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Abstract

In the present paper, we study algebraic properties of edge ideals associated with
plane curve arrangements via their Levi graphs. Using combinatorial properties of such
Levi graphs, we are able to describe those monomial algebras being Cohen–Macaulay,
Buchsbaum, and sequentially Cohen–Macaulay. We also consider the projective
dimension and the Castelnuovo-Mumford regularity for these edge ideals. We provide
effective lower and upper bounds on them. As a by-product of our study, we connect,
in general, various Buchsbaum properties of squarefree modules.
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1 Introduction
In the present paper, we study edge ideals associated with plane curve arrangements in
the complex projective plane. Such ideals can be naturally defined via the notion of a Levi
graph that encodes properties of the intersection poset of an arrangement. The goal is
to understand how graph theoretic invariants are encoded algebraically in these ideals.
Knowing the linkage between Levi graphs and the geometry of arrangements, we are
able to understand many algebraic properties of associated monomial algebras via curve
arrangements and their combinatorics. This approach is the main novelty of our present
work.
Our choice of Levi graphs as a potential source for the poset structure for the associated

monomial algebras is not accidental, and it is motivated by numerous applications. In the
context of line arrangements, Levi graphs play a leading role in many subjects of current
research. These graphs, which were introduced by Coxeter [4], are the bipartite graphs
that decode the intersection poset structure of a given arrangement of linesL ⊂ P

2
k
. More

precisely, for a collection of points and lines in a projective plane, we construct a graph
with one vertex per point, one vertex per line, and an edge for every incidence between a
point and a line.
It turns out that a Levi graph carries the same combinatorial information as the inter-

section lattice, which is the reason why this object attracts a lot of attention. One of the
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most fundamental problems that involves line arrangements in the plane is the celebrated
Terao’s conjecture on freeness of hyperplane arrangements, i.e., the freeness of the mod-
ule of polynomial derivatives associated with an arrangement L is determined by its Levi
graph (or equivalently, the intersection lattice). In the case of arbitrary arrangements of
curves in the plane, the intersection structure, in general, does not form a lattice, but only
the intersection poset. However, in some cases we can still define honest variant of the
Levi graph that will decode the intersection structure, and we are going to study it in the
context of d-arrangements of plane curves, a special class of smooth plane curves that
naturally generalizes line arrangements in the plane.
Edge ideals can be studied from the viewpoint of Stanley–Reisner rings, where the poset

structure of the facets associated with the abstract simplicial complex is the crucial infor-
mation that tells us about many algebraic properties. There are many interesting articles
and books devoted to properties of edge ideals like [26,27]. Herewe are going to study edge
ideals defined via Levi graphs of arrangements and we want to understand algebraic prop-
erties of those ideals by looking at the combinatorics of Levi graphs. From this perspective,
we will be able to provide complete classification results which is the key advantage of
our approach. More precisely, the main purpose of the present manuscript is to introduce
a certain class of edge ideals determined by the intersection posets of d-arrangements
via the notion of their Levi graph. This will allow us to reinterpret algebraic properties
of monomial algebras in the language of the geometry of arrangements. For instance, we
will be able to say which intersection posets of d-arrangements of curves will provide to
us examples of sequentially Cohen–Macaulay algebras (see Theorem 6.5). These results
might be used in different branches of algebraic geometry, where the presence of edge
ideals and the associated bipartite graphs plays an prominent role. In the application
context, it is worth mentioning that edge ideals arise naturally in the context of rigid
toric varieties determined by bipartite graphs [18]. Except results devoted to edge ideals
and arrangements of curves, we study general properties of squarefree modules and their
homological properties. In Sect. 4, a special class of dual squarefree modules is defined
and prove that for squarefree S = k[x1, ..., xn]-modules being Buchsbaum is equivalent
to be k-Buchsbaum for every k � 1 (see Theorem 4.12). This general result allows us to
conclude that for edge ideals I(G) associated with bipartite graphs G the condition that
the quotient algebra S/I(G) is Cohen–Macaulay is equivalent to be both Buchsbaum and
k-Buchsbaum for every k � 1. At the end of the paper, we study homological properties of
the quotient algebras S/I(G), where I(G) is the edge ideal associated with the Levi graph
of a d-arrangement, and we provide some effective bounds on the projective dimension
and the Castelnuovo-Mumford regularity for powers of edge ideals. Based on examples,
several open problems related to the geometry of d-arrangements and homological prop-
erties of the associated edge ideals are formulated. For some examples, that allow us to
made our predictions, we performed symbolic computations supported by scripts written
in Singular [8].

2 Arrangements of curves
In this section, we are going to define our main geometrical object of studies, namely
d-arrangements of plane curves. Such arrangements can be considered as a natural gen-
eralization of line arrangements, especially from the viewpoint of their singularities. Let
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us emphasize in this place that for us singular points are just the intersection points of
curves, i.e., points in the plane where at least two curves from the arrangement meet.

Definition 2.1 Let C = {C1, ..., Ck} ⊂ P
2
C
be an arrangement of k � 3 curves in the plane.

We say that C is a d-arrangement if

• all curves Ci are smooth of the same degree d � 1;
• the singular locus Sing(C) consists of only ordinary intersection points – they look

locally like intersections of lines.

In particular, 1-arrangements are just line arrangements. However, the class of 2-
arrangement is strictly smaller than the class of all conic arrangements in the plane
– usually the intersection points of conic arrangements are not ordinary. If C is a d-
arrangement, then we have the following combinatorial count:

d2
(
k
2

)
=

∑
p∈Sing(C)

(
mp
2

)
, (1)

where mp denotes the multiplicity, i.e., the number of curves from C passing through
p ∈ Sing(C). Moreover, for every Cj ∈ C one has

d2(k − 1) =
∑

p∈Sing(C)∩Cj

(mp − 1). (2)

Using Hirzebruch’s convention, for a given d-arrangement C we denote by tr = tr(C)
the number of r-fold points, i.e., points in the plane where exactly r curves from the
arrangement meet. Additionally, for s being the number of intersection points in Sing(C)
we also have

s =
∑
r�2

tr .

One of themost important information that each d-arrangement carries is the intersec-
tion poset which decodes the incidences between curves and intersection points. Since all
the intersection points of d-arrangements are ordinary, they behave analytically like line
arrangements around the intersection points. This observation motivates us to introduce
the notion of the Levi graph for d-arrangements.

Definition 2.2 Let C be a d-arrangement. Then the Levi graph G = (V, E) is a bipartite
graph with V := V1 ∪ V2 = {x1, ..., xs, y1, ..., yk}, where each vertex yi corresponds to a
curve Ci, each vertex xj corresponds to an intersection point pj ∈ Sing(C) and xj is joined
with yi by an edge in E if and only if pj is incident with Ci.

The importance of the Levi graphs for d-arrangements can be observed in the context
of a naive generalization of Terao’s conjecture on the freeness of d-arrangements. For the
completeness of the exposition, let us present this conjecture.

Conjecture 2.3 (Generalized Terao conjecture) Let C1,C2 ⊂ P
2
C
be two d-arrangements

for a fixed d � 1 and denote by G1, G2 the associated Levi graphs. Assume that G1 and G2
are isomorphic, is it true that the freenees of C1 implies that C2 is also free?
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Our expectation is that this generalization of Terao’s conjecture should be false for d � 2,
mostly due to the fact that there are examples of conic-line arrangements in the planewith
ordinary singularities providing counterexamples to a generalized Terao’s conjecture (see
[21] for details).

3 Edge ideals associated with d-arrangements
Let G be a simple graph with vertices x1, ..., xn and let S = k[x1, ..., xn] be a polynomial
ring over a fixed field k. We will use the convention that xi will denote both a vertex of G
and also a variable of S.

Definition 3.1 The edge ideal I(G) associated with the graphG is the ideal of S generated
by the set of all squarefree monomials xixj such that xi is adjacent to xj . The ring S/I(G)
is called the edge ring of G.

In the setting of Levi graphs associated with d-arrangements, we will work in S =
k[x1, ..., xs, y1, ..., yk ] in order to emphasize the incidence structure of the Levi graph G
of C, namely xi ’s correspond to the intersection points, yj ’s correspond to curves in a
d-arrangement, and we have an edge joining xi and yj if and only if the intersection point
Pi lies on the curve Cj in C.

Definition 3.2 Given a poset P with the vertex set X = {x1, ..., xn}, its order complex,
denoted by �, is the simplicial complex on X whose faces are the chains (linearly ordered
sets) in P.

With the notation of the definition, we have that

k[�] = k[X]/〈xixj : xi � xj〉
is the Stanley–Reisner ring of �, where xi � xj means that the elements xi and xj are not
comparable. The simplicial complex of the graph G is defined by

�G = {A ⊆ V : A is an independent set in G},
where A is an independent set in G if none of its elements are adjacent. Observe that �G
is precisely the simplicial complex with the Stanley–Reisner ideal I(G). Recall:

Definition 3.3 Let I ⊂ S be a graded ideal. The quotient ring R/I is Cohen–Macaulay if
depth(R/I) = dim(R/I). The ideal I is calledCohen–Macaulay if R/I is Cohen–Macaulay.

See the book [1] as a general reference on Cohen–Macaulay ideals and modules. We say
that a graph G is Cohen–Macaulay over k if R/I(G) is a Cohen–Macaulay ring.
It is worth noticing also that the celebrated result of Eagon and Reiner states that an

abstract simplicial complex� is Cohen–Macaulay if and only if the Stanley–Reisner ideal
of its Alexander dual, denoted by I∨, has a linear resolution. We are going to show an
example of a Cohen–Macaulay graph G that is associated with a point-line configuration
in the plane.

Warning: The class of point-line configurations in the plane is strictly larger that the
class of line arrangements.

For us, every line arrangement is a point-line configuration, but the revers statement is
obviously false. For instance, for a point-line configuration, a point in the configuration
need not to be an intersection point!
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Example 3.4 Consider a point-line configuration in the plane consisting of 3 points and 3
lines, where we have exactly one triple intersection point and two points which are sitting
on two distinct lines—these two points are not intersection points! More precisely, below
the Levi graph of this configurations is presented—here xi ’s denote the points, and yj ’s
denote the lines:

G =
(

{x1, x2, x3, y1, y2, y3},
{
{x1, y1}, {x2, y1}, {x2, y2}, {x2, y3}, {x3, y3}

})
.

Let

S = k[x1, x2, x3, y1, y2, y3]

and consider the following edge ideal associated with G, namely

I(G) = 〈x1y1, x2y1, x2y2, x2y3, x3y3〉.
We show that the monomial algebra

M := S/I(G)

is Cohen–Macaulay. In order to do so, we prove that the Alexander dual I(G)∨ has a linear
resolution. First of all, one needs to find the Alexander dual of I(G), and this can be done
by computing the primary decomposition of I . As a result, we obtain

I(G)∨ = 〈y1y2y3, y1y3x2, y3x1x2, y1x2x3, x1x2x3〉.
The minimal graded free resolution of N = S/I(G)∨ has the following form

0 → S(−5) → S5(−4) → S5(−3) → S → N → 0,

which shows thatM is a Cohen–Macaulay monomial algebra.

4 Squarefree modules and their properties
The main goal of this section is to recall the notion of squarefree modules, which were
introduced and studied by Yanagawa [28]. See also [19,20] for related results. We study
further aspects of them needed in the following. For this we start with our general setup
which follows [12, Section 1 and 2]. All modules in this sections are finitely generated
Z
n-graded S-modules M = ⊕a∈ZnMa. Such a module M is called N

n-graded, if Ma = 0
for a /∈ N

n. Let k be a field and denote by S = k[x1, ..., xn] the polynomial ring with the
standard Z

n-grading and let m = (x1, ..., xn) be the standard graded maximal ideal. In
this section, we consider S-modules M with Z

n-grading as a default grading. For such a
module, one defines the dual module M∨ as

N := M∨ = Homk(M,k).

Remark 4.1 The defined above dual S-moduleN toM can be viewed from a viewpoint of
the Matlis duality since we have

N = Homk(M,k) ∼= HomS(M,ES(k)),

where ES(k) = Homk(S,k) = k[x−1
1 , ..., x−1

n ] is the injective hull of k as an S-module. The
degree b ∈ Z

n part of the Matlis duality is

Nb := (M∨)b = Homk(M−b,k),
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so the Matlis duality reverses the grading in the presented sense.
Under the assumption thatMb is a finitely dimensional k-vector space for every b ∈ Z

n,
we have the isomorphism (M∨)∨ ∼= M.

LetM be the category ofZn-graded S-modules andwhosemorphisms are homogeneous
of degree 0. Observe that the multiplication by xi gives the following homomorphism of
k-vector spaces

xi : Mb −→ Mb+εi

for anyM = ⊕
b∈Zn Mb ∈ M, where εi is the i-th vector of the canonical basis of Z

n.
Using the Matlis duality, we can define the multiplication map on the duals, namely

xi : Nb → Nb+εi ,

which has the following explicit form (xi · φ)(m) = φ(xi · m).
Finally, let us denote the canonical module ωS in the Z

n-grading situation, i.e., ωS =
S(−1, ...,−1) = S(−1). The graded local duality theorem [12, Theorem 2.2.2] states:

Theorem 4.2 For any finitely generated Z
n-graded S-module M, one has

Hi
m(M)∨ ∼= Extn−i

S (M,ωs).

Let us also recall the notion of k-Buchsbaum modules from [10].

Definition 4.3 Let M be a Z
n-graded S-module. We say that M is k-Buchsbaum if k is

the minimal non-negative integer satisfying mk · Hi
m(M) = 0 for i < dimM.

Remark 4.4 (i) Being a moduleM with 0-Buchsbaum property is equivalent to the fact
thatM is Cohen–Macaulay.

(ii) The Buchsbaum property implies 1-Buchsbaumness (see [23, Corollary 2.4]).
(iii) In general, being 1-Buchsbaum does not imply the Buchsbaum property (see [23,

Example 2.5]) for a nice geometrical counterexample. However, in some cases, like
squarefreemodules, the notion of 1-Buchsbaum and Buchsbaummodules coincides.

We say that a Z
n-graded S-module M is degreewise finite if Mb is a finitely dimensional

k-vector space for every b ∈ Z
n.

Lemma 4.5 LetM be adegreewise finiteZ
n-graded S-module andN = M∨. ThenmkM =

0 if and only if mkN = 0.

Proof IfmkM = 0, then by our definition of the multiplication map on the dual modules
we have mkN = 0. The revers implication follows from the fact that (M∨)∨ = M. ��

Corollary 4.6 Let M be a finitely generated Z
n-graded S-module. Then the following

statements are equivalent:

(i) M is k-Buchsbaum;
(ii) mk · Extn−i

S (M,ωs) = 0 for every i < dimM.

Proof This follows from Lemma 4.5 and Theorem 4.2. ��
Now we pass to squarefree modules. Let us recall basics on them, following Yanagawa’s

approach.
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Definition 4.7 We say that a Z
n-graded S-module M is squarefree if the following con-

ditions are satisfied:

(i) M is finitely generated;
(ii) M = ⊕a∈NnMa;
(iii) the mapMa � y �→ xiy ∈ Ma+εi is bijective for all a ∈ N

n and i ∈ supp(a).

For example, a Stanley–Reisner ring k[�] is a squarefree S-module. Moreover, if M and
N are squarefree S-modules and f : M → N is a degree-preserving map, then both ker(f )
and coker(f ) are squarefree – see Yanagawa’s paper [28] for details. One immediately sees:

Lemma 4.8 Let M be a finitely generated Z
n-graded S-module and N = M∨. Then the

following statements are equivalent:

(i) M is squarefree;
(ii) The map Nb−εi � y �→ xiy ∈ Nb is bijective for all b ∈ −N

n and i ∈ supp(b), and
Nb = 0 provided that b /∈ −N

n.

Definition 4.9 (Dual squarefree module) Let M be a Z
n-graded S-module. We say that

M is a dual squarefree module if the following conditions are satisfied:

(i) M is Artinian;
(ii) Nb = 0 provided that b /∈ −N

n;
(iii) The multiplication map Nb−εi � y �→ xiy ∈ Nb is bijective for all b ∈ −N

n and
i ∈ supp(b).

Corollary 4.10 IfM is a squarefree S-module, thenHi
m(M) are dual squarefree S-modules

for all i.

Proof Observe that ifM is a squarefree S-module, then also ExtiS(M,ωS) is squarefree for
all i, which follows from Yanagawa’s paper [28]. The claim of the corollary follows from
Lemma 4.8 and Theorem 4.2. ��

Lemma 4.11 Let M be a Z
n-graded S-module.

(i) If M is either squarefree or dual squarefree and dimkM < ∞, then Mb = 0 for any
b ∈ Z

n \ {0}.
(ii) If M is dual squarefree, then m1M = 0 if and only if Mb = 0 for any b ∈ Z

n \ {0}.

The first main result of this paper connects various Buchsbaum properties of squarefree
modules as follows:

Theorem 4.12 Let M be a squarefree module over S = k[x1, ..., xn] and d = dimM. Then
the following statements are equivalent:

(i) M is Buchsbaum;
(ii) M is 1-Buchsbaum, or equivalently m1 · Extn−i

S (M,ωs) = 0 for every i < d;
(iii) M is k-Buchsbaum for every k � 1, or equivalently mk · Extn−i

S (M,ωs) = 0 for every
i < d and k � 1;

(iv) M is k-Buchsbaum for some k � 1, or equivalently mk · Extn−i
S (M,ωs) = 0 for every

i < d and for some k � 1.
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Proof The dual statements follow all from Corollary 4.6 and in the following we concen-
trate on the equivalence of the first parts of each statement (i) to (iv).
(i) ⇒ (ii): IfM is Buchsbaum, then by [28, Corollary 2.7, (a) ⇒ (d)] we have

Hi
m(M) = Hi

m(M)0 for any i = 0, . . . , d − 1

and thus m1Hi
m(M) = 0 by Lemma 4.11 (ii). Hence,M is 1-Buchsbaum.

(ii) ⇒ (i): If (ii) holds, then by Corollary 4.10 and Lemma 4.11 (ii) we have that

Hi
m(M) = Hi

m(M)0 for any i = 0, . . . , d − 1.

Then (i) follows from [28, Corollary 2.7, (d) ⇒ (a)].
(ii) ⇒ (iii), (iii) ⇒ (iv): These implications are trivially true by definitions.
(iv) ⇒ (ii): Assume that M is k-Buchsbaum for some k � 1. Next, we assume that for

some i ∈ {0, . . . , d − 1} there exists a vector b ∈ −N
n such that

Hi
m(M)b �= 0.

Choose j ∈ supp(b). Then it follows that Hi
m(M)b−kεj �= 0, by Corollary 4.10. This yields

the contradiction

mkHi
m(M)b−kεj �= 0.

Hence, Hi
m(M) = Hi

m(M)0 and (ii) follows from Lemma 4.11 (ii).
��

5 Buchsbaumness for Levi graphs of line arrangements
In the main results of this section, we study in particular the relationship of various ring
properties considered so far for edge rings of d-arrangements. Our proof is based on three
steps. First of all, we are going to use a result due to Herzog and Hibi which provides a
combinatorial description of edge ideals associated with bipartite graphs, and a result due
to Cook II and Nagel about the equivalence of Cohen–Macaulay and Buchsbaum algebras
associated with bipartite graphs. We sum up these results in the forthcoming theorem.

Theorem 5.1 Let G be a bipartite graph with the partition V1 = {x1, ..., xn} and V2 =
{y1, ..., yn′ }. Then the following conditions for S/I(G) are equivalent:

(i) S/I(G) is Cohen–Macaulay;
(ii) S/I(G) is Buchsbaum for non-complete bipartite graph G;
(iii) S/I(G) is k-Buchsbaum for some k � 0;
(iv) n = n′ and there exists a re-ordering of the sets of vertices V1, V2 such that

(a) xiyi ∈ E for all i,
(b) if xiyj ∈ E, then i � j,
(c) if xiyj and xjyk are in E, then xiyk ∈ E;

(v) G has a cross-free pure order.

Remark 5.2 We say that the partitioning and ordering of vertices in G satisfying a) and
b) in (iv) above is a pure order of G. Furthermore, we say that a pure order has a cross if,
for some i �= j, xiyj and xjyi are edges of G, otherwise we say the order is cross-free.
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Proof (i) ⇔ (ii) follows from [3], (i) ⇔ (iv) is obtained from [14], and (iv) ⇔ (v) proven
again in [3]. We need to show (ii) ⇔ (iii), but this follows from the fact that S/I(G) is
squarefree and then we can apply Theorem 4.12 (ii) ⇔ (iii). ��

Lemma 5.3 In the setting of the above characterization, a necessary condition that the
edge ideal determined by the Levi graph G of a line arrangement L is Cohen–Macaulay is

s =
∑
r�2

tr = k.

A classical result due to de-Bruijn and Erdős [7] provides a complete classification of such
line arrangements with s = k .

Theorem 5.4 (de-Bruijn–Erdős) Let L ⊂ P
2
k
be an arrangement of k � 3 lines in the

plane such that tk = 0, where k is an arbitrary field. Then s � k and the equality holds if
and only if L is either

• a Hirzebruch quasi-pencil consisting such that tk−1 = 1 and t2 = k − 1, or
• a finite projective plane arrangement consisting of q2 + q + 1 points and q2 + q + 1

lines, where q = pn for some prime number p ∈ Z�2.

Based on de-Bruijn and Erdős theorem we can formulate the following.

Theorem 5.5 Let k be any field and let L ⊂ P
2
k
be an arrangement of k � 3 lines with

s intersection points. Denote by I(G) the edge ideal determined by Levi graph associated
with L. Then k[x1, ..., xs, y1, ..., yk ]/I(G) is never Cohen–Macaulay.

Proof We are going to show that both Hirzebruch quasi-pencils and finite projective
plane do not satisfy Herzog-Hibi’s criterion. We start with the case when L = {�1, ..., �k}
is a quasi-pencil. Assume that V1 = {x1, ..., xk} corresponds to the set of intersection
points of L and V2 = {y1, ..., yk} corresponds to the set of lines in L. Take any ordering
satisfying the first two conditions in Herzog-Hibi’s criterion. Without lost of generality,
we may assume the following conditions (up to relabelling of vertices):

• x1 corresponds to the point P1 of multiplicity d − 1;
• y1, ..., yk−1 are the elements corresponding lines �1, ..., �k−1 passing through the point

P1 and P1 /∈ �k ;
• yk corresponds to �k ;
• Pi is a double intersection point and xi is corresponding element to Pi;
• yi, yk are the elements corresponding to lines intersecting at Pi.

Then obviously x1yi and xiyk are the edges ofG, but x1yk does not correspond to any edge
in the Levi graph G since P1 is not incident with line �k . This shows that the associated
algebra cannot be Cohen–Macaulay.
Next we consider the case of a finite projective plane Fq which has exactly q2 + q + 1

points and q2 + q + 1 lines. Assume that V1 = {x1, ..., xq2+q+1} corresponds to the set
of intersection points of L and V2 = {y1, ..., yq2+q+1} corresponds to the set of lines in
the arrangement. Take any ordering satisfying the first two conditions in Herzog-Hibi’s
criterion. We are going to show that the third condition of the mentioned criterion is not
satisfied. To this end, consider the point (1 : 1 : 1) and we denote by xi the corresponding
element. Then take the line (q − 1)x + z = 0 and the corresponding element yj , the point
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(q − 1 : 0 : 1) and the corresponding element xj , and we take finally the line y = 0 with
the corresponding element yk . Observe that xiyj and xjyk are the edges of the Levi graph
G, but xiyk is not any edge of G since the point (1, 1, 1) is not incident with the line y = 0.
This concludes the proof. ��

Example 5.6 Unfortunately, we do not know how to extend the above result to the case
of any arbitrary d-arrangement with d � 2. One can show that if C is a d-arrangement
with d � 2, k � 3 and tk = 0, then by [17, Lemma 4.3] we have

s =
∑
r�2

tr � k,

but we do not have a global description of d-arrangements with s = k . If we restrict
our attention to 2-arrangements, we can easily construct an arrangement consisting of 6
conics and 6 intersection points ofmultiplicity 5 – just take 6 general points and all smooth
conics determined by subsets consisting of 5 distinct points. We call such a configuration
a (65, 65)-symmetric point-conic configuration. Let us consider the edge ideal associated
with the above arrangement

I(G) = 〈x1y1, x1y2, x1y3, x1y4 , x1y5, x2y1, x2y2, x2y3, x2y4 , x2y6,
x3y1, x3y2, x3y3, x3y5, x3y6, x4y1, x4y2, x4y4 , x4y5, x4y6,

x5y1, x5y3, x5y4 , x5y5, x5y6, x6y2, x6y3, x6y4, x6y5, x6y6 〉.
Using Singular one can compute firstly the minimal graded free resolution of the
algebra

k[x1, ..., x6, y1, ..., y6]/I(G).

The Betti diagram has the following form:
0 1 2 3 4 5 6 7 8 9 10

----------------------------------------------------------------------------
0: 1 - - - - - - - - - -
1: - 30 120 210 180 62 - - - - -
2: - - 15 120 400 720 765 500 204 48 5

----------------------------------------------------------------------------
total: 1 30 135 330 580 782 765 500 204 48 5

Based on this, we can conclude that the regularity of the algebra is equal to 2, and the
projective dimension is equal to 10. Moreover, we check directly that the algebra is not
Cohen–Macaulay.

Problem 5.7 Classify all d-arrangements with d � 2 such that s = k .

On the other hand, it is natural to ask whether there exists a d-arrangement with d � 2
such that its algebra is Cohen–Macaulay. We will come back to this question in the
forthcoming section – it turns out that such a d-arrangement does not exist.

6 Sequentially Cohen–Macaulay algebras and d-arrangements
As we saw in the previous sections, edge ideals associated with line arrangements are
neither Cohen–Macaulay nor k-Buchsbaum for some k � 1. It is natural to wonder how
this situation looks like if we focus on generalizations of Cohen–Macaulay rings. Here we
focus on sequentially Cohen–Macaulay rings.
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Definition 6.1 Let S = k[x1, ..., xn]. A graded S-moduleM is called sequentially Cohen–
Macaulay over k if there exists a finite filtration of graded S-modules

0 = M0 ⊂ M1 ⊂ ... ⊂ Mr = M

such that each Mi/Mi−1 is Cohen–Macaulay and the Krull dimensions of the quotients
are increasing

dim (M1/M0) < dim(M2/M1) < ... < dim(Mr/Mr−1).

Definition 6.2 Let G be a graph whose independence complex is �G .

(i) We say that G is shellable graph if �G is a shellable simplicial complex.
(ii) The graphG is called sequentially Cohen–Macaulay if the algebra S/I(G) is sequen-

tially Cohen–Macaulay.

In this section, we are going to provide a complete classification of sequentially Cohen–
Macaulay algebras associated with edge ideals of Levi graphs. In order to do so, we need
the following two results which come from a paper by van Tuyl and Villarreal [24].

Lemma 6.3 Let G be a bipartite graph with bipartition {x1, ..., xm}, {y1, ..., yn}. If G is
shellable and G has no isolated vertices, then there is v ∈ V (G) with deg(v) = 1.

Theorem 6.4 LetG be a bipartite graph. ThenG is shellable if and only if G is sequentially
Cohen–Macaulay.

Now we are ready to provide our next classification and main result of our work.

Theorem 6.5 Let C be a d-arrangement of k � 3 curves in P
2
C
with s intersection points

and let I(G) be the associated edge ideal determined by the Levi graph of C. Then the
following conditions are equivalent:

(i) k[x1, ..., xs, y1, ..., yk ]/I(G) is sequentially Cohen–Macaulay;
(ii) C is a pencil of k lines in the plane.

Proof First of all, it is clear that ifL is a pencil of k lines, then the associated Levi graph is a
treewithone rootx1 corresponding to thed-foldpointP and k leafs y1, ..., yk corresponding
to lines passing through P. Since the graphK1,k is shellable, then the associated monomial
algebra k[x1, y1, ..., yn]/I(G) is sequentially Cohen–Macaulay.
From now on, we assume that C is a line arrangement with tk = 0 or a d-arrangement

with d � 2 and assume that k[x1, ..., xs, y1, ..., yk ]/I(G) is sequentially Cohen–Macaulay.
We are going to apply Lemma 6.3, i.e., our aim is to show that in that setting the Levi

graph of C has vertices of degree greater or equal to 2, so G is not shellable. We assume
that V1 = {x1, ..., xs} corresponds to the intersection points of C and V2 = {y1, ..., yk}
corresponds to the curves inC. IfC is a line arrangementwith tk = 0, then each intersection
point has multiplicity at least 2, so deg(xi) � 2. Since tk = 0, then by using (2) with d = 1,
we see that on each line we have at least 2 intersection points from Sing(C) which means
that deg(yj) � 2, and it completes the proof for case of line arrangements.
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Suppose that C is a d-arrangement with d � 2. Then each intersection point has
multiplicity at least 2 and this gives deg(xi) � 2. Moreover, using the combinatorial
count (2), we can observe that deg(yj) � d2. This completes the proof. ��

As a corollary, we obtain the following classification result.

Corollary 6.6 Let C ⊂ P
2
C
be a d-arrangement of k � 3 curves with d � 2 and s inter-

section points. Denote by I(G) the edge ideal determined by Levi graph associated with C.
Then k[x1, ..., xs, y1, ..., yk ]/I(G) is never Cohen–Macaulay.

Proof Let us recall that for algebras being Cohen–Macaulay implies being sequentially
Cohen–Macaulay. Since for d-arrangements with d � 2 the associated Levi graphs are
never shellable, then the associated algebras k[x1, ..., xs, y1, ..., yk ]/I(G) are not sequentially
Cohen–Macaulay. This completes the proof since pencil of lines are not d-arrangements
with d � 2. ��

7 Bounds on the projective dimension
This section is motivated by the following result due to Dao, Huneke, and Schweig [6,
Corollary 5.4].

Proposition 7.1 Let G be a graph on n vertices, and assume that m is the maximal degree
of any vertex. Then

pd(S/I(G)) � n ·
(
1 − 1

2m

)
.

Using the above result,we are going toprovide a reasonable upper-bound for theprojective
dimension of an edge ideals associated with a d-arrangement.

Proposition 7.2 Let C be a d-arrangement of k � 3 curves having s intersection points
such that tk = 0. Let I(G) be the associated edge ideal in S = k[x1, ..., xs, y1, ..., yk ]. Then⌈

s + k
2

⌉
� pd(S/I(G)) � (s + k)

(
1 − 1

2d2(k − 1)

)
.

Proof If p ∈ Sing(C), then its multiplicity can be at most k − 1 since tk = 0. On the other
hand, using Eq. (2), one can have atmost d2(k−1) intersection points on each curves. This
gives for the maximal degree of any vertexm � max {k − 1, d2(k − 1)} = d2(k − 1). The
stated lower bound follows directly from [9, Lemma 3.1], and this completes the proof. ��

Example 7.3 (Projective dimension versus regularity) Let us consider an arrangement of 5
general lines in the plane, i.e., such an arrangement has only double points as the intersec-
tions. We have altogether 10 such points. Let us denote by xi the variable corresponding
to the intersection points and by yj the variables corresponding to lines. The edge ideal
I(G) in S = k[x1, ..., x10, y1, ..., y5] of the Levi graph G has the following presentation

I(G) = 〈x1y1, x1y2, x2y2, x2y3, x3y2, x3y4, x4y2, x4y5, x5y4 , x5y5, x6y1, x6y4 , x7y3, x7y4 ,
x8y5, x8y3, x9y1, x9y3, x10y1, x10y5〉.
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Using Singular we can compute the minimal graded free resolution of the algebra
S/I(G). The Betti diagram has the following form:

0 1 2 3 4 5 6 7 8 9 10 11
----------------------------------------------------------------------------

0: 1 - - - - - - - - - - -
1: - 20 40 20 5 - - - - - - -
2: - - 90 360 515 330 100 10 - - - -
3: - - - 80 470 1135 1370 897 295 40 - -
4: - - - - 5 35 105 185 205 120 35 4

----------------------------------------------------------------------------
total: 1 20 130 460 995 1500 1575 1092 500 160 35 4

We can easily see that the regularity of the algebra S/I(G) is equal to 4 and the projective
dimension is is equal to 11. Notice that Corollary 7.2 tells us that the projective dimension
of S/I(G) sits in the interval [8, 13.125].

Based onmany similar examples (i.e., arrangements of k � 3 general lines) we can observe
that the regularity of the edge ideals is smaller than the number of lines (and this follows
from our general bound from the previous section), but the projective dimension grows
as fast as the number of double intersection points which makes the Betti diagram wide-
rectangular. It is quite natural to believe that the lower bound for the projective dimension
is related to the number of intersection points of a given arrangements. In this context,
we propose:

Problem 7.4 Let L be an arrangement of k � 3 general lines in the plane and denote by
I(G) the associated edge ideal. Is it true that

pd (S/I(G)) �
(
k
2

)
?

8 Castelnuovo–Mumford regularity for powers of edge ideals of
d-arrangements
After studying classical algebraic properties of modules, we are going back to homological
properties. Now we pass towards a general regularity bound. Let us consider:

Example 8.1 Consider a Hirzebruch quasi-pencil Lk of k lines with the associated Levi
graphG. As usually,V1 = {x1, ..., xk}denotes the vertices corresponding to the intersection
points and V2 = {y1, ..., yk} corresponds to the lines in Lk . The associated edge ideal in
Sk := k[x1, ..., xk , y1, ..., yk ] can be presented as follows:

I(G)k =
〈
x1y1, ..., xkyk , x1y2, x1y3, ..., x1yk−1, x2yk , x3yk , ..., xk−1yk , xky1

〉
.

By the previous results, we know that the algebra Ak = Sk/I(G)k is neither Cohen–
Macaulay nor sequentially Cohen–Macaulay. However, it is still interesting to check other
homological properties of Ak . First of all, we want to find a reasonable bound on the
Castelnuovo-Mumford regularity of Ak . There are some results providing the upper-
bounds for regularity of edge ideals which use the combinatorial description of graphs.
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Há and van Tuyl in [13] showed that for any graph G the regularity of edge ideal I(G) is
bounded from above by

reg(I(G)) � ν(G) + 1,

where ν(G) is the matching number of a graph G – this is the maximum number of
pairwise disjoint edges. The matching number of the Levi graph associated with Lk is
equal to k and this is easy to see. This allows us to conclude that for every k � 3 one has

reg(Ak ) � k.

This example has a global manifestation that is valid for all d-arrangements. In order to
present our main results, which are corollaries from what we will see in a moment, we
need the following direct application of Hall’s theorem.

Proposition 8.2 Let C be a d-arrangement with d � 1 and k � 3. Assume that tk = 0
and denote by G the associated Levi graph with the bipartition {x1, ..., xs}, {y1, ..., yk}. Then
G has matching of size k.

Proof According to Hall’s theorem, we need to check whether for any subset S ⊂
{y1, ..., yk} we have |N (S)| � |S|, where

N (S) = {xi : ∃ yj ∈ S with {xi, yj} ∈ E}.
Since G is connected and for each yi we have that deg(yi) � d2 + 1, then for every
S ⊂ {y1, ..., yk} with |S| = � one has

|N (S)| � (d2 + 1) · � � 2�,

which completes the proof. ��

Corollary 8.3 (A global regularity bound) Let C be a d-arrangement of k � 3 curves with
d � 1 in P

2
C
with s intersection points, and assume that tk = 0. Let I(G) be the associated

edge ideal determined by the Levi graph G of C. Then

reg(I(G)) � k + 1.

Proof Observe that Proposition 8.2 provides us the maximal value of the matching num-
ber ν(G) of the Levi graphG. First of all, Levi graphs G satisfy the following properties on
the degrees of vertices:

∀ i ∈ {1, ..., s}, j ∈ {1, ..., k} : deg(xi) � 2 and deg(yj) � 2.

Now the maximality of our choice follows from a simple incidence property – if we add
another edge, then such an edge cannot be disjoint from the matching edges since each
vertex of G has degree greater of equal to 2. Now we apply [13] to conclude the proof. ��
It is natural to wonder whether our upper bound is close to the real value of the regularity.

Example 8.4 Consider the case of a Hirzebruch quasi-pencil with k = 4 and observe
that our global upper bound gives that the regularity of I(G) is bounded by 5. Using
Singular, we can compute the minimal graded free resolution and the Betti diagram
has the following shape:



Pokora, Römer Res Math Sci (2022) 9:30 Page 15 of 17 30

0 1 2 3 4 5 6

---------------------------------------------------

0: 1 - - - - - -

1: - 9 12 2 - - -

2: - - 9 24 18 6 1

3: - - - 1 2 1 -

---------------------------------------------------

total: 1 9 21 27 20 7 1

This means that the regularity of the edge ideal I(G) is equal to 4.

Example 8.5 IfL is a pencil of k lines in the plane, then by Fröberg’s characterization [11]
we have

reg(I(G)) = 2

showing that the upper bound is sharp. This can be also explained in a slightly different
way since I(G) is sequentially Cohen–Macaulay and then by [25] we always have

reg(I(G)) = ν(G) + 1.

This observation motivates the following question.

Problem 8.6 Let L be a d-arrangement with k � 3 with the associated edge ideal I(G).
Is it true that reg(I(G)) = 2 implies that L is a pencil of lines?

Now we focus on powers of edge ideals. We start with revisiting some results related to
ordinary powers of edge ideals. Let us recall that for a homogeneous ideal I in a polynomial
ring, reg(Im) is a linear function form � 0, it means that there exist integers a, b,m0 such
that

reg(Im) = am + b for allm � m0.

This is a content of the result proved by Cutkosky et al. [5]. It is known that a is bounded
above by the maximum of degrees of elements in a minimal set of generators of I , but b
andm0 are in general difficult to detect. If we restrict our attention to an edge ideals I(G)
associated with any graph, then

ν′(G) + 1 � reg(I(G)) � co-chord(G) + 1,

where ν′(G) is the induced matching number of G, and co-chord(G) denotes the co-
chordal cover number of G. These inequalities follow from [16,29].
Now we are going to focus on reg(Im) for some m � 2. Our observation comes from

Proposition 8.2 and results due to Jayanthan and Selvaraja [15].

Corollary 8.7 Let C be a d-arrangement with d � 1, k � 3, and such that k � s. Denote
by G the associated Levi graph. Then

reg(I(G)q) � 2q + k − 1.

Proof This follows directly from [15, Theorem 4.4] and the fact that co-chord(G) � k . ��

Remark 8.8 • It is very natural to wonder whether there is a reasonable upper bound
on the regularity of symbolic powers of edge ideals. Let us recall that by [22, Theorem
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5.9] for every bipartite graph G andm ∈ N one has

I(G)(m) = I(G)m,

which means that we have automatically obtained

reg(I(G)(q)) � 2q + k − 1.

• It is natural towonderwhetherwecanfinda reasonableupper-boundon the regularity
of squarefree powers of edge ideals. This problem, in its whole generality, is open.

We conclude this section by an observation regarding the Rees algebra of the edge ideal.
Let us recall that for a given ideal I the Rees algebra R(I) = ⊕∞

i=0 I iti ⊂ R[t].

Corollary 8.9 Let C be a d-arrangement with k � 3 and denote by I(G) the associated
edge ideal with the Levi graph G. Then

reg(R(I(G))) = k.

Proof This follows from [2, Theorem 1.2] and Proposition 8.2. ��
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