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Abstract It is well known that anyBoolean function in clas-
sical propositional calculus can be learned correctly if the
training information system is good enough. In this paper,
we extend that result for description logics. We prove that
any concept in any description logic that extends ALC with
some features amongst I (inverse roles), Qk (qualified num-
ber restrictions with numbers bounded by a constant k), and
Self (local reflexivity of a role) can be learned correctly if
the training information system (specified as a finite inter-
pretation) is good enough. That is, there exists a learning
algorithm such that, for every conceptC of those logics, there
exists a training information system such that applying the
learning algorithm to it results in a concept equivalent to C .
For this result, we introduce universal interpretations and
bounded bisimulation in description logics and develop an
appropriate learning algorithm. We also generalize common
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types of queries for description logics, introduce interpreta-
tion queries, and present some consequences.

Keywords Concept learning · Learnability · Description
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1 Introduction

It is well known that any Boolean function in classical propo-
sitional calculus can be learned correctly if the training
information system is good enough. In this paper, we extend
that result for description logics.

Description logics (DLs) are a family of formal languages
suitable for representing and reasoning about terminological
knowledge. They are of particular importance in providing
a logical formalism for ontologies and the Semantic Web.
Binary classification in the context of DLs is called concept
learning, as the function to be learned is expected to be char-
acterizable by a concept. This differs from the traditional
setting in that objects are described not only by attributes
but also by relationship between the objects (i.e., by object
roles). The major settings of concept learning in DLs are as
follows:

• Setting 1 Given a knowledge base KB in a description
logic L and sets E+ and E− of individuals, learn a con-
cept C in L such that:

1. KB |� C(a) for all a ∈ E+, and
2. KB |� ¬C(a) for all a ∈ E−.

The set E+ contains positive examples of C , while E−
contains negative ones.

• Setting 2 This differs from the previous one only in that
the condition 2 is weakened:
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1. KB |� C(a) for all a ∈ E+, and
2. KB �|� C(a) for all a ∈ E−.

• Setting 3 Given a finite interpretation I and sets E+ and
E− of individuals, learn a concept C in L such that:

1. I |� C(a) for all a ∈ E+, and
2. I |� ¬C(a) for all a ∈ E−.

Note that I �|� C(a) is the same as I |� ¬C(a).

Settings 1 and 2 are useful for ontology engineering in
suggesting concept definitions. Setting 3 is closer to binary
classification in traditionalmachine learning,where the inter-
pretation I and the sets E+, E− form a training information
system.

In this paper, we study the possibility of correct concept
learning in DLs using Setting 3.

1.1 Related work on learnability in traditional machine
learning

PAC learning (probably approximately correct learning) is
a framework for mathematical analysis of machine learn-
ing proposed by Valiant [32]. In this framework, the learner
receives samples and must select from a certain class a
hypothesis that approximates the function to be learned. The
goal is that,with high probability, the selected hypothesiswill
have low generalization error. As efficient PAC learnability,
the learner must be able to learn the concept in polynomial
time given any arbitrary approximation ratio, probability of
success, or distribution of the samples. Valiant [32] pro-
vided some results on PAC learnability of bounded CNF
expressions, DNF expressions, and μ-expressions in clas-
sical propositional logic.

Angluin [2] studied exact and probably exact learnabil-
ity using different types of queries, such as membership,
equivalence, subset, superset, disjointness, and exhaustive-
ness. She provided some general lower bound techniques
and compared equivalence queries with Valiant’s criterion of
PAC identification under random sampling.

Bshouty et al. [4] studied a model of probably exactly cor-
rect (PExact) learning that can be viewed either as the Exact
model [2] relaxed so that counterexamples to equivalence
queries are distributionally drawn rather than adversarially
chosen, or as the PAC model [32] strengthened to require a
perfect hypothesis. They also introduced amodel of probably
almost exactly correct learning (PAExact) that lies between
the PExact and PACmodels. They obtained a number of sep-
aration results between these models and some results on
efficient parallel learning in the PAExact model.

There are many other works related to learnability of
concepts/theories in traditional machine learning or induc-
tive logic programming. For example, De Raedt and Dze-

roski [28] showed that first-order jk-clausal theories are PAC
learnable. A survey on this subject is beyond the scope of this
paper.

1.2 Related work on concept learning in description
logics

Regarding learnability in DLs, we are only aware of the fol-
lowing works:

• Cohen and Hirsh [5] proved that concepts in the C-
Classic description logic are PAC learnable using sub-
sumption queries (i.e., subset queries). This logic is an
early DL formalism that differs from the basic DL ALC
in that: it allows unqualified number restrictions as well
as the MIN and MAX operators, but it allows the union
constructor and the existential restriction only for atomic
concepts and it disallows the complement constructor.
The authors also proposed an algorithm called LCSLearn
for learning concepts and disjunctions of concepts in
C-Classic from individuals, which is based on “least
common subsumers”.

• Frazier and Pitt [12] proved that concepts in the Clas-
sic description logic can be learned using equivalence
and subsumption queries. The logicClassic differs from
C-Classic in that it allows the concept constructor spec-
ified by equality between two chains of functional roles,
but disallows the MIN and MAX operators. They also
showed that learning concepts in Classic from individ-
uals is as hard as predicting arbitrary polynomial-sized
circuits and that subsumption queries alone do not suffice
for learning Classic.

• Konev et al. [18] studied exact learnability of TBoxes
in lightweight DLs using subsumption and equivalence
queries. They proved that: TBoxes formulated in DL-
Lite with role inclusions and composite concepts on the
right-hand side of concept inclusions can be learned in
polynomial time;ELTBoxeswith only concept names on
the right-hand side of concept inclusions can be learned
in polynomial time. They also gave some negative results
on learnability.

Regarding concept learning in DLs, in an early work [20],
Lambrix and Larocchia proposed a simple algorithm based
on concept normalization. The other works [3,11,16,21]
study concept learning in DLs using refinement operators
as in inductive logic programming. The works [3] by Badea
and Nienhuys-Cheng and [16] by Iannone et al. use Set-
ting 1, while the works [11] by Fanizzi et al. and [21] by
Lehmann and Hitzler use Setting 2. Apart from refinement
operators, scoring functions and search strategies also play
important roles in the algorithms proposed in those works.
The DL-Learner system [21] exploits genetic programming
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techniques,while theDL-FOIL algorithm [11] considers also
unlabeled data as in semi-supervised learning. A comparison
between DL-Learner, YinYang [16], and LCSLearn can be
found in [14].

Nguyen and Szałas [26] applied bisimulation to concept
learning in DLs. They also studied concept approximation
using bisimulation and the rough set theory of Pawlak [27].
Tran et al. [29,31] generalized and extended the concept
learning method of [26] for DL-based information systems.
They took attributes as the basic elements of the language.
The works [26,29,31] use Setting 3.

Ha et al. [13] gave a bisimulation-based method, called
BBCL, for concept learning in DLs using Setting 1. Tran et
al. [30] gave a bisimulation-based method, called BBCL2,
for concept learning in DLs using Setting 2.

There are also other related works on learning termi-
nological axioms or ontologies. The works [1,6,23] study
theory learning or concept inclusion axioms learning in DLs.
The works [1,23] involve probabilistic DLs. Some other
researchers combined concept learning inDLswith inductive
logic programming (e.g., [17]) or studied concept learning
in DLs via inductive logic programming (e.g., [19]). The
work [22] gives a characterization of concept learning in DLs
using Setting 1.

1.3 Our contributions

In this paper, we prove that any concept in any description
logic that extends the basic DL ALC with some features
amongst I (inverse roles), Qk (qualified number restrictions
with numbers bounded by a constant k), and Self (local
reflexivity of a role) can be learned if the training information
system (specified as a finite interpretation) is good enough.
That is, there exists a learning algorithm such that, for every
concept C of those logics, there exists a training informa-
tion system such that applying the learning algorithm to it
results in a concept equivalent to C . We call this property C-
learnability (possibility of correct learning). Our work uses
Setting 3.

Note that our result is completely different from the ones
of [5,12,18], as we consider learning concepts from indi-
viduals, while the learnability results of those works do not
(they use subsumption and equivalence queries). Further-
more, the DLs considered by us are more advanced than
C-Classic,Classic, DL-Lite, and EL. In addition, note that
C-learnability is different from PAC learnability.

To obtain the mentioned result, our work uses bounded
bisimulation in DLs and a new version of the algorithms
proposed in the works [26,31] that minimizes modal depths
of the resulting concepts. It shows a good property of the
bisimulation-based concept learning methods.

This paper is a revised and extended version of our confer-
ence paper [8] and a part of the Ph.D. dissertation [7] of the

first author. In comparison with [8], it contains full proofs of
the results, illustrative examples, and a correction for a nor-
malization rule. Furthermore, we also generalize common
types of queries for DLs, introduce interpretation queries,
and present some consequences.

Based on our work [8], Tran et al. [30] studied
C-learnability in a certain class of DLs using Setting 2. That
class is a bit larger than the one considered in our work, as it
also allows the features Nk (unqualified number restrictions
with numbers bounded by a constant k) and F (role func-
tionality), which are special forms of Qk (qualified number
restrictions with numbers bounded by a constant k). Their
paper refers to our work [8] for some notions and proofs.
The current paper differs from their paper in that it uses Set-
ting 3, while the latter uses Setting 2. These two settings are
essentially different. Furthermore, the current paper contains
all details, including full proofs. In addition, note that all the
other previous joint papers by any co-author of the current
paper do not deal with learnability in DLs.

1.4 The structure of this paper

The rest of this paper is structured as follows. In Sect. 2,
we introduce notation and semantics of DLs. In Sect. 3, we
present concept normalization and introduce universal inter-
pretations. In Sect. 4, we define bounded bisimulation in DLs
and state its properties. In Sect. 5, we present a concept
learning algorithm, which is used in Sect. 6 for analyzing
C-learnability in DLs. In Sect. 7, we discuss concept learn-
ing in DLs using queries. Concluding remarks are given in
Sect. 8.

2 Notation and semantics of description logics

A DL-signature is a set � = �I ∪ �C ∪ �R , where �I is
a finite set of individual names, �C is a finite set of concept
names, and �R is a finite set of role names. Concept names
stand for unary predicates, while role names stand for binary
predicates. We denote concept names by capital letters, such
as A and B, role names by lower case letters, such as r and s,
and individual names by lower case letters, such as a and b.

Wewill considerDL-features denoted by I (inverse roles),
Qk (qualified number restrictions with numbers bounded by
a constant k), and Self (local reflexivity of a role). In this
paper, by a set of DL-features, we mean an empty set or a
finite set consisting of some of these names.

Let � be a DL-signature and � be a set of DL-features.
Let L stand for ALC, which is the name of a basic DL (we
treatL as a language, but not a logic). TheDL languageL�,�

allows roles and concepts defined inductively as follows:

• If r ∈ �R , then r is a role of L�,�.
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I = ΔI ⊥I = ∅ (¬C)I = ΔI \ CI

(C D)I = CI ∩ DI (C D)I = CI ∪ DI

(∃r.Self)I = {x ∈ ΔI | rI(x, x)}
(∀R.C)I = {x ∈ ΔI | ∀y [RI(x, y) ⇒ CI(y)]}
(∃R.C)I = {x ∈ ΔI | ∃y [RI(x, y) ∧ CI(y)]}

(≥h R.C)I = {x ∈ ΔI | {y | RI(x, y) ∧ CI(y)} ≥ h}
(<h R.C)I = {x ∈ ΔI | {y | RI(x, y) ∧ CI(y)} < h}

Fig. 1 Interpretation of complex concepts

• If I ∈ �, then r− is a role of L�,�.
• If A ∈ �C , then A is a concept of L�,�.
• If C and D are concepts of L�,�, R is a role of L�,�,
r ∈ �R , and h and k are natural numbers, then

• �,⊥,¬C ,C�D,C	D,∀R.C and∃R.C are concepts
of L�,�.

• If Qk ∈ � and h ≤ k, then ≥h R.C and < h R.C
are concepts of L�,� (we use < h R.C instead of
≤h R.C , because it is more “dual” to ≥h R.C).

• If Self ∈ �, then ∃r.Self is a concept of L�,�.

A role r− is called the inverse of r . The symbols � and
⊥ stand for truth and falsity, respectively. The constructors
¬, �, and 	 stand for complement, intersection, and union,
respectively. The constructors ∀R.C and ∃R.C are called
universal restriction and existential restriction, respectively.
The constructors ≥h R.C and < h R.C are called qualified
number restrictions. The constructor ∃r.Self stands for local
reflexivity of r .

An interpretation over� is a pair I = 〈
�I , ·I 〉

, where�I
is a non-empty set called the domain of I and ·I is a mapping
called the interpretation function of I that associates each
individual a ∈ �I with an element aI ∈ �I , each concept
name A ∈ �C with a set AI ⊆ �I , and each role name
r ∈ �R with a binary relation rI ⊆ �I × �I . For r ∈ �R ,
define (r−)I = (rI)−1. The interpretation function ·I is
extended to complex concepts, as shown in Fig. 1, where ��

stands for the cardinality of the set �.
An information system over � is defined to be a finite

interpretation over �.

Example 2.1 Let

• �I = {Alice, Bob, Claudia, Dave, Eva, Frank, George,
Helen},

• �C = {Male,Female,Father,Mother},
• �R = {hasChild, hasParent}.

Consider the information system I specified by

• �I = {a, b, c, d, e, f, g, h, u, v},

• AliceI = a, BobI = b, …, HelenI = h (u and v are
unnamed individuals),

• hasChildI consists of elements illustrated by edges in
the following graph:

a : F b : M

c : F d : M e : F u : M

f : M g : M h : F v : F

(in this graph, the letter M denotesMale, and F denotes
Female),

• hasParentI = (hasChild−1)I = (hasChildI)−1,
• MaleI = {b, d, f, g, u},
• FemaleI = �I\MaleI = {a, c, e, h, v},
• FatherI = (Male � ∃hasChild.�)I = {b, d, u},
• MotherI = (Female � ∃hasChild.�)I = {a, c, e}.

As examples, we have that:

• (∃hasChild.Self)I = ∅.
• (≥3 hasChild.�)I = {c, d}.
• (≥2 hasChild.Male)I = {c, d}.
• (Female � <2 hasChild.�)I = {e, h, v}. �	

A concept C of L�,� is satisfiable if there exists an inter-
pretation I over � such that CI �= ∅. We say that concepts
C and D of L�,� are equivalent if CI = DI for every
interpretation I over �.

The modal depth of a concept C , denoted by mdepth(C),
is defined to be:

• 0 if C is of the form �, ⊥, A or ∃r.Self;
• mdepth(D) if C is of the form ¬D;
• max(mdepth(D),mdepth(D′)) if C is of the form D �

D′ or D 	 D′;
• mdepth(D)+1 ifC is of the form∀R.D, ∃R.D,≥h R.C

or <h R.C .

For example,

mdepth(∃r.(∀s−.(A 	 ∃r.Self) � ∃s.(¬A))) = 2.

Let d denote a natural number. By L�,�,d , we denote the
sublanguage of L�,� that consists of concepts with modal
depth not greater than d.
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3 Concept normalization

There are different normal forms for formulas or concepts
(see, e.g., [24]). We provide below such a form. The aim is to
introduce the notion of universal interpretation and a lemma
about its existence, which in turn is used in Sect. 6 to prove
our result about C-learnability in DLs. Our normal form uses
the following normalization rules:

• Replace ∀R.C by ¬∃R.¬C .
Replace <h R.C by ¬ ≥h R.C .

• Replace ≥0 R.C by �. Replace ≥1 R.C by ∃R.C .
• Push ¬ in depth through �, ⊥, ¬, �, 	 according to De
Morgan’s laws.

• RepresentC1�· · ·�Cn as an “and”-set�{C1, . . . ,Cn} to
make the order inessential and eliminate duplicates. Use
a dual rule for 	 and “or”-sets.

• Flatten an “and”-set �{�{C1, . . . ,Ci }, Ci+1, …, Cn} to
�{C1, . . . ,Cn}.
Replace �{C} by C .
Replace �{�,C1, . . . ,Cn} by �{C1, . . . ,Cn}.
Replace �{⊥,C1, . . . ,Cn} by ⊥.
Use the dual rules for “or”-sets.

• Replace ∃R. 	 {C1, . . . ,Cn} by 	{∃R.C1, . . . , ∃R.Cn}.
• Replace ≥h R. 	 {C1, . . . ,Cn} by the union (using 	)
of all concepts of the form �{≥h1R.D1, …, ≥hn R.Dn},
where Di = �{Ci , ¬C1, …, ¬Ci−1} for 1 ≤ i ≤ n, and
h1, . . . , hn are natural numbers such that h1+· · ·+hn =
h.1

• Distribute � over 	.

A concept is said to be in the DEG normal form (in short,
DEGNF)2 if it cannot be changed by any one of the above
rules. The following two lemmas can easily be proved.

Lemma 3.1 Every concept can be translated to the DEG-
normal form. If C ′ is the DEG normal form of C then they
are equivalent. A concept in the DEG normal form may con-
tain 	 only at the most outer level (i.e., either it does not
contain 	 or it must be of the form 	{C1, . . . ,Cn}, where
C1, . . . ,Cn do not contain 	).

Lemma 3.2 L�,�,d has only finitely many concepts in the
DEG normal form. All of them can effectively be constructed.

In the case � = {I, Qk,Self}, |�C | = m and |�R | =
n, an upper bound T (d) for the number of concepts in the

1 This corrects [7,8].
2 DEGNF stands for disjunctive-existential-greater-or-equal normal
form.

DEG normal form of L�,�,d can be estimated as follows:

T ′(0) = 22m+2n+2

T ′(l + 1) = 24k.n.T ′(l)+2m+2n+2 for l ≥ 0

T (d) = 2T
′(d),

where T ′(l) is an upper bound for the number of concepts in
the DEG normal form of L�,�,d that do not use 	 and have
a modal depth not greater than l.

We say that an interpretation I over � is universal with
respect to a sublanguage of L�,� if, for every satisfiable
concept C of that sublanguage, CI �= ∅.
Lemma 3.3 There exists a finite universal interpretation
with respect to L�,�,d , which can effectively be constructed.

Proof Let C1, . . . ,Cn be all the satisfiable concepts in the
DEG normal form ofL�,�,d . (By Lemma 3.2, the number of
such concepts is finite.) For each 1 ≤ i ≤ n, let Ii be a finite
model satisfying Ci , which can effectively be constructed
using some tableau algorithm (e.g., [15,25]).3 Without loss of
generality we assume that these interpretations have pairwise
disjoint domains. Let I be any interpretation such that:�I =
�I1 ∪ · · · ∪ �In ; for A ∈ �C , AI = AI1 ∪ · · · ∪ AIn ; for
r ∈ �R , rI = rI1 ∪ · · · ∪ rIn . (Individual names can be
interpreted in I arbitrarily.) It is easy to see that I is finite
and universal with respect to L�,�,d . �	

4 Bounded bisimulation for description logics

Indiscernibility in DLs is related to bisimulation. Divroodi
and Nguyen [9,10] studied bisimulations for a number of
DLs. Nguyen and Szałas [26] generalized that notion to
model indiscernibility of objects and study concept learning.
Tran et al. [31] and Ha et al. [13] generalized that notion fur-
ther for concept learning. In this section, we present bounded
bisimulation for the DLs studied in the current paper. The
theorems given in this section differ from the ones in the
mentioned works mainly in that we are now dealing with
bounded bisimulation (but not bisimulation) and the consid-
ered class of DLs is different. They serve as technical tools
for proving our main result about C-learnability in DLs.

Let d be a natural number and let

• � and �† be DL-signatures such that �† ⊆ �,
• � and �† be sets of DL-features such that �† ⊆ �,
• I and I ′ be interpretations over �.

A binary relation Zd ⊆ �I × �I ′
is called an L�†,�†,d -

bisimulation between I and I ′ if there exists a sequence of

3 As RBoxes and TBoxes are not considered, L�,�,d has the finite
model property.
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binary relations Zd ⊆ · · · ⊆ Z0 ⊆ �I × �I ′
such that the

following conditions hold for every 0 ≤ i ≤ d, 0 ≤ j < d,
a ∈ �

†
I , A ∈ �

†
C , x, y ∈ �I , x ′, y′ ∈ �I ′

, and every role R
of L�†,�† :

Zi (a
I , aI ′

) (1)

Z0(x, x
′) ⇒ [AI (x) ⇔ AI ′

(x ′)] (2)

[Z j+1(x, x
′) ∧ RI (x, y)] ⇒ ∃y′ ∈ �I ′ [Z j (y, y

′) ∧ RI ′
(x ′, y′)]

(3)

[Z j+1(x, x
′) ∧ RI ′

(x ′, y′)] ⇒ ∃y ∈ �I [Z j (y, y
′) ∧ RI (x, y)],

(4)

if Qk ∈ �† and 1 ≤ h ≤ k then
if Z j+1(x, x ′) holds and y1, . . . , yh are pairwise different
elements of �I such that RI(x, yl) holds for every 1 ≤ l ≤
h, then there exist pairwise different elements y′

1, . . . , y
′
h of

�I ′
such that RI ′

(x ′, y′
l ) and Z j (yl , y′

l ) hold for every

1 ≤ l ≤ h (5)

if Z j+1(x, x ′) holds and y′
1, . . . , y

′
h are pairwise different

elements of �I ′
such that RI ′

(x ′, y′
l ) holds for every 1 ≤

l ≤ h, then there exist pairwise different elements y1, . . . , yh
of �I such that RI(x, yl) and

Z j (yl , y
′
l ) hold for every1 ≤ l ≤ h, (6)

if Self ∈ �†, then

Z0(x, x
′) ⇒ [rI(x, x) ⇔ rI ′

(x ′, x ′)]. (7)

Lemma 4.1 Let I, I ′, and I ′′ be interpretations.

1. The relation {〈x, x〉 | x ∈ �I} is an L�†,�†,d -
bisimulation between I and I.

2. If Z is an L�†,�†,d -bisimulation between I and I ′, then
Z−1 is an L�†,�†,d -bisimulation between I ′ and I.

3. If Z1 is an L�†,�†,d -bisimulation between I and I ′, and
Z2 is an L�†,�†,d -bisimulation between I ′ and I ′′, then
Z1 ◦ Z2 is an L�†,�†,d -bisimulation between I and I ′′.

4. If Z is a set of L�†,�†,d -bisimulations between I and
I ′, then

⋃Z is also an L�†,�†,d -bisimulation between
I and I ′.

The proof of this lemma is straightforward.
An interpretation I is L�†,�†,d -bisimilar to I ′ if there

exists anL�†,�†,d -bisimulationbetween them.ByLemma4.1,
this L�†,�†,d -bisimilarity relation is an equivalence rela-
tion between interpretations. We say that x ∈ �I is
L�†,�†,d -bisimilar to x ′ ∈ �I ′

if there exists an L�†,�†,d -
bisimulation Zd between I and I ′ such that Zd(x, x ′)
holds. This latter L�†,�†,d -bisimilarity relation is also an

(I)

a : F b : M

c : F d : M e : F u : M

f : M g : M h : F v : F

(I )

a : F b : M

c : F d : M e : F u : M

f : M g : M h : F v : F

Fig. 2 Illustration for Example 4.2

equivalence relation (between elements of interpretations’
domains).

Example 4.2 Let � be the signature and I be the interpreta-
tion specified inExample2.1.This interpretation is illustrated
in Fig. 2 together with its modification I ′, which differs
from I in that: hasChildI ′

consists of only the elements
illustrated by the edges shown at the lower part of Fig. 2
and hasParentI ′

,MotherI ′
, andFatherI ′

are defined accord-
ingly.

Let � = {I, Q2, Q3,Self} (we add Q2 to � just for con-
venience), �†

I = �I , �
†
C = {Male}, and �

†
R = {hasChild}.

Consider the following cases.

• The interpretations I and I ′ areL�†,�†,0 -bisimilar (with
respect to any �† ⊆ �).

• Case �† ⊆ {Q2,Self}: I and I ′ are L�†,�†,d -bisimilar
(with respect to any d).

• Case I ∈ �† and d ≥ 1: I and I ′ are not L�†,�†,d -
bisimilar, because HelenI (h in I) is not L�†,�†,d -

bisimilar to HelenI ′
(h in I ′).

• Case Q3 ∈ �† and d ≥ 1: I and I ′ are not L�†,�†,d -
bisimilar, because ClaudiaI (c in I) is not L�†,�†,d -

bisimilar to ClaudiaI ′
(c in I ′).
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If �
†
I = {Alice,Bob} and �† ⊆ �, then I and I ′ are

L�†,�†,1 -bisimilar. �	
Lemma 4.3 Let Zd be an L�†,�†,d -bisimulation between
interpretations I and I ′. Then, for every x ∈ �I , every
x ′ ∈ �I ′

, and every concept C of L�†,�†,d , it holds that

Zd(x, x
′) ⇒ [CI(x) ⇔ CI ′

(x ′)].

Proof We prove this lemma by induction on the structure
of C . Let x ∈ �I , x ′ ∈ �I ′

, C be a concept of L�†,�†,d and

suppose Zd(x, x ′) and CI(x) hold. We show that CI ′
(x ′)

also holds.

• The cases when C is of the form �, ⊥, A, ¬D, D 	 D′
or D � D′ are trivial.

• Case C = ∃R.D, where R is a role of L�†,�† and D is a
concept of L�†,�†,d−1 : Since C

I(x) holds, there exists
y ∈ �I such that RI(x, y) and DI(y) hold. By the asser-
tion (3), there exists y′ ∈ �I ′

such that Zd−1(y, y′) and
RI ′

(x ′, y′) hold. By the induction assumption, it follows
that DI ′

(y′) holds. Since RI ′
(x ′, y′) and DI ′

(y′) hold,
it follows that CI ′

(x ′) holds.
• Case C = ∀R.D, where R is a role of L�†,�† and D is

a concept of L�†,�†,d−1 , is reduced to the above case,
treating ∀R.D as ¬∃R.¬D.

• Case Qk ∈ �† and C = (≥h R.D), where 0 ≤ h ≤ k,
R is a role of L�†,�† , and D is a concept of L�†,�†,d−1 :
Since CI(x) holds, there exist pairwise different y1, …,
yh ∈ �I such that RI(x, yi ) and DI(yi ) hold for all
1 ≤ i ≤ h. Since Zd(x, x ′) holds, by the assertion (5),
there exist pairwise different y′

1, …, y′
h ∈ �I ′

such that

RI ′
(x ′, y′

i ) and Zd−1(yi , y′
i )hold for all 1 ≤ i ≤ h. Since

Zd−1(yi , y′
i ) and DI(yi ) hold for every 1 ≤ i ≤ h, by

the induction assumption, it follows that DI ′
(y′

i ) holds

for every 1 ≤ i ≤ h. Therefore, CI ′
(x ′) holds.

• Case Qk ∈ � and C = (< h R.D), where 0 ≤ h ≤ k,
R is a role of L�†,�† , and D is a concept of L�†,�†,d−1 :
this case is reduced to the above case, treating < h R.D
as ¬(≥ h R.D).

• CaseSelf ∈ �† andC = ∃r.Self: sinceCI(x) holds, we
have that rI(x, x) holds. Since Zd(x, x ′) holds and Zd ⊆
Z0, it follows that Z0(x, x ′) holds. By the assertion (7),
we have that rI ′

(x ′, x ′) holds. Hence, CI ′
(x ′) holds.

An interpretation I over� is finitely branching (or image-
finite) with respect to L�†,�† and L�†,�†,d if, for every x ∈
�I and every role R of L�†,�† , the set {y ∈ �I | RI(x, y)}
is finite.

Let x ∈ �I and x ′ ∈ �I ′
. We say that x is L�†,�†,d -

equivalent to x ′ if, for every concept C of L�†,�†,d , x ∈ CI

iff x ′ ∈ CI ′
.

Theorem 4.4 (The Hennessy–Milner Property) Let d be
a natural number, � and �† be DL-signatures such that
�† ⊆ �, and � and �† be sets of DL-features such
that �† ⊆ �. Let I and I ′ be interpretations in L�,�,
finitely branching with respect to L�†,�† such that, for every

a ∈ �
†
I , a

I is L�†,�†,d -equivalent to aI ′
. Then, x ∈ �I is

L�†,�†,d -equivalent to x
′ ∈ �I ′

iff there exists anL�†,�†,d -
bisimulation Zd between I and I ′ such that Zd(x, x ′)
holds. In particular, the relation {〈x, x ′〉 ∈ �I × �I ′ | x
is L�†,�†,d -equivalent to x ′} is an L�†,�†,d -bisimulation
between I and I ′.

Proof Consider the “⇐” direction. Suppose Zd is an
L�†,�†,d -bisimulation between I and I ′ such that Zd(x, x ′)
holds. By Lemma 4.3, for every concept C in L�†,�†,d ,

CI(x) holds iff CI ′
(x ′) holds. Therefore, x is L�†,�†,d -

equivalent to x ′.
Now, consider the “⇒” direction. Define Z j = {〈x, x ′〉 ∈

�I×�I ′ | x isL�†,�†, j -equivalent to x
′} for every 1 ≤ j ≤

d. We show that Zd is an L�†,�†,d -bisimulation between I
and I ′.

• The condition (1) follows from the assumption of the
theorem.

• Consider the condition (2) and suppose Z0(x, x ′) holds.
By the definition of Z0, it follows that x is L�†,�†,0 -
equivalent to x ′. Therefore, for every concept name A,
AI(x) holds iff AI ′

(x ′) holds.
• Consider the condition (3) and suppose Z j+1(x, x ′) and

RI(x, y) hold. Thus, x is L�†,�†, j+1 -equivalent to x ′.
Let S = {y′ ∈ �I ′ | RI ′

(x ′, y′)}. We show that
there exists y′ ∈ S such that Z j (y, y′) holds. Since
x ∈ (∃R.�)I and x is L�†,�†, j+1 -equivalent to x ′, we
have that x ′ ∈ (∃R.�)I ′

. Hence, S �= ∅. Since I ′ is
finitely branching, S must be finite. Let the elements
of S be y′

1, …, y′
n . For the sake of contradiction, sup-

pose that, for every 1 ≤ i ≤ n, Z j (y, y′
i ) does not

hold, which means that y is not L�†,�†, j -equivalent to
y′
i . Thus, for every 1 ≤ i ≤ n, there exists a concept

Ci in L�†,�†, j such that CI
i (y) holds, but CI ′

i (y′
i ) does

not. Let C = ∃R.(C1 � · · · � Cn). Thus, C is a concept
of L�†,�†, j+1 and CI(x) holds, but CI ′

(x ′) does not,
which contradicts the fact that x isL�†,�†, j+1 -equivalent
to x ′. Therefore, there exists y′

i ∈ S such that Z j (y, y′
i )

holds.
• The condition (4) can be proved analogously as for the
condition (3).

• Consider the case Qk ∈ �† and the conditions (5) and
(6). Suppose Z j+1(x, x ′) holds. Thus, x is L�†,�†, j+1 -

equivalent to x ′. Let S = {y ∈ �I | RI(x, y)} and
S′ = {y′ ∈ �I ′ | RI ′

(x ′, y′)}. Since I and I ′ are finitely
branching, both S and S′ are finite. Consider an arbitrary
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y′′ ∈ S ∪ S′ and let y1, . . . , yn ∈ S and y′
1, . . . , y

′
n′ ∈ S′

be all the pairwise different elements that are L�†,�†, j -
equivalent to y′′. To prove (5) and (6), it suffices to show
that either n = n′ or (n ≥ k and n′ ≥ k). For the sake
of contrary, assume that n �= n′ and (n < k or n′ < k).
Without loss of generality, also assume that n < n′. Thus,
n < k and n + 1 ≤ k. Let {t1, . . . , tm} = S\{y1, . . . , yn}
and {t ′1, . . . , t ′m′ } = S′\{y′

1, . . . , y
′
n′ }. Let I ′′ = I if

y′′ ∈ S, and let I ′′ = I ′ otherwise. For each 1 ≤ i ≤ m,
there exists a concept Di ofL�†,�†, j such that y

′′ ∈ DI ′′
i

but ti /∈ DI
i . Similarly, for each 1 ≤ i ≤ m′, there exists

a concept D′
i of L�†,�†, j such that y′′ ∈ (D′

i )
I ′′

but

t ′i /∈ (D′
i )
I ′
. Let D = (D1 � · · · � Dm � D′

1 � · · · � D′
m′).

We have that {y1, . . . , yn} ⊆ DI (since y′′ ∈ DI ′′
)

and {t1, . . . , tm} ∩ DI = ∅. Similarly, {y′
1, . . . , y

′
n′ } ⊆

DI ′
and {t ′1, . . . , t ′m′ } ∩ DI ′ = ∅. Observe that C =

(≥(n + 1) R.D) is a concept of L�†,�†, j+1 , C
I ′

(x ′)
holds, but CI(x) does not. This contradicts the fact that
x is L�†,�†, j+1 -equivalent to x ′.

• Consider the case Self ∈ �† and the assertion (7). Sup-
pose Z0(x, x ′) holds. Thus, x is L�†,�†,0 -equivalent to
x ′. Let C = ∃r.Self. Since mdepth(C) = 0, it fol-
lows that CI(x) holds iff CI ′

(x ′) holds, which means
x ∈ (∃r.Self)I iff x ′ ∈ (∃r.Self)I ′

. Therefore, rI(x, x)
holds iff rI ′

(x ′, x ′) holds. �	

An L�†,�†,d -bisimulation between I and itself is called
an L�†,�†,d -auto-bisimulation of I. An L�†,�†,d -auto-
bisimulation of I is said to be the largest if it is larger than
or equal to (⊇) any other L�†,�†,d -auto-bisimulation of I.

Given an interpretation I over �, by ∼�†,�†,d,I we
denote the largest L�†,�†,d -auto-bisimulation of I, and by
≡�†,�†,d,I we denote the binary relation on �I with the
property that x ≡�†,�†,d,I x ′ iff x is L�†,�†,d -equivalent to
x ′.

Theorem 4.5 Let d be a natural number, � and �† be
DL-signatures such that �† ⊆ �, � and �† be sets of
DL-features such that �† ⊆ �, and I be an interpretation
over �. Then, the largest L�†,�†,d -auto-bisimulation of I
exists and is an equivalence relation. Furthermore, if I is
finitely branching with respect to L�†,�† , then the relation
≡�†,�†,d,I is the largest L�†,�†,d -auto-bisimulation of I
(i.e., the relations ≡�†,�†,d,I and ∼�†,�†,d,I coincide).

Proof It follows from Lemma 4.1 that the largest L�†,�†,d -
auto-bisimulation of I exists and is an equivalence relation.
Assume that I is finitely branching with respect to L�†,�† .
By Theorem 4.4, the relation ≡�†,�†,d,I is an L�†,�†,d -
auto-bisimulation of I. It remains to show that thisL�†,�†,d -
auto-bisimulation is the largest one. Suppose Zd is another
L�†,�†,d -auto-bisimulation of I. If Zd(x, x ′) holds then, by

Lemma 4.3, for every concept C of L�†,�†,d , C
I(x) holds

iff CI ′
(x ′) holds, and hence x ≡�†,�†,d,I x ′. Therefore,

Zd ⊆ ≡�†,�†,d,I . �	

We say that a set Y is split by a set X if Y\X �= ∅ and
Y ∩ X �= ∅. Thus, Y is not split by X if either Y ⊆ X or
Y ∩ X = ∅. A partition P = {Y1, . . . ,Yn} is consistent with
a set X if, for every 1 ≤ i ≤ n, Yi is not split by X .

The following theorem is similar to the ones given in [13,
26,31]. The difference is that it deals with a different class
of languages, which contain concepts with bounded modal
depth.

Theorem 4.6 Let d be a natural number, � and �† be
DL-signatures such that �† ⊆ �, � and �† be sets of
DL-features such that �† ⊆ �, I be a finitely branching
interpretation with respect to L�†,�† , and let X ⊆ �I .
Then:

1. If there exists a concept C ofL�†,�†,d such that X = CI ,
then the partition of �I by ∼�†,�†,d,I is consistent with
X.

2. If the partition of �I by ∼�†,�†,d,I is consistent with
X, then there exists a concept C of L�†,�†,d such that
CI = X.

Proof By Theorem 4.5, ∼�†,�†,d,I coincides with
≡�†,�†,d,I .

Consider the first assertion and assume that X = CI for
some concept C of L�†,�†,d . Let Y be any element of the
partition of�I by∼�†,�†,d,I such that X∩Y �= ∅. It suffices
to show that Y ⊆ X . Let x be an arbitrary element of Y . Since
X ∩ Y �= ∅, there exists x ′ ∈ X ∩ Y . Since both x and x ′
belong to Y , x ′ ∼�†,�†,d,I x . Since ∼�†,�†,d,I coincides
with ≡�†,�†,d,I , we also have that x ′ ≡�†,�†,d,I x . Since
x ′ ∈ X and X = CI , CI(x ′) holds, which together with
x ′ ≡�†,�†,d,I x implies that CI(x) holds. Thus, x ∈ X and
we can conclude that Y ⊆ X .

Consider the second assertion and assume that the par-
tition of �I by ∼�†,�†,d,I is consistent with X . Let that
partition be {Y1, . . . ,Ym,Y ′

1, . . . ,Y
′
n}, where Yi ⊆ X for all

1 ≤ i ≤ m and Y ′
j ∩ X = ∅ for all 1 ≤ j ≤ n. We have that

X = Y1∪· · ·∪Ym . For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, since
Yi and Y ′

j are different equivalence classes of≡�†,�†,d,I (the
same as ∼�†,�†,d,I ), there exists a concept Ci, j of L�†,�†,d

such that Yi ⊆ CI
i, j and Y

′
j ∩CI

i, j = ∅. For each 1 ≤ i ≤ m,

let Ci = Ci,1 � · · · � Ci,n . Thus, Yi ⊆ CI
i and Y ′

j ∩ CI
i = ∅

for all 1 ≤ j ≤ n. Let C = C1 	 · · · 	 Cm . Thus, Yi ⊆ CI
for all 1 ≤ i ≤ m and Y ′

j ∩ CI = ∅ for all 1 ≤ j ≤ n.

Therefore, CI = X . �	
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5 A concept learning algorithm

Let A0 ∈ �C be a concept name standing for the “decision
attribute” and suppose that A0 can be expressed by a concept
C in L�†,�† , where �† ⊆ �\{A0} and �† ⊆ �. Let I be a
training information system over �. How can we learn that
concept C on the basis of I ? Nguyen and Szałas [26] gave a
bisimulation-based method for this learning problem. In this
section, by adopting a specific strategy, we present a modi-
fied version of that method, called the MIMOD (minimizing
modal depth) concept learning algorithm. This algorithm is
used for analyzing C-learnability in the next section.

Our MiMoD algorithm is as follows:

1. Starting from the partition {�I}, make subsequent gran-
ulations to reach a partition consistent with AI

0 . In the
granulation process, we denote the blocks created so
far in all steps by Y1, . . . ,Yn , where the current parti-
tion may consist of only some of them. We do not use
the same subscript to denote blocks of different con-
tents (i.e., we always use new subscripts obtained by
increasing n for new blocks). We take care that, for each
1 ≤ i ≤ n, Yi is characterized by a concept Ci such that
Yi = CI

i .
2. We use the following concepts as selectors for the gran-

ulation process, where 1 ≤ i ≤ n:

(a) A, where A ∈ �
†
C ,

(b) ∃r.Self, if Self ∈ �† and r ∈ �
†
R ,

(c) ∃r.Ci , where r ∈ �
†
R ,

(d) ∃r−.Ci , if I ∈ �† and r ∈ �
†
R ,

(e) ≥h r.Ci , if Qk ∈ �†, r ∈ �
†
R , and 1 ≤ h ≤ k,

(f) ≥h r−.Ci , if {Qk, I } ⊆ �†, r ∈ �
†
R and 1 ≤ h ≤ k.

A selector D has a higher priority than D′ ifmdepth(D)

< mdepth(D′).
3. During the granulation process if

• a block Yi of the current partition is split by DI ,
where D is a selector, and

• there do not exist a block Y j of the current partition
and a selector D′ with a higher priority than D such
that Y j is split by D′,

then split Yi by D as follows:

• s := n + 1, t := n + 2, n := n + 2,
• Ys := Yi ∩ DI , Cs := Ci � D,
• Yt := Yi ∩ (¬D)I , Ct := Ci � ¬D,
• replace Yi in the current partition by Ys and Yt .

4. When the current partition becomes consistent with AI
0 ,

return Ci1 	 · · · 	 Ci j , where i1, . . . , i j are indices such
that Yi1 , . . . ,Yi j are all the blocks of the current partition

that are subsets of AI
0 .

Observe that the above algorithm always terminates.

Example 5.1 Consider the information system I given in
Example 2.1. Let �† = {Male, hasChild} and �† = ∅.
We want to apply the MiMoD algorithm to learn a con-
cept of L�†,�† that describes the concept Father. Recall that
FatherI = {b, d, u}. One of possible runs of the algorithm
is as follows:

1. Y1 := �I , C1 = �, partition := {Y1}.
2. Splitting Y1 by Male:

• Y2 := {b, d, f, g, u}, C2 := Male.
• Y3 := {a, c, e, h, v}, C3 := ¬Male.
• partition := {Y2,Y3}.

3. Splitting Y2 by ∃hasChild.�:

• Y4 := {b, d, u}, C4 := C2 � ∃hasChild.�.
• Y5 := { f, g}, C5 := C2 � ¬∃hasChild.�.
• partition := {Y3,Y4,Y5}.

The obtained partition is consistent with FatherI , having
Y4 = FatherI and Y3, Y5 disjoint with FatherI . The
returned concept is C4 = Male � ∃hasChild.�. �	
Example 5.2 Consider once again the information system
I given in Example 2.1. Now, let �† = {Male, hasChild},
�† = {Q3} and let A0 be a new concept name interpreted in
I as AI

0 = {c, d}. We want to apply theMiMoD algorithm to
learn a concept of L�†,�† that describes A0. One of possible
runs of the algorithm has first two steps as in Example 5.1
and then continues as follows:

3. Splitting Y2 by ≥3 hasChild.�:

• Y4 := {d}, C4 := C2 � (≥3 hasChild.�).
• Y5 := {b, f, g, u}. C5 := C2 � ¬(≥3 hasChild.�),
• partition := {Y3,Y4,Y5}.

4. Splitting Y3 by ≥3 hasChild.�:

• Y6 := {c}, C6 := C3 � (≥3 hasChild.�).
• Y7 := {a, e, h, v}, C7 := C3 � ¬(≥3 hasChild.�).
• partition := {Y4,Y5,Y6,Y7}.

The obtained partition is consistent with AI
0 , having Y4 ⊂

AI
0 , Y6 ⊂ AI

0 , and Y5, Y7 disjoint with AI
0 . The returned

concept is

C4 	 C6 = [Male � (≥3 hasChild.�)] 	 [¬Male � (≥3 hasChild.�)]

which is equivalent to ≥3 hasChild.�. �	
For experimental results on the usefulness of the

bisimulation-based concept learningmethod (not necessarily
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MiMoD), we refer the reader to [29]. Here, we are interested
in the following lemma.

Lemma 5.3 Let� and�† be DL-signatures such that�† ⊆
�, � and �† be sets of DL-features such that �† ⊆ �, and
I be an interpretation over �. Suppose A0 ∈ �C\�†

C and
C is a concept of L�†,�† such that AI

0 = CI . Let C ′ be a
concept returned by the MiMoD algorithm for I. Then, C ′ is
a concept ofL�†,�† such that C ′I = CI andmdepth(C ′) ≤
mdepth(C).

Proof Clearly, C ′I = AI
0 = CI . Consider the execution

of the MiMoD algorithm on I that results in C ′. By Pd we
denote the partition of �I at the moment in that execution
when max{mdepth(Ci ) | Yi ∈ Pd} = d and Pd cannot be
granulated anymore without using some selector with modal
depth d+1. Let dmax be themaximal value of such an index d
(of somePd ). Let Zd be the equivalence relation correspond-
ing to the partition Pd , i.e., Zd = {〈x, x ′〉 | x, x ′ ∈ Yi for
some Yi ∈ Pd}. It is straightforward to prove by induction
on d that Zd is an L�†,�†,d -auto-bisimulation of I. Hence,
Zd ⊆ ∼�†,�†,d,I . Since each block ofPd is characterized by
a concept of L�†,�†,d , Zd is a superset of ≡�†,�†,d,I . Since
≡�†,�†,d,I and∼�†,�†,d,I coincide (Theorem 4.5), we have
that Zd = ≡�†,�†,d,I .

Since the algorithm terminates as soon as the current
partition is consistent with CI , it follows that dmax ≤
mdepth(C). Furthermore, if dmax < mdepth(C ′), then
we also have dmax < mdepth(C). Since mdepth(C ′) ≤
dmax + 1, we conclude that mdepth(C ′) ≤ mdepth(C). �	

6 C-learnability in description logics

Theorem 6.1 Let d be a natural number, � and �† be
DL-signatures such that �† ⊆ �, � and �† be sets of
DL-features such that �† ⊆ �, and I be a finite univer-
sal interpretation with respect to L�†,�†,d . Suppose A0 ∈
�C\�†

C and C is a concept ofL�†,�†,d such that AI
0 = CI .

Then, any concept returned by the MiMoD algorithm for I
is equivalent to C.

Proof Let C ′ be a concept returned by the MiMoD algo-
rithm for I. By Lemma 5.3, C ′I = CI and mdepth(C ′) ≤
mdepth(C). For the sake of contradiction, suppose C ′ is not
equivalent to C . Thus, either C � ¬C ′ or C ′ � ¬C is satisfi-
able. Both of them belong to L�†,�†,d . Since I is universal
with respect to L�†,�†,d , it follows that either (C � ¬C ′)I
or (C ′ � ¬C)I is not empty, which contradicts the fact that
C ′I = CI . �	
Theorem 6.2 For every concept C in any description logic
that extends ALC with some features amongst I , Qk, Self,
there exists a training information system such that applying

the MiMoD algorithm to it results in a concept equivalent
to C.

Proof Let the considered logic be L�†,�† and let d =
mdepth(C), � = �† and � = �† ∪{A0}, where A0 /∈ �

†
C .

By Lemma 3.3, there exists a finite universal interpretation I ′
with respect to L�†,�†,d . Let I be the interpretation over �

different from I ′ only in that AI
0 is defined to beCI ′

. Clearly,
I is universal with respect to L�†,�†,d and AI

0 = CI . By
Theorem 6.1, any concept returned by theMiMoD algorithm
for I is equivalent to C . �	

Assuming that the language L�†,�† is fixed, the MiMoD
algorithm in the above two theorems for learning a conceptC
does not depend on C (nor the modal depth of C). Further-
more, the training information system I used for learning C
depends on C only via its modal depth.

7 On concept learning using queries

Angluin [2] assumed that the learner has access to a fixed
set of oracles that will answer specific kinds of queries about
the concept to be learned. As mentioned earlier, she studied
exact and probably exact learnability using different types of
queries, such as membership, equivalence, subset, superset,
disjointness, and exhaustiveness. In this section, we gener-
alize these types of queries for DLs, introduce interpretation
queries, and present some consequences. This mainly serves
as a starting point for future work.

A type of queries is specified by a form of inputs and
outputs for oracles. Let C denote the concept to be learned,
which belongs to a languageL�†,�†,d . It is known to the ora-
cles, but unknown to the learner. We assume that the learner
knows �† and whether �† contains I or Self, but it may not
know d nor the (maximal) number k with Qk ∈ �†. Gener-
alization of the types of queries studied by Angluin [2] is as
follows.

• Membership The input is a pair of an interpretation I
and an element x ∈ �I , and the output is yes if x ∈ CI
and no otherwise.

• Equivalence The input is a concept D and the output
is yes if D ≡ C and no otherwise. If the answer is no,
the oracle returns an interpretation I and an element x ∈
DI � CI , where � denotes “symmetric difference”.

• Subset The input is a concept D and the output is yes if
D � C (i.e., DI ⊆ CI for every interpretation I) and
no otherwise. If the answer is no, the oracle returns an
interpretation I and an element x ∈ DI − CI .

• Superset The input is a concept D and the output is yes
if C � D and no otherwise. If the answer is no, the
oracle returns an interpretation I and an element x ∈
CI − DI .
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• Disjointness The input is a concept D and the output
is yes if D � C is unsatisfiable and no otherwise. If the
answer is no, the oracle returns an interpretation I and
an element x ∈ DI ∩ CI .

• Exhaustiveness The input is a concept D and the output
is yes if D 	 C ≡ � (i.e., DI ∪ CI = �I for every
interpretation I) and no otherwise. If the answer is no,
the oracle returns an interpretation I and an element x /∈
DI ∪ CI .

The input concept D is usually assumed to belong to the
same language as C . In the restricted version, the above
oracles return only yes or no without providing a counter
example x .

Valiant [32] studied concept learnability using member-
ship queries and oracles that generate positive examples. One
can also consider oracles that generate negative examples.
These oracles do not receive inputs, but only return exam-
ples. They are generalized for DLs as follows:

• Positive example The output is a pair of an interpretation
I and an element x ∈ CI .

• Negative example The output is a pair of an interpretation
I and an element x ∈ �I − CI .

Our new type of queries is as follows, which generalizes
membership queries.

• Interpretation The input is an interpretation I and the
output is the set CI .

As a consequence of Theorem 6.1, we have the following
corollary:

Corollary 7.1 If L�†,�†,d is known, then each of its con-
cepts can be learned using one interpretation query.

We say that a conceptC ofL�†,�†,d is in the h-DEG nor-
mal form (in short, h-DEGNF) if it is in the DEG normal
form and

• every conjunction occurring in C has no more than h
conjuncts,

• if C is a disjunction, then it has no more than h disjuncts.

In the case �† = {I, Qk,Self}, |�†
C | = m and |�†

R | =
n, an upper bound S(d) for the number of concepts in
the h-DEG normal form of L�†,�†,d can be estimated as
follows:

S′(0) = (2m + 2n + 2)h

S′(l + 1) = (4k.n.S′(l) + 2m + 2n + 2)h for l ≥ 0

S(d) = (S′(d))h,

where S′(l) is an upper bound for the number of concepts in
the h-DEG normal form of L�†,�†,d that do not use 	 and
have a modal depth not greater than l.

Thus, S(d) = (O(k.n.(m + n)h))h
d+1

. In the case when h
and d are constants, S(d) is a polynomial (in k,m, and n).We
arrive at the following consequence, which is related to the
learnability of bounded CNF boolean formulas in classical
propositional calculus [2,32].

Proposition 7.2 When h and d are fixed natural numbers,
every concept C in the h-DEG normal form of L�†,�†,d
can be learned using a polynomial number of equivalence
queries.

8 Concluding remarks

We have proved that any concept in any description logic that
extends ALC with some features amongst I (inverse roles),
Qk (qualified number restrictions with numbers bounded by
a constant k), and Self (local reflexivity of a role) can be
learned if the training information system (specified as afinite
interpretation) is good enough. This is an interesting theoret-
ical result, which requires advanced techniques. In particular,
for this theorem,wehave introduced universal interpretations
and bounded bisimulation in DLs and developed theMiMoD
algorithm.

The considered DLs are quite expressive. At least, they
are more expressive than C-Classic, DL-Lite, and EL. Our
result on C-learnability is not extensible in a straightforward
way for DLs with nominals or the universal role (the proof of
Lemma 3.3 does not work for such an extension). It can be
extended to deal also with the features Nk (unqualified num-
ber restrictions with numbers bounded by a constant k), F
(role functionality), and reformulated for Setting 2 as done
in [30]. A reformulation for Setting 1 can be done analo-
gously.

As future work, we intend to study PAC and PExact con-
cept learnability in DLs using queries. The formulations
given in Sect. 7 are a starting point.
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