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Abstract
Point-vortex dynamics describe idealized, non-smooth solutions to the incompressible
Euler equations on two-dimensional manifolds. Integrability results for few point-
vortices on various domains is a vivid topic, withmany results and techniques scattered
in the literature. Here, we give a unified framework for proving integrability results for
N = 2, 3, or 4 point-vortices (and also more general Hamiltonian systems), based on
symplectic reduction theory. The approach works on any two-dimensional manifold
with a symmetry group; we illustrate it on the sphere, the plane, the hyperbolic plane,
and the flat torus. A systematic study of integrability is prompted by advances in two-
dimensional turbulence, bridging the long-time behaviour of 2D Euler equations with
questions of point-vortex integrability. A gallery of solutions is given in the appendix.
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1 Introduction

The governing equations for an incompressible inviscid fluidwere formulated by Euler
in 1757 [11] and have since been cardinal in the ever growing field of hydrodynamics.
On a general orientable Riemannian manifold M , Euler’s equations are

v̇ + ∇vv = −∇ p, div v = 0, (1)

where v is a vector field on M describing the motion of infinitesimal fluid particles,
p is the pressure function, and ∇v denotes the co-variant derivative along v. Arnold
[2] discovered a rich and beautiful geometry underlying these equations; they can be
interpreted as the geodesic equation for a right-invariant Riemannian metric on the
infinite-dimensional Lie group of volume preserving diffeomorphism of M . For an
entry-level introduction to Arnold’s discovery see the lecture notes by Modin [32].
More detailed expositions are given by Arnold and Khesin [3] and by Khesin and
Wendt [18].

101 years after Euler’s influential paper on incompressible fluids, Helmholtz [14]
showed that the 2DEuler equations exhibit special solutions consisting of a finite num-
ber of point-vortices. These are non-smooth solutions where curl v, called vorticity, is
a finite sum of Dirac distributions

ω := curl v =
N∑

i=1

�iδri .

Here, �i ∈ R\{0} is the strength of vortex i and ri ∈ M is its position (M can be any
two-dimensional orientable Riemannian manifold). If G : M × M → R denotes the
Green’s function on M for the Laplacian, i.e., for r ∈ M we have

�G(·, r) = δr,
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Integrability of Point-Vortex Dynamics. . . 359

then the equations of motion for N point-vortices are given by

ṙi =
∑

i �= j

� j∇⊥
ri G(ri , r j ).

Here,∇⊥
ri is the skew gradient with respect to ri , i.e., the operation which first takes the

gradient with respect to ri and then rotates this vector by π/2 in positive orientation.
The point-vortex equations stated like this are rather abstract; in section 2 below we
present these equations explicitly for different manifolds M .

Kirchhoff [21] was the first to point out that the point-vortex system has a Hamilto-
nian structure; in the planar case ri = (xi , yi ) the canonical coordinates are given by
pairs of Euclidean coordinates xi and yi scaled by the strengths �i . Thus, point-vortex
dynamics fits within the realm of Hamiltonian mechanics, a central observation for
understanding its phase space geometry.

The classical way of thinking is that point-vortices constitute a formal ansatz for
solutions of the Euler equations. By following Arnold’s approach, however, Marsden
and Weinstein [28] showed that point-vortex solutions automatically appear from a
systematic study of the symmetries of the system.

The interest in point-vortex dynamics has been growing steadily since the work of
Helmholtz. Historically, it is fair to say that the field has emerged in two branches.
One branch, originating from Onsager [38], is to study a large number N � 1 of
point-vortices via the tools provided by statistical mechanics for Hamiltonian dynam-
ics. Onsager’s work laid out a statistical theory of hydrodynamics for predicting the
formation of coherent structures in 2D turbulence. Since then, mathematicians and
physicists have followed up on his approach, which has led to many deep and beau-
tiful results; see [25] and references therein. However, the question concerning the
long-time behaviour of classical solutions to the 2D Euler equations is still unan-
swered; numerical simulations suggest a more complicated generic behaviour than
predicted by theories based on statistical mechanics (see Sect. 7 below).

The other branch is to study a few number of point-vortices, and ask whether the
dynamics is integrable. Early contributors are Gröbli [12] and Poincaré [39], who
explicitly (Gröbli) and implicitly (Poincaré) proved integrability of the planar N = 3
case. Since then, many results were obtained, on various domains, on integrability,
equilibrium solutions, and relative equilibrium solutions; for an overview see the
survey by Aref [1] and the monograph by Newton [37].

The purpose of this paper is to advocate symplectic reduction theory—an underused
tool in dynamical systems—as a universal framework for proving integrability results
of point-vortex dynamics (and variations thereof) on two-dimensional manifolds. That
symplectic reduction theory can be used to obtain integrability results was already
stressed in the paper by Marsden and Weinstein [28]. Indeed, concerning the planar
case they say: “For N = 3 one can check that the motion is (completely) integrable in
the sense that the (non-abelian) reduced phase spaces are points”. They then go on to
say: “However one can also see that the dynamics of 3 point-vortices is (completely)
integrable by exhibiting 3 independent integrals in involution…” In the literature since,
mostly the secondmethod—tofind enoughfirst integrals in involution—has been used.
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Kimura [20], in particular, used this method to prove integrability of the N = 3 case on
any surface of constant curvature. However, in many ways, the symplectic reduction
approach is more fundamental, as it starts from only the Hamiltonian structure and
the symmetries.

Concerning N = 4, Ziglin [46] gave the earliest results on non-integrability. A few
years later Marsden andWeinstein [28] said: “The motion of four vortices is generally
believed to be chaotic.” Today, we know that N = 4 is a border-liner: depending
on the geometry of the domain, and on other conditions such as total circulation or
momentum, the N = 4 case may be integrable. For example, Eckhardt [10] showed
that the planar case yields integrable dynamicswhen restricted to the subset of solutions
with vanishing total circulation and momentum. More recently, Sakajo [42] showed
that the N = 4 case on the sphere with vanishing total linear momentum is integrable.
The proofs of these results are based on explicit calculations in specific coordinates.
A main point of our paper is to show that the same results quickly fall out from the
symplectic reduction framework essentially without any calculations.

We remark that there is also another approach to integrability for point-vortex
dynamics, based on noncommutative integrability where the integrals of motion form
a Lie algebra [5,6]. It is possible that the symplectic reduction approach considered
here and the noncommutative integrability approach are two viewpoints of the same
theory. However, such a connection is not investigated here.

Our motivation for questions of integrability of point-vortex dynamics originates
from recent numerical results for 2D Euler equations indicating that integrability of
point-vortex dynamics, rather than prevailing statistical mechanics based theories, is
central for predicting the long-time behaviour of solutions [34].

The paper is organized as follows. In Sect. 2, we describe, in more detail, the
point-vortex equations and their Hamiltonian structures on the sphere, the plane, the
hyperbolic plane, and the flat torus. Integrability results are given in Sect. 3. A brief
review of symplectic reduction theory is given in Sect. 4. In Sect. 5, we prove the inte-
grability results using symplectic reduction.A summaryof the knownnon-integrability
results are given in Sect. 6. Thereafter, Sect. 7 contains an outline of the connection
between long-time behaviour of 2D Euler equations and point-vortex integrability.
Finally, in Appendix A, we provide a gallery of point-vortex solutions—a sort of
‘visual summary’ of the paper.

2 Point-Vortex Equations and Their Conservation Laws

In this section, we give more detailed presentations of point-vortex dynamics in four
specific cases: the sphere S

2, the plane R
2, the hyperbolic plane H

2, and the flat
torus T

2 = R
2/Z

2. From the point of view of symplectic reduction, these cases
correspond to different structures of the symmetry group: compact non-Abelian, semi-
direct product, non-compact but semi-simple, and Abelian. These structures illustrate
well the different scenarios that can occur in symplectic reduction, as we shall see in
Sect. 4 below.
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2.1 The Sphere

Consider the sphereS
2 embedded in Euclidean 3-space as the subset of unitary vectors.

The standard area form equips S
2 with a symplectic structure, denoted �S2 . The

corresponding Poisson bracket is

{F,G}(r) = (∇F × ∇G) · r.

Wemay think of∇F and∇G as the intrinsic Riemannian gradients on S
2, but equally

well as Euclidean gradients for extensions of F andG to a neighbourhood of S
2 inR

3;
the parts of ∇F and ∇G not orthogonal to S

2 are cancelled out in the triple product.
The phase space of N point-vortices on S

2 is given by

PN
S2

= {(r1, . . . , rN ) ∈ (S2)N | ri �= r j for i �= j},

equipped with the direct product symplectic structure

�N (u,w) =
N∑

i=1

�i�S2(ui ,wi ),

where as before,�i should be interpreted as the vortex strengths andu andw are tangent
vectors of PN

S2
. The equations of motion for a Hamiltonian H = H(r1, . . . , rN ) are

then given by

ṙi = 1

�i
ri × ∇ri H

︸ ︷︷ ︸
XH

, (2)

where XH is called theHamiltonian vector field. Notice that, for any choice of Hamil-
tonian, the right hand side is tangent to S

2 so the dynamics evolves on (S2)N . Since
the Green’s function on S

2 is given by G(r, r′) = − 1
4π log(1 − r · r′), the specific

Hamiltonian corresponding to point-vortex dynamics is

H(r1, . . . , rN ) = − 1

4π

∑

i �= j

�i� j log(1 − ri · r j ), (3)

which leads to the point-vortex equations on the sphere

ṙi = 1

2π

∑

i �= j

� j
ri × r j

1 − ri · r j . (4)
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Let us now turn to the symmetries for the system (4). Clearly, the Hamiltonian (3)
is invariant under the diagonal action of SO(3) on PN

S2
. That is, if R ∈ SO(3) then

H(Rr1, . . . , RrN ) = H(r1, . . . , rN ).

Furthermore, this action preserves the symplectic form �N (since it is isometric and,
therefore, preserves the area form on each sphere). By the Hamiltonian version of
Nöther’s theorem (cf. [27, Thm. 11.4.1]) the symmetry, together with the fact that
the action is symplectic, leads to a conservation law stated in terms of the momentum
map associated with the action of SO(3) on PN

S2
. Recall that the momentum map

J : PN
S2

→ so(3)∗ is defined by the condition that, for any ξ ∈ so(3), the Hamiltonian
vector field

X〈J(·),ξ〉(r1, . . . , rN ) = 1

�i
ri × ∇ri 〈J(r1, . . . , rN ), ξ 〉 (5)

corresponds to the infinitesimal action of ξ on PN
S2
. If we identify so(3) with R

3 via
the usual hat map (cf. [27, Eq. 9.2.7]), then the infinitesimal action is given by

ξ · (r1, . . . , rN ) = (ξ × r1, . . . , ξ × rN ), (6)

i.e., infinitesimal rotation of each ri about the axis ξ . From (2) it follows that if

〈J(r1, . . . , rN ), ξ 〉 =
N∑

i=1

�iri · ξ

then the right hand side of (5) equal that of (6). Thus, identifying so(3)∗ with R
3 via

the Euclidean inner product, we get

J(r1, . . . , rN ) =
N∑

i=1

�iri . (7)

From Nöther’s theorem, it follows that the three components of J, called total linear
momentum, are conserved for the point-vortex flow (4), or, more generally, for any
SO(3)-invariant Hamiltonian flow on PN

S2
.

We now come to a property of momentum maps that is central in the symplectic
reduction framework, namely equivariance. A momentum map is called equivariant
if it commutes with the symplectic action of the underlying symmetry group. Thus,
the momentum map J : PN

S2
→ so(3)∗ is equivariant if

Ad∗
R J(r1, . . . , rN ) = J(Rr1, . . . , RrN ) ∀ R ∈ SO(3),

where Ad∗
R is the coadjoint action, here defined as matrix-vector multiplication. It is

easy to check that this condition is fulfilled, so the momentum map J on PN
S2

is indeed
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equivariant. A general result states that if the symmetry group is semi-simple, then an
equivariant momentum map always exists. In the next section, however, we encounter
a symplectic action that does not have an equivariant momentum map, which has
consequences for the symplectic reduction.

2.2 The Plane

Consider now the Euclidean plane R
2, with standard coordinates r = (x, y). The

canonical symplectic structure is �R2 ≡ dx ∧ dy, which gives the Poisson bracket

{F,G}(r) = ∇F · ∇⊥G,

where ∇ is the standard gradient operator and ∇⊥ is the skew-gradient: ∇⊥G =
(∂yG,−∂xG). The phase space of N point-vortices on R

2 is given by

PN
R2 = {(r1, . . . , rN ) ∈ (R2)N | ri �= r j for i �= j},

equipped with the scaled direct product symplectic structure

�N (u,w) =
N∑

i=1

�i�R2(ui ,wi ).

The equations of motion for a Hamiltonian H = H(r1, . . . , rN ) are the set of scaled
canonical Hamiltonian equations

ṙi = 1

�i
∇⊥
ri H . (8)

Since the Green’s function for the Laplacian on R
2 is G(r, r′) = − 1

4π log(|r − r′|2),
the Hamiltonian for point-vortex dynamics is

H(r1, . . . , rN ) = − 1

4π

∑

i �= j

�i� j log(|ri − r j |2). (9)

From (8), it follows that the corresponding point-vortex equations on the plane are

ẋi = − 1

2π

∑

i �= j

� j
yi − y j

|ri − r j |2

ẏi = 1

2π

∑

i �= j

� j
xi − x j

|ri − r j |2 .

(10)
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Concerning the symmetries of the equations (10), it is clear that the Hamiltonian
(9) is invariant to the diagonal action of the Euclidean group SO(2) � R

2. We recall
that the semidirect group product is defined as:

(R1,u1) · (R2,u2) = (R1R2,u1 + R1u2)

for R1, R2 ∈ SO(2) and u1,u2 ∈ R
2 and the action of SO(2) � R

2 on R
2 is:

(R,u) · r = Rr + u,

for R ∈ SO(2) and u, r ∈ R
2. The action of the Euclidean group is clearly symplectic,

being area-preserving. Therefore, we get the following momentum map J : PN
R2 →

(so(2) � R
2)∗:

J(r1, . . . , rN ) =
(
1

2

N∑

i=1

�i |ri |2,
N∑

i=1

�iri

)
, (11)

whose first component is the total angular momentum, and the second component
contains the total linearmomenta. However, themomentummap (11) is not, in general,
equivariant; the condition for equivariance is that the total circulation vanishes, i.e.,∑

i �i = 0. In fact, the coadjoint action of SO(2) � R
2 on (so(2) � R

2)∗ is:

(R,u) · (ξ,w) = (ξ + u�(Rw), Rw)

for (R,u) ∈ SO(2) � R
2 and (ξ,w) ∈ (so(2) � R

2)∗ (see [26, ch. 4.2]). Therefore,

Ad∗
(R,u)(J(r1, . . . , rN )) =

(
1

2

N∑

i=1

�i |ri |2 + u�
(

N∑

i=1

�i Rri

)
,

N∑

i=1

�i Rri

)

and

J((R,u) · r1, . . . , (R,u) · rN ) =
(
1

2

N∑

i=1

�i |ri |2 + u�
(

N∑

i=1

�i Rri

)

+1

2

(
N∑

i=1

�i

)
|u|2,

N∑

i=1

�i Rri +
(

N∑

i=1

�i

)
u

)

Hence, to satisfy the equivariance condition:

Ad∗
(R,u)(J(r1, . . . , rN )) = J((R,u) · r1, . . . , (R,u) · rN ) ∀ (R,u) ∈ SO(2) � R

2.

we must have that the total circulation is zero, i.e.,
∑

i �i = 0.
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To construct a momentum maps that is always equivariant, we shall explore a less
obvious symmetry of equations (10). Consider the group G ⊂ GL(2N , R) generated
by the infinitesimal generators ξ, η defined by

ξ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �1 0 �2 . . . 0 �N

−�1 0 −�2 0 . . . −�N 0
0 �1 0 �2 . . . 0 �N

−�1 0 −�2 0 . . . −�N 0
...

...
...

...
...

...
...

0 �1 0 �2 . . . 0 �N

−�1 0 −�2 0 . . . −�N 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

η =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
0 0 0 1 . . . 0 0
0 0 −1 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 1
0 0 0 0 . . . −1 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We notice that η is the infinitesimal generator of SO(2) and ξ is the infinitesimal
generator of a 1-dimensional group K . The symplectic form �N on R

2N has the
following representation in matrix form:

�N =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 �1 0 0 . . . 0 0
−�1 0 0 0 . . . 0 0
0 0 0 �2 . . . 0 0
0 0 −�2 0 . . . 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . 0 �N

0 0 0 0 . . . −�N 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is straightforward to check that [ξ, η] = 0,�N ξ +ξ��N = 0 and�Nη+η��N =
0. Therefore, G = SO(2) × K is Abelian and the action of G on R

2N is symplectic.
The action of G has momentum map L : PN

R2 → so(2)∗ ⊕ k∗:

L(r1, . . . , rN ) = 1

2

(
N∑

i=1

�i |ri |2,
∣∣∣

N∑

i=1

�iri
∣∣∣
2
)

.

It is straightforward to check that L is an equivariant momentum map. Indeed, on
one hand, SO(2) acts as a diagonal isometry of PN

R2 , and therefore, it preserves the
Euclidean norms. On the other hand, for the action of K on L, we get:

d

dt

∣∣∣∣
t=0

L(exp(tξ)(r1, . . . , rN ))

=
⎛

⎝
(

N∑

i=1

�iri

)⊥
·
(

N∑

i=1

�iri

)
,

(
N∑

i=1

�i

) (
N∑

i=1

�iri

)⊥
·
(

N∑

i=1

�iri

)⎞

⎠ = 0.

Hence, since SO(2) × K is Abelian, the momentum map L is equivariant.
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Remark 1 The geometric interpretation of the one-parameter group K acting on
(r1, . . . , rN ) is the following. First, if the total linear momentum L vanishes, then K
acts as the identity. Second, denote by � = ∑

i �i the total circulation. If L �= 0, then
K rotates synchronously the point vortices (r1, . . . , rN ) in circles of radius r = |L|

�

and with centres Ci which satisfy Ci + L
�

= ri . If the total circulation vanishes, i.e.,
� = 0, then the radius becomes infinite and the motion is along straight lines.

2.3 The Hyperbolic Plane

Consider the hyperbolic plane model H2 = {(x, y, z) ∈ R
3|z2 − x2 − y2 = 1, z > 0},

with Riemannian structure induced by the bilinear form on R
3:

a ·L b = a · (Lb),

for any a,b ∈ R
3 and L = diag(−1,−1, 1). As on the sphere, the volume form onH

2

defines a symplectic structure �H2 . Defining a ×L b := L(a × b), the corresponding
symplectic form is given by

�H2(c)(a,b) = c ·L (a ×L b).

The phase space of N point-vortices on H
2 is given by

PN
H2 = {(r1, . . . , rN ) ∈ (H2)N | ri �= r j for i �= j},

equipped with the so-called direct product symplectic structure

�N (u,w) =
N∑

i=1

�i�H2(ui ,wi ),

with �i as before and u, w tangent vectors of PN
H2 . The equations of motion for a

Hamiltonian H = H(r1, . . . , rN ) are

ṙi = 1

�i
ri ×L ∇ri H . (12)

For point-vortices, the Hamiltonian is

H = − 1

4π

∑

i �= j

�i� j log

(
ri ·L r j + 1

ri ·L r j − 1

)
.

which gives the point-vortex equations on the hyperbolic plane [15,16,36]

ṙi = − 1

π

∑

i �= j

� j
ri ×L r j

(ri ·L r j )2 − 1
. (13)
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These equations constitute a Lie–Poisson system on (sl(2, R)∗)N � (R3,×L)N .
Equations (13) constrain the vortices to the hyperboloid x2 + y2 − z2 = −1. Fur-
thermore, the SL(2, R) symmetry of (13) gives, analogously to S

2, the equivariant
momentum map

J(r1, . . . , rN ) =
N∑

i=1

�iri .

For further background on point-vortices on the hyperbolic plane, see [15,16,36]. For
hydrodynamics on the hyperbolic plane, see [17].

2.4 The Flat Torus

The easiest way to work with the flat torus R
2/Z

2 is to extend everything to R
2 and

then assure that all operations and equations are 2π -periodic in both directions. Thus,
with definitions as in subsection 2.2, the Hamiltonian for point-vortex dynamics on
the flat torus, expanded to a Hamiltonian on the plane, is given by

H(r1, . . . , rN ) = − 1

4π

∑

i �= j

�i� j h(xi − x j , yi − y j ), (14)

where h(x, y) = − x2

2π
+∑+∞

m=−∞ log

(
cosh(x − 2πm) − cos(y)

cosh(2πm)

)
. The correspond-

ing equations of motion (cf. [45]) are

ẋi = − 1
2π

∑
i �= j

∑+∞
m=−∞ � j

sin(yi−y j )
cosh(xi−x j−2πm)−cos(yi−y j )

ẏi = 1
2π

∑
i �= j

∑+∞
m=−∞ � j

sinh(xi−x j )
cosh(yi−y j−2πm)−cos(xi−x j )

− xi−x j
π

.
(15)

These equations are (equivalent to) the point-vortex equation on a flat torus, as
explained in the following remark.

Remark 2 The equations (15) can be derived in two ways. The first, proposed in [45],
starts froma 2π -periodic distribution of vortices in the point-vortex equation onR

2 and
sums up the infinite number of contributions given by the different vortices, obtaining
in the limit a well defined vector field for the right hand side in (15). As shown in
[45], this vector field is 2π -periodic. Therefore, it can be seen as a vector field on T

2.
The second way consist of explicitly calculate the Green’s function of the Laplacian
on a flat two-torus. The calculations given in [24] confirm the equivalence of the two
approaches, and the description of the Green’s function in terms of the First Jacobi
Theta function guarantees the smoothness of the vector field on PN

R2 . We stress that
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this equivalence is crucial in the analysis of the equations (15). In fact, on one hand,
we have that the two-torus has non-trivial first de Rham cohomology, whereas on the
other hand forR

2 the cohomology is trivial, and so for any infinitesimal symmetry, we
get a conservation law. In particular, we get two more first integrals as stated below.

The Hamiltonian (14) is invariant with respect to the diagonal action of R
2. Since

this action is symplectic, we get the (linear) momentum map

J(r1, . . . , rN ) =
N∑

i=1

�iri . (16)

As noticed in remark 2, it is convenient to consider the point-vortex equations in R
2

according to the Hamiltonian (14). In this setting, the R
2 action on R

2 is free and
proper, being the map R in Definition 5 invertible. However, the momentum map (16)
is in general not equivariant. In fact, since R

2 is an Abelian group, the Ad operator
is the identity. Hence, the equivariance equation Ad∗

g−1 ◦μ = μ ◦ ρg implies that
μ = μ ◦ ρg . We notice that this is true only if the circulation is zero, i.e., �1 +
· · · + �N = 0. Moreover, since R

2 is neither compact nor semisimple, Theorem [27,
Thm 11.5.2] cannot be applied to get a modified equivariant momentum map. We
notice that considering the point-vortex equation directly on the flat two-torus and the
action of U (1)2 instead of R

2 would have in principle guarantee the equivariance of
the momentum map, but the non-trivial first group of De Rham cohomology of the
two-torus would have prevent the existence of the momentum map itself.

3 Integrability Results

In this section, we state results on integrability for the point-vortex equations presented
in the previous section. As we shall see in the sections below, all of these results,
which are valid not just for the point-vortex equations but for all invariant Hamiltonian
systems on the respective phase spaces, follow directly from the symplectic reduction
framework.Most of the results are known since before; the point here is to demonstrate
how the results naturally fall out from symplectic reduction in a purely geometric way.
In particular, symplectic reduction gives a clear geometric understanding for why the
vanishing momentum and circulation cases are structurally different from the non-
vanishing cases.

Before proceeding to the specific manifolds S
2, R

2, H
2, and T

2, we recall the
following general definition:

Definition 1 Let P be a phase space manifold for a dynamical system and assume that
P is acted upon by a Lie group G. A solution t �→ r(t) ∈ P is called a G-relative
equilibrium if there exists an r0 ∈ P and ξ ∈ g such that r(t) = exp(tξ) · r0.
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3.1 The Sphere

Integrability of the point-vortex equations (4) for N = 3 is given by Sakajo [41].
The proof is based on specific coordinates for which one finds three first integrals
in involution. Eight years later Sakajo [42] also proved integrability of the vanishing
momentum N = 4 case, essentially by reducing it to the N = 3 case. See also the
work by Borisov et al. [7].

Theorem 1 (S2 with non-vanishing momentum) Consider Hamilton’s equations (2)
on PN

S2
for an SO(3) invariant Hamiltonian, restricted to the part of phase space with

non-vanishing total linear momentum

{(r1, . . . , rN ) ∈ PN
S2

| J(r1, . . . , rN ) �= 0}.

• If N = 2 all solution are relative equilibria for the SO(2)-action, the isotropy
group of the momentum J.

• If N = 3 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (4) on PN
S2
.

Theorem 2 (S2 with vanishing momentum)] Consider Hamilton’s equations (2) on
PN
S2

for an SO(3) invariant Hamiltonian, restricted to the part of phase space with
vanishing total linear momentum

{(r1, . . . , rN ) ∈ PN
S2

| J(r1, . . . , rN ) = 0}. (17)

• If N = 2 all solutions are equilibria of antipodal points.
• If N = 3 all solution are relative equilibria for the SO(3)-action.
• If N = 4 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (4) on PN
S2
.

3.2 The Plane

Integrability of point-vortices in the plane were the first to be studied. Early results for
N = 3 were given by Gröbli [12] and by Poincaré [39]. The N = 4 result was given
by Eckhardt [10].

Theorem 3 (R2 with non-vanishing circulation or momentum) Consider Hamilton’s
equations (8) on PN

R2 for an SO(2) × K invariant Hamiltonian, restricted to the case
of non-vanishing circulation
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∑N
i=1 �i �= 0

or restricted to the part of phase space with non-vanishing total linear momentum

∑N
i=1 �iri �= 0.

• If N = 2 and
∑

i �i �= 0 (non-vanishing circulation), then the solutions are
SO(2) × K relative equilibria.

• If N = 2 and
∑

i �i = 0 (vanishing circulation), then the solutions areR
2-relative

equilibria (travelling vortex dipoles).
• If N = 3 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (10) on PN
R2 .

Theorem 4 (R2 with vanishing circulation and momentum) Consider Hamilton’s
equations (8) on PN

R2 for an SO(2) � R
2 invariant Hamiltonian, restricted to case

of vanishing circulation and total linear momentum:

N∑

i=1

�i = 0,
N∑

i=1

�iri = 0.

• If N = 2, the point-vortex equation (10) is not defined.
• If N = 3 all solutions are SO(2) � R

2 relative equilibria.
• If N = 4 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (10) on PN
R2 .

3.3 The Hyperbolic Plane

Integrability results on the hyperbolic plane reflect the results on the sphere, as from
a symplectic reduction point of view, the two settings are almost the same, with an
equivariant momentum map for a semi-simple three-dimensional symmetry group.

Theorem 5 (H2 with non-vanishing momentum) Consider Hamilton’s equations (12)
on PN

S2
for an SL(2) invariant Hamiltonian, restricted to the part of phase space with

non-vanishing total linear momentum

{(r1, . . . , rN ) ∈ PN
H2 | J(r1, . . . , rN ) �= 0}.

• If N = 2 all solution are relative equilibria for the action of the isotropy subgroup
of the momentum J.

• If N = 3 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (13) on PN
H2 .
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Theorem 6 (H2 with vanishing momentum) Consider the point-vortex equation (13)
restricted to the part of phase space with vanishing total linear momentum

{(r1, . . . , rN ) ∈ PN
H2 | J(r1, . . . , rN ) = 0}.

• If N = 2 the point-vortex equation (13) is not defined.
• If N = 3 all solution are relative equilibria for the SL(2)-action.
• If N = 4 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (13) on PN
H2 .

3.4 The Flat Torus

Integrability results for point-vortex dynamics on the flat torus were given by Stremler
and Aref [43], in the case of zero total circulation, and Kilin and Artemova [19]. As
they do, we take here the view-point that the phase space is embedded as periodic
solutions in PN

R2 .

Theorem 7 (T2 with non-vanishing circulation) Consider Hamilton’s equations (8)
on PN

R2 for an R
2 invariant Hamiltonian, restricted to the case of non-vanishing cir-

culation:

N∑

i=1

�i �= 0.

• If N = 2 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (15) on PN
T2 .

Theorem 8 (T2 with vanishing circulation)Consider Hamilton’s equations (8) on PN
R2

for an R
2 invariant Hamiltonian, restricted to the case of vanishing circulation

N∑

i=1

�i = 0.

• If N = 2 all solutions are R
2-relative equilibria.

• If N = 3 the system is completely integrable (but solutions are typically not relative
equilibria).

In particular, these results are valid for the point-vortex equations (15) on PN
T2 .
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4 Symplectic Reduction Theory

Toprove the theorems stated inSect. 3,weneed to recall somedefinitions andnotations.
We will denote in the following the smooth action of a Lie group G on a manifold M
with:

ρ : G × M → M

ρ(g, p) =: ρg(p) =: g · p,

for each g ∈ G, p ∈ M .

Definition 2 (Symplectic action) Let G be a Lie group acting on a smooth symplectic
manifold (M, ω). Then the action of G is said to be symplectic if ρ∗

gω = ω, for every
g ∈ G.

Definition 3 (Momentum map) Let G be a Lie group and g its Lie algebra. Assume
that G acts symplectically on a smooth symplectic manifold (M, ω) and that ξp :=
deρexp(ξ)(p), for every p ∈ M , is its inifinitesimal action. Then a map μ : M → g∗,
fulfilling

d〈μ(p), ξ 〉 = ιξpω,

is called a momentum map.

When G is compact, and a momentum map exists, it can always be chosen to satisfy
the equivariance identity:

〈μ(p), [ξ, η]〉 = {〈μ(p), ξ 〉, 〈μ(p), η〉},

for ξ, η ∈ g and p ∈ M , where the bracket {·, ·} is the Poisson bracket on M . In this
case the Lie group action will be said to beHamiltonian. A crucial fact on momentum
maps is that they are conserved quantities for Hamiltonian systems with symmetries.

Theorem 9 [27] Let M be a smooth symplectic manifold and let G be a Lie group
with Hamiltonian action on it and momentum map μ : M → g∗. Let H : M → R be
a smooth function such that, for each g ∈ G, x ∈ M, H(g · x) = H(x). Then, if φH

t
is the flow of the Hamiltonian vector field XH , we have that (φH

t )∗μ = μ, for each
t ≥ 0.

Let us now continue defining some properties of the group actions.

Definition 4 (Free action) Let G be a Lie group acting on a smooth manifold M . Then
the action of G is said to be free if, for each x ∈ M , g · x = x implies g = e.

Definition 5 (Proper action) Let G be a Lie group acting on a smooth manifold M .
Then the action of G is said to be proper if the map R : G × M → M × M ,
R(g, p) = (ρg(p), p) is a proper map of topological spaces.
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Definition 6 (Isotropy subgroup) Let G be a Lie group acting on a smooth manifold
M . Then the set:

Gp = {g ∈ G | g · p = p}

is a Lie subgroup of G called isotropy subgroup.

Let us now recall the symplectic reduction theorem:

Theorem 10 (Symplectic reduction theorem, cf. [26]) Let G be a Lie group with
Hamiltonian free and proper action on a smooth symplectic manifold (M, ω) and
let μ : M → g∗ be an equivariant momentum map with respect to this action. Then,
for each φ ∈ g∗, the quotient:

Jφ := μ−1(φ)/Gφ

is a symplectic manifold of dimension d := dim(M) − 2 dim(Gφ), with symplectic
form ωφ uniquely characterized by

π∗ωφ = ι∗ω,

where π : μ−1(φ) → μ−1(φ)/Gφ is the projection and ι : μ−1(φ) → M is the
inclusion.

5 Proofs by Symplectic Reduction

In this section we prove the results stated in Sect. 3. All of our proofs are based on the
symplectic reduction Theorem 10, which makes them very streamlined. Essentially,
the proofs consist in checking that the action is free and proper, that the momentum
map is equivariant, and then counting the dimensions of the reduced phase space.

5.1 The Sphere

For the sphere, the SO(3) action on PN
S2

is free for any N ≥ 3 and for N = 2 if the
points are not antipodal. It is also proper since SO(3) is compact. Furthermore, the
momentum map (7) is equivariant, as one can directly check.

Proof of Theorem 1 For N = 2, the SO(3) action is free, unless the two vortices are
antipodal, which from (4) implies that solutions are equilibria. Hence, Theorem 10
tells us that systems evolves on a zero-dimensional manifold, since Gφ � SO(2).
Thus, the reconstructed motion is an SO(3) relative equilibrium, i.e., a steady rotation
of the initial positions.

For N = 3, the SO(3) action is always free and Theorem 10 tells us that the
system evolves on a two-dimensional manifold. Any Hamiltonian system on a two-
dimensional manifold is integrable, so the reconstructed system is also integrable, as
follows, for example, from the standard Floquet theory (cf. [33, Proof of thm 3.1]). ��
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Proof of Theorem 2 For N = 2, the vanishing momentum condition (17) implies that
r1, r2 are antipodal points with equal strength. From (4) it follows directly that solu-
tions are equilibria.

For N = 3, the SO(3) action is free and Theorem 10 tells us that the reduced system
evolves on a zero-dimensional manifold, so solutions are relative equilibria.

For N = 4, the SO(3) action is free and by Theorem 10 the system evolves on a
two-dimensional reduced manifold, so the dynamics is integrable. ��

5.2 The Plane

The action of SO(2) on PN
R2 is free for N = 1 unless r1 = 0. The action is always

free for N ≥ 2. The action of K is free and proper only under certain conditions, as
stated in the following lemmas.

Lemma 1 If
∑

�iri �= 0, the action ρ : K × PN
R2 → PN

R2 is free.

Proof Since K is one-dimensional, the action of K is non-free if and only if K has
fixed points. Let ξ be the infinitesimal generator of K , as defined in Sect. 2.2. Then,
the action ρ of K is free if and only if the kernel of ξ is trivial. It is straightforward to
check that the kernel of ξ is given by:

ker(ξ) = {(r1, . . . , rN ) ∈ PN
R2 |

∑
�iri = 0}.

Hence, under the non-vanishing linear momentum condition the action of K is free at
any time. ��
Since the linear momentum is a first integral of the Eq. (9), it follows from Lemma 1
that the K action is free provided that the linear momentum is non-vanishing for the
initial condition.

Lemma 2 If
∑

�i �= 0, the action ρ : K × PN
R2 → PN

R2 is proper.

Proof Let ξ be the infinitesimal generator of K , as defined in Sect. 2.2. Then, it is
straightforward to check that ξ has rank 2, for any N ≥ 1 and its non-zero eigenvalues
are purely imaginary and equal to ±i

∑
�i �= 0. Hence, the group K is bounded and

closed in the operator norm topology. Therefore, it is compact and so its action is
proper. ��
For N ≥ 2, the action of SO(2)� R

2 on PN
R2 is free and proper. Indeed, if R ∈ SO(2)

is not the identity, v ∈ R
2 and (p, q) ∈ P2

R2 , then Rp+ v = p and Rq + v = q imply
p = q, since R does not have real eigenvectors, and so the action is free. Moreover,
SO(2) is compact and the map R in Definition 5 forR

2-action has continuous inverse,
therefore, the semidirect product action is a composition of proper maps and so it is
proper.

Proof of Theorem 3 We divide the proof in two cases.
Case 1:

∑
i �i �= 0. Without loss of generality due to the translational invariance

of equations (9) and to the non-vanishing total circulation, we can assume that the
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linear momentum is non-zero. Then, Lemmas 1-2 ensure the SO(2)× K action is free
and proper, for any N ≥ 2.

For N = 2, Theorem 10 tells us that the reducedHamiltonian system has dimension
0, and therefore the motion is a SO(2) × K -relative equilibrium.

For N = 3, Theorem 10 with respect to the SO(2) × K action tells us that the
reduced Hamiltonian system has dimension 2, which implies that it is integrable.

Case 2:
∑

i �i = 0 If the circulation is zero, the linear momentum map due to
the action of R

2 is equivariant. Moreover, the R
2 action is always free and proper for

N ≥ 1.
For N = 2, Theorem 10 tells us that the reducedHamiltonian system has dimension

0 when N = 2. Therefore the motion can only be up to translations; this explains the
vortex dipole solutions.

For N = 3, Theorem 10 tells us that the reducedHamiltonian system has dimension
2, which implies that it is integrable. ��

Proof of Theorem 4 For N = 2, the zero-circulation and zero-momentum conditions
imply that r1 = r2, so the point-vortex equation 10 is not defined.

For N = 3, the SO(2)�R
2 the momentummap is equivariant, so Theorem 10 tells

us that the reduced systems evolves on a zero-dimensional manifold. Therefore, the
motion of the point-vortices is a SO(2) � R

2 relative equilibrium.
For N = 4, the SO(2)�R

2 the momentummap is equivariant, so Theorem 10 tells
us that the reduced systems evolves on a on a two-dimensional manifold. Integrability
then follows. ��

5.3 The Hyperbolic Plane

To get a free action for N ≥ 2, we need to restrict to PSL(2) ∼= SL(2)/{±1}. Further-
more, it is known that the action is proper [36].

Proof of Theorem 5 For N = 2, Theorem 10 tells us that systems evolves on a zero-
dimensional manifold, since Gφ is a one-dimensional Lie group (see [36]). Thus,
solutions are relative equilibria with respect to Möbius transformations.

For N = 3, Theorem 10 tells us that systems evolves on a two-dimensional mani-
fold, so the dynamics is integrable. ��

Proof of Theorem 6 For N = 2, the zero momentum condition (17) implies that r1, r2
lie on common line through the origin. Hence, r1 = r2 and so the equations (13) are
not defined.

For N = 3, the PSL(2) action is free and Theorem 10 tells us that systems evolves
on a zero-dimensional manifold. Thus, solutions are relative equilibria with respect to
Möbius transformations.

For N = 4, the PSL(2) action is free and Theorem 10 tells us that systems evolves
on a two-dimensional manifold, so the dynamics is integrable. ��
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5.4 The Flat Torus

The action of R
2 on T

2 is not free, but as we have seen in Sect. 2, we understand the
point-vortex equations on T

2 as a special case of the point-vortex dynamics on R
2.

Therefore, the action of R
2 on itself via translations is free and proper. We can also

consider the action of the group K , as defined in Sect. 2.2. Since its momentum map
only depends on the conservation of the R

2 momentum map, K is a symmetry also of
any translational invariant Hamiltonian on the torus.

Proof of Theorem 7 For N = 2, without loss of generality due to the translational
invariance of equations (14) and to the non-vanishing total circulation, we can assume
that the linear momentum is non-zero. Then, Lemmas 1-2 ensure the K action is free
and proper. Therefore, Theorem 10 tells us that systems evolves on a two-dimensional
manifold, so the dynamics is integrable. ��

Proof of Theorem 8 For N = 2, the R
2 action is free and Theorem 10 tells us that

systems evolves on a zero-dimensional manifold. This means that the initial condition
can only be transformed via translations, which conserve the Hamiltonian.

For N = 3, the R
2 action is free and Theorem 10 tells us that systems evolves

on a two-dimensional manifold. By definition, any Hamiltonian system on a two-
dimensional manifold is integrable. ��

6 Non-integrability Results

In this section, we briefly summarize the results in literature on non-integrability of
point-vortex dynamics. Unlike the integrability results, which have been addressed
extensively, only the planar case has been fully analysed and completed. Some results
concern non-integrability for a restricted model of the point-vortex dynamics, defined
as follows:

Definition 7 The restricted problem of N point-vortices consists of a partition of the
vortices in two sets A and B, such that the vortices in A have non-zero strength and
do not interact with vortices in B, and the vortices in B have vorticity 0 ≤ ε � 1 and
interact with all the other vortices.

Theorem 11 (S2 with non-vanishingmomentum, [4])Consider the point-vortex equa-
tions (4) on PN

S2
, restricted to the part of phase space with non-vanishing total linear

momentum

{(r1, . . . , rN ) ∈ PN
S2

| J(r1, . . . , rN ) �= 0}.

• If N = 4, the restricted model with A of three identical vortices and B of one
single vortex with strength ε = 0 is non-integrable.
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Theorem 12 (R2 with non-vanishing circulation or momentum, [22,46,47]) Consider
Hamilton’s equations (10) on PN

R2 , either restricted to the case non-vanishing circu-
lation

N∑

i=1

�i �= 0

or restricted to the part of phase space with non-vanishing total momentum

N∑

i=1

�iri �= 0.

• If N = 4, there exist configurations of point-vortices for which the motion is
non-integrable.

• If N ≥ 5, there exist configurations of point-vortices for which the Arnold diffusion
occurs.

Regarding the flat torus, Kilin and Artemova [19] gave numerical evidence of non-
integrability for three point-vortices on T

2 with non-zero total circulation. Our
point-vortex gallery in Appendix A also indicate chaotic behaviour in this case. For
hyperbolic space, we have also conducted numerical simulations in Appendix A indi-
cating the same behaviour as for the sphere: chaotic behaviour for four point-vortices
with non-vanishing momentum. To the best of our knowledge there are yet no rigorous
non-integrability results available for the torus or the hyperbolic space.

7 Outlook: Long-Time Predictions for 2D Euler Equations

The prevailing theories for the long-time behaviour of the Euler equations (1) on a two-
dimensional manifold are those given by Miller [31] and by Robert and Sommeria
[40], here referred to as MRS. The MRS approach is a generalization of Onsager’s
[38] ideas, from discrete to continuous vorticity fields. These theories state that, in the
long-time limit, the vorticity field evolves towards a statewhere the entropy of a course-
grain probability distribution of macroscopic states is maximized under the constraint
of conservation of energy and Casimirs. Consequently, this leads to a course-grain
steady vorticity state, characterized by a functional dependence between vorticity and
stream function. For a survey of MRS and the statistical approach to 2D turbulence,
see the article by Bouchet and Venaille [8].

However, in a numerical study for 2D Euler equations on the sphere, Dritschel et al.
[9] gave results that contradict MRS theory, yielding, for randomly generated initial
conditions, a seemingly non-steady vortex blob configuration. The numerical method
used in [9] did not conserve Casimir functions, which raised questions of the reliability
since MRS theory is based on conservation of Casimirs. As a remedy, we develop in
[34] a Casimir preserving numerical method for Euler equations on the sphere that
captures all the features of 2D Euler equations: conservation of Casimirs, energy, and
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the Lie–Poisson structure. Using this methodwe obtain, again, strong evidence against
the MRS predictions, but now with a more reliable, structure preserving method.
Furthermore, we found a new mechanism that connects the long-time behaviour with
point-vortex integrability results. Here is a brief outline of how it works:

(1) As is well known in 2D turbulence, the inverse energy cascade, discovered by
Kraichnan [23], forces smaller vortex formations of the same sign to merge into
larger ones by vortex stretching, forming positive and negative vortex blobs.

(2) As long as the vortex blobs are not too close to each other, so they are not ripped
apart and merged, their dynamics are well described by point-vortex dynamics.
Theoretical results in this direction are given, for example, in the monograph by
Marchioro and Pulvirenti [25].

(3) The vortex merging continue, into fewer and larger vortex blobs, until the blob
dynamics become integrable, withwell separated vortex blob trajectories. Because
of quasi-periodicity, the vortex blobs are then ‘stuck’ in this part of phase space
and no further merging occurs.

(4) A prediction for the final number of vortex blobs N is thus given by integrability
results for point-vortex dynamics: for the given fluid configuration (in terms of
circulation, energy, momentum, etc.), find the largest N such that the dynamics is
integrable for N vortices, but non-integrable for N + 1 vortices.

For the Euler equations on the sphere, Casimir preserving numerical simulations with
randomly generated initial conditions, presented in [34], perfectly align with this
mechanism: if the total linear momentum is zero (or very small) we see the formation
of four vortex blobs interacting in a quasi-periodic, non-steady fashion reflecting the
results in Theorem 2 above. If the linear momentum is non-zero, we see the formation
of three vortex blobs, reflecting Theorem 1.We anticipate that the long-time behaviour
on other domains also shall be reflected in the corresponding point-vortex integrability
results, at least for the plane and the hyperbolic plane. (As we can see in the proofs
above, the flat torus is, from the symplectic reduction viewpoint, more complicated
than the other cases; the connection to the corresponding Euler equations is not direct.)

But of course, numerical simulations alone, even if they preserve all the underly-
ing structures, are not enough and must be accompanied with rigorous mathematical
analysis, attempting to prove the connection between integrability and the long-time
behaviour. We consider the paper at hand the first step in this direction.
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Appendix A: Gallery of point-vortex solutions

In this appendix we showcase typical point-vortex phase space trajectories for all of
the investigated geometries: the sphere, the plane, the hyperbolic plane, and the flat
torus. The results verify the integrability results in the theorems above: if conditions
for integrability (or relative equilibria) are fulfilled, then beautiful, quasi-periodic
patterns emerge. Interestingly, our gallery of point-vortex trajectories also indicate
that the symplectic reduction approach to integrability is sharp in the following sense:
in all tested cases where symplectic reduction could not be used to prove integrability,
the resulting trajectories appear to be chaotic. This leads us to a conjecture about
non-integrability. Before that, we explain how to compute the trajectories and we give
some specific comments on the results.

Initial conditions are generated randomly; for the compact domains they are drawn
from the uniform distribution (with respect to the underlying Riemannian volume
form). For the plane, we use the multivariate Gaussian distribution with zero mean and
unit variance. The vortex strengths are randomly generated from independent normal

(a) 3 point-vortices, vanishing momentum.
Solutions are relative equilibria.

(b) 3 point-vortices, non-vanishing momen-
tum. Solutions are integrable.

(c) 4 point-vortices, vanishing momentum.
Solutions are integrable.

(d) 4 point-vortices, non-vanishing momen-
tum. Chaotic behaviour.

Fig. 1 (sphere) Trajectories of typical 3 or 4 point-vortex solutions on the sphere, for vanishing and non-
vanishing momentum. Each color represents one point-vortex trajectory. The trajectories are visualized
using spherical coordinates. The results align with the results in Theorem 2 and Theorem 1; the trajectories
are quasi-periodic in the situations where symplectic reduction can be used to prove integrability, and they
are chaotic whenever symplectic reduction does not predict integrability
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(a) 3 point-vortices. Solutions are integrable. (b) 4 point-vortices, vanishing momentum
and circulation. Solutions are integrable.

(c) 4 point-vortices, non-vanishing momen-
tum and vanishing circulation. Chaotic be-
haviour.

(d) 4 point-vortices, vanishing momentum
and non-vanishing circulation. Chaotic be-
haviour.

Fig. 2 (plane) Trajectories of typical 3 or 4 point-vortex solutions on the plane, for vanishing and non-
vanishing momentum and circulation. Each color represents one point-vortex trajectory. The results align
with the results in Theorems 4 and 3; the trajectories are quasi-periodic in the situations where symplectic
reduction can be used to prove integrability, and they are chaotic whenever symplectic reduction does not
predict integrability

distributions. For initial conditions with constraints, such as vanishing momentum or
circulation, we use orthogonal projection.

To compute the trajectoriesweuse numerical integrationmethods. For the spherewe
use the spherical midpoint method [29,30]. For the flat geometries, we use the implicit
midpoint method (cf. [13]). For the hyperbolic plane, we use the hyperbolic midpoint
method [44] (see also [35]). All these methods are second order approximations of
the exact flow map.
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(a) 3 point-vortices, vanishing momentum.
Solutions are relative equilibria.

(b) 3 point-vortices, non-vanishing momen-
tum. Solutions are integrable.

(c) 4 point-vortices, vanishing momentum.
Solutions are integrable.

(d) 4 point-vortices, non-vanishing momen-
tum. Chaotic behaviour.

Fig. 3 (hyperbolic plane)Trajectories of typical 3 or 4 point-vortex solutions on the hyperbolic plane, for
vanishing and non-vanishing momentum and circulation. The trajectories are visualized using the Poincaré
diskmodel. Each color represents one point-vortex trajectory. The results alignwith the results inTheorems 6
and 5; the trajectories are quasi-periodic in the situations where symplectic reduction can be used to prove
integrability, and they are chaotic whenever symplectic reduction does not predict integrability

Of course, the numerical discretizations introduce errors, so the computed trajec-
tories are not true point-vortex trajectories. One can argue that they therefore might
not display the correct qualitative behaviour (such as quasi-periodic versus chaotic
behaviour). For general numerical methods this is a sound consideration. Here, how-
ever, the numerical methods we use are specifically chosen to uphold the qualitative
feature. Indeed, all the methods we use are symplectic (with respect to the underly-
ing symplectic structure) and furthermore equivariant (with respect to the underlying
invariance group). Since the methods are symplectic, one can utilize the framework of
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(a) 2 point-vortices, vanishing circulation.
Solutions are relative equilibria.

(b) 2 point-vortices, non-vanishing circula-
tion. Solutions are integrable.

(c) 3 point-vortices, vanishing circulation.
Solutions are integrable.

(d) 3 point-vortices, non-vanishing circula-
tion. Chaotic behaviour.

Fig. 4 (flat torus) Trajectories of typical 2 or 3 point-vortex solutions on the flat torus, for vanishing and
non-vanishing circulation. Each color represents one point-vortex trajectory. Notice that solution trajectories
are doubly periodic over the boundaries. The results align with the results in Theorems 8 and 7; the
trajectories are quasi-periodic in the situationswhere symplectic reduction can be used to prove integrability,
and they are chaotic whenever symplectic reduction does not predict integrability

backward error analysis (cf. [13]) to prove that the discretized flow corresponds, for
exponentially long-time intervals, to the exact flow of a slightly modified Hamiltonian
system. Furthermore, since the methods are equivariant, the modified Hamiltonian
function is going to be invariant. Thus, since the integrability Theorems 1–8 above
are valid not just for the Hamiltonian corresponding to point-vortex dynamics, but
for any invariant Hamiltonian, we conclude that the theorems are valid also for the
modified Hamiltonian systems yielding the computed trajectories, independent of the
magnitude of the numerical errors.
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For each of the settings in the theorems (vanishing momentum, non-vanishing
momentum, etc.), we generated several trajectories for each geometry. To check the
sharpness of our integrability results, we also computed solutions for the simplest
possible setting for which the appropriate theorem do not apply. The typical behaviour
is illustrated in Figs. 1, 2, 3 and 4; this is our gallery of point vortex solutions.

For the sphere, in Fig. 1, we obtain quasi-periodic or relative equilibria solution
in accordance with Theorems 1–2. For 4 point-vortices with non-vanishing momen-
tum the behaviour is chaotic; a typical example is shown in Fig. 1d. Also for the
plane, in Fig. 2, we see quasi-periodic solutions whenever Theorems 4–3 apply. Recall
that integrability for the planar 4 point-vortex solutions depend on two conditions:
both momentum and circulation have to vanish. If either of these conditions are not
fulfilled, the trajectories become chaotic; typical examples are shown in Fig. 2c, d.
Interestingly, from the point-of-view of symplectic reduction, the non-vanishing of
momentum and circulation corresponds to two different violations of the conditions
needed: non-vanishing momentum implies that the symmetry group is too small to
obtain integrability, whereas non-vanishing circulation implies that the momentum
map is not equivariant (which is a condition in Theorem 10). Similarly, in Fig. 3 for
the hyperbolic plane, and in Fig. 4 for the flat torus, we observe the behaviour pre-
dicted by the corresponding integrability theorem, and whenever the conditions are
not fulfilled we observe chaotic trajectories. This leads us to formulate the following:

Conjecture 1 LetM be a two-dimensionalRiemannianmanifoldwith symmetry group
G. Then a generic G-invariant Hamiltonian system on PN

M is integrable only when the
geometric conditions (free and proper action, and equivariant momentum map) are
such that Theorem 10 directly implies integrability.
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