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Abstract Although migration and replication of applica-
tions in a distributed environment have been discussed by
many researchers, the implementations of these features are
rarely focused when deployed in the cloud. The cloud enter-
prises usually have to migrate or replicate partly or fully their
services because of economical or disaster preventing rea-
sons. Because the cost of copying the whole virtual machines
is too high due to their big size, the replication at appli-
cation level is a possible approach. This work proposes an
autonomic replication and migration mechanism integrated
in an implementation of a fine-grained deployment frame-
work which enables ability to migrate and replicate-service
components on the clouds. We formulate the deployment
problem of replicated components to optimize the sys-
tem performance as a quadratic program. Our proposed
framework ensures the high availability and scalability of
services, and complies with the service-oriented architec-
ture. Our experiments conducted in real scenarios of elastic
demands demonstrate that the proposed fine-grained migra-
tion and replication is more efficient than the coarse-grained
ones when an autonomic system responds to fluctuation of
webapp’s workload. We also show the influence of adding
servers and upgrading server connections on the system per-
formance.
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1 Introduction

Cloud computing is a recent trend of information technology,
with its application distributed in every field. With minimal
effort or service provider interaction, the configurable com-
puting resources can be rapidly provisioned and released on
demand with a pay-as-you-go style [1]. Ideally, all things a
cloud user needs are amachine with an enabled web browser.
In terms of service model, there are three well-discussed lay-
ers known as IaaS for Infrastructure as a Service, PaaS for
Platform as a Service, and SaaS for Software as a Service.
Many other XaaS terms are used nowadays to name different
provided services in the cloud.

Cloud environments can be used to host service-based
applications following a service-oriented architecture (SOA).
SOA is a collection of self-contained services which com-
municate with each other using provided interfaces [2].
Management of service-based applications in cloud environ-
ments is a challenging task in the aspects of fault tolerant,
performance and security. Cloud service management plays
an important role to respect the service-level agreement
(SLA) between the service consumers and providers. In this
context, one of the solutions to ensure the SLA is the abil-
ity to support mobility services which allows the migration
and replication of services between virtual machines (VM)
or among different containments. Many attempts to provide
migration and replication of service-based applications in
the cloud exist. They can be classified into three categories:
application-centric migration, image-based migration and
migration to a virtualized container. The application-centric
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migration such as [3,4] extracts andmigrates application arti-
fact, resources and configuration from the source to a new
provisioned application deployment environment on the tar-
get. The image-basedmigration such as [5,6] converts source
intoVMimages and imports them into target cloud after some
adjustment. Themigration to virtualized container technique,
such as [7] migrates the source VM to run in a virtual-
ized container inside the target without any modifications.
All of the mentioned approaches do not offer an autonomi-
cally fine-grained solution at service component level. Such
a solution helps cloud users mitigate manual effort which is
tedious and error-prone. Furthermore, much research so far
pay attention tomigration of legacy applications to the cloud,
but cloud-to-cloud (i.e. C2C) migration/replication is rarely
focused [8].

As mentioned, migration/replication can help cloud ser-
vices to keep functioning in case of failure and respond to
environmental changes on time. This increases the system
reliability and scalability, two of non-functional require-
ments frequently described in the SLA in terms of service-
level objectives (SLO). Migration and replication, migrates
or replicates the critical software components, so that if one
of components fails, the others can be used instead, or if one
is not enough, others can be created to share workload. With
a high level of component abstraction, these issues can be
optimized by providing fine-grained granularity. Granularity
refers to the unit of sharing in the cloud that can be an entire
VM or a tiny file [9]. Granularity needs to be considered if
multiple choices in moving or replicating a service in the
specific conditions exist. We would not need to migrate or
replicate an entire VM if partly migration or replication can
solve the problems better.

The major contributions of this paper are as follows. First,
we propose an autonomically fine-grained service migra-
tion and replication mechanism at component level, which is
implemented on a multicloud distributed deployment frame-
work. We also make a contribution in the development of a
hierarchical DSL (domain-specific language) of the frame-
work. The DSL helps not only to describe structure of
component-based application naturally but also to demon-
strate replicating/migrating rules in an intuitive and friendly
way. Our first result was presented at the 2nd Nafosted Con-
ference on Information and Computer Science [10]. Second,
we complement our framework with the optimal deploy-
ment problem of replicated components. More specifically,
we tackle the online optimization problem of component
placement on multicloud regarding to the communication
cost under constraints on system resources and a hierarchical
structure of component-based applications.We formulate the
placement problem as a quadratic program. Third, we vali-
date our proposedmechanism by an experiment conducted in
the context of an elastic scenario, and provide useful insights
for cloud providers to decide if they should add servers or

Fig. 1 Autonomic framework for migration and replication of cloud
applications

upgrade server connections to improve the average respon-
sive time of the system.

The rest of this paper is organized as follow: Sect. 2 gives
an overview of architecture of the framework in the aspects
of deployment manager, fine-grained hierarchical DSL and
autonomic management. We introduce the migration and
replicationmechanism in Sect. 3.We present the formulation
of the optimal deployment problem in Sect. 4. The validating
experiments are presented in Sect. 5. Section 6 reviews the
related work. Conclusions are stated in Sect. 7.

2 The autonomic framework

To support the autonomic migration and replication of cloud
applications,we need a frameworkwhich satisfies the follow-
ing requirements: (1) supports for describing components of
cloud applications naturally at design time; (2) provides auto
model parsing aswell as dependencies and constraints resolv-
ing at runtime; (3) implements IaaS coordination which
distributes service components into multiclouds, thereby
avoiding the vendor lock-in problem, provides runtime exe-
cution as well; (4) advocates autonomic management to
detect and respond to changes in runtime environments. Such
a framework is depicted in Fig. 1, which ismade up of several
modules:

– The Deployment Manager (DM) is an application in
charge of managing VMs and the agents (see below).
It acts as a coordination interface to the set of VMs or
devices on premises and on clouds. It is also in charge
of instantiating VMs in the IaaS and physical machines
such as embedded boards. It includes core modules of
a MAPE-K autonomic model [11] such as Monitoring,
Analysis, Planning, Execution andKnowledge exchange,
which help the DM response to changes from surround-
ing environment.

– The Agent is a software component that must be pre-
installed andbootstrappedon everyVManddevicewhich
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are managed. Agent probes the status of both hardware
and software components and send these data to the DM
periodically. These agents communicatewith theDMand
each other through an asynchronous messaging server.

– The Messaging Server is the key component acting as a
distributed registry of import/export variables that enable
communications between the DM and the agents and
among agents themselves.

More details in these modules can be found in [12]. We
have proposed and developed a deployment platform, which
satisfies the requirements (1), (2) and (3) in [13]. In that
paper, an open-source platform is designed to deploy com-
plex distributed applications on multiclouds, which fosters
deployment automation a step further by distributing virtual
resourceswith pre-installed software (i.e. virtual appliances).
It allows to describe distributed applications and handle
deployment of the entire or a part of them. The platform
is improvable and adaptable with a lightweight kernel which
implements all necessary mechanisms to plug new behav-
iors for addressing new applications and a new execution
environment. Moreover, the platform supports scaling and
dynamic (re)configuration natively. This provides flexibility
and allows elastic deployments.

With regards to SOA principle, the platform sees a
complex application as a combination of “components”
and “instances”. While each component is a self-contained
service that is homologous with the “object” definition,
instances are obviously embodiment of these objects. In addi-
tion, the platform is designed to see an application also as a
hierarchy of components. It means some components may be
a containment to host or provide execution environment for
other ones such as VM or container. All components derive
froman abstract “root” component. Instances inherit all prop-
erties derived from its corresponding component. The main
motivation of hierarchy is to keep track of exactly where
instanceswere implemented in the system. It helps the system
to make right decisions in autonomic deployment. The par-
ent/children relationship of components is depicted naturally
in an example about OSGi-based [14] application in Fig. 2.
It is a cloud application providing Java message service
(JMS) through its software components as Joram [15] and
JNDI [16]. These components are containerized as bundles
complying to the OSGi specification. A Karaf [17] compo-
nent is also needed serving as OSGi container for the Joram
and JNDI bundles.

In Fig. 2, there is an important field: children which lists
other components that can be instantiated and deployed over
this component. In theOSGi example, itmeanswecandeploy
Karaf over a VM instance. In turn, Joram and JNDI can be
deployed over instances of Karaf. The hierarchical model
resolves the containment relations (i.e. vertical relationship)

Fig. 2 AnOSGi-based JMSservice described by the framework’sDSL
(the graph in themiddle and the initial instances description in the right)

amidst components at disparate layers. At runtime, theGraph
and the Initial Instances Description are used to determine
which components can be instantiated, and how they can
be deployed. Abstracted components include the deploy-
ment roots (e.g. VMs, containers, devices, remote hosts),
databases, application servers and application modules (e.g.
WAR, ZIP, etc.). They list what the deployers want to deploy
or possibly deploy. What is modeled in the graph is really
a user choice. Various granularity can be described. It can
either dig very deeply into the hierarchical description or
bundle things together such as associating a given bundle
with an OSGi container. Multi-IaaS is supported by defining
several root components. Each one will be associated with
various properties (e.g. IaaS provider, VM type, etc.). It is
worth noting that an instance in a hierarchy can be located
using an absolute path in the framework’s DSL. For exam-
ple, the “Joram1” instance can be referred to by the path
“/vmec2/karaf1/joram1”.

From these descriptions, the platform then takes the bur-
den of launching the VMs, deploying software on them,
resolving dependencies dynamically among software com-
ponents, updating their configuration and starting the whole
stuff when ready. The monitoring of each component after
launching is also taken into consideration. Our continuous
works to bring forward autonomic features to this platform,
which satisfies the requirement (4), are discussed as our con-
tributions in the next sections.

3 The autonomic replication and migration
mechanism

Weapply the autonomicmanagement as an integrated feature
of the platform in [13], which consists of two parts. On one
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side, agents retrievemeasures on their local node. Thesemea-
sures are compared against some values given in the agent’s
configuration. If they exceed, equal or are lower than the
given values, depending on the configuration rules, agents
send a notification to the DM. On the other side, when the
DM receives such a notification, it checks its configuration
to determine which actions to undertake. These actions can
range from a single log entry, to e-mail notification or even
replicating a service on another machine. Figure 1 also sums
up the way autonomic management works. While detection
is delegated to the agents, reactions are managed by the DM.

The autonomic configuration is in fact defined in appli-
cation projects. It means every project has its own rules and
reactions. In this perspective, the project structure is enriched
with a newdirectory, called autonomic. The autonomic direc-
tory expects two kinds of files. Measures files include a set
of measures to perform by the agent. Such a file is associ-
ated with a given component in the graph. Hence, we can
consider the autonomic rules as an annotation on a compo-
nent in the graph. Rules files define the actions to undertake
by the DM when a measure has reached a given limit or a
particular condition has met. Such a file is associated with
the whole application. Both types of files consume a part of
the DSL language of the platform. This DSL part is specific
to fine-grained migrating and replicating actions detailed as
follows.

Measures files indicate measures an agent will have to
perform regularly on its machine. An agent can use several
options to measure something. The option or extension used
to perform the measure is declared explicitly along with the
measure name. Each measure is performed independently of
the others. It means every measure matching the rule results
in a message sent to the DM. The agent measures and notifies
when needed and it has not to interpret these measures. This
is responsibility of the autonomic modules of the DM. Here
is the syntax for the declaration of a measure:

[EVENT measure−extens ion measure−name]

The measure-extension includes LiveStatus, REST and
File. The LiveStatus [18], which is the protocol used by
Nagios [19] and Shinken [20], allows to query a local Nagios
or Shinken agent. We simply write a LiveStatus request:

# A simple query fo r Live S ta tus .
[EVENT nagios myRuleName−80]
GET hos ts
Columns : host_name accept_passive_checks

acknowledged
F i l t e r : accept_passive_checks = 1

An agent can query a REST service. The result can be
interpreted as an integer or as a string.

# Check the r e s u l t re tu rned by a
# REST HTTP se rv i ce .

Fig. 3 Illustration of using five replicating/migrating reactions

[EVENT r e s t myRuleName−1]
Check h t t p : / / google . f r THAT value > 0

An agent can also check the local file system. Depending
on the existenceof afile or a directory, or basedon the absence
of a given file, a notification will be sent to the DM.

# Notify the DM i f a f i l e e x i s t s
# and de l e t e i t .
[EVENT f i l e myRuleName−1]
Delete i f e x i s t s / opt / tmp

Rules files contain the reactions to undertake by the DM
when a measure verified by a given rule on the agent side.
These files use a custom syntax as following one.

[REACTION measure−name reac t ion−handler ]
Optional parameters fo r the handler

There are four available handlers. Log is to log an entry
without any parameters. Mail is to send an e-mail. It accepts
only one parameter which is an e-mail address. Replicate-
Service is to replicate a component on a newmachine. It takes
a chain of component names as parameters. Delete-Service
is to undeploy and remove a component that was replicated.
It takes a component name as parameter. To demonstrate for
utility of the mentioned rules, we use an example about a
J2EE application with three tiers including web (Apache),
application (Tomcat) and database (MySQL) servers. The
Apache uses “mod_jk” to provide load-balancing mecha-
nism for Tomcat servers which host instances of a Webapp.
The autonomic events which can affect to such system are
going to be discussed carefully in Sect. 5. In this section,
we describe five basic reactions usually used in autonomic
replication/migration as follows. The illustration of these five
reactions are shown in Fig. 3.

I To replicate the entire stack of
“/VM1/Tomcat1/Webapp1” (all three instances):

[REACTION high−RT−1 Repl icate−Service ]
/VM1/ Tomcat1 /Webapp1 /VM2/ Tomcat2 /Webapp2

123



Vietnam J Comput Sci (2017) 4:39–49 43

It is worth noting that if an empty VM2 already exists, it
will be reused and “filled”with a newTomcat2 containing
a newWebapp2.Otherwise, a totally new entire stackwill
be created.

II To remove a specific instance Webapp2 of the stack
“/VM2/Tomcat2/Webapp2”, we need to provide the
absolute path of this instance:

[REACTION low−RT−1 Delete−Service ]
/VM2/ Tomcat2 /Webapp2

III To replicate a specific instance Webapp1 of the stack
“/VM1/Tomcat1/Webapp1” to under the Tomcat2
(/VM2/Tomcat2/) and name it Webapp3:

[REACTION high−RT−2 Repl icate−Service ]
/VM1/ Tomcat1 /Webapp1 /VM2/ Tomcat2 /Webapp3

IV To remove the entire stack
“/VM2/Tomcat2/Webapp3”, we only need to provide the
absolute path of the root instance which is VM2 in this
case:

[REACTION low−RT−2 Delete−Service ]
/VM2

It is alsoworth noting that theVM2and its children (Tom-
cat2, Webapp3) will be gracefully stopped, undeployed
and removed from the system orderly and automatically.
In the case of migration, we combine both “Replicate-
Service” and “Delete-Service” rules. For instance, after
[III]:

V To migrate a specific instance Webapp1 of the stack
“/VM1/Tomcat1/Webapp1” to under the Tomcat2
(/VM2/Tomcat2/) and name it Webapp3:

# Repl ica te the Webapp1 f i r s t
[REACTION low−RT Repl icate−Service ]
/VM1/ Tomcat1 /Webapp1 /VM2/ Tomcat2 /Webapp3
# Then remove the Webapp1
[REACTION low−RT Delete−Service ]
/VM1/ Tomcat1 /Webapp1

These five basic reactions are reusable by any adaptive
engines of any cloud platforms as long as they own modules
supporting the description and distribution of fine-grained
components.

4 Optimal deployment of components

The previous section introduces the mechanism of the auto-
nomic replication and migration in which the agents notify
the DM of measures collected on their local nodes, and the
DM interprets thesemeasures into actions. In this section, we
study the optimization of DM’s actions. More specifically,

we determine an application server to which a component
should be deployed to optimize the application performance
under constrains on computing resources and the structure
of components.

The DM decides the replication or undeployment of
a component, depending on metrics on local nodes and
the autonomic configuration defined in application projects.
These changes in the deployment of components are repre-
sented by the current network of components of all applica-
tions and the new network of components. Let P1 = (C,G)

be the current network of components of all applications
whereC is a set of components, andG is a set of links among
components, called c-links. gi j ∈ G (i, j ∈ C) is the c-link
between component i and component j , where i and j are
components of the same application and they exchange data
if gi j = 1, or not if gi j = 0. Similarly, we denote the new
network of components by P ′

1 = (
C ′,G ′).

We consider a network of server instances P2 = (S, E)

where S is a set of servers and E is a set of links among
server instances, called s-links. Several server instances can
be deployed in the same physical server. wi j ∈ E (i, j ∈ S)
is the communication cost between server instances i and j .
We denote by ucs (c ∈ C , s ∈ S) the current deployment
state of P1, where component c is deployed on server s if
ucs = 1, or not ifucs = 0. Let C̃ = C ′\C be newcomponents
that the DM decides to replicate. Let di (i ∈ S) be the total
computing resource of server i . We define r to be an amount
of computing resource required to deploy component i to a
server. Let x = (xcs) (c ∈ C̃ , s ∈ S) be a candidate solution
of deployment of new components where component c is
deployed on server s if xcs = 1, or not if xcs = 0.

The system performance of a deployment solution is mea-
sured by the total cost of the communication among new
components c1 ∈ C̃ , the communication among components
c2 ∈ C ∩ C ′ that are components appearing in both the
current deployment and the new one, and the communica-
tion between c1 and c2. Since the cost of the communication
among c2 in different solutions is similar, the cost of a deploy-
ment solution is given by

ϕ(x) =
∑

c1∈C̃

∑

s1∈S

∑

s2∈S
xc1s1ws1s2

×
⎛

⎝
∑

c2∈C̃
xc2s2g

′
c1c2 +

∑

c2∈C∩C ′
uc2s2gc1c2

⎞

⎠ (1)

The low cost of a deployment solution results in the
improvement of average responsive time (ART). Therefore,
the objective of the DM is to optimize the deployment so
that the communication cost added by new components are
minimized. Specifically, given the current network of com-
ponents P1 = (C,G), the new network of components
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P ′
1 = (

C ′,G ′), the network of server instances P2 = (S, E),
the current deployment state (ucs) where c ∈ C and s ∈ S,
find a deployment solution x = (xcs) where c ∈ C ′\C and
s ∈ S to minimize the communication cost subject to con-
straints on computing resources. This can be formulated as
the following quadratic programming problem:

Min ϕ (x)

s.t.
∑

c∈C̃
xcsrc +

∑

c∈C∩C ′
ucsrc ≤ ds ∀s ∈ S (2)

∑

s∈S
xcs = 1 ∀c ∈ C̃ (3)

xcs ∈ {0, 1} ∀c ∈ C̃, s ∈ S (4)

The optimization problem of service placement has been
studied in several areas of future Internet, and the integer
programming has been considered as a potential approach for
solving the problem [21,22]. The complexity of the service
placement problem isNP-hard [23]. A quadratic program can
be solved by several optimization tools such as the CPLEX
Optimizer [24]. In the following section, we are going to
study the systemperformance of a deployment solution using
the CPLEXOptimizer to solve the problem in various system
configurations.

5 Evaluation

We first conduct an experiment to validate the proposed
framework in context of an elasticity scenario. Then, we
answer the question of whether we should add more server
or upgrade server connection to improve the system perfor-
mance.

5.1 Experiment setup

The elasticity context applies to the aforementioned J2EE
application. With application tier, we use in initials two
Tomcat servers dedicating to serve two different webapps:
Webapp1 and Webapp2. We use the “mod_proxy” to build
a cluster of Apache servers to avoid yet another bottleneck.
Each of Apache server implements the “mod_jk” serving as a
load balancer in front of these Tomcat ones. This experiment
focuses on elasticity of application tier, thus without loss of
generality, the database one is shared among webapps and
hosted on a single MySQL server. All the VM used in this
system are Microsoft Azure Standard_A2 instances with 2
cores and 3.5 GBmemory. Each Tomcat created in the elastic
reactions is a Amazon EC2 m3.medium with 1 core and 3.75
GB memory. The managed system is called System Under
Test (SUT) that we use CLIF server [25], an distributed load
injector, to create load profile and generate workload for the

SUT to observe how the system reacts to changes of aver-
age response time (ART). These reactions are empowered
by autonomic mechanisms aforementioned in Sect. 3. The
topology of this scenario is depicted in Fig. 4.

5.2 Test scenario

The loads are injected into an entrance of the Apache cluster
which is a virtual IP. Then this cluster distributes the loads
to the corresponding webapps through the Tomcat servers.
In this particular situation, the Webapp2 often gets low load,
thus has a load profile as in Fig. 5 with 50 virtual users who
try to send HTTP GET requests to the Webapp2 and then
“think” a couple of time randomly. The virtual servers are
threads created simultaneously by the CLIF server while the
experiment was being performed according to the load pro-
file of the Webapp2 (pre-defined also using CLIF server).
Behaviors of the virtual users are captured from real-world
operations using a capturing tool of the CLIF server.

The owner of the Webapp2 need not any elastic mecha-
nisms provided by the cloud PaaS provider due to the low
load of the Webapp2. On the other hand, the Webapp1 usu-
ally receives high load and thus has a load profile as in
Fig. 5, which is also designed by the CLIF server. The
Webapp1 usually takes the burden of about 450 virtual users
who have similar behaviors as in the case of Webapp2. The
owner ofWebapp1 requires the cloud PaaS provider to ensure
an acceptable performance for his webapp. Therefore, he
demands an elastic load-balancing solution to guarantee an
ART as low as possible as stated in an SLA established
between him and the provider. When the ART varies, this
solution includes provisioning a whole new Tomcat/We-
bapp1 server (reaction [I]) or replicating only the Webapp1
instances (reaction [III]) while scaling out as well as remov-
ing the servers (reaction [IV]) or migrating the webapps
(reaction [V]) while scaling in with minimum side effects
to overall system.

The polling periods is set to 10 s that means the ART of all
requests fromall users are collected each 10 s. These gathered
data are sent to the framework’s analysis module to be aggre-
gated and further analyzed. The analyzed information then
is delivered to the planning module to generate new configu-
ration for the system based on ECA (event-condition-action)
rules.

The ECA rules decide whether the system should cre-
ate an entire application server or only replicate a webapp
instance using the set of reactions. One of the rules is to pre-
vent multiple creating of new VMs or a new instance in a
short period of time. At least the system needs to wait until it
gets knowledge about the new one before another can be cre-
ated automatically. It is called synchronization time which
includes the VM provisioning, Tomcat installation, Webapp
deployment and reconfiguration time for the existing Apache
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Fig. 4 Topology of J2EE test
case using CLIF load injector
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Fig. 5 CLIF load profiles of Webapp1 and Webapp2

(to know the attendance of the new Tomcat) in the case of
creating a new Tomcat/Webapp server. With replicating or
migrating a Webapp instance, the synchronization time only
contains the two latter ones. Another rule is to prohibit the
migration/replication of an instance to hosts where also are
on-peak times. The very first 10-min snapshot of this exper-
iment is shown in Fig. 6 and results are discussed deeply in
the next section.

5.3 The efficiency of the fine-grained mechanism

Figure 6 shows theARTof bothwebapps and the correspond-
ing reflections from the autonomic system to fluctuations of
the response time. In addition, the figure also reports the
changes in number of Tomcat servers while running the test
case. The max response time of Webapp1 is set to 800 ms,
it means if the ART goes over this limitation, creating new
Tomcat server or replicating the Webapp request should be
made. In contrast, if the ART goes under min response time

(200 ms), a removing or migrating decision should be trig-
gered.

We see that the ART of Webapp1 peaked at the 40th
second because of aggressive accesses of the 450 virtual
users simultaneously. At point “A1”, a command to create
a new Tomcat server was triggered instead of a replica-
tion due to a peak (≈400ms) happening in Webapp2. The
max and min response times of Webapp2, which are not
shown in Fig. 6, were set to 400 and 100ms, respec-
tively. After this request, the framework observed the SUT
silently without any further requests until it gets knowledge
about the new server. This synchronization time finished
at the 180th second (point “A2”), thus the Webapp1 users
continued experiencing slow accesses during 2 min 20 s
more. At point “B1”, once again the ART of Webapp1
was larger than the max limitation whereas the ART of
Webapp2 was getting low. It is suitable to make a replica-
tion Webapp1 (/VM1/Tomcat1/Webapp1) to under Tomcat2
and name it Webapp1_2 (/VM2/Tomcat2/Webapp1_2). The
synchronization time for creating the Webapp1_2 was about
20 s which offered about 2 min better than the case of cre-
ating a new Tomcat server. Moreover, the system avoided
creating a totally new server resulting in saving resources for
PaaS provider and money for both PaaS user and provider. In
reverse, the system performed two times of the scaling in: a
request to remove a Tomcat3 server at “C1” (which had been
created at “A2”) and a request to remove the Tomcat1 server
at “D1” (which had been there from the beginning). The syn-
chronization in both cases were almost the same (more or
less than 20 s, finish at “C2” and “D2”) because we do not
care about the shutting down time of a VM. In spite of that,
the result of this elasticity is the saving of two VMs (from
3 VMs at “C1” to 1 VM at “D2”) while the system were in
low-load period.
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Fig. 6 Autonomic responses
with fluctuation of average
response time of Webapps
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Because the changes in load of a website usually happen,
applying the fine-grained migrating/replicating mechanism
to an autonomic system brings significant performance
improvement as well as cost saving.

5.4 The improvement on the system performance

We consider a baseline scenario in which a total of 100
components of 10 applications are deployed to 20 server
instances. The computing resource of one server represented
as a number of CPU cores, and the resource required to
deploy a component to a server are uniformly distributed in
[10, 100] and [1, 5], respectively. The communication cost
among servers and the relation between components of an
application are chosen uniformly in [1, 9] and [0, 1], respec-
tively.A server is chosenuniformly in the set of serverswhose
resources are available for deploying a component.

We compare the performance cost of the system in three
scenarios including the baseline scenario and two modified
scenarios of the baseline scenario. In the first modified sce-
nario, we add 4 servers to the baseline scenario. The resource
of the new servers, the communication cost among new
servers, and that between a new server and an old server
are generated by the same rule described in the baseline sce-
nario. In the second modified scenario, the communication
cost between servers deceases by 1 in comparison with that
in the baseline scenario. For the three scenarios, the number
of new components replicated by the DM is varied between
5 and 45. We use the CPLEX Optimizer [24] to solve the
optimal deployment of the new components in each setting,
and compute the communication cost of the system. As one
can see from Fig. 7, the communication cost of the system
in a scenario of upgrading server connections is lower than
that in a scenario of adding servers. This occurs because the
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Fig. 7 The impact of adding servers and improving server connections

communication cost between two components is very small
if they are deployed to the same server. The results suggest
that it is better for a cloud provider to upgrade a server con-
nection to improve the average responsive time of the system
rather than add more servers.

5.5 The overhead of the framework

We evaluated the overhead introduced by the framework by
doing experiments in two cases: (1) application deployed
without the framework and (2) application deployed with the
framework. The experiments are conducted on the VMAzure
Standard A2 instances (2 cores and 3.5 GB memory). In
the experiments, 1000 requests were generated. The requests
sent were executed 20 times in both scenarios. Table 1
presents the results of the average execution time of each
scenario as well as the additional costs introduced by the
framework itself.

From the results presented in Table 1 , we can see that the
overhead introduced by the framework is only 1.84 %. This
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Table 1 Execution time and additional cost

Scenario Average
execution time

Overhead
introduced by the
framework

Application 10.85 −
Application
with the
framework

11.05 1.84 %

additional cost is generated mainly by the monitoring mod-
ule which collects information for the elasticity autonomic
mechanism. This module is integrated into the Deployment
Manager. In summary, the overhead introduced by the frame-
work is negligible given the discussed advantages.

6 Related work

Horizontal scaling action broadly supported by current cloud
providers. They usually allowfixed-sizeVMs to be scaled out
depending on currentworkload demand.On the contrary, ver-
tical scaling, which obtains the elasticity by changing VM
configuration (i.e. redimension), is offered scarcely by the
providers. Even if redimension is supported, resizing VM
resources on the fly is prohibited. GoGrid [26] allows its cus-
tomers to increase RAM of VMs, but requires a VM reboot.
Although Amazon EC2 introduces a wide range of VM
instances with different sizes and configurations to simulate
vertical scaling when needed (i.e. VM replacement or substi-
tution), VM restart is still a must. The coarse-grained scaling
with fixed-size VMs often leads to resource provisioning
overhead resulting in the over-provisioning. Research on
elastic VM of Rodero-Merino et al. [27] about VM sub-
stitution and Dawoud et al. [28] about fine-grained scaling
to simulate the resizing have partly resolved this challenge.
However, cloud providers ismost likely prefer providing hor-
izontal scaling with fatty VMs, thus research on combination
of scaling actions on multiple levels of resource granularity
as our work is really essential.

There have been several studies on the migration and
replication of applications on cloud environments [29–33].
In [29], Ferrer et al. proposed the Optimis offering a chain
of tools consisting of a Service Builder, an Administration
Controller, a Deployment Engine, a Service Optimizer and a
Cloud Optimizer. Service providers use these components to
develop, deploy and execute applications on different clouds.
Moreover, the SLA parameters are monitored and the ser-
vices are migrated to another cloud if needed. Satzger et al.
[30] developed the Meta-Cloud with existing standardiza-
tions that provides an API for web applications, recipes for
migration/replication and deployment, resource templates

for defining requirements and offerings, resource monitoring
for checking QoS properties, etc. In [31], Reich et al. pro-
posed a solution to migrate stateful Web Services on basis
of SLA violations. The services are hosted by Web Service
Resource Framework (WSRF) containers. These containers
monitor the SLA parameters and detect violations. If an
SLA condition is violated, a proper migration destination
is searched over the P2P network for a service picked ran-
domly by a particular container. The SLAs are defined for
each service using WS-Agreement, an SLA description lan-
guage. However, these solutions lack a DSL to abstract the
complex services.

So far, there has been little discussion about the use
of abstracted representations of component-based applica-
tions for the migration and replication of applications on
cloud environments. In [32], Hao et al. introduced a Gen-
eral Computing Platform (GCP) which hosts different kinds
of services, from infrastructure to application services. This
system uses a workflow model for service composition and
a cost model for making migration decision. The system is
similar to our approach because services used in theworkflow
model are also the abstracted representations of real ones and
then the abstracted ones are replacedwith concrete instances.
However, the hierarchical description of multi-tier applica-
tions is not feasible with this system. Our work is different
as it proposes a DSL to describe a hierarchical structure of
component-based application.

A model-driven approach for the design and execu-
tion of applications on multiple clouds is proposed by
Ardagna et al. [33]. For the abstracted clouds, the code is
semi-automatically translated and applications have to be
implemented only one time. Then the best cloud for a ser-
vice is selected regarding non-functional criteria such as the
costs, the risks by a DSS (decision support system). Eventu-
ally, the dynamic migration/replication of services between
clouds is provided by a runtime management API. However,
with this approach, the autonomous factor is not taken into
account. Our proposed framework provides an autonomic
management mechanism in which the decision of migra-
tion and replication is controlled by the deployment manager
responding to rapid fluctuations of demands. In addition, no
research has been found that surveyed the online optimization
problem of component placement on multicloud regard-
ing the communication cost under constraints on system
resources and a hierarchical structure of component-based
applications.Most studies on the placement problem in cloud
computing have been carried out in either the placement of
virtual machines or an application component without con-
sidering the online solution with regard to both a structure
of component-based applications and constraints on cloud
infrastructure [34–37]. Our study was designed to fill the
gap.
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7 Conclusion

In the era of cloud computing, the trend which enterprises
choose to deploy their software on hybrid and multicloud is
indispensable. The flexible choice among cloud providers
helps enterprises to save the cost due to which they can
select the best services to install different software parts.
This leads to demands of service migration and replication
across the clouds. Our proposed framework supports ser-
vice migration/replication mechanism to fulfill the need at
component level. It allows deployers to describe software
using a hierarchical DSL, deploy it using an implementa-
tion of a multicloud distributed deployment framework, and
provide autonomic rules to respond to fluctuations of envi-
ronment, thereby ensuring availability and scalability. In our
framework, we also address the optimal deployment prob-
lem of components replicated by the DM. While the cost of
copying the whole virtual machines is too high due to their
big virtualization overhead, the fine-grained service replica-
tion/migration at component level is a possible solution. The
experiments were conducted to prove the advantage of our
partial approach in comparison to full migration and repli-
cation of an entire server stack. The numerical results also
provide a suggestion of improving the system performance
for a cloud provider.

Although componentized implementation improves scal-
ability, our framework requires an application to follow
a service-oriented architecture. It will be a future direc-
tion to study an application re-hosting pattern to integrate
a monolithic legacy application with service-based appli-
cations in the framework for improving consistency and
reducing cost through consolidation and sharing across cloud
environments. Other possible future directions include the
more detailed analysis of system performance in a large
deployment scenario taking into account elastic demands
and network fluctuations, or a deep analysis of comparison
between different replication and migration approaches.
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