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Abstract
We prove birational superrigidity of Fano double hypersurfaces of index one with
quadratic and multi-quadratic singularities, satisfying certain regularity conditions,
and give an effective explicit lower bound for the codimension of the set of non-rigid
varieties in the natural parameter space of the family. The lower bound is quadratic in
the dimension of the variety. The proof is based on the techniques of hypertangent divi-
sors combined with the recently discovered 4n2-inequality for complete intersection
singularities.

Keywords Birational rigidity · Maximal singularity · Multiplicity · Hypertangent
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1 Introduction

1.1 Statement of theMain Result

Fix the integers M � 10, m � 2 and l � 2, satisfying the equality

m + l = M + 1.

Let P = P
M+1 be the complex projective space. By the symbol Pk,M+2 we denote

the space of homogeneous polynomials of degree k ∈ Z+ in M + 2 homogeneous
coordinates on P, that is, the linear space H0(P,OP(k)). Let
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506 T. Eckl, A. Pukhlikov

(g, h) ∈ Pm,M+2 × P2l,M+2 = F

be a pair of irreducible polynomials.
Consider the double cover

σ : V 2:1−→ G ⊂ P,

where G = {g = 0} ⊂ P is an irreducible hypersurface of degree m and σ is
branched over the divisor W = {h|G = 0} ⊂ G, which is cut out on G by the
hypersurfaceWP = {h = 0}. The variety V can be realized as a complete intersection
of codimension 2 in the weighted projective space

P(1, . . . , 1
︸ ︷︷ ︸

M+2

, l) = P(1M+2, l)

with the homogeneous coordinates x0, . . . , xM+1 of weight 1 and the new homoge-
neous coordinate u of weight l:

V = {g = 0, u2 = h}.

If the variety V is factorial and its singularities are terminal, then V is a primitive Fano
variety:

Pic V = ZH , KV = −H ,

where H is the class of “hyperplane section”, corresponding to σ ∗OP(1)|G . It makes
sense now to test V for being birationally (super)rigid. In Pukhlikov (2000) it was
shown that a Zariski general non-singular variety V is birationally superrigid. The
aim of this paper is to generalize and strengthen that result in the following way.

Let us define the integer-valued function

ξ : Z�10 = {M ∈ Z | M � 10} → Z+,

setting ξ(M) = (M−9)(M−8)
2 + 12.

For simplicity of notations, we identify a pair of irreducible polynomials (g, h) ∈ F
with the corresponding Fano double cover V and write V ∈ F ; this can not lead to
any confusion. Now we can state the main result of the paper.

Theorem 1 There exists a Zariski open subsetFreg ⊂ F such that the following claims
are true.

(i) Every variety V ∈ Freg is factorial and has at most terminal singularities.
(ii) The complement F\Freg is of codimension at least ξ(M) in F .
(iii) Every variety V ∈ Freg is birationally superrigid.

Corollary 1 For every variety V ∈ Freg the following claims are true.
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(i) Every birational map V ��� V ′ to a Fano variety with Q-factorial terminal
singularities and Picard number 1 is a biregular isomorphism.

(ii) There are no rational dominant maps V ��� S onto a positive-dimensional
variety S, the general fibre of which is rationally connected (or has negative
Kodaira dimension). In particular, there are no structures of a Mori fibre space
over a positive-dimensional base on V .

(iii) The variety V is non-rational and its groups of birational and biregular auto-
morphisms are the same: Bir V = Aut V .

Proof of the corollary The claims (i)–(iii) are all the standard implications of the prop-
erty of being birationally superrigid, see, for instance (Pukhlikov 2013, Chapter 2).

��

1.2 The Regularity Conditions

The open subset Freg ⊂ F is defined by a number of explicit local conditions, to be
satisfied at every point, which we now list. Let o ∈ V be a point, p = σ(o) ∈ G its
image on P. We assume, therefore, that g(p) = 0. Let z1, . . . , zM+1 be a system of
affine coordinates on P with the origin at p and

g = q1 + q2 + · · · + qm, h = w0 + w1 + w2 + · · · + w2l

the decomposition of g, h (dehomogenized but for simplicity of notations denoted
by the same symbols) into components, homogeneous in z∗. We may assume that
zi = xi/x0 are coordinates on the affine chart {x0 	= 0} on P. Adding the new affine
coordinate y = u/xl0, we extend that chart to

A
M+2
z∗,y ⊂ P

(

1M+2, l
)

,

where the variety V is a complete intersection, given by the system of two equations:

q1 + q2 + · · · + qm = 0,

−y2 + w0 + w1 + w2 + · · · + w2l = 0.

Note that p ∈ W if and only if w0 = 0.
We assume that the hypersurface G ⊂ P has at most quadratic singularities: if

q1 ≡ 0, then q2 	≡ 0. Furthermore, we assume that G is regular in the standard sense
at very point p ∈ G:

(R0.1) If q1 	≡ 0, then the sequence

q1, q2, . . . , qm

is regular in Op,P.
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(R0.2) If q1 ≡ 0, then the sequence

q2, . . . , qm

is regular in Op,P.

We will need also some additional regularity conditions for the polynomials g, h at
the point p, which depend on whether p ∈ W or p /∈ W and on the type of singularity
o ∈ V that we allow.

We start with the non-singular case.

(R1.1) If w0 	= 0, then we have no additional conditions [only (R0.1) is needed].
(R1.2) If w0 = 0, then

q2|{q1=w1=0} 	≡ 0.

Note that in the second case as the point o ∈ V is assumed to be non-singular,
the linear forms q1 and w1 must be linearly independent.

Now let us consider the quadratic case.
Here we have three possible ways of getting a singular point and, accordingly, three

types of regularity conditions.

(R2.1) Out side the ramification divisor: if w0 	= 0, then q1 ≡ 0 and

rk q2 � 7.

(R2.2) On the ramification divisor with G non-singular: w0 = 0, q1 	≡ 0, w1 ≡ 0
and

rkw2|{q1=0} � 6.

(R2.3) On the ramification divisor with G singular: w0 = 0, q1 ≡ 0, w1 	≡ 0 and

rk q2|{w1=0} � 7.

Apart from non-singular points and quadratic singularities, we allow more compli-
cated points which we call bi-quadratic. Assume that w0 = 0 and q1 ≡ w1 ≡ 0.

(R22) For a general 11−dimensional linear subspace P ⊂ C
M+2
z∗,y the closed alge-

braic set

QP =
{

q2|P = (y2 − w2)|P = 0
}

⊂ P(P) ∼= P
10

is a non-singular complete intersection of codimension 2.
We say that a pair (g, h) ∈ F is regular if the hypersurface G = {g = 0} ⊂ P

is regular at every point in the sense of the conditions (R0.1) and (R0.2) (whichever
applies at the given point), and the relevant regularity condition from the list above is
satisfied at every point o ∈ {g = u2 − h = 0}.
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Effective Birational Rigidity of Fano Double Hypersurfaces 509

Note that (g, h) ∈ F being regular implies that the closed set

V = {g = u2 − h = 0} ⊂ P(1M+2, l)

is an irreducible complete intersection of codimension 2, the singular points of which
are either quadratic singularities of rank � 7 or bi-quadratic singularities satisfying
the condition (R22). In any case, the singularities of V are complete intersection
singularities and the singular locus Sing V has codimension at least 7 in V , so the
Grothendieck theorem on parafactoriality (Call and Lyubeznik 1994) applies and V
turns out to be a factorial variety. Furthermore, it is easy to check that the property of
having at most quadratic singularities of rank � r is stable with respect to blowing
up non-singular subvarieties [see (Pukhlikov 2015, Section 3.1) for a detailed proof
and discussion, and the same arguments apply to bi-quadratic singularities satisfying
(R22)], so that, in particular, the singularities of V are terminal.

Now setting Freg ⊂ F to be the open subset of regular pairs (g, h) (or, abusing the
notations, regular varieties V = V (g, h)), we get the claim (i) of Theorem 1.

Therefore, Theorem 1 is implied by the following two claims.

Theorem 2 The complement F\Freg is of codimension at least ξ(M) in F .

Theorem 3 A regular variety V ∈ Freg is birationally superrigid.

1.3 The Structure of the Paper

We prove Theorem 3 in Sect. 2 and Theorem 2 in Sect. 3. The arguments are indepen-
dent of each other.

In order to prove Theorem 3, we assume the converse: V is not birationally super-
rigid. This implies, in a standard way (Pukhlikov 2013, Chapter 2, Section 1) that
there is a mobile linear system � ⊂ |nH | with a maximal singularity. The centre of
the maximal singularity is an irreducible subvariety B ⊂ V . There are a number of
options for B: it can have a small (� 4) codimension or a higher (� 5) codimension in
V , be contained or not contained in the singular locus Sing V (and more specifically,
in the locus of bi-quadratic points), be contained or not contained in the ramification
divisor. For each of these options, we exclude the maximal singularity, that is, we
show that its existence leads to a contradiction. After that, we conclude that the initial
assumption was incorrect and V is birationally superrigid.

Theorem 2 is shown by different and very explicit arguments. We fix a point o ∈
P(1M+2, l) and consider varieties V � o. For each type of the point o (from the list
given in Sect. 1.2) and each regularity condition we estimate the codimension of the
closed set of pairs (g, h) ∈ F such that o ∈ {g = u2 −h = 0} and the condition under
consideration is violated. Taking the minimum of our estimates, we prove Theorem 2.

The decisive point of this paper is applying the generalized 4n2-inequality
(Pukhlikov 2017) to excluding the maximal singularities, the centre of which is con-
tained in the quadratic or bi-quadratic locus: without it, the task would have been too
hard. The regularity conditions make sure that the generalized 4n2-inequality applies.
Given the new essential ingredient, excluding the maximal singularity becomes
straightforward.
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1.4 Historical Remarks

We say that a theorem stating birational (super)rigidity is effective, if it contains an
effective bound for the codimension of the set of non-rigid varieties (in the natural
parameter space of the family under consideration). The first effective result was
obtained in Eckl and Pukhlikov (2014). For complete intersections see (Evans and
Pukhlikov 2017, 2018). The importance of effective results is explained by the problem
of birational rigidity of Fano–Mori fibre spaces, see (Pukhlikov 2015), generalizing
the famous Sarkisov theorem (Sarkisov 1982) to fibre spaces with higher-dimensional
fibres.

Birational rigidity of certain mildly singular Fano double covers was shown in
Cheltsov (2006) and Johnstone (2017). The result of Johnstone (2017) was effective
in our sense. Iterated double covers and cyclic covers of degree� 3were considered in
Pukhlikov (2003, 2009), respectively (only non-singular varieties were treated in these
papers). Triple covers with singularities were shown to be birationally superrigid in
Cheltsov (2004). For a study of the question, howmany families of higher-dimensional
non-singular Fano complete intersections are there in the weighted complete intersec-
tions, see (Przyjalkowski and Shramov 2016).

2 Proof of Birational Superrigidity

In this section we prove Theorem 3. First, we remind the definition and some basic
facts about maximal singularities, classifying them and excluding the cases of low
codimension of the centre (Sect. 2.1). Then we exclude the maximal singularities, the
centre of which is not contained in the singular locus of V (Sect. 2.2). Finally, we
exclude the cases when the centre of a maximal singularity is contained in the singular
locus (Sect. 2.3). The last group of cases, which traditionally was among the hardest
to deal with, now becomes the easiest due to the generalized 4n2-inequality shown in
Pukhlikov (2017).

2.1 Maximal Singularities

Assume that a fixed regular double hypersurface V ∈ Freg is not birationally super-
rigid. It is well known [see, for instance, (Pukhlikov 2013, Chapter 2, Section 1)],
that this assumption implies that there is a mobile linear system � ⊂ |nH |, a bira-
tional morphism ϕ : ˜V → V and a ϕ-exceptional prime divisor E ⊂ ˜V , satisfying the
Noether–Fano inequality

ordE ϕ∗� > n · a(E).

Here ˜V is assumed to be non-singular projective,ϕ a composition of blowupswith non-
singular centres, a(E) = a(E, V ) is the discrepancy of E with respect to V . The prime
divisor E (or the discrete valuation of the field of rational functions C(˜V ) ∼= C(V ))
is called a maximal singularity of the system �. Equivalently, for any divisor D ∈ �
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the pair (V , 1
n D) is not canonical with E a non-canonical singularity of the pair. Set

B = ϕ(E) ⊂ V to be its centre on V and B = σ(B) ⊂ G its projection on P. We
have the following options:

(1) codim(B ⊂ V ) = 2,
(2) codim(B ⊂ V ) = 3 or 4,
(3) codim(B ⊂ V ) � 5 and B 	⊂ W , B 	⊂ Sing V ,
(4) codim(B ⊂ V ) � 5 and B ⊂ W , B 	⊂ Sing V ,
(5) B is contained in the (closure of the) locus of quadratic singularities, but not in

the locus of bi-quadratic singularities,
(6) B is contained in the locus of bi-quadratic singularities.

We have to show that none of these cases take place. Note that the inequality

multB � > n (1)

holds. Let Z = (D1 ◦ D2) be the algebraic cycle of scheme-theoretic intersection
of general divisors D1, D2 ∈ �, the self-intersection of the system �. Note that
Z ∼ n2H2.

Our first observation is that the case (1) does not realize. Indeed, let P be a general
7-dimensional plane in P. Then VP = V ∩ σ−1(P) is a non-singular 6-dimensional
variety. By the Lefschetz theorem,

Pic VP = ZHP and A2VP = ZH2
P ,

where HP is the hyperplane section and A2 the numerical Chow group of codimension
2 cycles. The restriction ZP = (Z ◦ VP ) ∼ n2H2

P is an effective cycle. If codim(B ⊂
V ) = 2, then Z contains B as a component with multiplicity at least (multB �)2;
therefore, ZP contains BP = (B◦VP ) = B∩VP withmultiplicity at least (multB �)2.
However, BP ∼ bH2

P for some b � 1 and the inequality (1) can not be true. So we
may assume that codim(B ⊂ V ) � 3.

Proposition 2.1 The case (2) does not realize.

Proof Assume the converse: codim(B ⊂ V ) ∈ {3, 4}. Then B 	⊂ Sing V and so the
standard 4n2-inequality holds:

multB Z > 4n2,

see (Pukhlikov 2013, Chapter 2). Again, take a general 7-dimensional plane P ⊂ P

and let VP , ZP , HP and BP mean the same as above. We can find an irreducible
subvariety Y ∼ dH2

P of codimension 2 in VP such that

multBP Y > 4d.

Set GP = G ∩ P: it is a non-singular hypersurface of degree m in P ∼= P
7. Writing

HG for the class of its hyperplane section, we get

PicGP = ZHG and A2GP = ZH2
G .
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Let Y = σ(Y ) ⊂ GP and BP = σ(BP ) be the images of Y and BP , respectively.
Then

Y ∼ d∗H2
G

with d∗ = d or 1
2d, and the inequality

multBP
Y > 2d∗

holds. But dim BP ∈ {2, 3}, so we get a contradiction with (Pukhlikov (2002), Propo-
sition 5) [see also “Pukhlikov’s Lemma” in Suzuki (2017)]. ��

From now on, we assume that codim(B ⊂ V ) � 5.

In order to exclude the cases (3–6), we will need the regularity conditions (R0.1,
2), or rather, the facts that are summarized in the proposition below.

Proposition 2.2 Let S ⊂ G be an irreducible subvariety of codimension a ∈ {2, 3}
and p ∈ S a point.

(i) Assume that G is non-singular at p. Then

mult p S � a + 1

m
deg S.

(ii) Assume that G is singular at p. Then

mult p S � a + 2

m
deg S.

Proof The claims are the standard implications of the regularity conditions (R0.1, 2).
see, for instance, (Pukhlikov 2013, Chapter 3) for the standard arguments delivering
the estimates for the multiplicity in terms of degree.

2.2 The Non-Singular Case

Let us exclude the options (3) and (4). Here B /∈ SingG and in any case B /∈ SingW .

Proposition 2.3 The case (4) does not realize.

Proof Here we can argue in word for word the same way as in (Pukhlikov 2000,
Subsection 3.3, Case 2): take a general point o ∈ B, so that p = σ(o) ∈ W is a
non-singular point on W . The tangent hyperplanes

TpG and TpWP

are distinct and their σ -preimages on V are singular. Therefore,

� = σ−1 (

TpG ∩ TpWP ∩ G
)
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is an irreducible subvariety of codimension 2 on V , satisfying the relations

� ∼ H2 and multo � = 4,

the second equality is guaranteed by the regularity condition (R1.2).
On the other hand, from the (standard) 4n2-inequality we get that there is an irre-

ducible subvariety Y ⊂ V such that

Y ∼ dH2 and multo Y > 4d

for some d ∈ Z+. Therefore, Y 	= �, which means that Y is not contained in at least
one of the two divisors

σ−1(TpG) and σ−1(TpWP).

Taking the scheme-theoretic intersection of Y with that divisor and selecting a suitable
irreducible component, we obtain an irreducible subvariety Y ∗ ⊂ V of codimension
3 such that

multo Y
∗ >

4

m
degH Y ∗,

where the symbol degH stands for the H -degree, that is, degH Y ∗ = (Y ∗ · HM−3).
The image S = σ(Y ∗) ⊂ G is an irreducible subvariety of codimension 3, satisfying
the inequality

mult p S >
4

m
deg S.

We get a contradiction with the claim (i) of Proposition 2.2. ��
Proposition 2.4 The case (3) does not realize.

Proof Assume the converse. Let o ∈ B be a general point, so that p = σ(o) /∈ W
and p /∈ Sing V . Note that σ∗ : ToV → TpG is an isomorphism of vector spaces. Let
λ : V+ → V be the blow up of the point o and λG : G+ → G the blow up of the
point p, with the exceptional divisors E+ and E+

G , respectively. We have the natural
isomorphism

E+ σ−→ E+
G

∼= P
M−1.

It is well known [the “8n2-inequality”, see, for instance, (Pukhlikov 2013, Chapter 2,
Section 4)], that there is a linear subspace � ⊂ E+ of codimension 2 such that

multo Z + mult� Z+ > 8n2,
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where Z+ is the strict transform of the self-intersection Z on V+. Let P ⊂ P be a
general hyperplane such that

σ−1(G ∩ P)+ ⊃ �.

Set GP = G ∩ P; obviously, for a general P none of the irreducible components of
Z is contained in σ−1(GP ). Therefore, we get a well defined effective cycle

ZP =
(

Z ◦ σ−1(GP )
)

of codimension 3 on V .

Lemma 2.1 The cycle ZP satisfies the inequality

multo ZP > 8n2.

Proof Let us compare the two effective cycles: the strict transform Z+
P of ZP on V+

and the cycle of the scheme-theoretic intersection (Z+ ◦ σ−1(GP )+). Of course, they
are identically the same outside E+, so that their difference must be supported on E+
[we argue as in Pukhlikov (2013, Chapter 2, Section 2, Lemma 2.2)]:

(Z+ ◦ σ−1(GP )+) = Z+
P + (mult� Z+)� + R,

where R is some effective cycle supported on E+ (possibly zero). Therefore,

multo ZP � multo Z + mult� Z+ > 8n2,

as required. ��
Now, taking a suitable irreducible component Y of ZP and its image S = σ(Y ),

we obtain an irreducible subvariety S ⊂ G of codimension 3, satisfying at the non-
singular point p ∈ G the inequality

mult p S >
4

m
deg S.

This contradicts the claim (i) of Proposition 2.2. ��

2.3 The Singular Case

It remains to exclude the options (5) and (6), where B ⊂ Sing V . It is here that we use
the generalized 4n2-inequality shown in Pukhlikov (2017).

Proposition 2.5 The cases (5) and (6) do not realize.
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Proof Assume that the case (5) takes place. Let o ∈ B be a point of general position.
The singularity o ∈ V is a quadratic singularity, satisfying the requirements of the
main theorem of Pukhlikov (2017). Therefore,

multo Z > 4n2 · multo V = 8n2.

Taking a suitable irreducible component Y of Z and its image S = σ(Y ), we obtain
an irreducible subvariety S ⊂ G of codimension 2, satisfying at the quadratic point
p ∈ G the inequality

mult p S >
4

m
deg S,

which contradicts the claim (ii) of Proposition 2.2.
The case (6) is excluded in a similar way, just for Z we get the inequality

multo Z > 4n2 · multo V = 16n2.

and for S the inequality

mult p S >
8

m
deg S,

which can not be satisfied at a quadratic point p ∈ G by Proposition 2.2. ��
Proof of Theorem 3 is now complete.

3 Estimates for the Codimension

In this section we prove Theorem 3. To this purpose, for each M � 10 we construct
an algebraic subset Z ⊂ F of codimension � ξ(M), such that F − Z ⊂ Freg.

As a first step we reduce the construction to double hypersurfaces containing a
fixed point o ∈ P(1M+2, l): The point [(0 : · · · : 0) :l 1] ∈ P(1M+2, l) is contained in
no such double hypersurface, by its construction. For all other points o = [o′ :l u] ∈
P(1M+2, l) the subset Fo ⊂ F of pairs (g, h) ∈ F such that o is contained in

V = {g = 0, u2 = h} ⊂ P(1M+2, l),

the double cover of G = {g = 0} associated to (g, h), is equal to Po
m,M+2 ×Po

2l,M+2,
with

Po
m,M+2 = {

g ∈ Pm,M+2 : g(o′) = 0
}

and Po
2l,M+2 =

{

h ∈ P2l,M+2 : u2 = h(o′)
}

affine hyperplanes of Pm,M+2 resp. P2l,M+2.
Now choose a point o1 = [o′

1 :l u1] ∈ P(1M+2, l)\{[0 : · · · : 0 :l 1]} with u1 	= 0
and a point o2 = [o′

2 :l 0] ∈ P(1M+2, l).
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Proposition 3.1 For i = 1, 2 let Zoi ⊂ Foi be algebraic subsets such that Foi \Zi ⊂
Foi
reg. Then there exists an algebraic subset Z ⊂ F such that F\Z ⊂ Freg and

codimFZ � min
(

codimFo1Zo1 − M, codimFo2Zo2 − M + 1
)

.

Proof PGL(M + 2) acts on P(1M+2, l) by transforming the first M + 2 homogeneous
coordinates in the standard way. This action has the three orbits {[0 : · · · : 0 :l 1]},
{[o′ :l u] ∈ P(1M+2, l) : u 	= 0}\{[0 : · · · : 0 :l 1]} and {[o′ :l u] ∈ P(1M+2, l) :
u = 0}. Thus, for each point o1 ∈ {u 	= 0}\{[0 : · · · : 0 :l 1]} resp. o2 ∈ {u = 0} we
can find isomorphic algebraic subset Zo1 resp. Zo2 such that Fo1\Zo1 ⊂ Fo1

reg resp.
Fo2\Zo2 ⊂ Fo2

reg.
The closure Z1 of the union of all the Zo1 has dimension � dimZo1 + M + 2,

whereas the closure Z2 of the union of all the Zo2 has dimension � dimZ2 + M + 1.
Since codimFFo = 2 this implies the bound on the codimension of Z = Z1 ∪ Z2.

��
Note that a point o ∈ {u 	= 0} can only lie outside the ramification locus of a Fano

double cover V , whereas a point o ∈ {u = 0} must lie on the ramification locus.

3.1 Codimension Estimates for Points Outside the Ramification Locus

Choose a point o ∈ {u 	= 0}\{[0 : · · · : 0 :l 1]}. We first treat the cases when the
regularity conditions on the hypersurface G = {g = 0} ⊂ P fail.

Using the notation in the Introduction assume that q1 	≡ 0. The set SR0.1 of pairs
(g, h) inFo such that q1, . . . , qm is not a regular sequence inOp,P is a closed algebraic
subset of the Zariski-open subset {q1 	≡ 0} ⊂ Fo. It is stratified according to the
position where q1, . . . , qm is not any longer regular: Since q1 	≡ 0 this can only
happen from q2 on, so SR0.1 = S2R0.1 ∪ . . . ∪ SmR0.1 with

SdR0.1 = {(q1, . . . , qm; h) : q2, . . . , qd−1 is regular, but not q2, . . . , qd} ⊂ Fo.

for d = 2, . . . ,m. The set SdR0.1 is closed algebraic in SR0.1\⋃d−1
i=2 SiR0.1, thus the

codimension of its Zariski closure in Fo is � to the codimension of its intersection
with the fiber in Fo over a fixed regular sequence q1, . . . , qd−1 in this fiber, under the
natural projection. By the methods in Pukhlikov (1998) this codimension is �

(M+1
d

)

for 2 ≤ d ≤ m. Since m + 2l � M + 1 this implies:

codimFo SR0.1 �
(

M + 1

2

)

. (2)

If q1 ≡ 0 and SR0.2 denotes the set of pairs (g, h) in Fo such that q2, . . . , qm is not
a regular sequence in Op,P, we find as before a lower bound for the codimension of
the closed algebraic subset SR0.2 in Fo:

codimFo SR0.2 � M + 1 +
(

M + 1

2

)

=
(

M + 2

2

)

. (3)
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Here, the summand M + 1 counts the codimensions given by the vanishing of q1.
Next, we study the case when the point o is too singular on the double cover V ,

that is when condition (R2.1) fails. This happens when q1 ≡ 0 and rk q2 � 6, and we
denote the closed algebraic subset of pairs (g, h) in Fo satisfying these conditions by
SR2.1.

Quadratic forms in M + 1 variables correspond to symmetric (M + 1) × (M + 1)
matrices parametrised by a

(M+2
2

)

-dimensional affine space SymM+1, and the rank of
a quadratic form q2 equals the rank of the corresponding symmetric matrix A. But
rk A � r if and only if there exists an (M + 1 − r)-dimensional vector subspace
� ⊂ C

M+1 spanned by 0-eigenvectors of A. Such matrices A ∈ SymM+1,�r = {A ∈
SymM+1 : rk A � r} lie in the image of the incidence variety

	 = {(A,�) : A · v = 0 for all v ∈ �} ⊂ SymM+1 × Gr(M + 1 − r , M + 1)

under the projection to SymM+1. This projection has 0-dimensional general fibers,
for matrices of rank r , so codimSymM+1

SymM+1,�r = dim SymM+1 − dim	. On the
other hand, the projection of 	 onto the Grassmannian Gr(M + 1 − r , M + 1) has
fibers of dimension

(r+1
2

)

, so dim	 = (r+1
2

) + r(M + 1 − r) and

codimSymM+1
SymM+1,�r =

(

M + 2

2

)

−
(

r + 1

2

)

− r(M + 1 − r)

= (M + 2 − r)(M + 1 − r)

2
.

Setting r = 6 and adding the M + 1 codimensions given by q1 ≡ 0 we obtain

codimFo SR2.1 = M + 1 + (M − 4)(M − 5)

2
= (M − 4)(M − 3)

2
+ 5. (4)

3.2 Codimension Estimates for Points on the Ramification Locus

Choose a point o ∈ {u = 0}. Using the notation in the Introduction o will lie on a
double cover given by a pair (g, h) ∈ Fo only if w0 = 0.

As for points outside the ramification locus we obtain the following two codimen-
sion bounds for subsets SR0.1 ⊂ Fo and SR0.2 ⊂ Fo where the regularity conditions
on the hypersurface G = {g = 0} ⊂ P fail:

codimFo SR0.1 �
(

M + 1

2

)

(5)

and

codimFo SR0.2 �
(

M + 2

2

)

. (6)

Next, we study the set SR1.2 ⊂ Fo of pairs (g, h) such that o is non-singular on
the associated double cover but condition (R1.2) fails. That is the case when q1 	≡ 0,

123



518 T. Eckl, A. Pukhlikov

w1 	≡ λq1 for all λ ∈ C and q2|{q1=w1=0} ≡ 0. The last identity is equivalent to
q2 ≡ q1 · q ′

1 + w1 · w′
1 for two linear forms q ′

1, w
′
1. Since the first two conditions are

open in Fo it is enough to determine the codimension of the set of q2 in the space of
all quadratic forms in M + 1 variables that are of the above form for given q1, w1: By
a change of coordinates q1 and w1 may be identified with two of the M + 1 variables,
thus the requested codimension equals the dimension of quadratic forms in M − 1
variables. So we have

codimFo SR1.2 �
(

M

2

)

. (7)

Pairs (g, h) for which o is a singular point on the associated double cover mapped
to a non-singular point on the hypersurface G ⊂ P fail condition (R2.2) if and only
if q1 	≡ 0, w1 = λq1 for some λ ∈ C and rk(w2 − λq2|{q1=0}) � 5. The codimension
of the set SR2.2 ⊂ Fo of such pairs equals the sum of M (from w1 ≡ λq1) and the
codimension of quadratic forms of rank � 5 when restricted to a given linear form,
in the space of all quadratic forms in M + 1 variables. Since by a coordinate change
we can assume that q1 is one of the M + 1 variables it is enough to calculate the
codimension of quadratic forms of rank � 5 in the space of all quadratic forms in
M variables. Imitating the calculations in Sect. 3.1 we obtain a lower bound for this
codimension as (M−4)(M−5)

2 . Adding up this leads to

codimFo SR2.2 � M + (M − 4)(M − 5)

2
= (M − 4)(M − 3)

2
+ 4. (8)

Pairs (g, h) for which o is a singular point on the associated double cover mapped
to a singular point on the hypersurface G ⊂ P fail condition (R2.3) if and only if
q1 ≡ 0, w1 	≡ 0 and rk(q2|{w1=0}) � 6. As before we obtain a lower bound for the
codimension of the set SR2.3 ⊂ Fo of such pairs as

codimFo SR2.3 � (M + 1) + (M − 5)(M − 6)

2
= (M − 5)(M − 4)

2
+ 6. (9)

Finally,weneed to look at the set SR2.22 ⊂ Fo of pairs (g, h)whereo is a biquadratic
singular point on the associated double cover failing condition R2.22. This is the case
if and only if q1 ≡ 0, w1 ≡ 0 and {q2|P = y2 − w2|P = 0} ⊂ P(P) ∼= P

10 is not a
non-singular 8-dimensional complete intersection for a general 11-plane P ⊂ C

M+2.
To obtain a lower bound for the codimension of SR2.22 in Fo we follow the strategy
in Evans and Pukhlikov (2017, Sects. 2.2 and 2.3); our situation is much simpler but
requires some adjustments.

Proposition 3.2 If Q = {q2 = y2 − w2 = 0} ⊂ P
M+1 is an irreducible and reduced

complete intersection with codimQSing(Q) � 9 then Q ∩ P(P) is non-singular for a
general 11-dimensional hyperplane P ⊂ C

M+2.

Proof This follows from a version of Bertini’s Theorem implying that Sing(Q ∩
P(P)) ⊂ Sing(Q) for a general hyperplane P ⊂ C

M+2 (see Hartshorne 1978, II.Thm.
8.18), and the fact that a general 10-dimensional hyperplane P(P) will not intersect
the � 11-codimensional algebraic subset Sing(Q) ⊂ P

M+1.
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The proposition shows that is enough to find lower bounds for the codimension of
the set of pairs (g, h) ∈ Fo such that q1 ≡ 0, w1 ≡ 0 and Q = {q2 = y2 − w2 =
0} ⊂ P

M+1 is reducible or non-reduced, and the (Zariski closure of the) set of pairs
(g, h) such that q1 ≡ 0, w1 ≡ 0 and codimQSing(Q) � 8. In both cases we have
codimPM+1Q = 2 as long as q2 	≡ 0 since then q2 cannot have a factor in common
with y2 − w2.

We split up the first set into pairs where the quadric Q2 = {q2 = 0} ⊂ P
M+1 is

reducible or non-reduced, and pairs where Q2 is irreducible and reduced and Q not.
Q2 is reducible or non-reduced if and only if q2 is a product of two linear forms. The

set of such quadrics has codimension
(M+2

2

)−2(M+1) inP2,M+1, so the codimension
of this component of the first set in Fo is

2(M + 1) +
(

M + 2

2

)

− 2(M + 1) =
(

M + 2

2

)

. (10)

Next we assume that Q2 is irreducible and reduced. By Grothendiecks Parafac-
toriality Theorem (Call and Lyubeznik 1994) and the Lefschetz Theorem for Picard
groups (Lazarsfeld 2004, Ex. 3.1.35) classes of Weil divisors on Q2 are classes of
restrictions of hypersurfaces in P

M+1. Furthermore,

H0
(

P
M+1,OPM+1(a)

)

→ H0 (

Q2,OQ2(a)
)

is surjective for all integers a ≥ 0, bijective for a 	= 2 and has kernel C · q2 for a = 2.
Thus, Q is reducible or non-reduced if and only if y2 −w2 +λq2 is a product of linear
forms, for some λ ∈ C. But this is only possible if w2 − λq2 is a square of a linear
form. For fixed q2 suchw2 form a set of codimension

(M+2
2

)−(M+1)−1 inP2,M+1,
so the codimension of this component of the first set in Fo is

2(M + 1) +
(

M + 2

2

)

− (M + 1) − 1 = (M + 4)(M + 1)

2
− 1. (11)

Now assume that Q is an irreducible and reduced complete intersection of dimen-
sionM−1 and codimQSing(Q) � 8. A point p ∈ Q is a singularity of Q if and only if
the tangent space to Q2 in p is contained in the tangent space toW2 = {y2 −w2 = 0}
in p, or vice versa. In both cases there exists a λ = (λ1 : λ2) ∈ P

1 such that
W (λ) = λ1q2 + λ2(y2 − w2) has a singularity in p. Thus

Sing(Q) ⊂
⋃

λ∈P1
Sing(W (λ)),

and since dim Sing(Q) � M −9 we have maxλ∈P1 dim Sing(W (λ)) � M −10. Since
W (λ) is the vanishing locus of a quadric in M + 2 variables, dim Sing(W (λ)) =
M + 1 − rk(W (λ)), and this implies minλ∈P1 rk(W (λ)) � 11.

We distinguish two cases: If rk(q2) ≤ 11 the inequality above is satisfied for
λ = (1 : 0). The codimension of this component of the second set in Fo where q2
satisfies this condition is � to
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2(M + 1) + (M − 9)(M − 10)

2
= (M − 9)(M − 6)

2
+ 20. (12)

If rk(q2) > 11 we must find aμ ∈ C such that rk(y2 −w2 +μq2) � 11. This is the
case if and only if rk(w2−μq2) � 10, so for fixed q2 the quadratic polynomialw2 lies
in the cone in P2,M+1 spanned by the vertex q2 and all the quadratic polynomials of
rank� 10 in M +1 variables. This cone has codimension (M−8)(M−9)

2 −1 inP2,M+1,
so the Zariski closure of the set of all pairs (g, h) in Fo where q2 and w2 satisfy the
above conditions has codimension � to

2(M + 1) + (M − 8)(M − 9)

2
− 1 = (M − 8)(M − 5)

2
+ 17 (13)

3.3 Proof of Theorem 2

Using the estimates (2)–(13) Proposition 3.1 tells us that we will obtain a lower bound
for the codimension of the regular locusFreg inF by subtractingM from theminimum
of

(

M + 1

2

)

,

(

M + 2

2

)

,
(M − 4)(M − 3)

2
+ 5,

subtracting M − 1 from the minimum of

(

M + 1

2

)

,

(

M + 2

2

)

,

(

M

2

)

,
(M − 4)(M − 3)

2
+ 4,

(M − 5)(M − 4)

2
+ 6,

(

M + 2

2

)

,
(M + 4)(M + 1)

2
− 1,

(M − 9)(M − 6)

2
+ 20,

(M − 8)(M − 5)

2
+ 17

and taking the smaller of the two numbers. For eachM � 10 an elementary calculation
yields the lower bound ξ(M) as defined in Sect. 1.
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