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Abstract The article contains several problems concerning local monodromy groups
of singularities, Lyashko–Looijenga maps, integral geometry, and topology of spaces
of real algebraic manifolds.
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1 Explicit Obstructions to the Lyashko–Looijenga Covering (and its
Real Analogs) for Non-Simple Singularities

The so-called Lyashko–Looijenga covering (see Looijenga 1974; Vassiliev 2002a) is
a strong tool for constructing (or proving the existence of) the perturbations of simple
singularities with prescribed topological properties, such as singularity types of dif-
ferent critical points, or intersection matrices of vanishing cycles: see, e.g., Lyashko
(1976). The real version of this tool allows one to construct and enumerate all topo-
logically different Morsifications of real simple singularities: see Looijenga (1978),
Chislenko (1988), Vassiliev (2002b).

Many of these options are preserved for non-simple singularities: see Vassiliev
(2002a, b). In particular, this method was used to predict the existence of many
Morsifications with prescribed properties and to describe their expected topological
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characteristics, making it easy to give an explicit construction of these Morsifications.
However, in this case this method is rather experimental or heuristic, without clear
guaranties that all perturbations found by it actually exist. Therefore, it is important
to track down the restrictions of this method. Here are several explicit problems.

1.1 Complex Version

Let f : (Cn, 0) → (C1, 0) be an isolated holomorphic function singularity, μ be its
Milnor number, F(x, λ) : (Cn × C

μ, 0) → (C1, 0) be the miniversal deformation
of f , and � ⊂ C

μ be the complete bifurcation set of functions of this deformation,
i.e. the set of values of the parameter λ ∈ C

μ such that the corresponding function
fλ = F(·, λ) has less than μ different critical values at critical points close to the
origin. The Lyashko–Looijenga map sends any point λ from a small neighborhood Bε

of the origin in C
μ to the unordered collection of critical values of the function fλ at

points close to 0 ∈ C
n (or, which is equivalent but sometimes more convenient, to the

set of values of basic symmetric polynomials of these critical values). If the singularity
of f is simple, then the restriction of this map to Bε\� is a local covering over the
configuration space B(D, μ) of all subsets of cardinality μ in a very small (even with
respect to ε) neighborhood D of the origin in C: see Looijenga (1974). In particular,
any element α ∈ π1(B(D, μ)) can be realized by a loop which can be lifted to a path
in Bε\�, covering this loop.

For non-simple singularities this is no longer the case. As previously, the Lyashko–
Looijenga map is submersive (and hence locally bijective) everywhere in Bε\� (this
follows from the very notion of miniversality). However, a sufficiently complicated
path in B(D, μ), lifted into C

μ\� in accordance with this local bijectivity, can run
out from the neighborhood of the origin in C

μ. This is related to the fact that the
Lyashko–Looijenga map for non-simple singularities is not proper: the preimage of
the collection (0, . . . , 0) is the entire (positive-dimensional) μ = const stratum.1

Problem 1A Present explicit obstructions to the Lyashko–Looijenga covering in
terms of braid groups. Which braids cannot be lifted to the space C

μ\�?

Given a configuration of μ different points z1, . . . , zμ in D\0 and a system of non-
intersecting paths connecting them with 0, any perturbation fλ of f , which has these
critical values, defines a Dynkin diagram: see Arnold et al. (1985), vol. 2. Any braid
l ∈ π1(B(D, μ)) transforms this Dynkin diagram into another one in accordance with
the Picard–Lefschetz formulas: see Arnold et al. (1985) or Vassiliev (2002a). If our
braid l can be lifted to a curve in Bε\� starting at the point λ and covering this braid
via the Lyashko–Looijenga map, then the resulting Dynkin diagram is nothing but the
Dynkin diagram of the function fλ′ corresponding to the endpoint of this lifted curve
and defined by the same system of paths connecting the critical values with 0.

However, for complicated singularities, the number of Dynkin graphs, which can
be obtained by the formal Picard-Lefschetz moves, is infinite, while the number of

1 A weaker substitute for the Lyashko–Looijenga covering theorem holds in the case of parabolic singu-
larities, if one writes the versal deformation in the canonical monomial form and allows large travellings
in the space Cμ: see Jaworski (1986). For more complicated singularities the situation is even worse.
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preimages of any non-discriminant configuration under the Lyashko–Looijenga map
is bounded.

Problem 1B Let a non-simple singularity f be given and the Dynkin diagram of
it be defined by an easily distinguished system of paths connecting 0 with critical
points of fλ. Which Dynkin graphs can be obtained from it by a sequence of formal
Picard–Lefschetz moves defined by a braid, but cannot appear as Dynkin diagrams of
Morsifications fλ′ with the same critical values defined by the same system of paths?

Furthermore, for simple singularities, all partial collisions of μ critical values can
be realized, because the Lyashko–Looijenga map is proper. This reduces the problem
of enumeration of possible decompositions of the initial critical point to a problem
formulated in terms of Dynkin diagrams and Picard–Lefschetz operators only: see
Lyashko (1976).Again, for non-simple singularities, it is not the case. For example, any
non-simple singularity admits a system of paths connecting 0 with critical values, such
that there are two vanishing cycles with the intersection number equal ±2. Then we
surely cannot lift to Bε the collision of these two critical values along these paths while
keeping the remaining critical values unmoved. Namely, the attempt to move these
critical values towards one another by means of the Lyashko–Looijenga submersion
will throw the parameter λ out of any neighborhood of the origin in C

μ.

Problem 1C Are there more refined restrictions to the collision of critical values?
Is it true that for any two vanishing cycles, whose intersection number is equal to
±1 or 0, we can lift the collision of the corresponding critical values to Bε via the
Lyashko–Looijenga submersion?

In the previous consideration, the existence of two vanishing cycles with the inter-
section number ±2 ensures the non-properness of the Lyashko–Looijenga map, and
hence the fact that the μ = const stratum of the singularity is positive-dimensional.

Problem 1D Give more general lower bounds of the dimension of μ = const strata
in terms of intersection forms of vanishing cycles.

That is, if we can indicate many independent prohibited collisions of critical values,
then probably the attempt to perform these collisions by brute force will throw the cor-
responding Morsifications out of the neighborhood of the origin inCμ in independent
directions (all of which approach the μ = const stratum).

1.2 Real Version

The real versions of these problems are important for the construction of real decom-
positions and enumeration of topologically distinctMorsifications of real singularities:
see Chislenko (1988), Vassiliev (2002b). Namely, let f : (Cn,Rn, 0) → (C,R, 0)
be a real function singularity, and F : (Cn ×C

k,Rn ×R
k, 0) → (C,R, 0) be its real

deformation. The space Rk of real parameters is separated into several chambers by
the real total discriminant (consisting of all non-Morse functions and functions with
critical value 0). We can go from any chamber to any other one by a generic path
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in R
k passing only finitely many times the discriminant at its non-singular points.

Any such passage changes the topological type of the function fλ in some predictable
way. Moreover, if our singularity f is simple and the deformation F is versal, then
all standard changes satisfying some natural restrictions can indeed be performed. In
particular, if fλ has two neighboring real critical values, then we can collide them and
get two critical points on the same level (if the intersection number of corresponding
vanishing cycles is 0) or a critical point of type A2 (if this number is ±1). In the
latter case, these two critical values (and the corresponding critical points) go to the
imaginary domain after this passage.

For non-simple singularities, we can perform all the same formal surgeries over
the collections of critical values (supplied with the intersection matrix and some addi-
tional set of topological invariants of a real Morsification), and combine these formal
surgeries in arbitrary sequences.

Problem 1E What are the obstructions to the realization of these chains of formal
changes by paths in the parameter space R

k?

An algorithm enumerating all such chains of surgeries was realized in Vassiliev
(2002b). This algorithm was executed for all singularities of corank 2 and μ ≤ 11,
and this execution never met a formal surgery which could not be realized by a surgery
of functions in the versal deformation.

Can this experimental fact be raised to the theorem level?

1.3 Prediction of the Indices of Newborn Critical Points at a Morse Surgery

Consider a one-parameter family of real analytic functions (or just polynomials)
fτ : (Cn,Rn) → (C,R), τ ∈ (−ε, ε) realizing a Morse birth surgery: the func-
tions fτ , τ < 0, have two complex conjugate critical points which collide in a point
of type A2 when τ approaches 0, and after that reappear as two real Morse critical
points of some two neighboring Morse indices.

Problem 1F Is there any convenient topological characteristic of the function f−ε

which allows to predict these indices?

The parities of these indices can indeed be predicted. Namely, consider the complex
level manifold Va = f −1−ε (a), where a is a real non-critical value between complex
conjugate critical values of f−ε which are going to collide, and vanishing cycles in this
manifold defined by segments connecting a with these critical values. The intersection
number of these cycles is equal to ±1 depending on the choice of their orientations.
Let us choose these orientations in such a way that the complex conjugation in Va

takes one of them into the other one. Then the sign of their intersection number is
well-defined and allows us to guess the parities of the indices of newborn critical
points: see Vassiliev (2002a, b). But how can we predict the integer indices?
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2 Covering Number (Genus) of Maps Which are Not Fiber Bundles

Given a surjective map of topological spaces, p : X → Y , the covering number of p
is the minimal number of open sets covering Y in such a way that there is a continuous
cross-section of p over any of these sets. This definition was given by Smale (1987)
in connection with the problems of complexity theory. In the particular case of fiber
bundles, this notionwas earlier introduced anddeeply studied bySchwarz (1966) under
the name of the genus of a fiber bundle. However, in the complexity theory of equations
over real numbers, the case of maps with varying fibers becomes essential. Here is one
of the first examples. Consider the 6-dimensional real space of pairs of polynomials
( fa, gb) : R2 → R

2, where fa(x, y) = x2 − y2 + a(x, y), gb = xy + b(x, y), and
a(x, y) and b(x, y) are arbitrary polynomials of degree ≤ 1. Obviously, the system
{ fa = 0, gb = 0} always has 2 or 4 solutions in R2 (counted with multiplicity).

Problem 2A What is the minimal number of open sets Ui covering R
6 such that for

any Ui there is a continuous map ϕi : Ui → R
2 sending any pair (a, b) ∈ Ui into

some solution of the system { fa = 0, gb = 0}?
In previous terms, this is a question about the covering number of the projection

map X → Y , where Y = R
6 is the space of parameters (a, b), and X ⊂ R

6 × R
2

is the space of pairs ((a, b), (x, y)) such that (x, y) ∈ R
2 is a root of the system

{ fa = 0, gb = 0}.
The number in question is not less than 2 (indeed, we can emulate the complex equa-

tion z2 = A inside our system, and the covering number of this equation depending
on the complex parameter A is equal to 2). But is this estimate sharp?

Problem 2B The same questions concerning the approximate solutions. That is, for
any i and any (a, b) ∈ Ui , the value ϕi (a, b) should be not necessarily a root of the
system { fa = 0, gb = 0}, but just a point in the ε–neighborhood of such a root for
some fixed positive ε.

These problems have obvious generalizations to polynomial systems of higher
degrees and different numbers of variables. They can be non-trivial even for polyno-
mials in one real variable: see Vassiliev (2014).

3 K (π, 1)–Problem for the Complement of the Essential Ramification
Set of a General Real Polynomial in One Variable

Consider the space Rd of all real polynomials

fa(x) = xd + a1xd−1 + · · · + ad−1x + ad , a j ∈ R.

The essential ramification set in the spaceRd is the unionof all valuesa = (a1, . . . , ad)

such that the corresponding polynomial fa has either a real triple root, or a pair of
complex conjugate imaginary double roots: see Vassiliev (2011). Obviously, this set
is a subvariety of codimension 2 in Rd .

Problem 3 Is the complement of the essential ramification set inRd a K (π, 1)-space?
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4 Odd-Dimensional Newton’s Lemma on Integrable Ovals and
Geometry of Hypersurfaces

This is actually the “odd-dimensional part” of Arnold’s problem 1987-14 fromArnold
(2004) (repeated as problem 1990-27). I describe below its reduction to a problem in
algebraic geometry.

Any compact domain in R
n defines a two-valued function on the space of affine

hyperplanes: the volumes of two parts into which the hyperplane cuts the domain. If
n is odd and the domain is bounded by an ellipsoid, then this function is algebraic (by
a generalization of Archimedes’ theorem on sphere sections).

Arnold’s problem (see Arnold 2004). Do there exist smooth hypersurfaces in
R

n (other than the quadrics in odd-dimensional spaces), for which the volume of the
segment cut by any hyperplane from the body bounded by them is an algebraic function
of the hyperplane?

Many obstructions to the algebraicity of the volume function follow from the
Picard–Lefschetz theory, studying the ramification of integral functions: see Vassiliev
(2002a), Arnold and Vassiliev (1989). These obstructions are quite different in the
cases of even or odd n, because the homology intersection forms, which are a major
part of the Picard–Lefschetz formulas, behave very differently depending on the parity
of n. In particular, the “even-dimensional” obstructions are sufficient to prove that the
volume function of a compact domain with C∞-smooth boundary in R

2k is never
algebraic: see Vassiliev (2015). Here are two similar obstructions specific for the case
of odd n.

Definition A non-singular point of a complex algebraic hypersurface is called par-
abolic, if the second fundamental form of the hypersurface (or, equivalently, the
Hessian matrix of its equation) is degenerate at this point. A parabolic point x is
degenerate, if the tangent hyperplane to our hypersurface at x is tangent to it at entire
variety of positive dimension containing the point x .

Proposition (see Vassiliev 2002a). If n is odd and the volume function defined by a
bounded domain with smooth boundary in R

n is algebraic, then the complexification
of this boundary cannot have non-degenerate parabolic points in C

n.

Smooth algebraic projective hypersurfaces of degree ≥ 3 always have parabolic
points (andmoreover, by a theorem of F. Zak, they have only non-degenerate parabolic
points). Unfortunately, this is not sufficient to give a negative answer to the above
Arnold problem, because

(a) the complexification of a smooth real hypersurface can have singular points in the
complex domain, and non-smooth hypersurfaces of arbitrarily high degrees can
have no parabolic points: for instance, this is the case for hypersurfaces projective
dual to smooth ones;

(b) the previous proposition does not prohibit parabolic points in the plane at infinity
CP

n\Cn .

However, the standard singular points, which can occur instead of parabolic points,
the generic cuspidal edges, also prevent the algebraicity of the corresponding volume
function: see Vassiliev (2002a), §III.6.
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Problem 4 Are these geometric obstructions sufficient to solve the above problem?

In other words, is it true that the complexification of the smooth algebraic boundary
of degree ≥ 3 of a compact domain in R

n has always a point of one of these two
obstructing types? If not, probably we can complete this list by some other singularity
types, which also obstruct the algebraicity, so that singular points of at least one of
these types will be unavoidable on any such hypersurface.

5 Greedy Simplifications of Real Algebraic Manifolds

Given natural numbers d and N , consider the space P(d; N ) of all smooth algebraic
hypersurfaces of degree d in R

N . The trivial elements of this space are the empty
manifolds if d is even, and the surfaces isotopic to R

N−1 if d is odd. Consider also
somenaturalmeasure of topological complexity of such hypersurfaces,which takes the
smallest value on trivial objects only: for example, the sum of numbers of generators
of homology groups, or the lowest number of critical points of Morse functions.

Problem 5A Is it true that any hypersurface from the space P(d; N ) can be connected
with a trivial one by a generic path in this space in such a way that it experiences only
Morse surgeries, which decrease this complexity measure?

In other words, does our space contain non-trivial varieties with the following
property: any surgery of this variety decreases (or leaves unchanged) this complexity
measure?

This problem can be extended to algebraic submanifolds defined by systems of
polynomials; however, the measure of topological complexity in this case should take
into account the possible “knottedness” in RN .

Problem 5B A version of the previous problem, in which the complexity measure is not
purely topological: namely, it is the lowest number of critical points of Morse functions
defined by restrictions of linear functionsRN → R to our varieties. (Correspondingly,
the surgeries of the variety affecting this measure should be not only those of topolog-
ical nature but also include bifurcations of the dual variety).

If the answer to the previous questions is negative, then we obtain functions that
associate with any value T of topological complexity the lowest number F such that
any surface of complexity T can be connected with a trivial one by a generic path in
the space P(d; N ) for which the complexities of all intermediate hypersurfaces do not
exceed F .

Problem 5C Give an upper bound for the function T 	→ F.

It is appropriate to mention here a related problem due to V.A. Rokhlin.

Problem 5D Do non-singular real plane projective curves of an odd degree consisting
of a single connected component form a connected set (i.e., are they rigid isotopic)?

The first degree for which the answer is unknown is 7.
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6 A Local Version of Problems of Section 5

Let f : (Rn, 0) → (R, 0) be a function germ with d f (0) = 0 and the Milnor
number μ( f ) finite. Let ρ( f ) be the smallest number of real critical points of real
Morsifications of f .

Problem 6A Is it true that any real Morsification of f can be connected with one of
complexity ρ( f ) by a generic path in the base of a versal deformation, in such a way
that all Morse surgeries [A2] in this path only decrease the number of real critical
points?

Problem 6B What can be said about the number ρ( f )?

Two obvious lower estimates of this number are (a) the index of grad f at 0, and
(b) the Smale number of the relative homology group

H∗( f −1((−∞, ε]), f −1((−∞,−ε])) (1)

(i.e. the rank of the free part of this group plus twice the minimal number of generators
of its torsion). Of course, the first estimate does not exceed the second one, but can
they be different? Do they coincide at least for functions of corank 2?

Can the group (1) have non-trivial torsion? Is the estimate (b) of the number ρ( f )

sharp?

Problem 6C Is it true that any component of the complement of the discriminant
variety of a versal deformation contains a Morsification, whose all μ( f ) critical
points are real?

This is true for all simple singularities: see Vassiliev (2002a).

7 Radius of Convergence for Multidimensional Newton’s Method

Consider a polynomial C1 → C
1 of degree n and some simple root z0. Let d be

the minimal distance from this root to all other roots of this polynomial. According
to Reshetnyak (1962), the d

2n−1 -neighborhood of z0 belongs to its domain of conver-
gence; that is,Newton’smethod starting fromanypoint of this neighborhood converges
to z0. The estimate d

2n−1 cannot be improved as a function of d and n not depending
of the polynomial.

Problem 7 Give a similar universal estimate of the radius of convergence for multi-
dimensional Newton’s method of Shub and Smale (1993).
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