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Abstract A swap sequence-based particle swarm optimiza-
tion (SSPSO) technique and genetic algorithm (GA) are used
in tandem to develop a hybrid algorithm to solve generalized
traveling salesman problem. Local search algorithm K-Opt
is occasionally used to move any stagnant solution. Here,
SSPSO is used to find the sequence of groups of a solution
in which a tour to be made and cities from different groups
of the sequence are selected using GA. The K-Opt algorithm
(for K = 3) is used periodically for a predefined number of
iterations to improve the quality of the solutions. The algo-
rithm is capable of solving the problem in crisp as well as
in imprecise environment. For this purpose, a general fitness
evaluation rule for the solutions is proposed. The efficiency
of the algorithm is tested in crisp environment using differ-
ent size benchmark problems available in TSPLIB. In crisp
environment, the algorithmgives 100% success rate for prob-
lems up to considerably large sizes. Imprecise problems are
generated from crisp problems randomly using a rule and are
solved using the proposed approach. The obtained results are
discussed. Moreover it is observed that the proposed algo-
rithm finds multiple optimal paths, when they exist, both for
the crisp problems and their fuzzy variations.
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1 Introduction

The traveling salesmen problem (TSP) is one of the standard
combinatorial discrete optimization problems. The general-
ized traveling salesman problem (GTSP) is an extension of
TSP and is a NP-hard problem. The GTSP has been intro-
duced by [14], Saksena [31], and Srivastava [33] in the
context of computer record balancing and of visit sequenc-
ing through welfare agencies since the 1960s. The problem
consists of a set of n cities where travel cost ci j between
(i-th city and j-th city) any two cities is known. The n
cities are divided into several groups, i.e., g1, g2, . . . , gm .
Here, m is the numbers of groups. A city may belong to
one or more than one group. The objective is to find the
possible minimum-cost Hamiltonian cycle (tour) through
the groups. The GTSP has various real-world applications
such as mail delivery [19], welfare agency routing ([31],
material flow system design [19], vehicle routing [19], and
computer file sequencing [14]. The existing algorithms for
GTSParemainly basedondynamic programming techniques
[8,14,18,26,31,33], which transfer GTSP into TSP. Some
heuristic and meta-heuristic algorithms have been proposed
for solving GTSP: a random key genetic algorithm [34],
a memetic algorithm [13], an efficient composite heuristic
[30], reinforcing ant colony system [27], etc. Yang et al.[37]
present a new heuristic method-based ant colony optimiza-
tion (ACO) for solving GTSP. Since 1995, particle swram
optimization (PSO) [16] has been proven to succeed in con-
tinuous optimization problems, and many works have been
done effectively in this area. PSO can be used to solve
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GTSP also. Using the concept of the swap operator and
swap sequence, and redefining some operators of PSO on
the basis of them, Shi et al. [32] present another heuristic
method based on PSO for solving TSP as well as GTSP. On
the other hand, the genetic algorithm (GA)was introduced by
Holland, inspired by Darwin’s theory in 1970s [15]. The idea
behind GA is to model the natural evolution by using genetic
inheritance together with Darwin’s theory. Nowadays, GA is
one of the important heuristic algorithms for NP-hard combi-
natorial optimization problems. Bontouxa et al. [3] propose
a memetic algorithm using GA for solving GTSP. Zhao and
Zhu [40] present an innovative GA-based algorithm for solv-
ing GTSP.

In all the above literature, it is implicitly assumed that the
traveling cost from one city to another is fixed, i.e., crisp in
nature. Traveling cost from one city to another depends on
the conveyance used for traveling. It varies slightly depend-
ing on the availability of the conveyance, condition of the
road, etc., though its value normally lies in an interval.
So, these costs are imprecise in nature. There are differ-
ent estimation approaches for imprecise data. Among them,
stochastic estimation [22], fuzzy estimation [5,12,17] and
rough estimation [24] have drawn more attention. For real-
life problem like GTSP, fuzzy estimation of travel costs is
more appropriate. It is less error prone, as these estimations
are based on experts’ opinion. Also, not much past data are
required for such an estimation. Due to this reason, it is bet-
ter to model the costs of a GTSP as fuzzy numbers. Though
there are some research works on TSP incorporating fuzzy
costs [4,5,17], none has solved GTSP in a fuzzy environ-
ment.

From the above discussion, it is clear that there are some
lacunas in the existing literature of GTSP which are summa-
rized below:

• In the existing literature, GTSPs are considered only in a
crisp environment.

• Existing algorithms for GTSP are not capable of solving
GTSPs in an imprecise environment.

• The presence of multiple paths of any GTSP is over-
looked/ignored by the researchers.

To remove the above-mentioned shortcomings in this re-
search paper, a GTSP is considered whose costs are fuzzy
in nature. To solve this problem, an algorithm is proposed
which is capable of solving a GTSP in crisp environment
as well as in fuzzy environment. The proposed algorithm
is a hybridization of SSPSO, GA and K-Opt. Initially, a
sequence of groups in which a tour is to be made is selected
randomly and for each sequence a city from each group
is selected using GA. After the first iteration, SSPSO is
used to rearrange the sequence of groups for improve-
ment of the solution and cities from different groups of

the sequence selected using GA. In this GA, two types
of crossover operations—single-point crossover and multi-
point crossover—are performed depending on some random
functions. Formutation operation, an adaptivemutation func-
tion is used that continues to perform mutation operation
until no better movement is found in a predefined num-
ber of iterations. A strong local search algorithm K-Opt
(K = 3) is used periodically for a predefined number of
iterations to improve the quality of the solutions. This pre-
defined number of iterations may vary with the size of the
problem. The algorithm is capable of solving the problem
in crisp as well as in imprecise environment. A general fit-
ness evaluation scheme is proposed for the purpose. As a
result, the algorithm can be used to solve GTSP in fuzzy,
rough and stochastic environments. The efficiency of the
algorithm is tested in crisp environment using different size
benchmark problems available in TSPLIB [29]. In crisp envi-
ronment, the algorithm gives 100% success rate for problems
up to considerably large sizes. Imprecise problems are gen-
erated from crisp problems randomly using a proposed rule.
Imprecise problems are solved and the obtained results are
discussed.

The rest of the paper is organized as follows: in Sect.
2, problem definition and some mathematical prerequisites
are presented. In Sect. 3, some features of SSPSO are dis-
cussed. The features of GA are discussed in Sect. 4. The
K-Opt algorithm is presented in Sect. 5. The proposed algo-
rithm is presented in Sect. 6. The experimental results are
discussed in Sect. 7. A brief conclusion is drawn in Sect. 8.
At the end, the reference list is presented.

2 Problem definition and mathematical
prerequisites

The GTSP can be described as the problem of seeking a
special Hamiltonian cycle with the lowest cycle cost in a
complete weighted graph. Let G = {V, E,C} be a complete
weighted graph where V = {v1, v2, . . . , vn} (n ≥ 3), E =
{ei j |vi , v j ∈ V } and C = {ci j |ci j > 0 and cii = 0,∀i, j ∈
{1, 2, . . . , n}} are a set of cities, set of edges between cities,
and the set of travel cost between two cities, respectively. The
symbols vi , ei j , ci j represent the i-th city, the edge connecting
cities vi and v j , and the travel cost corresponding to edge ei j ,
respectively. The city set V is partitioned into m possibly
intersecting groups g1, g2, . . . , gm with |g j | ≥ 1 and V =⋃m

j=1 g j , where |g j | is the number of elements in group |g j |.
The special Hamiltonian cycle is required to pass through all
of the groups, but not all of the cities differing from that of
TSP. In real-life problem, ci j represents the cost of travel
between city i and city j , or distance between city i and city
j , or time required to travel from city i to city j , etc. There
are two different kinds of GTSP under the above-mentioned
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Fig. 1 Tpye-1 GTSP (only one node from each group)

Fig. 2 Type-1 GTSP (At least one node from each group)

framework of the special Hamiltonian cycle [8,19]: (1) the
cycle passes through exactly one city in each group (Fig. 1)
[14,31,33] and (2) the cycle passes through at least one city
in each group (Fig. 2) [18,26]. The first kind of GTSP is
known as E-GTSP, where E stands for equality [8]. In this
paper only the E-GTSP, i.e., the first case, is discussed and is
still called GTSP for convenience. The problem is to find a
travel schedule for a salesman who likes to visit exactly one
city of each group (g1, g2, . . . , gm) and comes back to the
starting city with minimum tour cost. Here, it is assumed
that groups of cities are known, i.e., the salesman will not
determine the group.

Fuzzy number A fuzzy number ã is a fuzzy set in � (set
of real numbers) characterized by a membership function,
μã(x), which is both normal (i.e., ∃ at least one point x ∈ �
s.t. μã(x) = 1) and convex [39].

Triangular fuzzy number (TFN) A TFN ã = (a1, a2, a3) has
three parameters a1, a2, a3, where a1 < a2 < a3, whose
membership function μã(x) is given by

μã(x) =

⎧
⎪⎨

⎪⎩

x−a1
a2−a1

for a1 ≤ x ≤ a2
a3−x
a3−a2

for a2 ≤ x ≤ a3

0 otherwise

(1)

Possibility (Pos), necessity (Nes) measure Let ã and b̃ be
two fuzzy numbers with membership functions μã and μb̃,

respectively. Then taking the degree of uncertainty as the
semantics of fuzzy number:

Pos(ã � b̃) = Sup{min(μã(x), μb̃(y)), x, y ∈ �, x � y},
(2)

where � is any one of the relations >,<,=,≤,≥. Analo-
gously, if b̃ is a crisp number, say b, then

Pos(ã � b) = Sup{(μã(x), x ∈ �, x � b}. (3)

On the other hand, the necessity measure of an event ã � b̃ is
a dual of the possibility measure. The grade of necessity of
an event is the grade of impossibility of the opposite event
and is defined as

Nes(ã � b̃) = 1 − Pos(ã � b̃), (4)

where ã � b̃ represents the complement of the event ã � b̃.
Credibility (Cr) measureUsing (3) and (4), the credibility

measure of an event ã � b̃ is denoted by Cr( ã � b̃) and is
defined as [21]

Cr(ã � b̃) = 1

2
[Pos(ã � b̃) + Nes(ã � b̃)]. (5)

Lemma 1 If ã and b̃ are two fuzzy numbers, then the cred-
ibility measure of the event ã < b̃ is denoted by Cr(ã < b̃)
and is given by [17]

Cr(ã < b̃)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 a3 < b1
1
2

(
1 + b2−a2

a3−a2+b2−b1

)
a2 ≤ b2 and b1 < a3

1
2

(
b3−a1

b3−b2+a2−a1

)
b2 < a2 and b3 > a1

0 b3 < a1.

(6)

Fuzzy GTSP It is stated earlier that in a real-life GTSP, ci j
represents the cost of travel between city i and city j , or
distance between city i and city j , or time to travel from
city i to city j, etc. Though the distance between two cities
is normally fixed, the time to travel from a city to another
is always imprecise in nature in the fuzzy sense. The same
property holds for traveling cost from a city to another. The
distance of travel from a city to another also sometimes varies
due to bad roadways or different/alternative ways. So in the
general problem, it is better to consider ci j as fuzzy num-
ber c̃i j . In this research work, c̃i j is considered as a TFN
(ci j1, ci j2, ci j3). GTSP with imprecise c̃i j is named fuzzy
GTSP.
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3 Swap sequence-based particle swarm
optimization for GTSP

PSOs are exhaustive search algorithms based on the emergent
motion of a flock of birds searching for food [6,16] and has
been extensively used/modified to solve complex decision-
makingproblems in different fields of science and technology
[1,7,9,11,12,28]. A PSO normally starts with a set of poten-
tial solutions (called swarm) of the decision-making problem
under consideration. Individual solutions are called particles
and location of food is the optimal solution. In simple terms,
the particles are flown through a multi-dimensional search
space, where the position of each particle is adjusted accord-
ing to its own experience and that of its neighbors. Each
particle i has a position vector (Xi (t)), a velocity vector
(Vi (t)), the position at which the best fitness (Xpbesti(t)) has
been encountered by the particle so far, and the best position
of all particles (Xgbest(t)) in the current generation t . In gen-
eration (t + 1), the position and velocity of the particle are
changed to Xi (t+1) and Vi (t+1) using the following rules:

Vi (t + 1) = wVi (t) + c1r1(Xpbesti(t) − Xi (t))

+ c2r2(Xgbest(t) − Xi (t)), (7)

Xi (t + 1) = Xi (t) + Vi (t + 1). (8)

The parameters c1 and c2 are set to constant values, which
are normally taken as 2, r1 and r2 are two random values
uniformly distributed over [0, 1], and w(0 < w < 1) is
the inertia weight which controls the influence of previous
velocity on the new velocity. It ismainly used to solve contin-
uous optimization problems. It is also used to solve traveling
salesman problems, where swap sequence and swap opera-
tions are used to find the velocity of a particle and its updating
[20,35,38]. A PSO that uses swap sequence and swap oper-
ation is called SSPSO. As discussed in §2, in a GTSP a
potential solution is represented by a sequence of cities and
one and only one city is selected from a cluster. SSPSO is
used to find the sequence of groups from which the cities are
to be selected for a solution. In SSPSO, swap operations on
different groups are used to update the sequence of groups of
a solution. A swap sequence represents a sequence of swap
operations used to transform the sequence of groups from a
solution to another solution. The basic operations of SSPSO
are briefly presented below:

Swap operatorConsider a normal solution sequence of group
in GTSP with n cities, and m groups X = (x1, x2, . . . , xm),
where xi ∈ {g1, g2, . . . , gm} and each gi are distinct.
Here, swap operator, SO(i, j) is defined as exchange of
group xi and x j in solution sequence X . Then we define
X ′ = X + SO(i, j) as a new sequence on the operat-
ing operator SO(i, j) on X . So, the plus sign ‘+’ above
has its new meaning. We explain with a concrete exam-

ple: suppose there is a GTSP problem with six groups,
and X = (x1, x2, x3, x4, x5, x6) = (g1, g3, g5, g2, g4, g6)
be a sequence. Let the swap operator be SO(2, 4), then
X ′ = X+ SO(2, 4) = (g1, g3, g5, g2, g4, g6)+ SO(2, 4) =
(g1, g2, g5, g3, g4, g6), i.e. , groups of position 2 and position
4 are exchanged.

Swap sequence A swap sequence SS is made up of one
or more swap operators. Let SS = (SO1, SO2, . . . , SOp),
where SO1, SO2, . . . , SOp are swap operators. Swap se-
quence acting on a sequence of groups of a solutionmeans all
the swap operators of the swap sequence act on the sequence
of groups in order. This can be described by the following
formula:

X ′ = X + SS = X + (SO1, SO2, . . . , SOp)

= (((X + SO1) + SO2) · · · + SOp).

Different swap sequences acting on the same sequence of
groups may produce the same new sequence. All these swap
sequences are named an equivalent set of swap sequences.
In the equivalent set, the sequence which has the least swap
operator is called basic swap sequence of the set or basic
swap sequence (BSS) in short.

Several swap sequences can be merged into a new swap
sequence. Here, the operator ⊕ is defined as merging two
swap sequences into a new swap sequence. Suppose there
are two swap sequences, SS1 and SS2, which act on one
sequence X in order, namely SS1 first and SS2 second, a
new sequence of groups X ′ is obtained. Let there be another
swap sequence SS′ acting on the same sequence of groups
X and gets the sequence of groups X ′, then SS′ is called
merging of SS1 and SS2 and is represented as:

SS′ = SS1 ⊕ SS2.

Here, SS′ and SS1 ⊕ SS2 are in the same equivalent set.

The construction of basic swap sequence Suppose there are
two solutions, A and B, and our task is to construct a basic
swap sequence SS which can act on B to get solution A.
Here, SS is defined as SS = A − B (the sign − also has its
new meaning). One can swap the cities in B according to A
from left to right to get SS. So, there must be an equation
A = B + SS. For example, consider two solutions:

A = (g1, g2, g3, g4, g5), B = (g2, g3, g1, g5, g4).

Here, A(1) = B(3) = g1 and so the first swap operator is
SO(1, 3), B1 = B + SO(1, 3); then we get the following
result:

B1 : (g1, g3, g2, g5, g4).

Again, A(2) = B1(3) = g2; so the second operator is
SO(2, 3) and B2 = (g1, g2, g3, g5, g4). The third opera-
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tor is SO(4, 5), then B3=A. Finally, we get the basic swap
sequence SS = A − B = (SO(1, 3), SO(2, 3), SO(4, 5)).

The transformation of the particle updating formulas For
solving the GTSP formula, (7) and (8) of PSO have to be
transformed using swap sequences and swap operations as
follows:

Vi (t + 1) = Vi (t) ⊕ r1 
 (Xpbesti(t) − Xi (t)),

⊕ r2 
 (Xgbest(t) − Xi (t)) (9)

Xi (t + 1) = Xi (t) ⊕ Vi (t + 1). (10)

Here, r1, r2 are random numbers between 0 and 1. Velocity
Vi (t) represents a swap sequence. r1 
 (Xpbesti(t) − Xi (t))
means all swap operators in BSS (Xpbesti(t)− Xi (t)) should
be maintained with the probability of r1, i.e., each swap
operator in BSS (Xpbesti(t) − Xi (t)) should be selected
with probability r1. The same meaning is for the expression
r2 
 (Xgbest(t)− Xi (t)). From here, it is seen that the bigger
the value of r1, the greater is the influence of Xpbesti(t) for
more swap operators.

4 Genetic algorithm for GTSP

GA are exhaustive search algorithms based on the mechan-
ics of natural selection and genesis (crossover, mutation, etc.)
and have been introduced by Holland [15] inspired by Dar-
win’s theory in the 1970s. The idea behind GA is to model
the natural evolution by using genetic inheritance together
with Darwin’s theory. Basic operations of GA are selection,
crossover and mutation. In natural genesis, it is known that
chromosomes are the main carriers of hereditary information
from parent to offspring and that genes, which present hered-
itary factors, are lined up on chromosomes. At the time of
reproduction, crossover and mutation take place among the
chromosomes of parents. In this way, hereditary factors of
parents are mixed up and carried to their offsprings. Again,
Darwinian principle states that only the fittest animals can
survive in nature. So, a pair of fittest parent normally repro-
duces a better offspring. The same phenomenon is followed
to create a genetic algorithm for an optimization problem. A
GA normally starts with a set of potential solutions (called
initial population) of the decision-making problem under
consideration. Individual solutions are called chromosomes
and the fitness of each chromosome is evaluated by the eval-
uation process. Solutions are selected from the population
randomly depending on their fitness by the selection pro-
cess for the mating pool. Crossover and mutation operations
happen among these selected solutions to get a new set of
solutions and it continues until terminating conditions are
encountered.

It has already been stated that to solve GTSP, PSO is
used to determine the sequence of groups in which a sales-

man should travel. GA is used to find appropriate cities
from different groups in a sequence of groups determined
by PSO, so that the total cost spent by the salesman is a
minimum for that particular sequence. Consider a GTSP
with n cities v1, v2, . . . , vn and m groups g1, g2, . . . , gm .
Let X = (x1, x2, . . . , xm), where xi ∈ {g1, g2, . . . , gm} be
a sequence of groups for a solution which is determined by
PSO in a particular iteration. Themajor steps for the selection
of cities from different groups by GA for such a sequence are
discussed below.

Initialization Initially, a set of N -solutions Ipop = {Y1, Y2,
. . . ,YN } is randomly generated. A solution is represented by
an m-dimensional integer vector Yi = (yi1, yi2, . . . , yim),
where yi j ∈ x j for j = 1, 2, . . . ,m and are randomly
selected from x j .

Evaluation The fitness of a solution Yi is taken as the ratio
of the number of solutions of the population dominated by
Yi and the population size N and is represented by f (Yi ).
Let the total travel cost spent by a salesman for a solu-
tion Yi be C(Yi ) and for another solution Y j be C(Y j ).
Then, C(Yi ) = cyi1yi2 + cyi2 yi3 + · · · + cyim−1yim + cyim yi1
and C(Y j ) = cy j1y j2 + cy j2 y j3 + · · · + cy jm−1y jm + cy jm y j1 .
Clearly for crisp GTSP, Yi dominates Y j if C(Yi ) < C(Y j ).
For fuzzy GTSP, with TFN type c̃i j = (ci j1, ci j2, ci j3), we
have C̃(Yi ) = (CYi1,CYi2,CYi3), a TFN, where CYik =
cyi1yi2k + cyi2yi3k + · · · + cyim−1yimk + cyim yi1k , k = 1, 2, 3.
Here, Yi dominates Y j if cr(C̃(Yi ) < C̃(Y j )) > 0.5 (cf.
Lemma1). It is a valid fuzzy comparison, since cr( Ã <

B̃) + cr( Ã ≥ B̃) = 1. The comparison of objective val-
ues for the particles of PSO is made in the same manner.

Selection All solutions of the population do not take place in
the evolution process (crossover andmutation).Mainly, solu-
tions with higher fitness are selected for the process. Various
types of selection techniques are available to select solu-
tions from the initial population for the matting pool [10,23].
Here, roulette wheel (RW) selection technique [23]is used to
select N solutions from the population for the mating pool
depending on their fitness. The following are the steps of this
selection:

(i) Find the total fitness of the population F = ∑N
i=1 f (Yi ).

(ii) Calculate the probability of selection pi of each solution
Yi by the formula pi = f (Yi )

F .
(iii) Calculate the cumulative probability cpi for each solu-

tion Yi by the formula cpi = ∑i
j=1 p j .

(iv) Generate a random number r in the interval (0, 1).
(v) If r < cp1, then select Y1; otherwise select Yi (2 ≤ i ≤

N ) where cpi−1 ≤ r < cpi .
(vi) Repeat steps (iv) and (v) N times to select N solutions

for the mating pool. One solution may be selected more
than once.
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(vii) The selected solution set is denoted by Npop = {NY1,
NY2, . . . , NYN } in the proposed algorithm.

Crossover The crossover process involved the following
steps:

(i) Selection for crossover For each solution of Npop gener-
ate a random number r in the interval (0, 1). If r < pc,
then the solution is taken for crossover, where pc is the
probability of crossover. The crossover operation takes
place on every pair of such selected solutions.

(ii) Selection for the crossover process For every pair
of selected solutions, one crossover operation is ran-
domly selected from a set of two crossover operations-
{single-point crossover and two-point crossover} for
the crossover operation. Selection of this crossover pro-
cess (i.e., either single point or two point) is made by a
random process. The process is that: generate a random
number r from the interval (0, 1). if r < 0.5, then select
a single-point crossover; otherwise, select a two-point
crossover.

(iii) Crossover process Two crossover processes are dis-
cussed below:
Single-point crossover: For each pair of parent solu-
tions, PY1 = (py11, py12, . . . , py1m) and PY2 =
(py21, py22, . . . , py2m), selected for crossover, an inte-
ger position k is selected randomly in the range [1,m],
for crossover operation, wherem is the length of a solu-
tion. Then two new solutions (offspring), CY1, CY2,
created by a single-point crossover process on the par-
ents, are given below [10] (c.f., Fig. 3):

CY1 = (py11, py12, . . . , py1k, py2k+1 . . . , py2m),

CY2 = (py21, py22, . . . , py2k, py1k+1 . . . , py1m).

Two-point crossover It is a similar process to single-
point crossover, except that twocut points(positions) are
randomly selected in the range [1,m] for the crossover
operation. Let the two cut points be k1, k2, where 1 <

k1 < k2 < m. Then, two new solutions (offsprings)

Fig. 3 Single-point crossover operation example

Fig. 4 Two-point crossover operation example

CY1, CY2, created by two-point crossover process, on
the parents are given below [10](c.f., Fig. 4):

CY1Z = (py11, py12, . . . , py1k1 , py2k1+1, py2k1+2,

. . . , py2k2 , py1k2+1, py1k2+1, . . . , py1m),

CY2 = (py21, py22, . . . , py2k1 , py1k1+1, py1k1+2,

. . . , py1k2 , py2k2+1, py2k2+1, . . . , py2m).

(iv) Upgradation of parents If the path cost ofCY1 is smaller
than that of PY1, then replace PY1 withCY1. Similarly,
if the path cost of CY2 is smaller than that of PY2, then
replace PY2 with CY2.

Mutation The mutation process takes place on some selected
solutions from themating pool. Selection takes place accord-
ing to the probability of mutation. The steps for this purpose
are presented below:

(i) Selection for mutation For each solution of Npop, gen-
erate a random number r from the interval (0, 1). If
r < pm, then the solution is taken for mutation, where
pm is the probability of mutation.

(ii) Mutation process To mutate a selected solution PY =
(py1, py2, . . . , pym), select a random integer number
k in the range [1,m]. Then pyk is replaced by a ran-
domly selected city from its group to get a new mutated
solution. This process is repeated for a finite number of
iterations or until an improvement of the selected solu-
tion is made.

5 K-Opt operation for GTSP

K-Opt is a local search algorithm [2] mainly used for TSP
which is based on the exchange of K parts (sub-tours) and
their reverses (reverse sub-tours) of a tour (path) of the TSP
under consideration to find a better tour. In the PSO part of
the algorithm, it is tacitly used to find the optimal sequence
of groups in which a salesman should select a particular city
from a group in his tour to minimize the cost. If it is assumed
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Fig. 5 All combinations of sub_toures for k = 2

Fig. 6 All combinations of sub_toures for k = 3

that groups are connected by edges, then, while breaking
(removes) K edges of a sequence of groups in a tour, there
are (K − 1)!2K−1 ways to reconnect it (including the initial
sequence) to form a valid sequence. Each new combination
gives a new sequence of groups. We find the corresponding
optimal tour using GA. Among these sequences, one may
produce a better tour than the tour produced by the origi-
nal sequence and can be taken as an improvement. In the
case of the 2-Opt algorithm, we remove two edges from the
sequence and reconnect all combinations of sub-sequences
and their reverses (Fig. 5). Continue this process until no
2-Opt improvements can be found. Similarly in the case of 3-
Opt, breaking three edges in a sequence there are in total eight
cases of reconnection (Fig. 6). If a sequence is 3-optimal, it is
also 2-optimal [2]. Continue break (remove) edges from the
sequence, i.e., K = 1, 2, 3, . . . , n and get new algorithms,
such as 2-Opt, 3-Opt, 4-Opt and so on. But increase of K
increases the time complexity. Due to this, the 3-Opt opera-
tion is used and it is found that it acts better than the 2-Opt
operation for large size GTSPs. In the proposed method, the
3-Opt operation is periodically used in a predefined num-
ber of iterations to improve the quality of the solutions in
the PSO part of the algorithm and at the end of the algo-
rithm.

6 Proposed algorithm for GTSP

A Hybrid algorithm based on SSPSO and GA algorithm
with a local search (K-Opt) for GTSP Consider a GTSP
with n cities {v1, v2, . . . , vn} andm groups {g1, g2, . . . , gm}.
The group gk contains nk cities, i.e.,

∑m
k=1 nk = n. In

the algorithm, the i-th solution is represented by a triplet
{Xi ,Yi ,C(Yi )}, where Xi = (xi1, xi2, . . . , xim), represents
the sequence of groups in which travel is to be made,

i.e., xi j ∈ {g1, g2, . . . , gm} and each xi j are distinct. Yi =
(yi1, yi2, . . . , yim) represents the actual path corresponding
to Xi , i.e., yi j ∈ xi j for j = 1, 2, . . . ,m. C(Yi ) is the path
cost of Yi . PSO is used to find the optimal sequence (Xi )
of groups of a solution and GA is used to select cities from
different groups to find the optimal path Yi for Xi . Here, SS
is the swarm size, MaxGen is the positive integer that rep-
resents the maximum number of iterations for PSO and t is
the iteration counter.

1. Start Algorithm
2. Set values of n, m, SS, MaxGen, and set t = 0.
3. for k = 1 to SS do

Randomly generate Xk(t)
Find Yk(t) using GA algorithm (§6.1)
Determine D(Yk(t)).

end for
4. for k = 1 to SS do

Xpbestk(t) = Xk(t).
Ypbestk(t) = Yk(t).
Vk(t)=SO(i, j) where i, j are randomly generated in range[1, m], and i �= j.

end for
5. Xgbest= Xpbestk(t), where D(Ypbestk(t))= mini∈{1,2,..,SS} D(Ypbesti(t)).
6. Ygbest(t) = Ypbestk(t).
7. repeat

t = t+ 1.
for k = 1 to SS do

Determine Vk(t) using equation (9).
Determine Xk(t) using equation(10).
Find Yk(t) using GA algorithm (§6.1)
Determine D(Yk(t)).
If mod(t, 10)= 0

Applying K-Opt operation on Xk(t) along with GA for a predefined
number iterations to improve the quality of final solutions (§6.2).

end if
end for
for k = 1 to SS, do

If D(Ypbestk(t − 1)) > D(Yk(t))
Xpbestk(t) = Xk(t).
Ypbestk(t) = Yk(t).

else
Xpbestk(t) = Xpbestk(t − 1)
Ypbestk(t) = Ypbestk(t − 1)

end if
If D(Ygbest) > D(Yk(t))

Ygbest = Yk(t).
Xgbest = Xk(t).

end if
end for

Until (t> MaxGen)
8. Applying K-Opt operation on Xgbest along with GA ina predefined number of itera-

tions to improve its quality if possible.
9. Output Xgbest, Ygbest, D(Ygbest)

10. End of Algorithm

6.1 GA algorithm for selection of cities from different
groups to find the optimal path corresponding to a
sequence of groups Xk(t)

In the algorithm, c is the iteration counter,Maxgen is themax-
imumnumber of iterations, pc is the probability of crossover,
and pm is the probability of mutation.
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i. Start Algorithm
ii. Set pc = .8, pm = .6, Maxgen=100 and c=0.
iii. Generate Ipop = {Y1, Y2, ..., YN}.
iv. Evaluate path length and fitness of each solution.
v. Repeat

a. Select N solutions from Ipop, for mating pool using Roulette-wheel selection process
(One solution may be selected more than once). Let this set be Npop.

b. Select solutions from Npop, for crossover and mutation depending on pc and pm

respectively.
c. Make crossover on selected solutions for crossover.
d. Make mutation on selected solutions for mutation.
e. Set Ipop = Npop.
f. c = c+ 1.

Until(c> maxgen).
vi. Return the path with smallest tour cost.
vii. End Algorithm

6.2 K-Opt operation on sequence of groups for
improvement of sequence of groups Xk(t)

The detailed algorithm of K-Opt operation for K = 3
is presented below. In the algorithm, a one-dimensional
array of size m, Xtemk (t), is used to represent a tempo-
rary sequence of group corresponding to Xk(t) in iteration t .
Ytemk (t) is used to represent the actual path corresponding to
Xtemk (t). Xki (t) and Xr

ki (t), i = 1, 2, 3 are one-dimensional
arrays used to represent the sub-sequence of group and
revers_sub-sequence of group of the original sequence
of groups Xk(t). Maxit3 is the maximum number of
iterations.

for i =1 to Maxit3 do

• Remove three edges (randomly selected) from the se-
quence of group Xk(t), it makes three sub-sequences of
group Xki (t), i = 1, 2, 3.

• Reverses of the contents of these sub-sequence of groups
are called revers_sub-sequence, represented as Xr

ki (t),
i = 1, 2, 3, i.e., Xr

k1(t) = revers_sub-sequence of
groupXk1(t), Xr

k2(t) = revers_sub-sequence of Xk2(t),
Xr
k3(t) = revers_sub-sequence of Xk3(t).

• Now, combining the sub-sequences of groups {Xk1(t),
Xk2(t), Xk3(t)}, {Xr

k1(t), Xr
k2(t), Xr

k3(t)}, a new se-
quence of groups can be formed in the following eight
combinations:

i. {Xk1(t), Xk2(t), Xk3(t)}
ii. {Xk1(t), Xr

k2(t), ‘Xk3(t)}
iii {Xk1(t), Xk2(t), Xr

k3(t)}
iv {Xk1(t), Xr

k3(t), X
r
k2(t)}

v {Xk1(t), Xk3(t), Xr
k2(t)}

vi {Xk1(t), Xr
k3(t), Xk2(t)}

vii {Xk1(t), Xr
k2(t), X

r
k3(t)}

viii {Xk1(t), Xr
k3(t), Xk2(t)}

for each combination do
Create a new sequence of group from the combination and let it be Xtemk

(t).
Find Ytemk

(t) using GA algorithm (§6.1).
Determine C(Ytemk

(t)).
if C(Ytemk

(t)) < C(Yk(t))
Xk(t) = Xtemk

(t)
Yk(t) = Ytemk

(t)
end if

end for

7 Experimental results

All computational experiments are conducted with Dev C++
5.8.3, core i3CPU @ 2.10GHz, Windows 8.1 Operating
System and 4GBRAM. The performance of the proposed
algorithm is tested using different size standard GTSPs from
TSPLIB. Each problem algorithm is tested by running the
program five times for different seeds of random number
generator and the best solution is selected. The average cost
of these solutions and percentage of relative error (Error(%))
according to the cost of optimal solution are calculated. The
percentage of relative Error(%) is calculated using the fol-
lowing equation.

Error (%)

= average cost of solutions − cost of the optimal solution

cost of the optimal solution

× 100. (11)

The results obtained by the proposed algorithm for 21 dif-
ferent test problems from TSPLIB are presented in Table 1
(Fig. 7).

In Table 1, the 1st column stands for the problem name,
2nd (n) for the number of cities, 3rd (m) for the number
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Fig. 7 Computational time
with respect to pc and pm for
problems 29PR144(a) and
25PR124(b)

of groups in the GTSP, 4th for the cost of optimal solu-
tion for each problem [29], 5th for the cost of the best
solution obtained by the proposed method, 6th–10th for the
obtained results in different runs of the algorithm using dif-
ferent seeds of random number generator for each problem,
11th and 12th columns provide some statistical information
about the problem, such as average cost of the obtained
solutions and percentage of relative error of the average
cost of the solutions. The last column presents the aver-
age computational time in seconds. It is found from Table
1 that the solution produced by the algorithm for each of
the considered problems is the same as its optimal solutions
[29]. As a result, the obtained average cost of solutions of
each problem is the same as the cost of the optimal solu-
tion of the corresponding problem. The relative error of
each problem is exactly zero, i.e., the proposed algorithm
obtained exact solution for each problem considered for
testing. As GTSP belongs to the NP-hard problem group,
it is not possible to find the time complexity of the algo-
rithm used for finding its solution. But a graph is drawn
using different size problems and corresponding computa-
tional time required for finding the optimal solution (cf.
Fig. 8). As expected, it is clear from Fig. 8 that com-
putational time increases with problem size. It should be
noted that computational time depends on several factors like
processor speed, operating system, size of catch memory,
different software running (in back-ground) in the machine,
etc.

Again, solutions (paths and corresponding costs) obtained
in different runs of the algorithm using different seeds of ran-
dom number generator are analyzed and it is observed that
for many problems there are multiple optimal paths. The dif-
ferent optimal paths for some problems are listed in Table 2.

Fuzzy GTSP For fuzzy GTSP, no standard test problems are
available in the literature. So, here, crisp GTSP problems
from TSPLIB are used to generate fuzzy GTSP problems.
Only TFNs are used to represent costs of a fuzzy GTSP.
Let ci j be the cost of travel from city i to city j for a crisp
GTSP from TSPLIB. For the corresponding fuzzy GTSP,
fuzzy cost of travel c̃i j from city i to city j is considered as
c̃i j = (ci j1, ci j2, ci j3), where ci j2 = ci j , ci j1 = ci j − R1,
ci j3 = di j + R2, and R1 and R2 are randomly generated in
the interval (0, R× ci j/100). For 5% fuzziness R is taken as
5, for 10% fuzziness R is taken as 10, etc. From each crisp
GTSP, three different fuzzyGTSPs are generated considering
R = 5, R = 10 and R = 15, respectively. After generating a
problem, it is solved using the proposed algorithm for fuzzy
GTSP and the results obtained are presented in Table 3. It
is found from Table 3 that for small size problems and for
small amount of fuzziness (5%), a mid value of optimum
cost as well as optimal path is same as the corresponding
crisp GTSP. While fuzziness increases, the optimum cost as
well as optimumpath varies gradually. All these observations
agree with reality. The last column of Table 3 presents the
computational time (s) for the problems with 5 % fuzziness.
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Fig. 8 Problem size versus computational time

For fuzzy GTSP, also it is found that for some problems
there are multiple optimal paths. For multiple paths, the mid
values of the fuzzy objective (TFN) for all the optimal paths
of a problem are the same. The other two components (left
and right limits) differ by a very small amount (cf. Table 4).

Table 5 represents a comparison of some computational
results of the proposed algorithm with other existing algo-
rithms in the literature. In Table 5, the results of PSO
[32], GCGA [36] and GA [34] are taken from the corre-
sponding reference paper and the results of the proposed
method are taken from a single run of the algorithm for
the corresponding problem. From Table 5, it is clear that
the proposed approach is better compared to some other
existing approaches in the literature with respect to the
accuracy (Error(%)). For the test problems like 14ST 70,

Table 2 Different optimal paths of some test problems from TSPLIB obtained by the algorithm

Problem form TSPLIB Different optimal path Cost of the solution

45,41,25,24,27,1,22,20,50,10,33

27,24,25,41,44,33,10,50,20,22,1

11EIL51 20,16,49,33,45,41,25,24,27,1,22 174

44,33,9,16,20,22,1,27,24,25,41

41,45,33,49,29,20,22,1,27,24,25

23,69,59,57,26,8,44,43,61,39,54,11,64,16

44,43,61,39,48,11,64,16,23,69,59,19,26,8

14ST70 11,64,16,23,69,59,57,4,7,26,44,61,39,54 316

43,44,8,26,19,59,69,23,16,64,11,54,39,61

8,44,43,61,39,62,11,64,16,23,69,59,19,26

59,11,38,39,9,25,49,41,42,62,2,48,37,15,13,14

9,25,49,41,42,22,47,37,27,52,46,8,59,11,58,39

16EIL76 9,39,38,11,59,8,52,45,29,37,47,22,42,41,49,25 209

14,13,15,37,48,30,62,42,23,49,25,9,39,58,11,59

59,8,52,45,5,37,47,42,43,23,49,25,9,39,72,11

26,35,34,53,71,80,89,87,95,83,65,56,57,48,30,11,2,4,7,17

7,4,2,11,30,48,57,56,65,83,95,87,89,80,71,53,34,35,26,17

20RAT99 11,30,48,57,56,65,83,95,87,89,80,62,53,34,35,26,17,7,4,2 497

7,5,2,11,30,48,57,56,65,83,95,87,89,80,71,53,34,35,26,17

65,83,95,87,89,80,71,53,34,35,26,17,7,4,2,11,30,48,57,56

24,84,47,98,77,83,29,48,78,96,82,44,73,69,67,8,92,75,66,18

77,83,29,48,78,96,82,44,73,69,67,8,92,75,66,18,24,84,47,98

20KROA100 96,78,48,29,83,77,98,47,84,24,18,66,75,92,8,67,69,73,44,82 9711

92,75,66,18,24,84,47,98,77,83,29,48,78,96,82,44,73,69,67,8

2,75,66,18,24,84,47,98,77,83,29,48,78,96,82,44,73,69,67,8

49,64,11,10,30,20,35,78,29,54,39,23,41,15,14,44,85,6,60,8,47

39,23,41,57,14,44,93,6,83,8,47,49,64,11,10,30,20,35,78,29,54

21EIL101 44,14,42,22,23,39,54,29,78,35,20,30,10,11,64,49,47,8,60,6,96 249

11,64,49,47,8,60,6,85,44,14,42,22,23,39,54,29,34,35,20,30,10

30,10,11,64,49,47,8,60,6,85,44,14,57,41,23,39,54,29,34,35,20
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20K ROD100, 22PR107, 25PR124, and 40D198, other
algorithms also produce optimal solution, but with respect
to the statical information(error) the proposed algorithm is
better compared to some other algorithms in the literature.
On the other hand, GCGA [36] provide results in least com-
putational time, but its success rate is not 100%. Compared
with GA [34], the proposed algorithm does not always pro-
vide optimum results in lesser computational time. In some
problems, our algorithm takes less computational time and in
some other problems GA [34] takes less time. But it should
be noted that computational time depends on several fac-
tors such as processor speed, operating system, size of catch
memory, and different software running (in the background)
in the machine. The PSO [32] and GCGA [36] produce opti-
mal results in some problems, but they are not capable of
producing optimal solution in all runs of the algorithms for
different test problems (at least up to a moderate size). For
this reason, in this paper PSO and GA are combined together
to create a hybrid algorithm to improve the efficiency of the
algorithm.

Probability of crossover (pc) and probability of mutation
(pm) are two important parameters of GA, and the perfor-
mance of GA on a particular problem mostly depends on
them. Though these parameters are problem dependent, three
test problems (relatively large sizes) are used to check the
performance (with respect to computation time) of GA with
respect to these parameters and a comparative study table
is presented in Table 6. The result is obtained for a partic-
ular seed of random number generator. From the table, it is
observed that the algorithm takes minimum run time to pro-
duce optimal solution of the test problems for pc = 0.8 and
pm = 0.6. Due to this reason, these values of pc and pm
are taken for obtaining the results of other problems also. A
graphical representation of the requirement of time to pro-
duce optimal solution due to different pc and pm for the
two test problems—25PR124 and 29PR144—are presented
in Fig. 7.

Table 7 represents the results obtained by the proposed
method for different test problems using 2-Opt and 3-Opt
operations in the algorithm. It is observed that, for small size
problems like 11E I L51 and 14ST 70, both the approaches
produce the same solution as the optimal one. For large
size problems, the algorithm produces different solutions
using 2-Opt and 3-Opt. Problems forwhich optimal solutions
are obtained by the algorithms are presented in boldface in
Table 7. It is clear from Table 7 that for all the problems,
the algorithm with 3-Opt produces better result than that
using 2-Opt. So in the proposed algorithm, 3-Opt operation is
used.
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Table 4 Different paths obtained for different fuzzy TSPs generated from some problems of TSPLIB by the proposed algorithm

Problem from
TSPLIB

Amount of fuzziness
introduced (%)

Different optimal
paths obtained

Cost of the solution

11EIL51 5 24, 27, 1, 22, 20, 29, 10, 33, 45, 41, 25 (143.62, 174.00, 202.78)

44, 33, 9, 16, 20, 22, 1, 27, 24, 25, 41 (143.87, 174.00, 203.42)

29, 49, 33, 44, 41, 25, 24, 27, 1, 22, 20 (143.83, 174.00, 204.05)

24, 27, 1, 22, 20, 29, 10, 33, 45, 41, 25 (113.24, 174.00, 231.57)

10 44, 33, 9, 16, 20, 22, 1, 27, 24, 25, 41 (113.74, 174.00, 232.84)

29, 49, 33, 44, 41, 25, 24, 27, 1, 22, 20 (113.66, 174.00, 234.10)

24, 27, 1, 22, 20, 29, 10, 33, 45, 41, 25 (82.86, 174.00, 260.36)

15 44, 33, 9, 16, 20, 22, 1, 27, 24, 25, 41 (83.62, 174.00, 262.26)

29, 49, 33, 44, 41, 25, 24, 27, 1, 22, 20 (83.50, 174.00, 264.15)

16, 64, 11, 54, 39, 40, 68, 8, 26, 4, 57, 59, 69, 23 (287.48, 316.00, 346.64)

5 16, 64, 11, 54, 39, 9, 68, 8, 26, 4, 57, 59, 69, 23 (290.87, 316.00, 348.68)

9, 68, 8, 26, 4, 57, 59, 69, 23, 16, 64, 11, 54, 39 (290.87, 316.00, 348.68)

16, 64, 11, 54, 39, 40, 68, 8, 26, 4, 57, 59, 69, 23 (253.56, 317.00, 384.99)

14ST70 10 23, 16, 64, 11, 54, 39, 61, 43, 44, 8, 26, 19, 59, 69 (247.75, 316.00, 378.79)

26, 8, 68, 40, 39, 54, 11, 64, 16, 23, 69, 59, 57, 4 (243.65, 316.00, 370.76)

16, 64, 11, 54, 39, 40, 68, 8, 26, 4, 57, 59, 69, 23 (230.46, 316.00, 407.94)

15 16, 64, 11, 54, 39, 9, 68, 8, 26, 4, 57, 59, 69, 23 (240.63, 316.00, 414.05)

57, 59, 69, 23, 16, 64, 11, 54, 39, 40, 68, 8, 26, 4 (230.46, 316.00, 407.94)

58, 11, 59, 8, 52, 45, 5, 37, 28, 42, 41, 63, 16, 3, 25, 39 (166.90, 211.00, 253.17)

5 22, 42, 23, 49, 50, 25, 39, 72, 11, 59, 8, 52, 45, 5, 37, 28 (166.83, 209.00, 253.21)

49, 50, 25, 39, 58, 11, 59, 8, 46, 52, 27, 37, 47, 22, 42, 23 (161.09, 209.00, 251.97)

72, 11, 59, 8, 52, 45, 29, 37, 21, 42, 41, 63, 16, 3, 25, 39 (130.31, 211.00, 300.85)

16EIL76 10 47, 37, 29, 45, 52, 8, 59, 11, 58, 39, 9, 25, 49, 41, 42, 22 (143.83, 209.00, 307.12)

8, 59, 11, 72, 39, 25, 50, 49, 41, 42, 22, 28, 37, 29, 45, 52 (155.31, 209.00, 308.70)

37, 47, 22, 42, 41, 49, 50, 25, 39, 58, 11, 59, 8, 46, 52, 27 (69.91, 209.00, 331.18)

15 22, 42, 23, 49, 25, 9, 39, 58, 11, 59, 8, 52, 45, 5, 37, 28 (78.31, 209.00, 332.85)

49, 50, 25, 39, 58, 11, 59, 8, 52, 45, 29, 37, 28, 42, 43, 23 (72.93, 209.00, 331.02)

74, 56, 57, 39, 30, 11, 2, 4, 7, 17, 26, 34, 44, 53, 71, 80, 89, 87, 95, 83 (449.95, 499.00, 540.89)

5 74, 56, 57, 39, 30, 11, 2, 4, 7, 17, 26, 34, 44, 53, 71, 80, 89, 87, 95, 83 (449.95, 499.00, 540.89)

71, 53, 52, 43, 35, 26, 17, 7, 4, 2, 11, 30, 57, 56, 65, 83, 95, 97, 88, 80 (453.41, 502.00, 561.27)

74, 56, 57, 39, 30, 11, 2, 4, 7, 17, 26, 34, 44, 53, 71, 80, 89, 87, 95, 83 (405.95, 499.00, 611.89)

20RAT99 10 52, 43, 35, 17, 7, 5, 2, 11, 22, 31, 57, 56, 65, 83, 95, 87, 89, 80, 71, 53 (411.44, 504.00, 612.10)

48, 57, 56, 74, 83, 95, 87, 89, 80, 71, 53, 34, 35, 26, 17, 7, 4, 2, 11, 30 (414.27, 497.00, 598.81)

62, 80, 88, 97, 95, 83, 74, 56, 57, 38, 20, 2, 4, 7, 17, 26, 35, 34, 52, 53 (333.85, 503.00, 658.96)

15 2, 5, 7, 17, 26, 35, 34, 53, 71, 80, 79, 97, 95, 83, 65, 56, 57, 48, 30, 11 (363.16, 498.00, 635.97)

71, 53, 34, 35, 26, 17, 7, 5, 2, 11, 30, 48, 57, 56, 65, 83, 95, 87, 89, 80 (373.85, 497.00, 655.16)
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Table 6 Time required (in s) to find the optimal solution of different test problems from TSPLIB using different values of pm and pc

Problem
from
TSPLIB

Probability of
mutation (pm)

Probability of crossover (pc)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

25PR124 196.92 314.46 320.28 131.28 206.24 209.47 75.68 246.24 143.72 243.85

29PR144 1 163.42 180.58 148.25 57.95 246.65 85.46 72.25 162.24 192.72 126.35

30KROB150 186.52 242.65 140.35 141.46 259.12 143.15 138.62 293.35 320.52 190.88

25PR124 172.4 56.99 163.5 58.28 293.25 102.47 85.68 259.24 118.65 178.12

29PR144 0.9 187.32 332.98 322.12 141.32 230.65 234.32 161.32 278.32 323.32 265.35

30KROB150 181.65 223.52 134.52 144.65 255.68 135.95 221.12 428.32 308.52 190.88

25PR124 70.25 66.85 233.27 127.95 246.75 62.95 57.65 99.14 286.65 163.87

29PR144 0.8 154.42 126.58 232.25 123.95 179.65 136.46 286.25 126.24 192.72 254.35

30KROB150 116.25 157.65 123.54 251.94 240.32 167.65 168.32 210.65 391.32 205.98

25PR124 90.52 192.62 55.36 61.75 148.45 167.86 81.65 229.64 70.35 177.65

29PR144 0.7 119.32 123.45 163.65 391.14 151.65 263.51 148.95 216.45 177.65 189.40

30KROB150 225.65 259.42 145.65 194.35 129.64 165.40 192.32 189.65 291.38 192.98

25PR124 86.58 63.85 167.65 38.65 90.25 81.32 65.95 56.63 103.65 388.25

29PR144 0.6 237.32 123.54 213.65 115.65 106.32 118.45 270.98 94.32 200.45 194.32

30KROB150 134.65 264.65 140.35 162.65 242.65 116.65 201.25 98.65 115.65 225.45

25PR124 65.32 57.32 113.25 38.65 221.32 163.65 66.65 92.32 132.65 117.32

29PR144 0.5 111.62 119.12 198.45 285.65 204.65 147.85 89.62 99.32 303.32 205.46

30KROB150 125.32 210.65 152.65 120.95 164.65 152.65 91.35 110.68 215.55 320.20

25PR124 90.32 32.65 71.95 54.65 68.96 254.65 74.65 84.65 128.65 343.65

29PR144 0.4 71.65 113.64 210.46 305.87 246.65 185.46 122.94 197.41 167.72 120.10

30KROB150 145.32 162.65 192.54 230.98 105.66 243.65 119.35 148.65 240.65 192.65

25PR124 104.25 71.25 43.36 74.62 62.52 52.62 80.52 92.62 152.65 241.82

29PR144 0.3 182.45 245.65 131.65 141.62 81.74 91.75 184.46 82.65 90.12 216.85

30KROB150 256.65 305.65 190.45 165.98 225.85 298.65 115.85 245.10 192.45 323.21

25PR124 72.36 73.62 265.65 171.63 47.32 68.32 100.62 67.32 64.65 90.25

29PR144 0.2 621.45 357.25 217.65 40.65 126.98 559.65 146.65 77.62 155.95 194.65

30KROB150 512.15 242.65 165.25 141.46 259.12 143.15 162.35 299.35 312.52 250.88

25PR124 104.36 267.32 132.28 108.32 67.36 159.36 215.32 206.32 143.72 167.32

29PR144 0.1 169.25 424.35 625.65 848.64 665.32 590.32 805.52 246.32 406.32 328.20

30KROB150 632.32 325.65 140.35 163.35 259.12 142.35 112.75 393.35 220.52 170.88

Better results are in bold

Table 7 Performance of the
algorithm using 2-Opt and
3-Opt in different test problems
from TSPLIB

Problem from
TSPLIB

Optimal cost of
the solution

Cost of the best path obtained by the hybrid algorithm

PSO+ GA+ 2−Opt PSO+GA+ 3−Opt

11EIL51 174 174 174

14ST70 316 316 316

16EIL76 209 212 209

20KROA100 9711 9775 9711

20KROD100 9450 9502 9450

21EIL101 249 255 249

22PR107 27,898 27,905 27,898

25PR124 36,605 36,792 36,605

29PR144 45,886 45,965 4588
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8 Conclusion

For the first time combining the features of SSPSO technique
and GA, a hybrid algorithm is developed to solve GTSP in
different environments. SSPSO is used to find the sequence
of groups in a solution and for each sequence cities from dif-
ferent groups are selected using GA. Here K-Opt algorithm
(for K = 3) is used periodically in a predefined number of
iterations in the PSO portion of the algorithm to improve the
quality of the solutions. It is tacitly used to find the optimal
sequence of groups in which a salesman should select a par-
ticular city from a group in his tour to minimize the tour cost.
Existing algorithms for GTSP are not suitable for GTSP in
an imprecise environment. The proposed algorithm is capa-
ble of solving the problem in crisp as well as in imprecise
environment. The efficiency of the algorithm is tested in crisp
environment using different size benchmark problems avail-
able in TSPLIB [29]. In crisp environment, the algorithm
gives 100% success rate for problems up to considerably
large problem sizes. As the results of fuzzy GTSP and crisp
GTSP are the same for relatively small size problems with
small amount of fuzziness, it can be concluded that the algo-
rithm is efficient for solving fuzzy GTSP. The algorithm can
be used to solve GTSPs in different other imprecise environ-
ments, like stochastic environment, rough environment, etc.
The only difference is that a comparison criteria of rough
objectives have to be developed using a valid comparison
operator like trust measure [24]. In stochastic environment,
random objectives have to be be compared using a valid com-
parison technique like the chance constraints approach [25].

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
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