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Abstract
Purpose of Review There are some uncertainties about the interactions between obstructive sleep apnea (OSA) and chronic
kidney disease (CKD). We critically reviewed recent studies on this topic with a focus on experimental and clinical evidence of
bidirectional influences between OSA and CKD, as well as the effects of treatment of either disease.
Recent Findings Experimental intermittent hypoxia endangers the kidneys, possibly through activation of inflammatory path-
ways and increased blood pressure. In humans, severe OSA can independently decrease kidney function. Treatment of OSA by
CPAP tends to blunt kidney function decline over time, although its effect may vary. OSA may increase cardiovascular
complications and mortality in patients with end-stage renal disease (ESRD), while it seems of little harm after renal transplan-
tation. Excessive fluid removal may explain some of the improvements in OSA severity in ESRD and after transplantation.
Summary Severe OSA and CKD do interact negatively, mainly through hypoxia and fluid retention. The moderate mutually
interactive benefits that treatment of each disease exerts on the other one warrant further studies to improve patient management.
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Introduction

Both obstructive sleep apnea (OSA) and chronic kidney dis-
ease (CKD) are common in the general population [1, 2]. An
interrelationship between the two diseases is increasingly rec-
ognized, but interdisciplinary approaches to their treatment are
highly variable, since both are usually managed by different
medical specialists. Despite the fact that the evidence gathered
from clinical and epidemiological observations conducted so
far still leave some room to uncertainty about independent
interrelations between OSA and CKD, there is a large body
of biological data that support the plausibility of these
interactions.

On the one hand, OSA is associated with intermittent hyp-
oxemia, increased blood pressure and sympathetic activity,
obesity, and metabolic alterations [3], all of which may en-
danger renal integrity and lead to increased albumin excretion
and accelerated decline in glomerular filtration rate (GFR)
over time. These mechanisms could lead to an increased inci-
dence of CKD and to a more rapid trajectory towards end-
stage renal disease (ESRD) in OSA patients. On the other
hand, uremia and metabolic acidosis associated with renal
dysfunction may increase chemoreceptor reactivity and desta-
bilize breathing patterns, predisposing patients to both ob-
structive and central apnea. Besides, fluid retention due to
inefficient glomerular filtration may be followed by rostral
fluid shift when assuming a recumbent posture, leading to
decreased cross-sectional pharyngeal area and obstructive ap-
neas, or, particularly in patients with cardiac disease, to inter-
stitial lung edema, hyperventilation, and central apneas [4].

Nowadays, the attention of physicians managing patients
with OSA is mainly directed to symptoms and possible car-
diovascular complications, and to a much lesser extent to the
possible kidney involvement. Actually, the importance of ad-
dressing renal effects of OSA is not entirely clear. Renal con-
sequences of OSA are less known than cardiovascular com-
plications. Besides, direct evidence of the independent detri-
mental effects of untreated OSA, and of benefits of OSA
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treatment, on the kidneys is less strong compared to data ob-
tained in animal experiments. As nephrologists are concerned,
screening and treatment of OSA in CKD and ESRD have not
entered general clinical practice yet.

In this review, we summarize recent data obtained in ani-
mal models on the pathogenesis of CKD inOSA, highlight the
current evidence that may support a direct influence of OSA
on kidney function, and try to account for the uncertainties and
contradictory interpretations found in the current literature. In
addition, we will examine the clinical implications of sleep-
disordered breathing (SDB) in patients with renal disease,
paying particular attention to those with ESRD or receiving
transplantation. We will illustrate the present knowledge on
the effects of dialysis and transplantation on SDB, as well as
of OSA treatment on kidney function, which are topics still
requiring extensive investigation.

Evidence of Renal Damage in Experimental
Models of OSA

OSA typically causes intermittent hypoxia (IH) during sleep.
Several studies in mouse and rat models assessed the impact of
IH on the kidney. A major advantage of animal models is the
possibility to study the effects of IH without the confounding
variables occurring in human OSA, but the IH models do not
provide data on the effects of intermittent hypercapnia associ-
ated with IH in OSA. One study assessed the effects of IH and
IH associated with hypercapnia and suggested a possible pro-
tective effect of CO2 on inflammatory markers, but duration of
exposure was short, warranting further study [5•].

Acute exposures to IH caused minimal or no pathological
changes and increased renal blood flow and GFR [6].
Conversely, chronic IH was associated with evidence of glo-
merular and tubular damage [6, 7]. The pathological findings
included an increase in glomerular area, expansion of
mesangial matrix, and increased apoptosis [7, 8]. As for func-
tional changes, increased albuminuria [7] and reduced renal
flow, GFR, and sodium transport were found after chronic IH
exposures [6].

The molecular mechanisms involved in IH-induced renal
injury are complex, with involvement of several pathways,
such as the receptor for advanced glycation end-product
(RAGE) [9] and its ligand, the high-mobility group box 1 pro-
tein (HMGB1) [5, 9], toll-like receptor 4 (TLR-4) [10], oxida-
tive stress [11•] and the NLRP3 inflammasome [12]. Blockade
of such pathways resulted in decreased tubular damage, colla-
gen deposition and apoptosis, lower release of inflammatory
cytokines, and blunted albuminuria [9, 10, 11•, 12].

Chronic IH exposure causes hypertension in rodents [8,
13]. The studies on kidney function did not always monitor
blood pressure during chronic IH, raising the question about
the confounding contribution of hypertension to kidney

damage. In a complex experimental model of alanine-
induced CKD followed by exposure to chronic IH, blocking
endothelin (ET)-a and ET-b receptors prevented hypertension
but not tissue injury [14••]. Conversely, Angiotensin 1–7,
which counters the effect of Angiotensin-2, was found to blunt
the effects of chronic IH on renal sympathetic activity, inflam-
mation, and fibrosis [8]. Moreover, recent studies in which
telmisartan and losartan were administered during chronic
IH exposure suggested protective effects of these drugs on
kidney injury [15, 16]. More studies are clearly needed to
understand to what extent IH-induced kidney damage may
be at least partly mediated by hypertension.

Epidemiology of the Association
Between OSA and CKD

Despite unquestionable evidence of risk factors for CKD in
OSA, the presence of confounders makes an independent link
between the two conditions difficult to demonstrate in human
patients. These confounders include advanced age, obesity,
and especially comorbidities like arterial hypertension and
diabetes mellitus. Therefore, one important requirement for
epidemiological studies on OSA and CKD is a large sample
of subjects in order to adjust for multiple confounders. In
addition, ideally, the sample sizes of subjects with CKD,
OSA (from mild to severe), and healthy controls should be
adequately balanced, which is difficult to obtain. In fact, stud-
ies performed in general population samples, while showing
little or no selection bias in subjects’ recruitment, predomi-
nantly included healthy subjects, and the few OSA patients
in the sample had a mild disease with little nocturnal hypox-
emia. Conversely, studies on patients with suspected OSA
included subjects with worse risk factors for CKD and more
severe hypoxemia, with higher probability to show significant
effects of OSA on renal function, but low applicability of
results to the general population.

In the last several years, large epidemiological studies have
been published. Among recent cross-sectional studies on the
general population, a significant increase in the prevalence of
SDB, considered as apnea/hypopnea index (AHI) ≥ 15/h of
total sleep time (hrTST), was observed from non-CKD to
CKD stages 1–2 to CKD stage 3 subjects in the HypnoLaus
cohort in Swtizerland; however, CKD stage and estimated
GFR (eGFR) quartile did not independently predict SDB
[17]. The other available cross-sectional study observed a sig-
nificant effect of AHI on CKD prevalence but, unsurprisingly,
no effect of nocturnal hypoxemia: in fact, hypoxia among the
recruited subjects was very mild [18•]. The longitudinal study
on the general population in the Wisconsin cohort found that
both the decline in eGFR and CKD incidence were similar in
subjects with and without sleep apnea. However, patients with
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sleep apnea, defined as AHI ≥ 15/hrTST, were few (90/855
subjects) and oxygen saturation values were not reported [19].

Among investigations on subjects with suspected sleep ap-
nea, one longitudinal study demonstrated that an increased
rate of decline in eGFR occurred when ≥ 12% of sleep time
was spent with oxygen saturation (SaO2) < 90% [20••], a
threshold uncommon in significant proportions of subjects
of general population samples. Accordingly, a multicenter
cross-sectional study on a sleep laboratory population found
that lowest nocturnal SaO2 independently predicted eGFR <
60 ml/min/m2 [21•]. Both these studies did not find any inde-
pendent effect of AHI as a risk factor for CKD.

Finally, some recent longitudinal studies analyzed data tak-
en from registries, with the advantage of including very large
number of patients with diagnosed sleep apnea and controls.
Common pitfalls of these studies are that no polysomnograph-
ic data were available, and information on continuous positive
airway pressure (CPAP) prescription, when available, was not
associated with data on actual CPAP use. Nevertheless, these
studies agreed that OSA is likely to be a risk factor for the
kidneys since it was associated with faster annual decline in
eGRF [22•] and higher incidence of CKD [23–25] and of
ESRD [26•].

Altogether, most epidemiological studies support an inde-
pendent association between OSA and CKD. This association
primarily involves patients with severe OSA, while it is much
more uncertain for mild cases of sleep apnea. So far, attention
has been paid mainly to the possible importance, as risk
markers, of classic polysomnographic variables, i.e., AHI
and hypoxemia parameters. Future studies may explore roles
of other factors that are often altered in OSA, like 24-h blood
pressure profile or insulin sensitivity.

Sleep Apnea and ESRD

Sleep apnea is common in patients with CKD, and its preva-
lence progressively increases with CKD severity [27]. Patients
with ESRD show the highest prevalence, possibly because in
ESRD, some risk factors for SDB, such as fluid retention and
high chemoresponsiveness, are more common and severe than
inmilder CKD. ESRD patients with OSA have higher BMI and
neck circumference than those without OSA [28–30], but they
are thinner compared to typical OSA patients seen in sleep
laboratories, and more rarely report typical OSA symptoms,
like heavy snoring or excessive daytime sleepiness [31–33].
ESRD patients report poor sleep quality, but periodic legmove-
ments [34] rather than SDB [35, 36] likely play a role.

However, several observations suggest that sleep apnea
may be detrimental also in patients with ESRD (Table 1).
One effect of occurrence of SDB in ESRD may be an over-
night decrease in systolic and diastolic myocardial function
[37••], as already observed in patients with heart failure [38].

Improvement of SDB, obtained with reduction in body fluids
by plasma ultrafiltration, may blunt such deterioration [37••].
Recent studies have shown that, in the long term, OSA may
increase cardiovascular and all-cause mortality inmiddle-aged
ESRD patients [39, 40]. This effect was not demonstrated in
older patients who, rather the opposite, showed a lower risk of
all-cause death, myocardial infarction, and ischemic stroke
when they had been diagnosed with OSA [41]. This is in
agreement with observations in other populations reporting a
lower coronary and mortality risk, if not an advantage, in
elderly OSA patients [42, 43]. Mortality risk in middle-aged
ESRD patients was related to nocturnal hypoxemia, and not to
AHI [40], as already found in a previous small study [44].

Fluid Overload, Dialysis,
and Sleep-Disordered Breathing

Rostral shift of fluids when assuming the recumbent posture
has been identified as an important determinant of apnea in
patients with ESRD. In these patients, overnight change in
leg fluid volume correlated with apnea/hypopnea time in acute
studies [45]. Over an average 8-month time period, it was ob-
served that remission of nephrotic syndrome was associated
with a reduction in AHI that was attributed to remission of limb
edema [46]. Two more recent studies found that patients with a
high AHI had a higher extracellular fluid volume in non-
dialysis days [47] and a higher interdialytic weight gain [48].

Patients undergoing hemodialysis acutely reduce fluid re-
tention and, at the same time, remove uremic toxins thus im-
proving their metabolic status. Interestingly, if in a non-
dialysis day ESRD patients are submitted to plasma ultrafil-
tration, leading to fluid removal without alterations in acid
base balance or plasma metabolic components, their AHI de-
creases proportionally to the reduction in extracellular fluid
volume [49•]. Such data strongly support a major role of fluid
removal as responsible for the beneficial effect of dialysis on
SDB. However, only minor, non-significant changes in AHI
have been reported between nights preceding and following
dialysis [28, 32, 50••]. One recent study showed that changes
in obstructive AHI after dialysis were correlated to changes in
fluid overload but confirmed that the average difference in
AHI between nights before and after dialysis was not signifi-
cant [51].

Different results have been reported with a stable change in
dialysis regimen. After transition from conventional (three-
diurnal sessions per week) to nocturnal (six nights per week)
[50••], as well as from continuous ambulatory peritoneal dial-
ysis to nocturnal dialysis [52], AHI significantly improved,
with decrease in both central and obstructive apneas.
Nocturnal dialysis, besides better reverting physiological per-
turbations of uremia [53], more effectively decreases sympa-
thetic activity than conventional dialysis [54]. The lower
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sympathetic activity could be associated with a greater de-
crease in chemoresponsiveness, which, in turn, could contrib-
ute to the improvement in SDB [55].

Children on dialysis show poor sleep quality [56–58] and
prevalence of sleep-disordered breathing is estimated around
40% [56, 59]. One study reported higher AHI in patients com-
pared to controls [58], but another study in children on auto-
matic peritoneal dialysis found mild SDB in children with
ESRD [57]. In summary, positive effects of dialysis on SDB
in adult patients with ESRD are likely, but their mechanisms
and the effects of pediatric ESRD are still incompletely
understood.

Kidney Transplant and Sleep Apnea

After kidney transplantation, reversal of uremia and fluid
overload could be expected to improve pre-existing sleep ap-
nea. However, inconsistent results have been reported about
the effects of transplantation on sleep apnea [60, 61]. Most of
the studies were on small case series and did not adequately
take into account factors such as OSA severity before trans-
plantation, reduction in fluid overload, or change in body
weight after transplantation. One recent, relatively large, con-
trolled study on patients with a pretransplant AHI ≥ 15/hrTST
demonstrated that after transplantation, AHI decreased pro-
portionally to the decrease in fluid overload, although an in-
crease in body fat tended to blunt the change in AHI [62••].

Evidence of unfavorable effects of sleep apnea in transplanted
patients is scant (Table 2). It relies mainly on a paper showing
that subjects transplanted after 2008 who were diagnosed with
sleep apnea had a higher risk of graft loss, although their risk of
death with functioning graft was not increased [63]. Three other
studies, while confirming the lack of any influence of OSA [64,
65•], or risk of OSA [66], on mortality in transplanted patients,
did not find any effect of OSA on rate of decline in eGFR [64] or
in return to dialysis or retransplantation [65•]. Harmlessness of
sleep apnea after transplantation has been hypothesized to be a
consequence of the denervation of the transplanted kidneys,
which may blunt apnea-induced sympathetic overactivation
[64, 65•]. According to another theory, ischemic preconditioning
due to recurrent apneas could determine long-term benefits in
transplanted patients [65•], as already hypothesized for ischemic
cardiac disease [42].

In transplanted children, 61% of the sample showed evidence
of OSA that was moderate-severe in 38.5% and associated with
uncontrolled hypertension. However, SDB was likely to be
overestimated, since prevalence of obesity and metabolic abnor-
malities tended to be higher in children undergoing PSG com-
pared to children refusing participation to the study [67].

Effects of CPAP Therapy on Kidney Function

CPAP is the therapy of OSA that more fully prevents occur-
rence of SDB. Its main limitation is related to variable adher-
ence to its use, which leaves some patients incompletely

Table 1 Recent studies on effects of sleep apnea in patients with end stage renal disease (ESRD)

Authors No. of subjects recruited Sleep apnea
diagnosis

No. of subjects with OSA Follow-up duration Outcomes

Tuohy et al. [41] 184,217 patients ≥ 67 years
old starting hemodialysis

Diagnosis based on
ICD-9 criteria in
the 2 years
before starting
hemodialysis

15,121 SDB Mean 1.6 years SDB associated with lower
risk of all-cause death,
myocardial infarction and
ischemic stroke; no effect
on atrial fibrillation

Kerns et al. [39] 558 incident hemodialysis
patients, mean age 56

Chart reviews of
clinical medical
records available
in the year prior
to dialysis
initiation

66 OSA Mean 23.2 months OSA associated with all-cause
and cardiovascular
mortality and with sudden
cardiac death

Inami et al. [37••] 15 ESRD patients Polysomnography 6 OSA
2 CSA

1 day (evening to
morning, and night
pre-post plasma
ultrafiltration)

Sleep apnea associated with
overnight decrease in
systolic and diastolic
function in ESRD;
improved SDB after body
fluid removal

Jhamb et al. [40] Stage 4–5 CKD (n = 88)
and ESRD (n = 92),
mean age 54

Polysomnography 45 mild
42 moderate
41 severe
predominantly obstructive

sleep apnea

Median 9 years Relationships of mortality
with nocturnal hypoxemia,
but not with AHI
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treated. Its favorable effects on patients’ symptomatology are
undiscussed, whereas benefits on other health aspects, like
cardiovascular and metabolic manifestations, are small and
still controversial [68].

CPAP therapy is associated with a reduction in common
risk factors for CKD, which could warrant an improvement in
kidney function. CPAP prevents nocturnal oxygen
desaturations, slightly decreases blood pressure [69], and re-
duces renal RAS activity [70] and circulating inflammatory
markers including IL-18, a marker of acute kidney injury [71].

All uncontrolled studies support a benefit of CPAP on both
albumin excretion and GFR. The decrease in albumin

excretion was evident in morning, but not in evening, urine
samples, suggesting that SDB exerts acute detrimental effects
that may be prevented by treatment [72]. Good compliance to
CPAP therapy is necessary for a reduction in albuminuria to
occur [73, 74]. Small studies addressing GFR consistently
found benefits of CPAP therapy, as shown by decreased glo-
merular hyperfiltration [70, 75], blunted decline in eGFR [76],
or even increase in eGFR [77]. One large multicenter cohort
study compared changes in eGFR over time in patients who
were untreated or treated by auto-CPAP or by fixed CPAP.
While in the first two groups, a larger eGFR decline was
observed in the patients who had a longer follow-up, eGFR
remained substantially unchanged irrespective of follow-up
duration in those treated by fixed CPAP. The changes in
eGFR after fixed, but not after auto-CPAP, significantly dif-
fered from the changes after no OSA treatment [78•]. In con-
trast, the only RCT published so far on the effects of CPAP
reported that mean changes in eGFR over time were small and
did not significantly differ between patients under usual care
or CPAP treatment [79•]. However, even in this study, a non-
significant trend to a better evolution of eGFRwith CPAPwas
observed.

A large interindividual difference in changes in eGFR after
CPAP, which emerged in different studies [78•, 79•], may
make it difficult to clearly demonstrate independent effects
of CPAP. Age of the patients, baseline CKD function and
OSA severity, duration of follow-up, comorbidities, drug ther-
apies, and type of CPAP treatment are some of the factors that
can influence the variability in eGFR time course. Discordant
results and highly variable interindividual differences have
been also reported for blood pressure changes after CPAP,
and onlymeta-analyses on a high number of studies have been
able to consistently demonstrate that CPAP decreases blood
pressure, although by a small extent [69]. Similarly, we

Table 2 Effects of sleep apnea in patients receiving kidney transplant

Authors No. of subjects
recruited

Sleep apnea diagnosis/
risk

No. of subjects with
sleep apnea

Follow-up duration Outcomes

Szentkiralyi et al. [66] 823 adults Berlin questionnaire
after transplant

226 Median 66 months OSA risk was associated with graft loss
in females, but did not influence
all-cause mortality

Fornadi et al. [64] 100 adults Polysomnography after
transplant

18 mild
11 moderate
14 severe

Median 75 months No effect of AHI or of OSA diagnosis on
rate of decline of eGFR or on
all-cause mortality and time to death

Lubas et al. [63] 322 adults Medical records
documenting sleep
apnea before
transplant of after
transplant before
graft loss

60 Up to 20 years Sleep apnea did not influence mortality
with functioning graft but was
associated with higher risk of graft
loss in patients transplanted after 2008

Tiwari et al. [65•] 4014 adults Medical records
documenting sleep
apnea

415 diagnosed before
transplant

117 diagnosed
after transplant

Median 6.1 years No influence of sleep apnea on acute
kidney rejection, return to dialysis,
re-transplantation or mortality

Fig. 1 Summary of the mechanisms by which OSA can worsen chronic
kidney disease (CKD) and end-stage renal disease (ESRD) can cause
sleep-disordered breathing. OSA: obstructive sleep apnea. CSA: central
sleep apnea
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believe that a high number of studies with many patients
would be necessary to definitely demonstrate benefits of
CPAP treatment on kidney function.

Conclusions

Experimental studies underpin the existence of biologically
relevant interactions between OSA and CKD. In animals,
the role of intermittent hypoxia as a factor endangering kidney
function is evident, although it is still unclear to what extent
the changes observed in kidney structure and function may be
at least partly mediated by underlying increased blood pres-
sure. The results of human studies are summarized in Fig. 1.
Epidemiological studies have confirmed the detrimental effect
of OSA on kidney function and on prognosis of patients with
ESRD, which is more evident when OSA is severe. On the
other hand, excessive fluid retention causes or worsens OSA
in CKD, especially in ESRD. Many still poorly known fac-
tors, in addition to hypoxia and fluid overload, may come into
play in the interaction between OSA and CKD, enhancing, or
blunting, their effects. Among these factors, blood pressure
levels and 24-h profile could have a prominent role, which
deserves further careful studies. Effects of treatment of OSA
or CKD on the other disease seem on average rather weak.
Some confounders and interacting factors that could reduce
the benefits of treatment are known, but the effects of OSA
therapy remain incompletely understood and poorly predict-
able. Studies aimed at better understanding the complex ef-
fects that dialysis and kidney transplantation may exert on
respiratory function during sleep, as well as of the mecha-
nisms through which CPAP influences renal function, would
be extremely useful to improve patients’ management.
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