interpolation coefficients of g in the vector g ∈ R

d .
The time domain [0, T] is split byM ∈ N equidistant time steps and step size�t = T/M,
and the temporal derivative is approximated by a backward Euler approach. This space-
time discretization of the free boundary problem (36) leads to a sequence of discrete
variational inequalities: Given g ∈ R

d and u0 := 0 ∈ R
d find um ∈ R

d such that for
m ∈ {1, . . . ,M}, it holds

Aum+1 ≥ Fm, um+1 ≥ 0, (Aum+1 − Fm)�um+1 = 0. (38)

The LCP (38) is defined by the matrices A := M +�tABS ∈ R
d×d , ABS := σ 2

2 S+ (σ 2

2 −
r)B + rM ∈ R

d×d and right hand side Fm := −�t(ABS)�g +Mum ∈ R
d . The matrices

S,B,M ∈ R
d×d represent the finite element stiffness, advection andmassmatrices; hence,

A is tri-diagonal and asymmetric if σ 2

2 = r. The true value of the options at time km is
approximated at the nodal points via v(�tm, ·) ≈ um + g . This yields the discrete payoff-
to-solution operator at time �tm defined by

Opayoff,�tm : Rd �→ R
d, g �→ um + g, m ∈ {1, . . . ,M}. (39)

Problem (38) may be solved for allm using a shallow ProxNet

� : Rd ⊕ R
d ⊕ R

d → R
d, x �→ R(W1x + b1),

with ReLU-activation R = �(d) : Rd → R
d . The architecture of � allows to take g

and um as additional inputs in each step; hence, we train only one shallow ProxNet that
may be used for any payoff function g and every time horizon T. Therefore, we learn the
payoff-to-solutionoperatorOpayoff,t associatedwithProblem (36) by concatenating�. The
parametersW1 ∈ R

d×3d and b1 ∈ R
d are learned in the training process and shall emulate

one step of the PJOR Algorithm 1, as well as the linear transformation (g, um) �→ Fm to
obtain the right hand side in (38). Therefore, a total of 3d2 + d parameters have to be
learned in each example.
For our experiments, we use the Python-based machine learning package PyTorch.2 All

experiments are run on a notebook with 8 CPUs, each with 1.80GHz, and 16GBmemory.
To train�, we sampleNs ∈ N input data points x(i) := (x(i)0 , g (i), u(i)) ∈ R

3d , i ∈ {1, . . . , Ns},
from a 3d-dimensional standard-normal distribution. The output-training data samples
y(i) consist of one iteration of Algorithm 1 with ω = 1, initial value x0 := x(i)0 , withA as in
(38) and right hand side given by c := −�t(ABS)�g (i) +Mu(i) ∈ R

d . We draw a total of
Ns = 2 · 104 input–output samples, use half of the data for training, and the other half for
validation. In the training process, we usemini-batches of sizeNbatch = 100 and theAdam
Optimizer [18] with initial learning rate 10−3, which is reduced by 50% every 20 epochs.
As error criterion, we use the mean-squared error (MSE) loss function, which is for each
batch of inputs ((x(ij), g (ij), u(ij)), j = 1, . . . , Nbatch) and outputs (y(ij), j = 1, . . . , Nbatch)

2https://pytorch.org/.

https://pytorch.org/

36 Page 28 of 35 Schwab, Stein ResMath Sci (2022) 9:36

Fig. 1 Decay of the loss function for d = 600 (left) and d = 1000 (right). In all of our experiments, the
training loss falls below the threshold of 10−12 before the 250th epoch, and training is stopped early

given by

Loss
(
(x(i1), g (i1), u(i1)), · · · , (x(iNbatch), g (iNbatch), u(iNbatch))

)

:= 1
Nbatch

Nbatch∑

j=1
‖�(x(ij), g (ij), u(ij))− y(ij)‖22.

We stop the training process if the loss function falls below the tolerance 10−12 or after
a maximum of 300 epochs. The number of spatial nodal points d that determines the
size of the matrix LCPs is varied throughout our experiments in d ∈ {200, 400, . . . , 1000}.
We choose the Black–Scholes parameters σ = 0.1, r = 0.01 and T = 1. Spatial and
temporal refinement are balanced by using M = d time steps of size �t = T/M = 1/d.
The decay of the loss-curves is depicted in Fig. 1, where the reduction in the learning rate
every 20 epochs explains the characteristic “steps” in the decay. This stabilizes the training
procedure, and we reached a loss ofO(10−12) for each d before the 250th epoch.
Once training is terminated, we compress the resulting weight matrix of the trained

single-layer ProxNet by setting all entries with absolute value lower than 10−7 to zero.
This speeds up evaluation of the trained network, while the resulting error is negligible. As
thematrixW1 in the trained ProxNet is close to the “true” tri-diagonalmatrixA from (38),
this eliminates most of the ProxNet’sO(d2) parameters, and onlyO(d) non-trivial entries
remain.
The relative validation error is estimated based on the Nval := 104 validation samples

via

err2val :=
∑Nval

j=1 ‖�(x(ij), g (ij), u(ij))− y(ij)‖22
∑Nval

j=1 ‖y(ij)‖22
. (40)

The validation errors and training times for each dimension are found in Table 1 and
confirm the successful training of the ProxNet. Naturally, training time increases in d,
while the validation error is small of orderO(10−6) for all d.
To test the trained neural networks on Problem (38) for the valuation of an American

option, we consider a basket of 20 put options with payoff function gi(x) := max(Ki−x, 0)
and strikes Ki = 10 + 90 i

20 for i ∈ {1, . . . , 20}. Hence, we use the same ProxNet for 20
different payoff vectors gi. Note that we did not train our networks on payoff functions,

Schwab, Stein Res Math Sci (2022) 9:36 Page 29 of 35 36

Table 1 Training times and validation errors for the ProxNets in the Black–Scholes model in several
dimensions, as estimated in (40) based on Nval = 104 samples

d 200 400 600 800 1000

Training time in s 6.06 39.38 90.69 311.04 466.87

errval 1.15 · 10−6 1.08 · 10−6 8.88 · 10−7 1.04 · 10−6 1.36 · 10−6
The relative error remains stable with increasing problem dimension

but on random samples, and thus, we could in principle consider an arbitrary basket
containing different types of payoffs. The restriction to put options is for the sake of
brevity only. We denote by um,i form ∈ {0, . . . ,M} the sequence of solutions to (38) with
payoff vector gi and u0,i = 0 ∈ R

d for each i.
Concatenating � k times yields an approximation to the discrete operator Opayoff,�tm

in (39) for anym ∈ {1, . . . ,M} via

Õpayoff,�tm : Rd⊕R
d⊕R

d → R
d, (x, ũm, g) �→

⎡

⎢
⎣�(·, g , ũm) • · · · •�(·, g , ũm)
︸ ︷︷ ︸

k-fold concatenation

⎤

⎥
⎦ (x).

An approximating sequence of (um,i, m ∈ {0, . . . ,M}) is then in turn generated by

ũm+1,i := Õpayoff,�tm (̃um,i, ũm,i, g), ũ0,i := u0,i = 0 ∈ R
d.

That is, ũm+1,i is given by iterating � k times with initial input x0 = ũm,i ∈ R
d and fixed

inputs and gi and ũm,i. We stop for eachm after k iterations if two subsequent iterates xk

and xk−1 satisfy ‖xk − xk−1‖2 < 10−3.
The reference solution uM,i is calculated by a Python-implementation that uses the

Primal-Dual Active Set (PDAS) Algorithm from [15] to solve LCP (38) with tolerance ε =
10−6 in every time step. Compared to a fixed-point iteration, the PDASmethod converges
(locally) superlinear according to [15, Theorem 3.1], but has to be called separately for
each payoff function gi. In contrast, the ProxNet � may be iterated for the entire batch of
20 payoffs at once in PyTorch. We measure the relative error

erri,rel := ‖̃uM,i − uM,i‖2/‖uM,i‖2

for each payoff vector gi at the end point T = �tM = 1 and report the sample mean
error

errrel := 1
20

20∑

i=1
erri,rel. (41)

Sample mean errors and computational times are depicted for d ∈ {200, 400, . . . , 1000}
in Table 2, where we also report the number of iterations k for each d to achieve the
desired tolerance of 10−3. The results clearly show that ProxNets significantly accelerate
the valuation of American option baskets, if compared to the standard, PDAS-based
implementation.This holds true for any spatial resolution, i.e., the number of grid pointsd,
while the relative error is small ofmagnitudeO(10−3) orO(10−4). Ford ≥ 600,we actually
find that the combined times for training and evaluation of ProxNets is below the runtime
of the reference solution. We further observe that computational times scale similarly

36 Page 30 of 35 Schwab, Stein ResMath Sci (2022) 9:36

Table 2 Relative errors and computational times of a ProxNet solver for a basket of American put
options in the Black–Scholes model

d 200 400 600 800 1000

errrel 2.15 · 10−4 7.89 · 10−4 1.52 · 10−3 2.41 · 10−3 3.48 · 10−3
Iterations to tolerance 9 13 15 17 18

Time ProxNet in s 0.26 1.16 6.23 15.06 30.45

Time reference in s 4.37 33.17 142.01 350.86 761.10

ProxNets significantly reduce computational time, while their relative error remains sufficiently small for all d

for both, ProxNet and reference solution, in d. Hence, in our experiments, ProxNets are
computationally advantageous even for a fine resolution of d = 1000 nodal points.

6.2 Valuation of American options: jump-diffusionmodel

We generalize the setting of the previous subsection from the Black–Scholes market to an
exponential Lévy model. That is, the log-price of the stock evolves as a Lévy process, with
jumps distributed with respect to the Lévy measure ν : B(R)→ [0,∞). The option value
v (in log-price and time-to-maturity) is now the solution of a partial integro-differential
inequality given by

∂t v − σ 2

2
∂xxv − γ ∂xv +

∫

R

v(· + z)− v − ∂xvν(dz)+ rv ≥ 0 in (0, T]× R,

v(t, x) ≥ g(ex) in (0, T]× R,
(

∂t v − σ 2

2
∂xxv − γ ∂xv +

∫

R

v(· + z)− v − ∂xvν(dz)+ rv
)

(g − v) = 0 in (0, T]× R,

v(0, ex) = g(ex) in R.

(42)

Introducing jumps in the model hence adds a non-local integral term to Eq. (36). The
drift is set to γ := −σ 2/2 − ∫

R
(ez − 1 − z)ν(dz) ∈ R in order to eliminate arbitrage in

the market. We discretize Problem (42) by an equidistant grid in space and time as in the
previous subsection, for details, e.g., integration with respect to ν, we refer to [14, Chapter
10]. The space-time approximation yields again a sequence of LCPs of the form

ALum+1 ≥ Fm, um+1 ≥ 0, (ALum+1 − Fm)�um+1 = 0, (43)

where AL := M + �tALevy ∈ R
d×d with ALevy := σ 2

2 S + AJ , and the matrix AJ stems
from the integration of ν. A crucial difference to (38) is that AL is not anymore tri-
diagonal, but a dense matrix, due to the non-local integral term caused by the jumps.
The drift γ and interest rate r are transformed into the right hand side, such that Fm :=
−�t(ALevy)�gm +Mum ∈ R

d , where gm is the nodal interpolation of the transformed
payoff gm(x) := gerkm(x− (γ + r)km). The inverse transformation gives an approximation
to the solution v of (42) at the nodal points via v(km, · − (γ + r)T) ≈ e−rTuM . We refer
to [14, Chapter 10.6] for further details on the discretization of American options in Lévy
models.
The jumps are distributed according to the Lévy measure

ν(dz) = λpβ+e−β+z1{z>0}(z)+ λ(1− p)β−e−β−z1{z<0}(z), z ∈ R. (44)

That is, the jumps follow an asymmetric, double-sided exponential distribution with jump
intensity λ = ν(R) ∈ (0,∞). We choose p = 0.7, β+ = 25, β− = 20 to characterize the

Schwab, Stein Res Math Sci (2022) 9:36 Page 31 of 35 36

Table 3 Training times and validation errors for the ProxNets in the jump-diffusion model, as
estimated in (40) based on Nval = 104 samples

d 200 400 600 800 1000

Training time in s 6.59 37.03 88.22 300.40 461.79

errval 1.18 · 10−6 1.09 · 10−6 9.79 · 10−7 9.96 · 10−6 1.43 · 10−6
The relative error remains stable with increasing problem dimension

Table 4 Relative errors and computational times of a ProxNet solver for a basket of American put
options in the jump-diffusion model

d 200 400 600 800 1000

errrel 1.55 · 10−4 4.97 · 10−4 9.62 · 10−4 1.52 · 10−3 2.09 · 10−3
Iterations to tolerance 6 7 7 7 6

Time ProxNet in s 0.21 1.04 4.81 11.62 34.27

Time reference in s 4.29 31.52 147.20 354.25 782.45

ProxNets significantly reduce computational time, while their relative error remains sufficiently small for all d

tails of ν and set jump intensity to λ = 1. We further use σ = 0.1 and r = 0.01 as in the
Black–Scholes example.
We use the same training procedure and parameters as in the previous subsection

to train the shallow ProxNets. As only difference, we compress the weight matrix with
tolerance 10−8 instead of 10−7 (recall that AL is dense). This yields slightly better relative
errors in this example, while it does not affect the time to evaluate the ProxNets. Training
times and validation errors are depicted in Table 3 and indicate again a successful training.
The decay of the training loss is for each d very similar to Fig. 1, and training is again
stopped in each case before the 300th epoch.
After training, we again concatenate the shallow nets to approximate the operator

Opayoff,t in (37), that maps the payoff function g to the corresponding option value v(t, ·) at
any (discrete) point in time.We repeat the test from Sect. 6.1 in the jump-diffusionmodel
with the identical basket of put options to test the trainedProxNets. The reference solution
is again computed by a PDAS-based implementation. The results for American options in
the jump-diffusionmodel are depicted in Table 4. Again, we see that the trained ProxNets
approximated the solution v to (42) for any g to an error of magnitude O(10−3) or less.
While keeping the relative error small, ProxNets again significantly reduce computational
time and are therefore a valid alternative in more involved financial market models. We
finally observe that the number of iterations to tolerance in the jump-diffusion model is
stable at 6–7 for all d, whereas this number increases with d in the Black–Scholes mar-
ket (compare the third row in Tables 2 and 4). The explanation for this effect is that the
excess-to-payoff vector uM has a smaller norm in the jump-diffusion case, but the iterations
terminate at the (absolute) threshold 10−3 in both, the Black–Scholes and jump-diffusion
model. Therefore, we require less iterations in the latter scenario, although the option
prices v and relative errors are of comparable magnitude in both examples.

6.3 Parametric obstacle problem

To show an application for ProxNets beyond finance, we consider an elliptic obstacle
problem in the two-dimensional domain D := (−1, 1)2. We define H := H1

0 (D) and aim

36 Page 32 of 35 Schwab, Stein ResMath Sci (2022) 9:36

to find the solution u ∈ H to the partial differential inequality

−� u ≥ f inD, u ≥ g inD, u = 0 on ∂D. (45)

Therein, f ∈ H′ is a given source term and g ∈ H is an obstacle function, for which
we assume g ∈ C(D) ∩ H for simplicity in the following. We introduce the convex set
K := {v ∈ H| v ≥ g almost everywhere} and the bilinear form

a : H×H→ R, (v, w) �→
∫

D
∇v · ∇w dx,

and note that a, f and K satisfy Assumption 4.1. The variational inequality problem
associated with (45) is then to

find u ∈ K such that: a(u, v − u) ≥ f (v − u), ∀v ∈ K. (46)

As for (15) at the beginning of Sect. 5, we introduce K0 := {v ∈ H| v ≥
0 almost everywhere}, and Problem (46) is equivalent to finding u = u0 + g ∈ K

with u0 ∈ K0 such that: a(u0, v − u0) ≥ f (v − u0)− a(g, v − u0), ∀v ∈ K0. (47)

As for the previous examples in this section, we use ProxNets to emulate the obstacle-to-
solution operator

Oobs : H→ H, g �→ u. (48)

We discretize D = [−1, 1]2 for d0 ∈ N by a (d0 + 2)2-dimensional nodal basis of
linear finite elements, based on (d0 + 2) equidistant points in every dimension. Due to
the homogeneous Dirichlet boundary conditions in (45), we only have to determine the
discrete approximation of u within D and may restrict ourselves to a finite element basis
{v1, . . . , vd}, for d := d20 , with respect to the interior nodal points. Following the procedure
outlined in Sect. 5.1, we denote by g ∈ R

d again the nodal interpolation coefficients of
g (recall that we have assumed g ∈ C(D)) and by A ∈ R

d×d the finite element stiffness
matrix with entries Aij := a(vj, vi) for i, j ∈ {1, . . . , d} This leads to the matrix LCP to find
u ∈ R

d such that

Au ≥ c, u ≥ 0, u�(Au− c) = 0, (49)

where c ∈ R
d is in turn given by ci := f (vi)− (AT g)i for i ∈ {1, . . . , d}. Given a fixed spatial

discretization based on d nodes, we again approximate the discrete obstacle-to-solution
operator

Oobs : Rd → R
d, g �→ u (50)

by concatenating shallow ProxNets � : Rd ⊕ R
d → R

d .
The training process of the ProxNets in the obstacle problem is the same as in Sects. 6.1

and 6.2 and thus, is not further outlined here. The only difference is that we draw the
input data for training now from a 2d-dimensional standard normal distribution. The
output samples again correspond to one PJOR-Iteration with A and c as in (49) and

Schwab, Stein Res Math Sci (2022) 9:36 Page 33 of 35 36

Table 5 Training times and validation errors for the ProxNets in the Obstacle Problem, as estimated
in (40) based on Nval = 104 samples

d 100 400 900 1600

Training time in s 4.34 22.97 259.19 907.07

errval 1.11 · 10−6 1.16 · 10−6 9.11 · 10−7 1.78 · 10−6
The relative error remains stable with increasing problem dimension

ω = 1, where the initial value and g are both replaced by the 2d-dimensional random
input vector. After training, we again compress the weight matrices by setting all entries
with absolute value lower than 10−7 to zero. We test the ProxNets for LCPs of dimension
d ∈ {102, 202, 302, 402} and report training times and validation errors in Table 5. As
before, training is successful and aborted early for each d, since the loss function falls
below 10−12 before the 300th epoch.
Once � : Rd ⊕R

d → R
d is trained for given d, we use the initial value zero x = 0 ∈ R

d

and concatenate � k times to obtain for any g the approximate discrete obstacle-to-
solution operator

Õobs : Rd → R
d, g �→

⎡

⎢
⎣�(·, g) • · · · •�(·, g)
︸ ︷︷ ︸

k-fold concatenation

⎤

⎥
⎦ (0).

This yields u = Oobs(g) ≈ uk := Õobs(g). We test the trained ProxNets on the parametric
family of obstacles (gr , r > 0) ⊂ H, given by

gr(x) := min
(

max
(

e−r‖x‖22 − 1
2
, 0
)

,
1
4

)

, x ∈ D. (51)

For given r > 0, let gr ∈ R
d denote the nodal interpolation of gr , and letur be discrete solu-

tion to the corresponding obstacle problem. We approximate the solutions ur to (49) for
a basket of 100 obstacles gr with r ∈ R := {1+ 4i

99 | i ∈ {0, . . . , 99}}. For this, we iterate the
ProxNets� again on the entire batch of obstacles and denote by ukr the kth iterate for any
r ∈ R. We stop the concatenation of� after k iterations if maxr∈R ‖ukr −uk−1r ‖2 < 10−4,
and report on the value of k for each d. The lower absolute tolerance is necessary in the
obstacle problem, since the solutions ur now have lower absolute magnitude as compared
to the previous examples. The reference solution is again calculated by solving (49) with
the PDAS algorithm, which has to be called separately for each obstacle in (gr , r ∈ R). A
sample of gr together with the associated discrete solution ur and its ProxNet approxima-
tion ukr is depicted in Fig. 2.
The relative error of the ProxNet approximation, the number of iterations and the com-

putational times are depicted in Table 6. ProxNets approximate the discrete solutions
well with relative errors of magnitudeO(10−4) for all d. However, compared to the exam-
ples in Sects. 6.1 and 6.2, we observe that significantly more iterations are necessary to
achieve the absolute tolerance of 10−4. This is due to the larger contraction constants in
the obstacle problem, which are very close to one for all d. The lower absolute tolerance
of 10−4 adds more iterations, but is not the main reason why we observe larger values of
k in the obstacle problem. Nevertheless, ProxNets still outperform the reference solver in
terms of computational time, with a relative error of at most 0.1% for large d.

36 Page 34 of 35 Schwab, Stein ResMath Sci (2022) 9:36

Fig. 2 From left to right: Obstacle gr as in (51) with scale parameter r = 1.7677, the corresponding discrete
solution ur with refinement parameter h := 2

41 in each spatial dimension (corresponds to d = 402 interior
nodal points inD), and its ProxNet approximation ukr based on k = 698 iterations

Table 6 Relative errors and computational times of a ProxNet solver for a family of parametric
obstacle problems

d 100 400 900 1600

errrel 3.69 · 10−4 5.89 · 10−4 9.20 · 10−4 1.14 · 10−3
Iterations to tolerance 56 206 416 698

Time ProxNet in s 0.01 0.07 0.50 2.71

Time reference in s 0.08 0.51 3.13 26.67

ProxNets again reduce computational time, while keeping the relative error sufficiently small for all d. The number of
iterations to tolerance is now significantly larger as in the previous examples

7 Conclusions
We proposed deep neural networks which realize approximate input-to-solution opera-
tors for unilateral, inequality problems in separableHilbert spaces. Their constructionwas
based on realizing approximate solution constructions in the continuous (infinite dimen-
sional) setting, via proximinal and contractive maps. As particular cases, several classes of
finite-dimensional projection maps (PSOR, PJOR) were shown to be representable by the
proposed ProxNet DNN architecture. The general construction principle behind ProxNet
introduced in the present paper can be employed to realize further DNN architectures,
also inmore general settings.We refer to [1] formultilevel andmultigridmethods to solve
(discretized) variational inequality problems. The algorithms in this reference may also
be realized as concatenation of ProxNets, similarly to the PJOR-Net and PSOR-Net from
Examples 5.3 and 5.4. The analysis and representation of multigrid methods as ProxNets
will be considered in a forthcoming work.

Acknowledgements
The preparation of this work benefited from the participation of ChS in the thematic period “Mathematics of Deep
Learning (MDL)” from 1 July to 17 December 2021, at the Isaac Newton Institute, Cambridge, UK. AS has been funded in
part by ETH Foundations of Data Science (ETH-FDS), and it is greatly appreciated.

Funding
Open access funding provided by Swiss Federal Institute of Technology Zurich.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding author on
reasonable request.

Received: 1 October 2021 Accepted: 4 April 2022 Published online: 4 June 2022

Schwab, Stein Res Math Sci (2022) 9:36 Page 35 of 35 36

References
1. Badea, L.: Convergence rate of some hybrid multigrid methods for variational inequalities. J. Numer. Math. 23(3),

195–210 (2015)
2. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. CMS Books in

Mathematics/Ouvrages de Mathématiques de la SMC, 2nd edn. Springer, Cham (2017) (With a foreword by Hédy
Attouch)

3. Becker, S., Cheridito, P., Jentzen, A.: Deep optimal stopping. JMLR 20, 74 (2019)
4. Borwein, J.M., Lewis, A.S.: Convex Analysis and Nonlinear Optimization, volume 3 of CMS Books in Mathemat-

ics/Ouvrages de Mathématiques de la SMC, 2nd edn. Springer, New York (2006) (Theory and examples)
5. Combettes, P.L., Pesquet, J.-C.: Deep neural network structures solving variational inequalities. Set-Valued Var. Anal.

28(3), 491–518 (2020)
6. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity

constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
7. Duvaut, G., Lions, J.-L.: Inequalities in Mechanics and Physics, volume 219 of Grundlehren der Mathematischen

Wissenschaften. Springer, Berlin (1976) (Translated from the French by C. W. John)
8. Glas, S., Urban, K.: On noncoercive variational inequalities. SIAM J. Numer. Anal. 52(5), 2250–2271 (2014)
9. Gregor, K., LeCun, Y.: Learning fast approximations of sparse coding. In: International Conference onMachine Learning.

PMLR, pp. 1–8 (2010)
10. Hasannasab, M., Hertrich, J., Neumayer, S., Plonka, G., Setzer, S., Steidl, G.: Parseval proximal neural networks. J. Fourier

Anal. Appl. 26(4), 31 (2020)
11. He, J., Xu, J.: MgNet: a unified framework of multigrid and convolutional neural network. Sci. China Math. 62(7),

1331–1354 (2019)
12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference

on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
13. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European Conference on Computer

Vision, pp. 630–645. Springer (2016)
14. Hilber, N., Reichmann, O., Schwab, C., Winter, C.: Computational Methods for Quantitative Finance: Finite Element

Methods for Derivative Pricing. Springer, Berlin (2013)
15. Hintermüller, M., Ito, K., Kunisch, K.: The primal-dual active set strategy as a semismooth Newton method. SIAM J.

Optim. 13(3), 865–888 (2002)
16. Hornik, K., Stinchcombe, M., White, H.: Universal approximation of an unknown mapping and its derivatives using

multilayer feedforward networks. Neural Netw. 3(5), 551–560 (1990)
17. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications, volume 31 of

Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (2000)
(Reprint of the 1980 original)

18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
19. Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhattacharya, K., Stuart, A., Anandkumar, A.: Neural operator: learning

maps between function spaces. arXiv preprint arXiv:2108.08481 (2021)
20. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman & Hall/CRC Financial

Mathematics Series, 2nd edn. Chapman & Hall/CRC, Boca Raton, FL (2008)
21. Lu, L., Jin, P., Karniadakis, G.E.: Deeponet: learning nonlinear operators for identifying differential equations based on

the universal approximation theorem of operators. arXiv preprint arXiv:1910.03193 (2019)
22. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing.

IEEE Signal Process. Mag. 38(2), 18–44 (2021)
23. Murty, K.G.: On the number of solutions to the complementarity problem and spanning properties of complementary

cones. Linear Algebra Appl. 5(1), 65–108 (1972)
24. Opschoor, J.A.A., Schwab, C., Zech, J.: Exponential ReLU DNN expression of holomorphic maps in high dimension.

Constructive Approximation 55, 537–582 (2019) (Report SAM 2019-35 (revised))
25. Pinkus, A.: Approximation theory of the MLP model in neural networks. Acta Numer. 8, 143–195 (1999)
26. Wohlmuth, B.: Variationally consistent discretization schemes and numerical algorithms for contact problems. Acta

Numer. 20, 569–734 (2011)
27. Yarotsky, D.: Error bounds for approximations with deep ReLU networks. Neural Netw. 94, 103–114 (2017)

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/2108.08481
http://arxiv.org/abs/1910.03193

	Deep solution operators for variational inequalities via proximal neural networks
	Abstract
	1 Introduction
	1.1 Layout
	1.2 Notation

	2 Proximal neural networks (ProxNets)
	2.1 Proximal activations
	2.2 ProxNet calculus

	3 ProxNets and variational inequalities
	3.1 Contractive ProxNets
	3.2 Perturbation estimates for ProxNets

	4 Variational inequalities in Hilbert spaces
	4.1 Fixed-point approximation by ProxNets

	5 Example: linear matrix complementarity problems
	5.1 Discretization and matrix LCP
	5.2 Solution of matrix LCPs by ProxNets
	5.3 Solution of parametric matrix LCPs by ProxNets

	6 Numerical experiments
	6.1 Valuation of American options: Black–Scholes model
	6.2 Valuation of American options: jump-diffusion model
	6.3 Parametric obstacle problem

	7 Conclusions
	References

