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Abstract Given a marked surface (S, M) we can add arcs to the surface to create a
triangulation, T , of that surface. For each triangulation, T , we can associate a cluster
algebra. In this paper we will consider orientable surfaces of genus n with two interior
marked points and no boundary component. We will construct a specific triangulation
of this surface which yields a quiver. Then in the sense of work by Keller we will
produce amaximal green sequence for this quiver. Since all finite mutation type cluster
algebras can be associated to a surface, with some rare exceptions, this work alongwith
previous work by others seeks to establish a base case in answering the question of
whether a givenfinitemutation type cluster algebra exhibits amaximal green sequence.

Keywords Cluster · Algebra · Mutation · Maximal green sequence

1 Introduction

Cluster algebras were invented by Fomin and Zelevinsky (2002) in 2003. Within a
very short period of time cluster algebras became an important tool in the study of
phenomena in various areas of mathematics and mathematical physics. They play
an important role in the study of Teichmüller theory, canonical bases, total positiv-
ity, Poisson Lie-groups, Calabi–Yau algebras, noncommutative Donaldson–Thomas
invariants, scattering amplitudes, and representations of finite dimensional algebras.
For more information on the diverse scope of cluster algebras see the review paper by
Williams (2014).
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488 E. Bucher

The idea of maximal green sequences of cluster mutations was introduced byKeller
(2013). He explored important applications of this notion, by utilizing it in the explicit
computation of noncommutative Donaldson–Thomas invariants of triangulated cat-
egories which were introduced by Kontsevich and Soibelman (2008). Additionally,
Alim et al. 2013worked with this notion in connection with the computation of spectra
of BPS states. Very recently this notion also played a key role in theGross et al. (0000a)
proof of the full Fock–Goncharov conjecture for large classes of cluster algebras.

The problem of existence of maximal green sequences of cluster mutations is diffi-
cult due to the iterative nature of the choices of mutations. This means that exhaustive
methods are not always effective when searching for a maximal green sequence. In
spite of this difficulty there has been a vast amount of progressmade in the area. Brüstle
et al. proved the existence ofmaximal green sequences for cluster algebras of finite type
in Brüstle et al. (2014). Alim et al. showed that cluster algebras from surfaceswith non-
empty boundary have a maximal green sequence (Alim et al. 2013). Yakimov proved
the existence of maximal green sequences for the Berenstein–Fomin–Zelevinsky clus-
ter algebras on all double Bruhat cells in Kac–Moody groups inYakimov (2014). Also,
Garver and Musiker constructed maximal green sequences for all type A quivers in
Garver and Musiker (2014). One important aspect to note is that the existence of a
maximal green sequence is dependent on the quiver and not the mutation class. Muller
showed this in Muller (2015) by producing two mutation equivalent quivers in which
one exhibits a maximal green sequence and the other does not. This means that the
choice of initial quiver is extremely important, as there may not even be a maximal
green sequence if you make the wrong choice. For this paper that will mean making
a strategic decision for our initial triangulation.

In general a cluster algebra can be constructed from any orientable surface by look-
ing at the possible triangulations of that surface. This construction is introduced by
Gekhtman et al. (2005) and in a more general setting by Fock and Goncharov (2006).
This construction is extremely important because any cluster algebra of finite mutation
type can be realized as a cluster algebra which arises from a surface following this
construction, with a few exceptions. The complete list of exceptions can be found in
Felikson et al. (2012a, b). An important problem in cluster algebras is then to prove
the existence or non-existence of maximal green sequences for each cluster algebra
which arises from the triangulation of a surface. This paper will prove the existence
of maximal green sequences for an infinite family of cluster algebras which arise this
way. This family is of interest because at the moment there is little known about max-
imal green sequences which arise from surfaces without boundary components. The
quivers produced contain a large number of cycles and this creates many difficulties
when addressing the existence of green sequences. For a more in depth look into the
procedure of creating a cluster algebra from a triangulated surface see the work by
Fomin et al. (2008).

In this paperweprove the existence of amaximal green sequence for cluster algebras
which arise from triangulations of the twice punctured surface of genus n. This is
an infinite family of cluster algebras for which we explicitly find a maximal green
sequence. In general, the more cycles present in a quiver, the more difficult it is to
construct a maximal green sequence. As mentioned above, by addressing surfaces
without boundary components, we are addressing a class of quivers which contain
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many cycles. We will start with a surface of genus n. We then construct a specific
triangulation of this surface, Tn . This triangulation is chosen to contain a large amount
of symmetry, which will play an integral part in our main proof, and help reduce
the impact of the presence of a large number of cycles. The construction of this
triangulation will be discussed in Sect. 3. After constructing the triangulation, we
look at the quiver QTn it correlates to. We take advantage of the symmetry of this
quiver, by breaking it into smaller parts. This cluster algebra contains a large n cycle
with identical subquivers attached to each vertex. We construct a green sequence
for the cycle, which leaves the attached subquivers unaffected. We can then apply a
green sequence to the subquivers which will minimally effect the vertices on the cycle.
Variousmutations are then done to correct theseminimal effects.Wewant to emphasize
that the ability to correct these effects is directly related to the choice of triangulation.
By creating subquivers of a certain structure we can guarantee that they will not be
drastically affected by the sequence of mutations applied to the interconnecting cycle.
The combining of these sequences will result in a maximal green sequence for the
quiver QTn . In essence, we are creating separate maximal green sequences for each
“piece” of the quiver and then creating a procedure for gluing these sequences together.
The details of the proof are presented in Sect. 4 of this paper. Before beginning we
need to establish some background definitions and notation.

2 Preliminaries

We will follow the notation laid out by Brüstle et al. (2014). In this paper we will use
the following definition of a quiver.

Definition 2.1 A quiver, Q, is a directed graph containing no 2-cycles or loops.

The notation Q0 will denote the vertices of Q. Also, Q1 will denote the edges of
Q which are referred to as arrows. We will let Q0 = [N ].
Definition 2.2 An ice quiver is a pair (Q, F) where Q is a quiver as described above
and F ⊂ Q0 is a subset of vertices called frozen vertices; such that there are no arrows
between them. For simplicity, we always assume that Q0 = {1, 2, 3, . . . , n + m} and
that F = {n + 1, n + 2, . . . , n + m} for some integers n,m ≥ 0. If F is empty we
write (Q,∅) for the ice quiver.

In this paper we will be concerned with a process called mutation. Mutation is a
process of obtaining a new ice quiver from an existing one.

Definition 2.3 Let (Q, F) be an ice quiver and k ∈ Q0 a non-frozen vertex. The
mutation of a quiver (Q, F) at a vertex k is denoted μk , and produces a new ice
quiver (μk(Q), F). The vertices of (μk(Q), F) are the same vertices from (Q, F).
The arrows of the new quiver are obtained by performing the following 3 steps:

(1) For every 2-path i → k → j , adjoin a new arrow i → j .
(2) Reverse the direction of all arrows incident to k.
(3) Delete any 2-cycles created during the first two steps as well as any arrows created

between frozen vertices.
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490 E. Bucher

It is important to note that we do not allow mutation at a frozen vertex. We will
denote Mut (Q) to be the set of all quivers who can be obtained from Q by a sequence
of mutations.

The ice quivers which are of concern in this paper have a very specific set of frozen
vertices.Wewill be looking at what are referred to as the framed and coframed quivers
associated to Q.

Definition 2.4 The framed quiver associated with Q is the quiver Q̂ such that:

Q̂0 = Q0 � {i ′ | i ∈ Q0}
Q̂1 = Q1 � {i → i ′ | i ∈ Q0}

The coframed quiver associated with Q is the quiver Q̆ such that:

Q̆0 = Q0 � {i ′ | i ∈ Q0}
Q̆1 = Q1 � {i ′ → i | i ∈ Q0}

Both quivers Q̂ and Q̆ are naturally ice quivers whose frozen vertices are commonly
written as Q̂′

0 and Q̆′
0. Next we will talk about what it means for a vertex to be green

or red.

Definition 2.5 Let R ∈ Mut (Q̂). A non-frozen vertex i ∈ R0 is called green if

{ j ′ ∈ Q′
0 | ∃ j ′ → i ∈ R1} = ∅.

It is called red if

{ j ′ ∈ Q′
0 | ∃ j ′ ← i ∈ R1} = ∅.

It was shown in Brüstle et al. (2014) that every non-frozen vertex in R0 is either red
or green. This idea motivates our work in this paper. It arises as a question of green
sequences.

Definition 2.6 A green sequence for Q is a sequence i = {i1, . . . , il} ⊂ Q0 such that
i1 is green in Q̂ and for any 2 ≤ k ≤ l, the vertex ik is green in μik−1 ◦ · · · ◦ μi1(Q̂).
The integer l is called the length of the sequence i and is denoted by l(i).

A green sequence i is called maximal if every non-frozen vertex in μi(Q̂) is red
where μi = μil ◦ · · · ◦ μi1 . We denote the set of all maximal green sequences for Q
by

green(Q) = {i|i is a maximal green sequence for Q}.

In this paper we will construct a maximal green sequence for a specific infinite family
of quivers which will be described in the following section. In essence what we want
to show is that green(Q) = ∅ for each quiver, Q, in this family. In order to do this we
must first discuss where our quivers are coming from.
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3 Constructing the Triangulation Tn

In work by Fomin et al. (2008) there is a very precise description of how you can
associate a quiver Q to a triangulated surface. The surfaces thatwewill be discussing in
this paper are twice punctured surfaces of genus n. Wewill find a specific triangulation
on those surfaces which we will denote Tn . By following the techniques outlined in
Fomin et al. (2008) from there wewill form the associated quiver whichwewill denote
by QTn .

Start by letting (S, M) be a surface of genus n with two interior marked points.
Now we will construct the desired triangulation Tn for the marked surface (S, M). We
start by drawing (S, M) as the identification space below.

b2
a2

b2

a2

b1

a1

b1a1

bn

an

bn

an

After we have created the identification space we want to add additional arcs to
create a triangulation of this space. At the moment the set of arcs we will be using in
our triangulation are a1, b1, a2, b2 . . . , an, bn . The additional arcs we wish to add can
be seen in the diagram below.

b2
a2

b2

a2

b1

a1

b1a1

bn

an

bn

an

e1

c1
d1

e2

d2
c2

en
dn
cn

Now we will finish our triangulation by adding a wheel pattern to the center punc-
ture. The arcs added will be labeled as below and there will be n edges added.
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b2
a2

b2

a2

b1

a1

b1a1

bn

an

bn

an

e1

c1
d1

e2

d2
c2

en
dn

cn f1

f2

fn−1

fn

Now we have completed our desired triangulation T of the surface (S, M). The
arcs which are required are

{a1, b1, c1, d1, e1, f1, a2, b2, c2, d2, e2, f2, . . . an, bn, cn, dn, en, fn}.

Now following the procedure from Fomin et al. (2008) we can construct the quiver
QTn , for the above triangulation. If you are unfamiliar with this procedure, the impor-
tant thing to note is that each arc of the surface is associated to exactly one vertex
in the quiver. In the diagram below the green vertices are given the same label as the
associated arcs. We then create the framed quiver by adding the blue frozen vertices.

e1 e2 e3 en

d2a2

c2

b2

c3

a3 d3

b3

cn

dnan

bn

c1

d1

b1

a1

f1

f2 f3

fn

e′1 e′2 e′3 e′n

d ′
2

a′
2

c′2

b′
2

c′3
a′
3

d ′
3

b′
3

c′n

d ′
n

a′
n

b′
n

c′1

d ′
1

b′
1

a′
1

f ′
1

f ′
2 f ′

3

f ′
n

2 2 22

4 Statement and Proof of Main Result

In this paperwewill establish amaximal green sequence for the quiver QTn constructed
above. Our main result is the following:
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Theorem 4.1 The quiver QTn has a maximal green sequence of

( fn, fn−1, . . . , f1, f3, f4, . . . fn, σn, σn−1, . . . σ1, f3,

f4, . . . fn, f2, f1, fn, fn−1, . . . f3, τn, τn−1, . . . , τ1)

where σi := (ei , di , bi , ci , ai , bi , di , ei , ci , ai , bi ) and τi := (ei , bi , ai , ci , ei , di ,
bi , ai , ei ).

We will look at the quiver QTn , and try and break it down into smaller subquivers.
Thefirst subquiver of QTn wewill consider is the orientedn-cycle ,C , which consists of
verticesC0 = { f1, f2, f3, . . . fn} and arrowsC1 = { fi → fi−1|1 ≤ i ≤ n with f0 =
fn}.

f3

f4
f5

fn−1

f2

f1
fn

f6

f ′
1

f ′
n

f ′
n−1

f ′
6

f ′
5

f ′
4

f ′
3

f ′
2

Lemma 4.2 (Cycle Lemma) The sequence ( fn, fn−1, fn−2, . . . f1, f3, f4, . . . , fn) is
a maximal green sequence for the subquiver C.

Proof First we must check that each mutation which occurs in the sequence occurs at
a green vertex. In Brüstle et al. (2014) Lemma 2.16 shows that if a vertex k is green in
the quiver Q, then vertex k is green in the quiver μ j (Q) as long as k = j . Therefore
everymutation in the sequencemust occur at a green vertex until its second appearance
in the sequence. In our case the first n mutations must occur at green vertices.

In order to understandwhy the othermutations occur at green vertices it is important
to recall from Brüstle et al. (2014) that each vertex is either green or red at every
mutation step of the sequence. Therefore in order to show that a vertex, fk , is green
we must find one arrow fk → f ′

j for some f j ∈ C0 and all other arrows between fk
and frozen vertices should have fk as a source as well.
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494 E. Bucher

Let us start by considering the quiver, Ĉ , before we have done any mutations.
Consider the vertex fn ; it is involved in the following arrows: fn → fn−1, f1 → fn ,
and fn → f ′

n . The only arrow with target fn is the arrow f1 → fn . In the picture
below you see what occurs after our first mutation μ fn .

f1 fn

fn−1

f ′
n

f1 fn

fn−1

f ′
n

At this point the only arrow with target fn−1 is the arrow f1 → fn−1. The next
mutation is at fn−1. After completing this mutation we end up with the diagram below
on the left. If we focus only on the subquiver where we delete the vertices fn and f ′

n
we obtain the diagram below on the right. It gives us the same diagram that resulted
from our mutation at fn , but we have shifted the index down one.

f1
fn

fn−1

fn−2

f ′
n

f ′
n−1

f1

fn−1

fn−2

f ′
n−1

The most important thing to notice is that each previously mutated vertex remains
red, while the only arrows created between the frozen vertices, { f ′

j }, and the mutable
vertices, { f j }, are the arrows { f1 → f ′

j }. The other important thing to make note
of is that the mutation μ fn−1 deletes the arrow f1 ← fn which was created by the
mutation before it. Since fn is not adjacent to fn−2, and the resulting diagram we
get by removing { fn, f ′

n} is the same as the previous diagram but with an index shift,
we know that this pattern will continue to hold for the mutations μn−2, . . . , μ3. The
resulting quiver μ f3 ◦ μ f4 ◦ · · · ◦ μ fn (Q) will be the following:
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f1
fn

fn−1

fn−2

fn−3

fn−4

f3

f2

f ′
2

f ′
1

f ′
n

f ′
n−1

f ′
n−2

f ′
n−3

f ′
n−4

f ′
3

We can see by looking at the above picture that when we perform the next mutation, no
additional arrows will be created from step (1) of the mutation process. Hence the only
impact on the quiver will be the reversing of arrowswhich are incident to the vertex f2.

f1
fn

fn−1

fn−2

fn−3

fn−4

f3

f2

f ′
2

f ′
1

f ′
n

f ′
n−1

f ′
n−2

f ′
n−3

f ′
n−4

f ′
3

Now if we consider the current state of the quiver, there is only one vertex which is
green, f1.We notice that the only arrowwith target f1 is the arrow f3 → f1. Therefore
step (1) of the mutation μ f1 will only create arrows with source f3. Hence the only
possible vertex which could shift from red to green is f3, and in fact f3 will become
green. The result of the mutation will be creating the arrows { f3 → f ′

j | j =
n, n − 1, n − 2, . . . , 4 and j = 1}. It will also delete the arrow f ′

3 → f3.

123



496 E. Bucher

f1
fn

fn−1

fn−2

fn−3

fn−4

f3

f2

f ′
2

f ′
1

f ′
n

f ′
n−1

f ′
n−2

f ′
n−3

f ′
n−4

f ′
3

We now are forced to mutate at our only green vertex in the quiver. Step (1) of μ f3
creates the arrows { f1 → f ′

i | i = 4, 5, . . . , n, and i = 1}, but step (3) will delete
these arrows since the arrows { f1 ← f ′

i | i = 4, 5, . . . , n, and i = 1} already exist
in our current state of the quiver.Meaning the vertex f1 will remain red. The only other
arrow whose target is f3 is f4 → f3, so the only vertex which could possibly turn
from red to green is f4 and this will occur. Step (1) of the mutation μ f3 will create the
arrows { f4 → f ′

i | i = 4, 5, 6, . . . , n and i = 1}, but step (3) will delete the arrow
f4 → f ′

4, because the arrow f ′
4 → f4 is already in the quiver prior to this mutation.

f1

f2 fn

f3

f4

fn−3

fn−2

fn−1

f ′
1

f ′
2

f ′
3

f ′
4

f ′
n−3

f ′
n−2

f ′
n−1

f ′
n
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Our next mutation is then forced to be μ f4 because it is the only green vertex in the
quiver. Theonly arrowswith target f4, are the arrows f3 → f4 and f5 → f4. First let us
consider the arrows created with source f3. Step (1) of themutation process will create
the arrows { f3 → f ′

i | i = 5, 6, 7, . . . , n and i = 1}. It also creates the arrow f3 →
f2. All of these arrows will be deleted by step (3) of the mutation process. This means
that no new outgoing arrows are created with source f3, therefore f3 remains a red
vertex aftermutation.Nowwe consider the arrowswith source f5, which are created by
the mutationμ f4 . The arrows created are { f5 → f ′

i | i = 5, 6, 7, . . . , n and i = 1},
but the arrow f5 → f ′

5 is deleted by step (3) of the mutation process.

f1

f2

f3

f4

f5

fn−2

fn−1

fn

f ′
5

f ′
n−2f ′

4

f ′
3

f ′
2

f ′
1

f ′
n

f ′
n−1

If we continue this pattern what we are seeing is that by mutating at fi we are deleting
all of the currently existing arrows { f ′

j → fi−1 | j = i} and we are creating the
arrows { fi+1 → f ′

j | j = i+2, i+3, . . . n and j = 1}. Thismeans at eachmutation
step,μ fi , the only vertex which will turn green is fi+1. Essentially we are transferring
all the outgoing arrows from the vertex fi to the vertex fi+1. This process continues
for each mutation in the sequence until the last mutation step. Lets look at the quiver
right before this mutation step, μ fn−1 ◦ μ fn−2 ◦ · · · ◦ μ f3 ◦ μ f1 ◦ μ f2 ◦ · · · ◦ μ fn (Q).
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f1

f2

f3

f4

f5

fn−2

fn−1

fn

f ′
5

f ′
n−2f ′

4

f ′
3

f ′
2

f ′
1

f ′
n

f ′
n−1

At this point step (1) of the final mutation in the sequence, will create only the arrows
fn−1 → f ′

1 and fn−1 → f2, both of which will be deleted by step (3) of the mutation.
Therefore no vertex which is red can become green, meaning that all of the vertices
are red. Hence, the sequence of mutations is a maximal green sequence.

f1

f2

f3

f4

f5

fn−2

fn−1

fn

f ′
5

f ′
n−2f ′

4

f ′
3

f ′
2

f ′
1

f ′
n

f ′
n−1

��
The important thing to notice about this sequence is that we pick a starting point and
mutate in direction of the cycle until we hit the end of the cycle. At this point we
run the mutation sequence backwards from the ending point, but we skip the first
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two steps of the mutation. We will make use of this sequence again later on in the
proof.

Now we must consider what this portion of the sequence does to the rest of the
quiver QTn . Mutation is a local property which only affects adjacent vertices, and
since this mutation sequence only involves the vertices { fi } the only vertices that can
be affected by the sequence are the vertices { fi } ∪ {ei }. From the lemma we know
that the first part of our sequence, ( fn, fn−1, . . . , f1, f3, f4, . . . fn), is green and that
after performing this sequence of mutations all of the vertices fi for 1 ≤ i ≤ n, will
be red. We must now look at what effect the sequence of mutations has on {ei }. So we
will look at a diagram of the quiver with the vertices {ei | 1 = 1, 2, . . . , n} drawn in.

e1 e2 e3

f1

f2 f3

e′
1 e′

2 e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n

Wesee that the initialmutationμ fn will result in creating the arrows en → f ′
n and en →

e1. It will delete the arrow fn−1 → en . This leaves the vertex en not adjacent to any ver-
tex fi , for any i = n. Meaning that since our sequence consists only ofmutations at the
vertices fi until the vertex fn is mutated at we cannot create new arrows involving en .

e1 e2 e3

f1

f2 f3

e′
1 e′

2 e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n
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The next mutation μ fn−1 will create the arrows en−1 → f ′
n−1 and en−1 → fn . It will

also delete the arrow fn−2 → en−1. In general the mutation step μi will create the
arrows ei → f ′

i and ei → fi+1, while deleting the arrow fi−1 → ei . This pattern
holds until we have arrived at the quiver μ f3 ◦ μ f4 ◦ · · · ◦ μ fn (QTn ).

e1 e2 e3

f1

f2 f3

e′
1 e′

2 e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n

Nowwe see that at this stage in the mutation sequence we do not have the arrow f2 →
f1, and so our next mutation μ f2 will only create the edges e2 → f3 and e2 → f ′

2.

e1 e2 e3

f1

f2 f3

e′
1 e′

2 e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n

Next, we look at what occurs when we perform the mutation μ f1 . Step (1) of this
mutation will create the arrow e2 ← f3, but step (3) will delete this arrow because
the quiver already has the arrow e2 → f3.
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e1 e2 e3

f1

f2 f3

e′
1 e′

2 e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n

Nowwe notice that at this stage the vertex e2 is not adjacent to any vertices that will be
mutated during the remainder of our sequence. Therefore its current arrows will not be
affected by the sequence. As we continue performing the mutations of this occurs for
each ei for i = 2, 3, . . . n. More specifically, after the mutationμ fi the arrows incident
to the vertex ei will be fixed for the remainder of the mutations in the sequence. This
pattern continues untilwe have the quiver,μ fn−1◦μ fn−2◦· · ·◦μ f3◦μ f1◦· · ·◦μ fn (QTn ).

e1 e2
e3

f1

f2
f3

e′
1 e′

2

e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n

Now if we look at the final mutation μ fn , the net result from the mutation will be
creating the arrow fn−1 → en and deleting this arrow en → e1. It will also create the
arrow e1 → f ′

1. The end result is a quiver that up to permuting the vertices f1 and
f2, we have the same structure that we had prior to the sequence with the following
exceptions: the arrows {ei → f ′

i | 1 ≤ i ≤ n} are now in the quiver and the vertices
fi are all red instead of green.
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e1 e2 e3

f1

f2 f3

e′
1 e′

2 e′
3

f ′
1

f ′
2 f ′

3

en−1

fn−1

en

fn

f ′
n−1

e′
n−1 e′

n

f ′
n

This concludes what we need to consider from the initial part of the sequence.
Now we must look at the additional pieces which are attached to the bottom
of the quiver. We will call these subquivers Hi , and define it as (Hi )0 =
{ai , bi , ci , di , ei , a′

i , b
′
i , c

′
i , d

′
i , e

′
i } and (Hi )1 = { all arrows between elements of

(Hi )0}. Below is a diagram of Hi after performing the mutation sequence above.
We have included in the diagram the vertices which Hi is adjacent to as well, though
they are not part of Hi .

ei

ci

diai

bi

fi−1 fi

e′
i

c′
i

d ′
ia′

i

b′
i

f ′
i

2
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The next part of our maximal green sequence will be mutation sequences that occur
only on the vertices of the Hi , specifically we will consider what happens when we
apply the σi for each i .

We look at what occurs when we perform the mutation sequence σi . Since mutation
is a local condition it will only effect the vertices shown in the above diagram, (Hi )0 ∪
{ fi , fi−1, f ′

i }. In addition it is important to note that only arrows between these vertices
can be affected by the mutation sequence. Therefore the mutation sequences σi and
σ j will not interact with each other.

By computation we can check the result of performing the sequence of mutations
σi on the subquiver Hi since it is a finite number of steps. These computations were
checked using the java applet developed by Keller.

ei

ci

diai

bi

fi−1 fi

e′
i

c′
i

d ′
ia′

i

b′
i

f ′
i

2

2

2

22

2

Notice that each sequence σi results in the vertex fi−1 becoming a green vertex.
Therefore the only green vertices in the quiver after performing all of the sequences,
σi , are the vertices { f1, f2, f3, . . . fn}.

Another important aspect of the current state of the quiver is that there are no
arrows fi−1 → ai , fi−1 → bi , fi−1 → ci , fi−1 → di , or arrows in the opposite
directions. Therefore when we perform the next portion of the mutation sequence,
( fn, fn−1, . . . f3, f1, f2, . . . fn), since all of the mutations occur at the vertices { fi }
we will not introduce new arrows involving the vertices {ai , bi , ci , di }.
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Below is a diagram of the current state of the quiver, μσ1 ◦ μσ2 · · ·μσn ◦ μ fn ◦
μ fn−1 ◦ · · · ◦ μ f3 ◦ μ f1 ◦ · · · ◦ μ fn (QTn ), in which we have omitted all the vertices
except for the { fi }.

f2

fn

f1

e′
n

e′
1

e′
2

d ′
1

a′
1

b′
1c′

1

c′
2 a′

2b′
2

d ′
2

b′
3

c′
3

a′
3

c′
3

c′
n

a′
n

b′
n

d ′
n

f ′
nf ′

1

f ′
2

f3

fn−1

f ′
3e′

3
a′
4 c′

4b′
4

d ′
4

e′
4

f ′
4

2

2 22
2

2 2
2

22

2
2

2

2 2

2

2

2

2

2

2 22
2
2

We notice that this diagram is the same as the diagram from Lemma 4.2, with some
minor alterations. First, the cycle has a reversed orientation. We now have attached
multiple frozen vertices to each fi and we have permuted the vertices f1 and f2.
Additionally the indices of the frozen vertices do not match the indices of the mutable
vertex they are adjacent to. The important aspect is that we can utilize the same
sequence of mutations that we used before to turn all of these vertices red, by adjusting
for the new ordering of the vertices { fi }.

We choose a starting point and then mutate in the direction of the cycle, until
we reach the end of the cycle, in which case we turn around and run the sequence in
reverse, but skipping the first two steps of the sequence. The sequence of mutations we
use is the following ( f3, f4, . . . fn, f2, f1, fn, fn−1, . . . f3). This sequence is chosen
because the result will permute the vertices f1 and f2, undoing the permutation from
performing the sequence in Lemma 4.2. The resulting quiver after performing the
sequence of mutations is shown below.
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f2

fnf1

e′
ne′

1

e′
2

d ′
1

a′
1

b′
1

c′
1

c′
2

a′
2b′

2

d ′
2

b′
3

c′
3

a′
3

d ′
3

b′
n

d ′
n

c′
n

a′
n

f ′
n

f ′
1

f ′
2

f3

fn−1

f ′
3

e′
3

a′
n−1

c′
n−1b′

n−1

d ′
n−1

e′
n−1

f ′
n−1

2

2
22

2

2

2

2

2

2

2
2

2

22

2
2

2

2
2

2 22
2

2

To understand how this sequence will impact the other vertices of the quiver it is
important to note that the only vertices which connect to the { fi } at this stage of the
quiver are the vertices {ei } and the frozen vertices. Below is a diagram depicting the
quiver and the vertices which are adjacent to the { fi }.

123



506 E. Bucher

ene1

e2

f2

fn

f1

e′
n

e′
1

e′
2

d ′
1

a′
1

b′
1c′

1

c′
2 a′

2b′
2

d ′
2

b′
3

c′
3

a′
3

c′
3

c′
n

a′
n

b′
n

d ′
n

f ′
nf ′

1

f ′
2

e3

f3

e4

fn−1

f ′
3e′

3
a′
4 c′

4b′
4

d ′
4

e′
4

f ′
4

2

2 22
2

2 2
2

22

2
2

2

2 2

2

2

2

2

2

2 22
2
2

First, we notice that the subquiver including only the vertices { fi }∪ {ei } is exactly the
same quiver as the quiver we started with before we did any mutations (with a change
of orientation). Therefore since this sequence of mutations is the same as before with
an adjustment for this change of orientation we can see that it will have the same effect
on the vertices {ei }, in terms of creating arrows between the vertices { fi } and {ei }.
Therefore like before it will not effect the arrows ei → fi−1 and fn → en except for
the fact that the vertices f1 and f2 are permuted by this sequence of mutations. Below
is a diagram of the final result, with the frozen variables removed to make it easier to
see the end result.

123



Maximal Green Sequences for Cluster Algebras… 507

ene1

e2

f2

fn

f1

e3

f3

en−1

fn−1

Now the only thing left to do is keep track of the arrows created between the frozen
vertices and the vertices {ei } as this sequence of mutations is performed. At each initial
step of themutation,μ fi , the vertex ei+1 will gain arrows to each frozen vertex incident
to fi . Also important, is that the arrow ei+1 → fi+1 is deleted from this mutation.
This means that no additional arrows between ei+1 and the frozen vertices will be
created during this mutation sequence. Below is a diagram showing this interaction
before and after the mutation μ fi .

fi

ei+1

fi+1

a′
i+1 c′

i+1b′
i+1

d ′
i+1

e′
i+1

f ′
i+1

fi

ei+1

fi+1

a′
i+1 c′

i+1b′
i+1

d ′
i+1

e′
i+1

f ′
i+1

2 22
2
2

2 22
2
2

2 22
2

At this point there is only one part of the sequence left to consider: (τn, τn−1, . . . , τ1).
Before we do this let us look at the state of the current quiver. We have the cycle below
with subquiver H̃i attached to each vertex.
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H̃nH̃1

H̃2

f2

fn

f1

H̃3

f3

H̃n−1

fn−1

Below is a diagram of each H̃i and how it connects to the large cycle:

ei

ci

diai

bi

fi−1

fi

e′
i

c′
i

d ′
i

a′
i

b′
i

2

2

2

2

2

2

2

2

2

2
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The mutation sequence τi is a sequence only on the of H̃i and hence will not effect
the vertices of H̃ j with j = i . By computation we can check to see that each mutation
sequence τi will turn the vertex ei into a red vertex while leaving all of the other
vertices red as well. The end result can be checked by using the Keller mutation applet
and is shown below.

ei

ci

diai

bi

fi−1

fi

e′
i

c′
i

d ′
i

a′
i

b′
i

2

The vertices included in τi belong to H̃i only and hence the performance of each
sequence τi does not create any green vertices. It only turns the vertex ei from a green
vertex to a red vertex. Therefore after completing each mutation sequence τi , every
vertex in the quiver will be red. This means that the sequence of mutation which we
performed was a maximal green sequence. Or in other words that,

( fn, fn−1, . . . , f1, f3, f4, . . . fn, σn, σn−1, . . . σ1, f3, f4, . . . fn,

f2, f1, fn, fn−1, . . . f3, τn, τn−1, . . . , τ1)

is a maximal green sequence for the quiver QTn .
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