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Abstract
Purpose of Review Metabolic rewiring of the host cell is required for optimal viral replication. Human cytomegalovirus (HCMV)
has been observed to manipulate numerous mitochondrial functions. In this review, we describe the strategies and targets HCMV
uses to control different aspects of mitochondrial function.
Recent Findings The mitochondria are instrumental in meeting the biosynthetic and bioenergetic needs of HCMV replication.
This is achieved through altered metabolism and signaling pathways. Morphological changes mediated through biogenesis and
fission/fusion dynamics contribute to strategies to avoid cell death, overcome oxidative stress, and maximize the biosynthetic and
bioenergetic outputs of mitochondria.
Summary Emerging data suggests that cytomegalovirus relies on intact, functional host mitochondria for optimal replication.
HCMV large size and slow replication kinetics create a dependency on mitochondria during replication. Targeting the host
mitochondria is an attractive antiviral target.
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Introduction

As obligate parasites, viruses are dependent on the host for
replication. By themselves, they are incapable of energy pro-
duction. Key to this is a viral dependency on the host cellular
metabolic network for replication. Nearly 70 years ago, it was
established that many viruses including poliomyelitis virus,
herpes simplex virus 1, and Rous sarcoma virus altered gly-
colytic pathways of infected cells [1–3]. These observations
were expanded to include manipulation of adenosine triphos-
phate (ATP) production and RNA breakdown. Through al-
tered host metabolism, viruses can support their mass produc-
tion. This requires manipulation of host organelles and re-
sources to reproduce viral particles. Biosynthetic (nucleotides,
amino acids, lipids) and bioenergetic requirements are critical
for viral replication. Many of the metabolic pathways targeted
or altered during viral infection converge or are dependent on
the host mitochondria.

Mitochondria have long been regarded as the power-
house of the cell. Yet, this organelle has been shown to
have essential functions in signal transduction pathways,
cellular metabolism, immune response, cell cycle, and cell
death (reviewed in [4]) (Fig. 1). The mitochondrion is
composed of outer and inner membranes. The outer mem-
brane surrounds the inner membrane space, an area that
contains many apoptotic factors (e.g., cytochrome com-
plex (cyt-c), endonuclease G). These factors are released
by apoptotic signaling cascades received by the mitochon-
dria. The inner membrane is a folded structure termed
cristae that is responsible for transport of water, gases,
and protein complexes required for electron transport
chain (ETC) function. Within the inner membrane is the
matrix, which contains molecules required for energy pro-
duction and mitochondrial function. ATP is generated
using oxidative phosphorylation (OXPHOS) by transfer-
ring electrons produced by the citric acid cycle (CAC)
through the mitochondrial respiratory complexes. By
hijacking the mitochondria, viruses can control the whole
cell.

Human cytomegalovirus (HCMV) depends on many
aspects of mitochondrial function for efficient viral repli-
cat ion. HCMV is a large double-st randed DNA
betaherpesvirus. Likely due to its slow growth and vast
coding potential, HCMV utilizes the host mitochondria to
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meet the bioenergetic and biosynthetic requirements of
viral replication [5]. Metabolic profiling of HCMV-
infected cells confirmed elevated glycolytic and pyrimi-
dine nucleotide syntheses and suggested increased rates of
the citric acid cycle [6••]. Long-chain fatty acid synthesis
and lipid metabolism have since been shown to be
targeted by HCMV [7, 8]. Interestingly, HCMV-induced
metabolic alterations are very similar to metabolism ob-
served in many tumor cells.

The specific focus of this review is to explore the role
of the host mitochondria during HCMV replication. We
highlight key mitochondrial pathways targeted by HCMV,
discuss the mechanisms by which HCMV alters host mi-
tochondrial function, and reflect on how this impacts bio-
energetic, biosynthetic, and mitochondrial morphology
pathways that benefit HCMV.

Mitochondrial Biosynthetic and Bioenergetic
Pathways

Citric Acid Cycle

HCMV infection alters numerous metabolic pathways of host
cells including glycolysis, glutaminolysis, and lipid synthesis
[6••, 9, 10]. A common feature of these pathways is an inter-
action or dependency on the host mitochondria, specifically
trafficking through the CAC. HCMV strong induction of gly-
colysis results in increased glucose-derived citrate that is
exported from the mitochondria and used to support fatty acid
synthesis [6••, 10]. Glutaminolysis is upregulated, possibly
throughmanipulation of c-Myc activity, tomaintain activation
of the CAC [9]. The viral protein UL38 was shown to aid in
glucose and glutamine upregulation by inhibiting tuberous

Fig. 1 Overview of mitochondria and HCMV. Interactions with mitochondrial metabolism, bioenergetics, fission/fusion, biogenesis, mtDNA, oxidative
stress, cell death, and signaling are shown as described in text
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sclerosis complex 2 (TSC2) [11]. TSC2 negatively regulates
mammalian target of rapamycin (mTOR) complex I, thus act-
ing as a metabolic sensor with a key role in glucose transport.
These studies all emphasize how HCMV rewires host meta-
bolic pathways, promoting elevated carbon flux through key
metabolic pathways. A recent study used the Seahorse
bioanalyzer to record live cell, real-time measurements show-
ing increased glycolysis and mitochondrial function during
HCMV infection, validating these previous observations
[12]. Precisely how HCMV alters these major metabolic path-
ways is not completely understood, but recent publications
have illuminated the role of carbohydrate regulatory
element–binding proteins (ChREBPs) and sterol regulatory
element–binding proteins (SREBPs) as key transcription fac-
tors targeted by HCMV [13, 14].

Oxidative Phosphorylation/Electron Transport Chain

The generation of NADH and FADH2 in the CAC provides
electrons used to reduce oxygen to water and the generation
of ATP through the process of OXPHOS. HCMV has been
noted to interact directly with and alter function of ETC
complexes. Munger et al. show that transcription of ETC-
related enzymes and the ATP-synthesizing proton pump
are upregulated in HCMV-infected cells [6••]. Viral
mitochondria-localized inhibitor of apoptosis (vMIA), a pro-
tein encoded by HCMV UL37, suppresses phosphate trans-
port through binding to the ETC ATPase inorganic phos-
phate carrier (PiC), resulting in decreased levels of ATP
[15, 16]. Reeves et al. proved that HCMV 2.7-kb RNA tran-
script (β2.7) colocalizes with ETC complex I [17••].
Through this interaction, the mitochondrial membrane po-
tential was stabilized, allowing ATP production to be unin-
terrupted. Kairney et al. observed an increase in OXPHOS as
well as subparts of complex IV; however, they did not find a
significant increase in complex II [18•]. In agreement, a re-
cent paper observed an increase in protein levels of ETC
complex subunits II, III, and IV, and ATPase after HCMV
infection [12]. Another study focused on all genes related to
OXPHOS and reported that all 24 genes related to the ETC
were upregulated during HCMV infection [19]. Lastly, to
emphasize the importance of the ETC to HCMV replication,
Combs et al. knocked down mitochondrial DNA (mtDNA)
in fibroblasts [12]. The mtDNA is critical for coding proteins
of the ETC subunits. The mtDNA knockdown cells have
functional mitochondria but no ETC function. HCMV viral
titers were significantly inhibited in the mtDNA knockdown
cells. HCMV immediate-early (IE) expression was unaffect-
ed, but early and late viral protein expressions were delayed
and decreased. This is a strong indicator of HCMV depen-
dency on a highly functional OXPHOS/ETC system for ro-
bust, efficient viral replication.

NAD+/NADH

Nicotinamide adenine dinucleotide (NAD) is critical to pro-
vide cells with a mechanism to accept and donate electrons
specifically during OXPHOS. A dramatic increase in NADH
levels during HCMV infection has been reported [6••]. This is
likely due to increased demand rather than a reduced con-
sumption level of NADH. The increase in glycolysis during
infection may contribute to elevated acetyl-CoA and NADH
levels [6••]. Anaplerotic-associated increases in NADH, using
glutamate dehydrogenase (GDH) to measure glutaminase ac-
tivity, have been observed [9]. Despite indirect measurement
of NADH, changes are inferred, as it is a product of GDH and
can be used as a marker for glutaminase and GDH levels.
During HCMV infection, glutaminase and glutamate dehy-
drogenase levels doubled in infected cells [9]. Lactate dehy-
drogenase (LDH) reduction of pyruvate to lactate also in-
creased ~ 25 fold [9]. In this case, NADH is converted to
NAD+, revealing that the NAD+/NADH ratio is variable de-
pendent on the CAC cycle [9]. The current literature suggests
that NAD+/NADH levels vary during HCMV infection, but
due to limited studies, many questions remain unanswered.
The development of novel tools to study NAD levels real time
in live cells may provide insight into the dependency of NAD
during HCMV infection.

Membrane Potential

The mitochondrial membrane potential, coupled with the
proton gradient, is responsible for the transmembrane po-
tential of hydrogen ions required for production of ATP.
Membrane potential and ATP levels must remain stable,
as prolonged changes can promote mitochondrial damage.
Pioneering studies by Landini et al. established that
HCMV infection altered membrane potential in HCMV-
infected human embryo fibroblasts [20]. They observed
hyperpolarization of infected cells late during infection
(42 h post-infection; hpi), suggesting that mitochondrial
alterations occur as infection persists [20]. A recent paper
validated these findings by showing significant elevation
of mitochondrial membrane potential beginning at 48 hpi
[12]. Other reports suggest that hyperpolarization of the
mitochondrial membrane potential occurs upon HCMV
infection and is reliant on viral-induced upregulation of
glycolysis [21]. Lower levels of cyt-c release suggested
that increased mitochondrial membrane potential is an
anti-apoptotic mechanism driven by expression of vMIA
[21]. Calcium efflux from the endoplasmic reticulum to
the mitochondria is mediated by vMIA, upregulating gly-
colysis, resulting in increased mitochondrial membrane
potential [21]. Additionally, β2.7 interaction with ETC
complex I has been shown to stabilize mitochondrial
membrane potential during infection [17••]. This
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interaction prevented relocalization of an apoptosis medi-
ator, thus inhibiting cell death. Differences in mitochon-
drial membrane potential were noted when using the β2.7
knockout HCMV strain, ΔToledoβ2.7. Infection with
ΔToledoβ2.7 resulted in a significant decrease in mito-
chondrial membrane potential. These results implicate the
importance of HCMV β2.7 in stabilizing mitochondrial
membrane potential through direct interactions with ETC
complex I [17••].

Alternatively, studies have shown depolarization of the mi-
tochondrial membrane during infection [22, 23]. The HCMV
glycoprotein US9 was reported to localize and disrupt the
mitochondrial membrane, reducing the association between
translocase of outer membrane (TOM) 20 and TOM70
through competitive binding [23, 24]. This results in a loss
of membrane potential and disruption of the membrane’s
structural integrity, allowing leakage of the mitochondrial an-
tiviral signaling protein (MAVS) from the outer membrane
[23]. This has also been observed with hepatitis C, resulting
in MAVS cleavage from the outer membrane [25].
Depolarization of the mitochondrial membrane and subse-
quent disruption of MAVS have been suggested to be a viral
immune evasion tactic [25]. Lee et al. report that HCMV in-
fection disrupts mitochondrial membrane potential as early as
24 hpi [26]. Depolarization drives release of cyt-c and induc-
tion of apoptosis, allowing efficient release of replicated virus
from dying cells [26]. Decreased membrane potential also
triggers a cyt-c antiviral response [26]. HCMV also stimulates
production of an antiviral protein, viperin, which translocates
to the mitochondrial outer membrane with assistance from
vMIA. The viperin/vMIA association and translocation are
necessary for disruption of mitochondrial membrane perme-
ability and potential [15, 27]. Decreased mitochondrial mem-
brane potential results in lower ATP levels and mitochondrial
fission, observed as highly fragmented mitochondria [15, 22,
28, 29]. These mechanisms are possible viral strategies to
promote release of viral progeny. Early inhibition of apoptosis
may allow HCMV to efficiently replicate, while promotion of
apoptosis at later time points could benefit the virus by en-
hancing viral release.

The vast discrepancies in the literature are likely due to a
combination of factors. Without parallel data on mitochondri-
al biogenesis during HCMV infection, it is difficult to rigor-
ously define changes to mitochondrial membrane potential
[20, 30]. Similarly, iron chelation can affect membrane poten-
tial as has been suggested during HCMV infection [22]. The
time point at which measurements are recorded may also im-
pact results. Ideally, measurements would be taken across the
entire replication cycle of the virus. Currently, the varying
results and proposed mechanisms regarding mitochondrial
membrane potential of HCMV-infected cells provide an inco-
herent picture of why, when, and how HCMV alters mito-
chondrial membrane potential.

ATP

Despite continued characterization of viral hijacking of host
metabolic systems, the energetic costs of viral replication re-
main poorly understood [31]. All viruses require energy in the
form of ATP to replicate. Under normal cellular conditions,
ATP is predominantly generated by the ETC. During condi-
tions of metabolic stress, ATP can be generated quicker, but
less efficiently, through glycolysis. Upregulation of glycolysis
during HCMV infection has been well documented (reviewed
in [32, 33]). It has been suggested that increased glycolytic
capacity is needed to meet the energetic and/or biosynthetic
requirements of HCMV replication. Interestingly, few studies
have observed changes to host ATP levels during HCMV
infection.

Numerous groups have reported no significant changes to
ATP levels during infection [6••, 12, 17••, 22]. The viral long
non-coding RNA β2.7 was shown to maintain ATP levels
during infection [17••]. Using the β2.7 KO strain
ΔToledoβ2.7, ATP levels were significantly decreased dur-
ing infection. Chambers et al. report a substantial increase in
ATP during infection with glutamate supplementation [34].
Alternatively, decreased ATP levels have been reported.
Viperin interaction with the mitochondrial trifunctional pro-
tein, mediated by vMIA, decreases cellular ATP levels [27].
vMIA-expressing cells were found to inhibit phosphate carrier
activity inhibiting ATP generation [15]. Reduced ATP levels
were observed in both HeLa and NIH3T3 cells stably express-
ing vMIA. How a protein that is localized on the outer mito-
chondrial membrane might exert control over a carrier located
in the inner mitochondrial membrane is unknown.

Conflicting data exists on the role of ATP production dur-
ing HCMV infection. Using a predictive model, it was esti-
mated that influenza replication uses 1% of the total energy
available in a eukaryotic cell [31]. By analogy, HCMV infec-
tion would utilize a fraction of the total energy available with a
host cell.

Reactive Oxygen Species

Reactive oxygen species (ROS) produced by ETC complexes
can be beneficial or deleterious to viral replication. Low levels
of ROS have been shown to alter signaling pathways [35].
High ROS concentrations are toxic to the cell. Early papers
indicated an accumulation of intracellular ROS during HCMV
infection. Speir et al. observed that ROS scavengers have a
deleterious effect on HCMV gene expression, suggesting that
ROS upregulation is advantageous for HCMV replication
[36]. ROS can activate nuclear factor-kappa B (NF-κB),
which has several binding sites within the HCMV major
immediate-early promoter (MIEP) [36–38]. Elegant studies
demonstrated that NF-κB is required for HCMV MIEP
transactivation [39]. Further studies revealed that
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cyclooxygenase-2 (COX-2), which is regulated by NF-κB,
plays a role in increased ROS levels stimulated by HCMV
[38]. Not surprisingly, levels of ROS are reported to increase
as HCMV infection persists [12, 40]. Addition of sirtinol, a
sirtuin inhibitor, to infected cells decreased ROS levels possi-
bly through SirT2 and P16NK4 activation [40]. Murine CMV
(MCMV) upregulation of ROS is correlated with
inflammasome activation and nucleotide-binding oligomeri-
zation domain-like receptor protein 3 (NLRP3) pathway
[41]. As ROS levels increase during MCMV infection, the
NLRP3 inflammasome is activated, leading to inflammation
and neurological defects that are associated with MCMV [41].
Inhibition of ROS pathways significantly decreased NLRP3-
associated inflammation, suggesting that HCMVupregulation
of ROS is linked to pathology [41]. Elevated superoxide levels
and the decreased activity of the antioxidant superoxide dis-
mutase (SOD) further strengthen observations of elevated
ROS pathways during infection [12, 41].

HCMV-induced ROS production may also function as an
immune evasion tactic [42]. Intracellular ROS increases via
the NOX complex and initiates cell death mechanisms
through the parthanatos pathway [42]. This may also be in-
ducing apoptosis of immune cells in the microenvironment
[42]. The cytotoxic mechanism of ROS had been reported
previously with T cells and is linked to mitochondria, but
the role of HCMV to this pathway is novel [42, 43].

ROS has also been implicated in the activation of the viral
replication process. Xiao et al. evaluated the impact of H2O2

on the replication cycle of HCMV [44]. Elevated H2O2 con-
centrations promoted upregulation of viral transcription and
protein expression of HCMV pp72 and pp65. The addition of
H2O2 scavengers decreased HCMV replication. These effects
are likely mediated through phosphorylation of p38 mitogen–
activated protein kinase (p38 MAPK), as targeting the MAPK
pathway increased ROS levels and increased expression of
viral proteins such as IE [45].

This data suggests that antioxidants and associated treat-
ments targeting ROS could prove to be a valuable antiviral
treatment for HCMV infections. Viral replication levels de-
creased when applying cyclophilin A (CyPA) to decrease
H2O2-mediated p38 MAPK activation [44]. Tilton et al. sug-
gest that HCMV employs mechanisms to clear ROS and su-
peroxide from the cell based on detection of increased levels
of glutathione and SOD in HCMV-infected cells [46].
Glutathione inhibition decreased viral titers at early time
points post-infection, but the efficacy waned over time [46].
HCMV may encourage expression of select antioxidants to
prevent oxidative stress–related signaling pathways (e.g.,
mTOR) and maintain cellular homeostasis [46]. Scholz et al.
performed a similar study in which they also inhibited gluta-
thione; however, they found that the resultant oxidative stress
was accompanied with a rise in HCMV replication and viral
protein production [47]. Strong data supports increased

elevated metabolic activity during HCMV infection. This log-
ically suggests that during replication, elevated OXPHOS and
ETC activities will eventually result in the generation of high
levels of ROS. The current data suggest that initial low levels
of ROS may benefit HCMV replication, but as levels contin-
ually increase, antioxidant mechanisms fail, and toxic concen-
trations of ROS contribute to cell death.

Mitochondrial Morphological Changes

Mitochondrial Biogenesis and Turnover

Mitochondrial biogenesis occurs in response to increased de-
mand for mitochondrial metabolic capacity. Multiple groups
have reported increased mtDNA synthesis during HCMV in-
fection; however, the extent varies widely. Increases in
mtDNA synthesis of 3-fold to 300-fold have been reported
[12, 18•, 30, 34]. Increased expression of transcription factor
B2 mitochondria (TFB2M), a mitochondrial transcription fac-
tor, was observed within 24 hpi, displaying significant in-
creases at 48 hpi [18•]. This suggests that HCMV IE expres-
sion may be involved in increased mtDNA synthesis [18•]. A
second study observed that increases in mtDNA synthesis and
mtDNA copy numbers during HCMV infection could be re-
duced using a UL37x1 knockout HCMV strain [34].
Additionally, lack of pUL37 (vMIA) resulted in decreased
viral titers, and the production of new mitochondria dimin-
ished [34].

Synthesis of mtDNA is an indicator of ensuing mitochon-
drial biogenesis. Therefore, an increase in mtDNA replication
supports data showing that mitochondrial biogenesis is in-
c reased in HCMV-infec ted ce l l s [18 • , 22 , 34] .
Mitoribosomal biogenesis is substantially increased in
HCMV-infected cells and proves to be advantageous for viral
propagation. Blocking of mitochondrial translation using
chloramphenicol results in reduced viral titers [18•]. Crowe
et al. observed “grain-like” mitochondria in HCMV-infected
cells, suggesting increased mitochondrial biogenesis [22].
Similarly, the presence of mitochondrial rRNA methyltrans-
ferase 3 (MRM3) was used as a marker for mitochondrial
biogenesis. Protein expression showed a dramatic upregula-
tion of MRM3 in HCMV-infected cells as early as 24 hpi,
suggesting that HCMV infection promotedmitochondrial bio-
genesis [18•]. A polymerase inhibitor, phosphonoformic acid,
was used to block expression of viral genes expressed late
during the infection cycle, and no impact on MRM3 or
TFB2M levels was observed [18•]. Together, this suggests
that early or immediate-early viral gene expression is altering
MRM3 and TFB2M expressions and not viral late gene ex-
pression. These observations were also seen at the mRNA
level. The mitochondrial protein, peroxisome proliferator–
activated receptor gamma co-activator 1 (PGC-1α), was
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targeted as a possible mechanism promoting mitochondrial
biogenesis. PGC-1α is a master regulator of mitochondrial
biogenesis. PGC-1α is expressed at significantly higher rates
in wild type HCMV-infected cells as compared with UL37x1
knockout strains, suggesting that infection is inducing mito-
chondrial biogenesis [34]. HCMV also causes an increase in
mitochondrial mass, which is independent of pUL37 (vMIA)
activity [34].

Hertel et al. employed a different approach by focusing on
mitochondrial genes expressed at late times of infection. They
reported that mitochondria-related genes are expressed at sig-
nificantly higher levels in infected cells. Over 90% of the
assessed mitochondria-related genes were upregulated during
HCMV infection. Some upregulated genes were specific to
biosynthesis of mitochondrial components, such as the ETC
[19]. Weekes et al. also observed similar gene expression re-
lated to mitochondrial pathways, matching their observations
of increased expression of OXPHOS and fatty acid synthesis
pathways [48]. In general, mitochondria-associated genes up-
regulated during infection are associated with mitochondrial
enzymes and proteins. Altered gene expression has been re-
ported to occur as early as 12 hpi [18•].

Mitochondrial Fission and Fusion

Fragmented mitochondria are typically observed during
HCMV infection [15, 22, 49, 50]. Using Sendai virus and
encephalomyocarditis virus as a model, Koshiba et al. illus-
trated that inhibition of the mitochondrial fusion proteins,
Mitofusin 1 (Mtf1) and Mitofusin 2 (Mtf2), disrupts antiviral
signaling [25]. Viral infections can disrupt the mitochondrial
fusion process, resulting in fragmented mitochondria, without
inducing cellular dysfunction.

During HCMV infection, vMIA has been observed to in-
duce mitochondrial fragmentation [50, 51•]. HCMV vMIA
deletion mutants are unable to induce fragmentation, suggest-
ing that vMIA directly or through an unknown pathway pro-
motes fragmentation [49]. vMIA recruits Drp1 to the mito-
chondria through Ca2+ flux [52, 53]. Drp1 is a key component
of fission regulation and activation; therefore, HCMV
relocating and utilizing Drp1 could aid the virus in creating
widespread fragmentation of the mitochondria [52–54]. It has
also been suggested that this mechanism may contribute to
inhibition of apoptosis [53].

The Bcl-2 family members, Bax and Bak, and their role in
mitochondrial elongation are also exploited during HCMV
infection [55]. Bax induces the assembly of Mfn2. Double
knockout Bax and Bak cells fail to induce mitochondrial fu-
sion, leading to fragmented mitochondria [55]. Poncet et al.
found that vMIA’s ability to cause a segmented mitochondri-
on morphology is unrelated to the anti-apoptotic interaction
with Bax and likely related to metabolism [15, 51•]. They note
that vMIA is known to recruit the apoptosis-inducing protein

Bax to the mitochondria, causing a disruption to the outer
mitochondrial membrane permeability, possibly contributing
to fission of the mitochondria. The change in permeability
could be attributed to vMIA preventing Bax from binding to
adenine nucleotide translocator (ANT) and forming channels
or a direct interaction between ANT and vMIA. The mecha-
nism is unidentified, and it is also unknown if apoptosis is
simply prevented by early fission events or if these are sepa-
rate and distinct actions of vMIA [49].

Despite structural similarities between vMIA and Bcl-2, it
has been noted that there are differences that may affect func-
tion [51•]. Binding of vMIA with GADD45 family members,
which usually bind with Bcl-2 family members, has been re-
ported [56]. An association between vMIA and GADD45α
may form a complex with Bcl-xL, leading to increased levels
of vMIA protein expression and punctate mitochondria [56].
A decrease in total mitochondria is not observed, just size,
showing that despite fission being upregulated, it is not
resulting in significantly increased rates of mitophagy, as
would be expected [56]. This provides evidence that vMIA
has a motif that is structurally similar to the Bcl-2 family and
may manipulate Bcl-2-associated pathways [51•, 56].

It has been suggested that PiC may be a mediator for
vMIA-mediated fragmentation of mitochondria [15, 50, 51•,
57]. The recruitment of Bax in this outcome appears to be
unrelated, as Bax knockdown still results in fragmentation.
This suggests that vMIA is regulating mitochondrial fission
through a mechanism unrelated to its anti-apoptotic function
[57]. Inhibition of PiC in the presence of vMIA has been
observed to decrease metabolic products such as ATP [15].
It has also been shown that PiC acts as a permeability regula-
tor of the mitochondrial membrane [57]. It remains unknown
whether PiC downregulation causes fission as a result of met-
abolic changes or through changing the permeability of the
inner mitochondrial membrane [57].

In regard to fusion, in non-infected cells, it is observed that
mitochondrial membrane potential, and more specifically in-
ner mitochondrial membrane potential, is vital for fusion to
occur [28, 29]. Decreased mitochondrial membrane potential
increases fission and decreases fusion, resulting in punctate
mitochondria [29]. HCMV effects on this process are
discussed earlier in this review.

Conclusions

Mitochondria are critical for HCMV replication. To date,
there are only a few identified viral products that specifically
target host mitochondria (Table 1). Deeper study will likely
reveal new HCMV candidates that are employed to manipu-
late mitochondrial function. HCMV utilization of the host
mitochondria is likely due to its size, complexity, and long
replication cycle. HCMV has a large genome and encodes a
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vast protein arsenal prepackaged in the tegument and on the
surface. Lastly, there are strenuous lipid requirements for both
new progeny and cytomegaly (swelling of the infected host
cell). The mitochondria are central in providing the building
blocks and energy required for this to occur, all while
inhibiting cell death. It is interesting to speculate on the
short- versus long-term effects of HCMV infection on the
mitochondria. Many of the studies referenced in this review
employed an acute infection model. This provides insights
into HCMV-mediated mitochondrial reprogramming or dys-
function, but cannot address long-term functional changes to
the host mitochondria. This may be critical missing data as
HCMV has been associated with many age-related diseases,
many of which included mitochondrial dysfunction as hall-
marks of the disease. Inclusion of chronic infection models
that accurately mimic in vivo conditions may provide novel
metabolic mechanisms linking HCMV infection to age-
related disease initiation or progression. By teasing out the
mechanisms of mitochondrial manipulation during HCMV
infection, we can learn about the intricacies and limits of
mitochondria.
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