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Abstract
Flows on surfaces describe many systems of physical origin and are one of the most fun-
damental examples of dynamical systems, studied since Poincará. In the last decade, there
have been a lot of advances in our understanding of the chaotic properties of smooth area-
preserving flows (a class which include locally Hamiltonian flows), thanks to the connection
to Teichmueller dynamics and, very recently, to the influence of the work of Marina Ratner
in homogeneous dynamics. We motivate and survey some of the recent breakthroughs on
their mixing and spectral properties and the mechanisms, such as shearing, on which they
are based, which exploit analytic, arithmetic and geometric techniques.

1 Slowly chaotic dynamical systems

Deterministic chaos and the butterfly effect

Dynamical systems provide mathematical models of systems which evolve in time. Many
systems phenomena in our world, from the evolution of the weather to the motion of an
electron in ametal, can be described by a dynamical system.While in amodel one can include
a random component, or external noise, we will restrict ourselves to fully deterministic
systems, whose evolution is completely described by a system of pre-determined rules or
equations.Wewill furthermore consider continuous time dynamical systems, namely systems
for which the time variable is a real parameter t ∈ R, described by a flow on a space X , namely
a 1-parameter group1 ϕR = (ϕt )t∈R of maps ϕR : X → X (diffeomorphisms if X is a smooth
manifold).

Deterministic dynamical systems often display chaotic features (see Sect. 2 for examples),
which make their behaviour as time grows hard to predict. This is a phenomenon known
as deterministic chaos. One of the best known features of chaotic behaviour is sensitive

1 Assuming that ϕR = (ϕt )t∈R is a group of diffeomorphisms under composition is equivalent to requiring
that ϕt+s (x) = ϕt (ϕs (x)) for every x ∈ X (or almost every in the measure-preserving set up introduced
below) and every t, s ∈ R. The typical example of a flow is given by solutions to differential equations. The
precise definition of the type of flows on which we will focus here, namely area-preserving flows on a surface,
will be given below.
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dependence on initial conditions (SDIC for short), a property which was popularized as the
butterfly effect. In a systemwhich displays SDIC, a small variation of the initial condition can
lead to a macroscopically very different evolution after a long time. In particular, given a flow
ϕR : X → X on a metric space (X , d) with SFIC and a point x ∈ X (the initial condition)
one can find arbitrarily close initial conditions y ∈ X such that the (forward) trajectories of
x and y, namely the orbits (ϕt (x))t≥0 and (ϕt (y))t≥0 drift apart.2

Fast chaos versus slow chaos

Dynamical systems can roughly be divided in three categories (hyperbolic, elliptic and
parabolic) according to the speed of divergence (if any) of close orbits. In a hyperbolic
flow, the orbits (ϕt (x))t≥0, (ϕt (y))t≥0 of most3 pairs x, y of initial conditions diverge expo-
nentially in time (i.e. the distance d(ϕt (x), ϕt (y)), for small values4 of time, is described by
an exponential function of time. In a parabolic dynamical system, there is also divergence
of (most) nearby orbits, but this divergence happens at subexponential (usually polynomial)
speed. Finally while the flow is called elliptic if there is no divergence (or perhaps it is slower
than polynomial). Thus, both hyperbolic system and parabolic systems display SDIC, but the
butterfly effect happens at different speeds (respectively exponentially or (sub)polynomially).
We colloquially call these systems respectively fast chaotic (when the butterfly effect is fast,
i.e. exponential) and slowly chaotic (when the butterfly effect is slow, i.e. polynomial or
slower than polynomial).

While there is a classical and well-developed theory of hyperbolic systems (starting with
the study of uniformely hyperbolic dynamical systems, which was already developed in the
1970s by mathematicians such as Anosov and Sinai, Abel Prize in 2014, among others) and
also a systematic study of elliptic ones (starting with the theory of circle diffeomorphisms,
whose study is intertwined with Hamiltonian dynamics and KAM theory), there is no general
theory which describes the dynamics of parabolic flows and only classical and isolated
examples are well-understood.

Examples of parabolic systems

Slowly chaotic (or parabolic) systems includemany dynamical systems of interest in physics,
such as the Novikov model of electrons in a metal (which will be discussed below), or the
Ehrenfest model (also called windtree model) proposed by Paul and Tatjiana Ehrenfest in
1912 to understand thermodynamics laws.

Among examples arising in mathematics, perhaps the most studied (and better under-
stoood) example of a parabolic flow is given in the context of hyperbolic geometry by the

2 More precisely, if (X , d) is a metric space and ϕR : X → X a continuous flow, ϕR has SDICwith sensitivity
constant ν > 0 iff for every x ∈ X and ε > 0 there exists y such that d(x, y) < ε and there exists t0 = t0(ν, y)
such that d(ϕt0 (x), ϕt0 (y)) ≥ ν.
3 Most means here almost every with respect to a natural invariant measure for the flow. The formal definition
of a (smooth) hyperbolic flow (on the tangent space to a differentialble manifold) involve the existence of
stable and unstable manifolds in the tangent space; the exceptional points y whose trajectories do not diverge
from (and actually converge to) the trajectory of a given x form the so-called stable manifold, which has
positive codimension in the ambient space.
4 If the space X if compact, the distance between two points has clearly an upped bound, so all statements
about divergence must be interpreted infinitesimally, i.e. make sense for of t small, as asymptotic statements
as the distance between y and x goes to zero, so that longer times can be considered.
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Slow chaos in surface flows 233

horocycle flow on (the unit tangent bundle of) a compact negatively curved surface:5 while
the geodesic flow (whose trajectories move along geodesics for the hyperbolic metric) is a
classical example of fast chaos and hyperbolic dynamics, when moving along horocycles
(which, in the upper half plane H are circles tangent to the real axis) one can show that
divergence of nearbly trajectories is only a quadratic function of time, thus giving slowly
chaotic dynamics.

Another fundamental class of homogeneous flows is given by nilflows, or flows on (com-
pact) quotients of nilpotent Lie groups (nilmanifolds); The prototype example in this class are
Heisenberg nilflows, given by the action (by left multiplication) of a 1 parameter subgroup
of transformations of a compact quotient of the Heisenberg group.6

In this survey we will focus on an another fundamental class of parabolic flows, in the
context of area-preserving flows on (higher genus) surfaces, given by locally Hamiltonian
flows, which are smooth flows which preserve a smooth area-form. The definition is given
later on in Sect. 3.2.

Finally, starting from the classical examples of parabolic flows mentioned above, one
can build new parabolic flows by considering perturbations: the simplest perturbations are
time-changes (or time-reparametrizations) of a given flow, i.e. flows that move points along
the same orbits, but with different speed. More precisely, a flow ϕ̃R is called a (smooth)
time-change of a flow ϕR on X if for all x ∈ X and t ∈ R we have ϕt (x) = ϕτ(x,t)(x)
for some measurable (smooth) function τ : X × R → R. Notice that it follows from this
definition that the time-change ϕ̃R has exactly the same trajectories than ϕR (but the motion
along the trajectory has different speed). Some time-changes, known as (smoothly) trivial,
give rise to flows that are (smoothly) conjugated (i.e. isomorphic as dynamical systems) to the
original one and therefore have the same chaotic properties. A feature of parabolic dynamical
systems, though, is that among smooth time-changes, smoothly trivial time-changes are rare,
i.e. they often form a finite or countable codimension subspace.7 Therefore, the study of non
trivial time-changes allows to systematically produce new classes of parabolic flows.

2 Chaotic properties

Anatural and fundamental question in parabolic dynamics (and dynamics in general) is which
chaotic properties -in particularwhich fine ergodic and spectral properties- are generic among
classes of (smooth) slowly chaotic flows. Let us give some examples in this section of which

5 In the context of homogeneous dynamics (actions given by group multiplication on quotients of Lie groups),
parabolic flows coincidewith unipotent flows. Horocycle flows can be seen as the simplest example of unipotent
flows on semi-simple Lie groups, given by the left action of upper triangular unipotent matrices in SL(2,R)

on compact (or finite volume) quotients SL(2,R)/�.
6 Let us recall that the Heisenberg group can be seen as the group H of 3 × 3 upper triangular matrices; a
compact Heisenberg nilmanifold is obtained taking the quotient H/� where � < H is a discrete subgroup
(for example the subgroup of matrices of the same form, but with integer entries). A nilflow on a Heisenberg
nilmanifold is then given by the action of a 1-parameter subgroup (ht )t∈R ⊂ H by left multiplication
(g, t) �→ ht g.
7 This is the consequence of the existence of distributional obstructions (invariant distributions) to solve
the cohomological equation. The first complete study of this phenomenon is perhaps Katok’s work [47,48]
on linear skew-shifts of the 2-torus, which are closely related to Heisenberg nilflows. Let us also remark
that finitely many invariant distributions for horocycle flows in the finite area, non-compact case were first
constructed by Sarnak [76] by methods based on Eisenstein series. The structure of the space of obstructions
was described in the case of translation flows (and locally Hamiltonian flows on surfaces) in [27], for nilflows
in [24] and for horocycle flows in [22].
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type of chaotic properties one might be interested in. We will comment on possible notions
of generic in Sect. 3.5.

Different type of chaotic properties are the focus of different branches of dynamics: prop-
erties of topological nature (such as existence of dense trajectories) are studied in topological
dynamics, measure-theoretical features (such as equidistribution of a trajectory with respect
to an equilibrium measure) in ergodic theory, and properties of spectral nature in spectral
theory of dynamical systems.

Topological dynamics

Focus on the most basic questions about the behaviour of trajectories, such as existence and
abundance of periodic trajectories (i.e. trajectories of a point x such that there exists a period
t0 for which ϕt+t0(x) = ϕt (x) for all t ∈ R), or existence and abundance of trajectories
which are dense in X . A (continuous) flow ϕR : X → X (where X is a topological- or
metric- space) is called minimal if every orbit is dense. In presence of fixed points (which is
the case for surface flows in higher genus, which always have singularities for g ≥ 2), the
definition of minimality is slightly different: we only require all regular orbits, namely all
orbits ϕR(x) which are neither a fixed point nor a saddle separatrix, to be dense.

Ergodic theory

Studies flows which preserve a measure: we assume hence that (X , μ) is a measure space
and that ϕR : X → X preserves the measure μ, namely for any A measurable set, μ(A) =
μ(ϕt (A) for all t ∈ R. If a trajectory is dense, one can further ask whether it is equidistributed
with respect to the invariant measure μ, namely if the time spent in a measurable set A is
proportional (asymptotically) to its measure μ(A), or, in formulas, whether

lim
T→∞

1

T

∫ T

0
χA (ϕt (x)) dt = μ(A). (1)

Systems for which this is true for almost every initial condition x (with respect to μ) are
ergodic.8 A stronger conclusion, namely that equidistribution holds for every point x ∈ X
with an infinite trajectoriy, holds for smooth flows which are uniquely ergodic.9

A stronger property, mixing, guarantees equidistributions not only of individual orbits,
but of sets pushed under the flow ϕR: in a mixing system, every measurable set A ⊂ X
equidistributes (with respect to μ) under the flow, i.e.

lim
t→∞ μ(ϕt (A) ∩ B) = μ(A)μ(B) (2)

8 Ergodicity is often defined in terms of metric indecomposability: a measure preserving flow ϕR : X → X
on (X , μ) is ergodic if any measureable A which is invariant under ϕR, i.e. such that ϕt (A) = A for all t ∈ R,
is measure-theoretically trivial, i.e. either μ(A) = 0 or μ(X\A) = 0. The equivalence of this definition with
the equidistribution property of almost every trajectory when μ(X) is finite is the content of the celebrated
Birkhoff ergodic theorem.
9 Unique ergodicity is usually defined for a topological dynamical system, namely for continuous maps or
flows on a topological space X . We say that the system is uniquely ergodic if there exists an unique probability
measure. One can show that in this case, for observables f : X → Rwhich are continuous, one gets a stronger
conclusion that the Birkohff ergodic theorem, since one can show that (1), with χA replaced by f , holds for
every (and not only almost every) initial condition x ∈ X . This definition can be applied to the area-preserving
flows which we consider later modulo some technicalities (in particular one has to exclude singularities) and
guarantees that all trajectories of non-singular points x whose forward trajectory (ϕt (x))t≥0 is not a separatrix
are equidistributed in the sense that (1) holds for all measurable sets A ⊂ S.
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Slow chaos in surface flows 235

for every measurable set B. This property is equivalent to decay of correlations, i.e. for every
two smooth observables f , g : X → R,

lim
t→∞

∫
X

( f ◦ ϕt ) g dμ −
∫
X
f dμ

∫
X
g dμ = 0. (3)

This property is also known as strongmixing, to distinguish it from another (weaker) property
known as weak mixing (where the convergence in (2) is only required to happen along a
subset of t ∈ R of density one). Mixing and weak mixing can also be interpreted as spectral
properties, (see footnote 11). Other type of mixing properties in addition to weak mixing and
strong mixing include mild mixing and mixing of all orders. The latter generalizes mixing
(which is defined using two sets A, B) to more sets: a measure preserving flow ϕR on (X , μ)

is mixing of order N if, for any N -tuple A0,. . . , AN−1 of measurables sets,

μ
(
A0 ∩ ϕt1(A1) ∩ ϕt1+t2(A2) ∩ · · · ∩ ϕt1+···+tN−1(AN−1)

) t1,t2...,tN−1→∞−−−−−−−−−→
μ(A0) · · · μ(AN−1) (4)

and it ismixing of all orders if it is N -mixing for any N ≥ 2. Equivalently, as for the definition
of mixing, this can be reinterpreted as a statement about decay of multi-correlations. It is a
famous open conjecture, known as Rohlin’s conjecture and still open, whethermixing implies
mixing of all orders.

Spectral theory of dynamical systems

Study the nature of the spectrum (and spectral measures) associated to theKoopman operator
a (family of) operator(s) on L2(X ,A , μ) associated to measure preserving flow ϕR (which
acts by pre-composition f �→ f ◦ ϕt with the dynamics). One of the fundamental questions
in spectral theory (see for example the surveys [49] or [58] on spectral theory of dynamical
systems) is what is the nature of the spectrum of the Koopman operator. To every f ∈
L2(X , μ) one can associate a spectral measure denoted by σ f , i.e. the unique finite Borel
measure on R whose Fourier coefficients are described by correlations, i.e. such that∫

X
f ◦ ϕt f dμ =

∫
R

eits dσg(s) for every t ∈ R. (5)

Spectral measures are useful to describe components of the the unitary representation given
by the Koopman operator.10 We say that the spectrum of ϕR is (absolutely) continuous,
or respectively (purely) singular iff for every f ∈ L2(X , μ) the spectral measure σ f is
(absolutely) continous, or respectively singular with respect to the Lebesgue measure on R.

Ergodicity, weak mixing and mixing can be expressed in terms of the spectrum of the
Koopman operator.11 Spectral results thus provide finer and stronger dynamical information.
For example, since mixing (and weak mixing), when they hold, provide, as spectral impli-
cation, the information that the spectrum is continuous (see footnote 11), proving that the
spectrum is absolutely continuous is e. g. a strengthening of mixing, while singularity of the

10 Let us denote by R(g) ⊂ L2(X , μ) the cyclic subspace generated by g which is given by R(g) :=
〈ϕt (g) : t ∈ R〉 ⊂ L2(X , μ). By the spectral theorem the Koopman operator, restricted to R(g), is unitarily
isomorphic to the R-representation (Vt )t∈R on L2(R, σg) given by Vt (h)(s) = eitsh(s).
11 Ergodicity is equivalent to asking that the only eigenfunctions for the Koopman operator with eigenvalue 1
are constant functions, while weak mixing holds iff the Koopman operator has no non-constant eigenfunctions
(i.e. no eigenvalues different than 1). Hence weak mixing implies that the spectrum is continous; mixing on
the other hand is characterized by decay of the self-correlations 〈Ut f , f 〉L2(X ,μ), see (3).
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spectrum shows that the system studied is far (more formally, spectrally disjoint, a stronger
concept of disjointess than that introduced in Sect. 3.13) from strongly, fast chaotic systems.

2.1 Generic chaotic properties in slowly chaotic systems

There is a large and quite extensive literature on topological, ergodic and spectral properties
of some of the classical parabolic examples mentioned in Sect. 1. For example, the fine
ergodic and spectral properties of the horocycle flow have been studied in great detail12 and
mostly were already well understood in the 1970s (see for example [12,22,29,36,57,66,81]
and more in general [80] or [2], and the reference therein, for unipotent flows).

It is well known that the typical13 nilflow is minimal and uniquely ergodic [2], however,
nilflows are never (weak) mixing, due to an intrinsic obstruction, namely the presence of
a toral factor.14 Results on the speed of equidistribution of Heisenberg nilflows for smooth
functions were proved by Flaminio and Forni [23].

A series of recent works [4,5,74] indicates that, even though classical nilflows are never
mixing (see footnote 14), a typical time-change (in a dense class of smooth time-changes) of
a mimimal nilflow on any nilmanifold (different from a torus) is mixing.

In the rest of this survey we will focus on generic chaotic properties of smooth area
preserving flows. While the understanding of minimality and ergodicity follows from results
from the 1970s and 1980s respectively, the study of mixing properties has been the object of
active research in the last decade or so, while the first breakthroughs on spectral properties
are only very recent.

These results do not show an entirely coherent picture and make the identification and
description of characteristic parabolic features difficult. For example, while the horocycle
flow (as well as all its smooth time-changes) are mixing (and actually mixing of all orders,
see [61,62]), as we recalled above (see in particular footnote 14) nilflows are never mixing.
This difference in behavior can be attributed to the lack of parabolicity in certain directions
(those that live in the toral factor, see foonote 13), which would suggest calling nilflows
partially parabolic systems. Nevertheless, this obstruction can be broken by a perturbation
(as we show in [5], see also [4] for the special case of Heisenberg nilflows), so that in a dense
set of smooth-time changes all flows which are not trivially conjugate to the nilflow itself are
indeed mixing. Similarly, recent results seem to indicate that certain disjointess properties

12 For compact hyperbolic surfaces, it is for example known that the horocycle flow is minimal [39], uniquely
ergodic [36], mixing [66] (in fact it has Lebesgue spectrum [80] and it is mixing of all orders [62]) and precise
bounds on both the rate of mixing [72] and equidistribution [22] are available. For the case of finite-volume,
non-compact surfaces, see e.g. the works by Dani [15] and Burger [12].
13 Typical means here for a full measure set of frequencies of the underlying toral factor, defined as follows.
Every nilmanifold G/� is a fiber bundle over a torus. In fact, the group G = [G,G]\G is Abelian, connected
and simply connected, hence isomorphic to R

n and � = [�,�]\� is a lattice in G. Thus we have a natural
projection p : G/� → G/� over a torus of dimension n. The nilflow hence project to a linear flow on an
n-dimensional torus. We say that a property holds for a typical nilflows if it holds for a typical linear flow on
the underlying toral factor, namely for a full measure set of rotation numbers (also called frequencies).
14 As explained in the foonote 13 above, any nilflow project on a linear flow on a toral factor. It follows that a
nilflow is never weakly mixing (and hence never mixing), since the linear toral flow has pure point spectrum
and hence many non-trivial eigenfunctions (the toral characters), which can be pulled back to the nilmanifold
to produce eigenfunctions for the nilflow (recall that weak mixing can be characterized in terms of lack of
eigenfunctions , see Sect. 2). However, it is possible to prove by methods of representation theory that any
nilflow is relatively mixing, in the sense that the limit of correlations of functions with zero average along
all fibers of the projection p is equal to zero. Nilflows also have the property of relative Lebesgue spectrum
(namely, the spectrum restricted to observables in the orthogonal complement of the span of the pull-back of
the toral characters, is countable Lebesgue spectrum, see [2]).
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Slow chaos in surface flows 237

(see Sect. 3.13), which do not hold for a classical example such as the horocycle flow, are
nevertheless generic among time-changes.

This shows that to better understand slowly chaotic systems it is therefore crucial both
to understand what are the finer chaotic properties of the known parabolic examples as well
as, at the same time, to study new classes of parabolic examples (such as those produced by
time-changes and other parabolic perturbations.15

3 Chaotic properties of smooth surface flows

Wewill focus now on the class of slowly chaotic systems given by smooth area-preserving (or
locally Hamiltonian) flows on surfaces, surveying the recent advances in our understanding
of their mixing, spectral and disjointness properties as well as the mechanisms which explain
them.

3.1 Flows on surfaces

Flows on surfaces are one of the most basic and most fundamental examples of dynamical
systems, whose study goes back to Poincaré [67] at the end of the Ninetineth century, and
coincides with the birth of dynamical systems as a research field. Many models of systems of
physical origin are described by surface flows: Poincarémotivation to study surface flowswas
for example related to celestial mechanics and the two physical systems already mentioned
before, the Ehrenfest model in statistical mechanics and the Novikov model in solid state
physics, can be described by flows on surfaces (respectively linear flow on an translation
surface and to a locally Hamiltonian flows).

In addition to providing a fundamental classes of parabolic dynamical systems, smooth,
area-preserving flows on surfaces, are fundamental in dynamics because they are among
the lowest possible dimensional smooth dynamical system (on compact manifolds of lower
dimension, the other fundamental class of smooth dynamical systems are circle diffeomor-
phisms, whose rich theory is a cornerstone of dynamics). Despite having zero entropy, as
shown in [90], they nevertheless display a rich variety of chaotic properties and, despite their
basic nature, there are still many open questions on the mathematical characterization of
chaos (in particular on dynamical, spectral and rigidity question) in various natural classes
of surface flows.

In this surveywewill only be concernedwith flowswhich preserve a (probability)measure
(see Sect. 2 for the definition), for example an area-form, since this is the natural setup for
ergodic theory (see Sect. 2).

3.2 Locally Hamiltonian flows

Let S be a compact, connected, orientable (smooth) surface and let g denote its genus. We
will assume throughout that g ≥ 1. Perhaps the most natural class of measure-preserving

15 It should be pointed out that describing more general perturbations (beyond the class of time changes)
which produce (new) parabolic flows is quite delicate, since by a perturbation one typically gets a hyperbolic
flow. Examples of parabolic perturbations, which are not time changes, can be constructed for example by
twisting (see for example the work of Simonelli on twisted horocycle flows, in [79]). New examples of
parabolic perturbations for which one can study ergodic theoretical properties were recently constructed by
Ravotti in [75].
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flows on S are smooth flows preserving a smoothmeasure (with smooth absolutely continuous
density). Letω be afixed smooth area form (locally given in coordinates (x, y)by f (x, y)dx∧
dy where f is a smooth function). Thus, equivalently, the pair (S, ω) is a two-dimensional
symplectic manifold. We will consider a smooth flow ϕR = (ϕt )t∈R on S which preserves
a measure μ given integrating a smooth density with respect to ω. We will assume that the
area is normalized so that μ(S) = 1. It turns out that such smooth area preserving flows on
S are in one-to-one correspondence with smooth closed real-valued differential 1-forms as
follows. Given a smooth, closed, real-valued differential 1-form η, let X be the vector field
determined by η = iXω where iX denotes the contraction operator, i.e. iXω = ω(η, ·) and
consider the flow ϕR on S given by X . Since η is closed, the transformations ϕt , t ∈ R, are
area-preserving. Conversely, every smooth area-preserving flow can be obtained in this way.

The flow ϕR is known as the multi-valued Hamiltonian flow associated to η. Indeed, the
flow ϕR is locally Hamiltonian, i.e. locally one can find coordinates (x, y) on S in which ϕR

is given by the solution to the equations
{
ẋ = ∂H/∂ y,

ẏ = −∂H/∂x

for some smooth real-valued Hamiltonian function H . A global Hamiltonian H cannot be
in general be defined (see [64, Section 1.3.4]), but one can think of ϕR as globally given by
a multi-valued Hamiltonian function.

Let us remark that locallyHamiltonian flows necessarily have fixed points, or singularities,
if g ≥ 2. Singularities, as shown in Fig. 2, can be either centers (Fig. 2a), simple saddles
(Fig. 2b) or multi-saddles (i.e. saddles with 2k pronges, k ≥ 2, see Fig. 2c for k = 3), .
Examples of flow trajectories are shown in Fig. 1. For g = 1, i.e. on a torus, if there is a
singularity than there has to be another one. The simplest examples of locally Hamiltonian

A flow on a surface of (g = 3) An Arnold flow (g = 1)(a) (b)

Fig. 1 Trajectories of locally Hamiltonian flows on a surfaces

center simple saddle(a) (b) (c)

Fig. 2 Type of singularities (i.e. fixed points) of a locally Hamiltonian flow
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Slow chaos in surface flows 239

flows with singularities on a torus, i.e. flows with one center and one simple saddle (see
Fig. 1b), were studied by Arnold in [1] and are nowadays often called Arnold flows.16

A lot of interest in the study of multi-valued Hamiltonians and the associated flows–in
particular, in their ergodic andmixingproperties—was sparkedbyNovikov [65] in connection
with problems arising in solid-state physics as well as in pseudo-periodic topology (see e.g.
the survey [91] by Zorich). Indeed, Novikov [65] and his school in the 1990s advocated
the study of locally Hamiltonian flows as model to describe the motion of an electron in a
metal under a magnetic field in the semi-classical approximation (the surface appears here as
Fermi energy level surface). Novikov made some conjectures (known as Novikov problem)
on the asymptotic behaviour of trajectories of electrons. At the same time, Arnold [1] made
a conjecture on mixing for the flows we call today Arnold flows (see footnote 16). This
conjecture has been the motivation for a lot of the work on the mixing properties of locally
Hamiltonian flows, see the overview given in Sect. 3.8.

In order to survey the current knowledge of chaotic properties of locally Hamiltonian
flows, it is useful to first point out their relation with another well studied class of area-
preserving flows on surfaces, namely linear flows (which, we stress for the reader, are not
smooth surface flows).

3.3 Linear flows and time-changes of locally Hamiltonian flows

The basic example of a linear flow is the flow given on the torus R2/Z2 by solutions of
(
x ′(t), y′(t)

) = (cos θ, sin θ) ,

which move along at unit speed along (the image in R2/Z2 of) Euclidean lines. Linear flows
(also called translation flows) can be defined more in general on translation surfaces, namely
surfaces which are locally Euclidean outside a finite number of conical singularities (with
cone angles 2πk, k ∈ N, which produce saddles of the flows with 2k prongs, see Fig. 2c for
k = 3). Notice that these flows preserve a Euclidean area (but are discontinuous flows, since
singularities are reached in finite time).

It turns out that everyminimal locally Hamiltonian flow on S (as well as the restriction of a
locally Hamiltonian flow to one of its minimal components, see Sect. 3.6), in suitably chosen
coordinates, are time-changes (or time-reparametrizations, we refer to Sect. 1 for the defini-
tion) of a linear flow on S (or a subsurface of S in the case of a minimal component). Thus,
minimal locally Hamiltonian flows have the same trajectories (up to time-reparametrization)
than linear flows on translation surfaces (see for example [91]). In particular, certain proper-
ties, such asminimality and ergodicity (as well as homological aspects such as the asymptotic
behaviour in the Novikov problem), which depend only on trajectories as sets and not on
their time-parametrization, can be deduced for locally Hamiltonian flows by studying them
in linear flows. This was in part one of the original motivations (in addition to unfolding of
rational billiards in the West) that sparked the interest of mathematicians such as Zorich in
the ergodic theory of linear flows (see below). We stress though that, while some chaotic
properties like ergodicity depend on the orbits of the flow, others (like mixing and spectral
properties) crucially depend on the time-parametrization of the orbits and require ad-hoc
techniques (see Sects. 3.9and 3.14).

16 More precisely, referring to the decomposition described in Sect. 3.6, we call Arnold flow the restriction to
a minimal component obtained by removing the center and the disk filled by periodic orbits around it (called
island), which, as Arnold shows in [1], is always bounded by a saddle loop.
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3.4 Linear flows and Teichmueller dynamics

The study of linear flows on translation flows and their ergodic properties has been a highly
topical area of research for the past four decades (from the 1980s), in connectionwith the study
of billiards in (rational) polygons, interval exchange transformations (or for short IETs) and
Teichmueller dynamics, a research area which has benefited from the contribution of several
Fields medallists (including Avila, Kontsevich, McMullen, Mirzakhani and Yoccoz).

In virtue of this flourishing activity, the ergodic and spectral properties of typical (in
the measure theoretical sense) translation flows are by now well understood. Let us say
that a property holds for a typical linear flow if it holds in a.e. direction on almost every
translation surface with respect to a natural measure on translation surfaces known Masur–
Veech measure.17 One of the first results, shown already in the 1970s by Keane [50], is
that a typical linear flow is minimal. Moreover, it is uniquely ergodic (which implies that
every infinite orbit is not only dense, but also equidistributed, see Sect. 2). Unique ergodicity
of typical linear flows was known as Keane’s conjecture and proved independently in the
seminal works by Masur and Veech [63,87] through renormalization techniques which gave
birth to the topical field of Teichmueller dynamics. On the other hand linear flows are never
mixing, as proved by Katok [46] already in the 1980s, but they are neverthelss typically (in
the above sense) weak-mixing (refer to Sect. 2 for definitions). a long-standing conjecture
settled by Avila and Forni in [3].

From the spectral theory perspective, for typical translation flows, the nature of the spec-
trum (which turns out to be singular continuous) has been known since seminal work by
Veech, see [87,88]). Recently there have been also advances in the spectral theory of non
generic (especially self-similar) translation flows and IETs, see for example [9–11].

We now discuss locally Hamiltonian flows, explaining howminimality and unique ergod-
icity can be understood reducing the study of (minimal components of) locally Hamiltonian
flows to linear flows, while the classification of mixing properties (described in Sect. 3.8)
has been based on geometric mixing mechanisms specific to smooth slowly parabolic flows
(such as shearing, see Sect. 3.9) and the spectral theory is only now starting to be understood
(refer to Sect. 3.14). We first specify (in the next Sect. 3.5) the topology and measure that we
will use on the space of locally Hamiltonian flows.

3.5 Genericity notions for locally Hamiltonian flows

Let us define two natural ways of defining a notion of generic (or typical) locally Hamiltonian
flow, one topological and the other measure-theoretical.

One can define a topology on locally Hamiltonian flows by considering perturbations of
closed smooth 1-forms by (small) closed smooth 1-forms.18 We say that a condition is generic
(in the sense of Baire) if it holds for flows described by an open and dense set of forms with
respect to this topology. For example, asking that the 1-form η is Morse, i.e. it is locally the
differential of a Morse function (which has non-degenerate zeros) is a generic condition.

17 Perhaps the simplest way to define the Masur–Veech measure, is to consider a presentation of a translation
surface S as a polygon with 2N sides with pairs of parallel, congruent sides (v1, v

′
1), . . . , (vN , v′

N ) identified

by glueings. Then the vectors (v1, . . . , vN ) ∈ R
N give local coordinates for an open set U of translation

surfaces around S and the Masur–Veech measure is just Lebesgue measure on U ⊂ R
N .

18 Let η, η′ be two smooth closed 1-forms. We say that η′ is an ε-perturbation of η if for any x ∈ S there
exists coordinates on a simply connected neighbourhood U of x , such that η‖U = dH and (η′ − η)‖U = dh
where ‖h‖∞ < ε‖H‖∞ (here ‖ · ‖∞ denotes the C∞ norm).
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Ameasure-theoretical notion of typical is defined as follows by using theKatok fundamen-
tal class (introduced by Katok in [45], see also [64]), i.e. the cohomology class of the 1-form
η which defines the flow. Let � be the set of fixed points of η and let k be the cardinality of
�. Let γ1, . . . , γn be a base of the relative homology H1(S, �,R), where n = 2g + k − 1.
The image of η by the period map Per is Per(η) = (

∫
γ1

η, . . . ,
∫
γn

η) ∈ R
n . The pull-back

Per∗Leb of the Lebesgue measure class by the period map gives the desired measure class
on closed 1-forms. When we use the expression typical below, we mean full measure with
respect to this measure class.

3.6 Periodic andminimal components

A generic locally Hamiltonian flow (in the sense of Baire category, with respect to the
topology defined in the previous Sect. 3.5) has only non-degenerate fixed points, i.e. centers
and simple saddles (see Fig. 2a, b), as opposed to degenerate multi-saddles (as in Fig. 2c).
We call saddle connection a flow trajectory from a saddle to a saddle and a saddle loop a
saddle connection from a saddle to the same saddle (see Fig. 3a). It can be shown that each
center is contained in a disk filled with closed (i.e. periodic) trajectories and bounded by a
saddle loop, called an island of periodic orbits, see Fig. 3a. Hence, in presence of centers,
the flow ϕR is never minimal (since orbits in the complement of the island avoid the island
and hence cannot be dense).

From the point of view of topological dynamics (as proved independently by Maier [60],
Levitt [59] and Zorich [91]), each smooth area-preserving flow can be decomposed into
subsurfaces (with boundary) onwhich the restriction ofϕR either foliates into closed (i.e. peri-
odic) orbits and up to g subsurfaces (recall that g is the genus of S) on which (the restriction
of) ϕR is minimal, i.e. every bi-infinite orbit is dense. The first ones are called periodic
components and are either islands (as in Fig. 3a) or cylinders filled by periodic orbits and
bounded by saddle loops, as in Fig. 3b. The latter are known as minimal components (see an
example in Fig. 3c) and by topological reasons there cannot be more than g of them. The
flows in Fig. 1, for example, can be decomposed, in the case of Fig. 1a, into two islands and
one cylinder filled by closed orbits and two minimal components (one of of genus one and
one of genus two), while, in the case of the flow on the torus in Fig. 1b, there is one island
and one minimal component (the so-called Arnold flow).

Minimal components of a locally Hamiltonian flow (and in particular minimal such flows,
for which S is in itself a minimal component), in suitably chosen coordinates, have the same
orbits (up to time-reparametrization, see Sect. 1) than linear flows discussed in Sect. 3.3 (see
e.g. [91]).

an island of period
orbits

a cylinder of periodic
orbits

a minimal component of g = 2(a) (b) (c)

Fig. 3 Examples of periodic and minimal components
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3.7 Minimality and ergodicity

To classify chaotic behaviour in locally Hamiltonian flows it is crucial to distinguish between
two (complementary, up to measure zero) open sets (with respect to the topology described in
Sect. 3.5): in the first open set, which we will denote byUmin , the typical flow isminimal (in
particular there are no centers and there is a uniqueminimal component). On the other open set
that we will callU¬min there are periodic components (bounded by saddle loops homologous
to zero), but the typical flow is still minimalwhen restricted to each complementary (minimal)
component.

Let us remark that if theflowϕR givenby a closed1-formη has a saddle loophomologous to
zero (i.e. the saddle loop is a separating curve on the surface), then the saddle loop is persistent
under small perturbations (see Section 2.1 in [91] or Lemma 2.4 in [73]). In particular, the
set of locally Hamiltonian flows which have at least one saddle loop is open and gives the
set denoted U¬min above. The set Umin is given by the interior (which one can show to be
non-empty) of the complement of U¬min , i.e. the set of locally Hamiltonian flows without
saddle loops homologous to zero.19

The typical locally Hamiltonian flow (with respect to the measure defined in Sect. 3.5)
is U¬min is not only minimal, but also uniquely ergodic. For a typical flow in U¬min , the
restriction of the flow on each minimal component is (uniquely) ergodic. Both results about
minimality and ergodicity can be deduced from the classical results respectively byKeane and
Masur and Veech (recalled in Sect. 3.4) respectively concerning of minimality and ergodicity
of typical translation flows, by using that that the flow restricted to a minimal components is
a time-change of a linear flow (see Sect. 3.3).20

3.8 Mixing properties of locally Hamiltonian flows

As mentioned earlier, finer chaotic properties such as (weak) mixing and spectral properties,
crucially depend also on the speed of motion along the orbits.

The question ofmixing in locallyHamiltonian flowswasmotivated byArnold’s conjecture
in the 1990s. In contrast with translation flows, which are nevermixing (see Sect. 3.4), Arnold
in the 1990s noticed a geometric phenomenon (explained in Sect. 3.8) which could produce
mixing in locally Hamiltonian flows on the torus with one minimal component (those which
we nowadays call Arnold flows, see Sect. 3.6 and in particular footnote 16). His intuition
was proved to be correct shortly after by Sinai and Khanin [51], for a full measure set (later
improved by Kocergin [53]) of such flows on tori. The question of whether mixing is typical
also for flows on higher genus is much more delicate, and stayed open for 2 decades.

It turns out that mixing depends crucially on the type of singularities of the flow. When
there are degenerate saddles (i.e. multi saddles with k ≥ 6 prongs, as in Fig. 2c), mixing had
been proved already in the 1970s (by Kochergin in [53]) since in this case the saddles have
a much stronger effect.21 In the case of non-degenerate saddles (which, we recall, is generic

19 Note that saddle loops non homologous to zero (and saddle connections) vanish after arbitrarily small
perturbations and neither the set of 1-forms with saddle loops non homologous to zero (or saddle connections)
nor its complement is open (see [73] for details).
20 Oneneeds also to exploit that the twonotions of typical, respectively for linear flows and locallyHamiltonian
flows, interactwell with each other: in particular, if a result holds for almost linear flow in almost eveyr direction
on almost every translation surface with respect to the Masur–Veech measure, one can show that it holds for
a full measure set of locally Hamiltonian flows with respect to the Katok fundamental class.
21 As explained in Sect. 3.9 mixing happens through shearing of transversal arcs and equidistribution of
flow trajectories. In the case of degenerate saddles, the shearing effect is much faster and allows for simpler
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case, but much more delicate to treat), one has very different results in the open sets Umin

and U¬min introduced in the previous Sect. 3.7. The full classification of mixing properties
has been a central part of my past research achievements [84–86]. The two following two
results now give a complete picture:

Theorem 1 (U’ [85,86] 22)
In Umin, the typical locally Hamiltonian flow is weakly mixing, but it is not mixing.

Theorem 2 (U’ [84], Ravotti [73]23) In U¬min, the restriction of the typical locally Hamil-
tonian flow ϕR on each of its minimal components is mixing.

Let us remark even though the typical flow inUmin is not mixing, there exists exceptional
non-mixing flow in this open set as it was shown by Chaika and Wright [14]. Examples of
mild mixing (which is an intermediate property between weak mixing and mixing) were also
built in [41] by Kanigowski and Kułaga-Przymus, using the former work [60] of the latter,
but again are non typical (and one might conjecture that mild mixing is indeed non typical).

Furthermore, there are also quantitative results on the speed of mixing (when there is
mixing) which show that it happens (as expected in a parabolic flow) very slowly. More
precisely, for a typical ϕR in U¬min , restricted to a a minimal component (which is mixing
and hence display decay of correlations, refer to Sect. 2 for definitions), the speed of decay
of correlations (also sometimes called speed of mixing) is sub-polynomial (in accordance to
what we expect for a slowly chaotic flow) and actually logarithmic, namely for every pair
f , g of smooth observables there exists constants c > 0, α > 0 such that |C f ,g(t)| ≤ c log tα

(as shown by Ravotti in [73]).

3.9 The role of shearing in slowmixing

The parabolic nature of locally Hamiltonian flows is entirely due to the presence of the
saddles, which split nearby trajectories (as shown in Fig. 6) and are responsible for the slow
divergence of nearby trajectories through a geometric phenomenon called shearing (pictured
in Fig. 4). The butterfly effect in locally Hamiltonian flows happens indeed in a special way.
In presence of a Hamiltonian saddle, the closer a trajectory is to a saddle point, the more
motion along the trajectory is slowed down. Thus, if we consider a small arc γ transversal to
the trajectories of the flow ϕR, so that when flowing it, ϕt (γ ) passes nearby a saddle separatrix
without hitting the saddle point (as shown in Fig. 4), the different deceleration rates of points
cause ϕt (γ ) to shear in the direction of the flow (see Fig. 4a). This description also evidences
the slow nature of the butterfly effect in this case: points on nearby trajectories diverge from

shearing estimates and faster mixing. Mixing in this case is indeed believed to have polynomial rates (see
e.g. a partial result in this direction in [17]), as opposed to the logarithmic (sub-polynomial) speed in the case
of non-degenerate saddles (see [73] and the comments after Theorem 2 in Sect. 3.8).
22 Absence of mixing for typical flows for any g ≥ 2 was proved in [86], while weak mixing is proved also
for minimal components of locally Hamiltonian flow with simple saddles in [85]. Let us remark that a result
in this direction for g = 1 was already proved by Kocergin in [52] (see also [54]) (in the language of special
flows over rotations, which does not have a direct implication for locally Hamiltonian flows but suggested
that the absence of mixing could hold also when rotations are replaced by IETs and hence in higher genus.
Absence of mixing in the special case of S with g = 2 and locally Hamiltonian flows with two isomorphic
simple saddles was shown by Scheglov [78].
23 The result in this generality is proved in [73]. Mixing in a special (but crucial) case was proved in [84] in
the language of special flows, more precisely for special flows over interval exchange maps under a roof with
one asymmetric logarithmic singularity. The general case is the case of several logarithmic singularities with
a global asymmetry condition (see e.g. [73]).
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shearing compensation asymmetry wrapping(a) (b) (c) (d)

Fig. 4 Shearing mechanism in locally Hamiltonian flows

each other since, even though they travel on nearby trajectories, one travels faster than the
other. Therefore the speed of divergence is in this case only as fast as the speed of shearing.

The shearing accumulated can be later destroyed when the ϕt (γ ) passes near the other
side of a saddle (see Fig. 4b). The presence of a saddle loop, though, (as in Fig. 4c) typically
creates an asymmetry (thiswas the key intuitionofArnold that hadmotivatedhis conjecture on
mixing) by producing stronger shearing on one side and hence, in this case, the accumulation
of shearing predominantly in one direction produces global shearing.

This geometric shearing phenomenon is a crucial ingredient in the proofs of the mixing
results in Sect. 3.8 (in particular Theorem 2, but also to prove mixing in the exceptional
examples in [14]) as it allows to deduce mixing from ergodicity (i.e. equidistribution of flow
trajectories, recall Sect. 2). For large times t � 0, segments which do not hit the singularities
will be so sheared along the flow, to be well approximated by long flow trajectories. Thus,
for any given measurable set A ⊂ X , for every large t one can cover an arbitrarily large
proportion At ⊂ A of with a collection of short transversal segments {γα, α ∈ At }, each
of which, after time t , shadows a long trajectory of ϕR, which is (close to) equidistributed
by ergodicity. One can hence show that each ϕt (γα) is also (close to) equidistributed. Thus,
since

ϕt (At ) ∩ B = ∪α∈A t (ϕt (γα) ∩ B)

by a Fubini argument, one can deduce equidistribution of ϕt (A) (i.e. mixing, see Sect. 2) from
equidistribution of each ϕt (γα) (which follows as we said from shearing and unique ergod-
icity). Furthermore, the speed of mixing (or equivalently the speed of decay of correlation)
depends on the speed of shearing, which is slow (namely subpolynomial in this case).

This mechanism for mixing via shearing seem to be a very common phenomen in slowly
chaotic dynamics. The few of the early results on horocycle flows (such as Marcus proof of
mixing in [61] or Ratner’s results, see Sect. 3.10) exploit that small segments of geodesics
curves, pushed by the horocycle flow, are sheared in the horocycle direction.24 Furthermore,
since this is essentially a geometricmechanism for explaining mixing, this phenomenon per-
sists under perturbation and hence can be used also for time-changes (see [29,61], where we
prove quantitative mixing results and show polynomial estimates on the decay of correlations
for smooth time-changes of the horocycle flow).

24 This shearing property follows from the commuting relations between the horocycle flow hR and the
geodesic flow gR, namely the relation ht gs = gshe−2s t which holds for all t, s ∈ R. The relation shows that
if we push a small arc γ = {gs (x), s ∈ [0, σ ]} by ht , the point ht (gs (x)) is aligned in the geodesic direction
not with ht (x), but with he−2s t (x) and hence that the pushed segments are sheared in the flow direction.
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Splitting (shift of 1−time unit) and realignement. Realigned points stay close(a) (b)

Fig. 5 The Ratner property describing quantitative slow shearing

A similar mechanism, namely shearing of segments of a suitable foliation (but with the
difference that the direction of shearing is not global but depends on the segment considered)
was also exploited in [20] to prove mixing in some (exceptional) elliptic flows25 and in the
context of nilflows: while nilflows are never mixing (see footnote 14), in suitable classes of
smooth time-changes one can implement this mechanism to prove mixing using shearing,
see [4,5,74].

Finally, the complementary results on absence ofmixing (see Theorem 1) involve showing
absence of shearing.26 Indeed, a criterion for absence of mixing already formulated by
Kocergin in [52] shows that (at least for typical) locallyHamiltonianflowsmixing via shearing
is essentially the only possible way of achieving mixing.

3.10 Beyondmixing, exploting shearing: Ratner’s work

Whether one can deduce stronger and finer ergodic and spectral properties from shearing, in
the context of flows with singularities, has been an open problem for decades, which has seen
advances only very recently (see Sect. 3.12). A great example of the fine and deep results on
finer ergodic properties and rigidity phenomena that one can obtain from shearing is given by
the celebrated works by Marina Ratner on the horocycle flow (and more generally unipotent
flows in homogeneous dynamics) [68–71]. Her work, and more in general the rigidity theory
for unipotent flows, developed by Dani, Margulis and many others, has found breakthrough
applications and has led to the solutions of important problems in number theory (such as
the Oppenheim conjecture) and mathematical physics (such as the Bolztmann-grad limit for
the Lorentz-gas).

Shearing is at the at the heart of Ratner’s work and the above mentioned rigidity results.
A crucial ingredient in her work, indeed, is a technical property introduced in [70] (that she
calls property H ), nowadays known as the Ratner property (see [82]). It is this property,
that Ratner verified for horocycle flows, that is used to deduce some of the main rigidity
properties of horocycle flows (such as joinings and measure rigidity).

25 In [20], Fayad shows that there existsmixing time-changes of linear flows on toriTn = R
n/Zn in dimension

n ≥ 3. The phenomenon is rare though, since it requires a highly Liouvillean rotation number.
26 To show absence of shearing, one needs to exploit that, when there are no saddle loops homologous to
zero and hence no asymmetry which produces global shearing, the effect of shearing on two different sides of
the same saddles compensate and cancels. This requires subtle estimates which hold for a full measure set of
flows in U¬min . In the exceptional mixing examples built in [14] sharing is still at the base of mixing, but is
not produced by asymmetry of the singularities, but by an asymmetric equidistribution, so that trajectories, at
different time scales, spend much more time on one side of a saddle than another)
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Fig. 6 Splitting of trajectories of a locally Hamiltonian flow near a saddle

The Ratner property encodes a quantitative property of controlled divergence of nearby
trajectories in the flow direction (illustrated in Fig. 5). Heuristically, it requires that for most
pairs of nearby points x, x ′, the orbits of x, x ′ split in the flow direction (say at time t1)
by a definite amount, called the shift and then realign, say by ±1 time-unit27 so that now
ϕt1(x) and the time-shifted orbit point ϕt1±1(x ′) are close; then one requires the two orbits,(
ϕt1+t (x)

)
t≥0 and the time-shifted orbit

(
ϕt+1±1+t (x ′)

)
t≥0, to still stay close (see Fig. 5) for a

fixed proportion κ of the time t1 it took to see the shift, namely formost times t ∈ [t1, t1+κ t1].
One can see that this type of phenomenon is possible only for parabolic systems, in which
orbits of nearby points diverge with polynomial or subpolynomial speed.

3.11 Searching for Ratner properties beyond unipotent flows

Since the Ratner property describes a form of divergence of nearby trajectories (or butterfly
effect) which is peculiar to parabolic flows, it is reasonable to expect that some quantitative
form of parabolic divergence similar to the Ratner property should hold and be crucial in
proving analogous rigidity properties for other classes of parabolic flows. Even more, since
there is no formal definition for a system to be parabolic, one might even hope that the Ratner
property could be taken as one of the characteristics making a system parabolic.

The natural question hence arose whether the Ratner property might hold for smooth
flows on surfaces of higher genus. For a long time, though, there were no known examples of
systems with the Ratner property beyond horocycle flows and their (smooth) time changes.
This changed drastically in the last decade. The first examples outside the homogeneous
world were given by Frączek and Lemańczyk in [33–35] (in the setting of special flows). The
two authors could also show in [33] that a variant of Ratner’s property hold for some surface
flows, more precisely in a class of flows on genus one tori known as von Neumann flows28

(for non generic flows, corresponding to a measure zero set of frequencies). However, the
flows in [33] are not (globally) smooth.

The difficulty in treating smooth flows on higher genus surfaces is given by the presence
of singularities (which are unavoidable when g ≥ 2, see Sect. 3.2), which introduce disconti-
nuities and destroy the slow form of divergence a la Ratner: essentially, as soon as two nearby
trajectories are separated by hitting a saddle (see Fig. 6), one drastically looses control of the
divergence. The Ratner property in its classical form (as well as the weaker versions defined

27 One can more in general consider a shift p, which belongs to a fixed compact set P so that now ϕt+p(x)
and the time-shifted orbit ϕt+p(x ′) are close. The original Ratner property, where P = {+1,−1}, is now
sometimes called 2-point Ratner property, while the generalization to P finite first and to P compact later
were defined by by Frączek and Lemańczyk in [33,34] and called respectively finite Ratner and weak Ratner
properties.
28 Von Neumann flows are called in this way since they first appeared in von Neumann’s work [89]. In the
special flows presentation they are flows over irrational rotations under a piecewise linear roof with non zero
sum of jumps. For further recent results on von Neumann flows, see [16,43,44].
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in [33,34]) is expected to fail for of smooth area-preserving flows with non-degenerate fixed
points.29

3.12 The Switchable Ratner property in locally Hamiltonian flows

The possibility of pushing our understanding of smooth flows on surfaces, using techniques
loosely inspired byRatner’swork, emerged only recently, in virtue of the recent developments
in the field. A key breakthrough was achieved recently by Fayad and Kanigowski, who,
in [18], introduced a new modification of the Ratner property, the so called Switchable
Ratner property (or SR-property). According to this variation, it is sufficient to see the Ratner
divergence of orbits for most pairs of initial conditions (x, y) either in the future (for t > 0)
or in the past (for t < 0), depending on the pair of initial points. Thus, if one pair of nearby
trajectories is separated by hitting a singularity (as shown in Fig. 6), and hence their distance
explodes in an uncontrolled manner, one can still hope to be able to prove the Ratner slow
form of divergence when flowing backward in time.

Let us remark that above mentioned variations Ratner property (thus in particular also
the switchable Ratner property) were defined in order to have the same strong dynamical
consequences of the original Ratner property. In particular, all variants of the Ratner property,
as the original Ratner property does, imply a rigidity-type result on joinings30 results (by
restricting the type of self-joinings that the flow can have31) and allow to enhance mixing
properties (see for example Corollary 1).

Fayad and Kanigowski could prove in [18] that this variation of the Ratner property holds
for some smooth surface flows in genus one,more precisely for typicalArnold flows (see Sect.
3.6, Fig. 1b) as well as for (a measure zero class of) torus flows with one degenerate (or fake)
singularity (sometimes known as Kocergin flows). Let us recall that in higher genus (g ≥ 2)
it is important to distinguish between the two open sets Umin and U¬min (see Sect. 3.7) of
locally Hamiltonian flows with non-degenerate singularities. In [41], the SR-property was
proved for some (measure zero set of) minimal smooth flows32 in Umin . It is likely that to
prove a form of Ratner properties for other flows (hopefully a full measure set) in Umin will

29 The failure of the classical Ratner property was formally proved in a special case in [18] (for a class of
Kochergin flows, i.e. special flows with power singularities over rotations, see Theorem 1 and the Appendix B
in [18]) and this result gives reasons to believe that, for similar reasons, the classical Ratner property should
indeed always fail in presence of singularities.
30 The notion of joining plays a key role in ergodic theory. Assume that ϕR, φR are flows on probability
standard Borel spaces (X , μ) and (Y , ν), respectively. A joining between ϕR and φR is a ϕR × φR -invariant
(for each t ∈ R) probability measure on X × Y with the projections μ and ν, respectively. By J (ϕR, φR) we
denote the set of joinings between the flows ϕR and φR. A trivial joining always exists and is given by the
product measure μ × ν.
31 The Ratner property and its variations in particular imply a property known as finite extension of joinings:
any non-trivial ergodic joining ρ is a finite extension (finite union of graphs). Furthermore, Ratner properties
impose some restrictions not only on the set of self-joinings but also on the set of its joinings with another
(ergodic) flow. In particular, we can askwhether for two systems sharing the sameRatner property it is possible
to classify joinings between them. The first result in this direction can be found in Ratner’s work [71], where
she shows that two flows h̄R and h̃R given by two smooth time changes of a horocycle flow hR are disjoint,
i.e. the only joining between them is the product measure, whenever the cocycles corresponding to the time
changes are not jointly cohomologous (see [71] for definitions).
32 The flows considered in [41] are special flows over IETs of bounded type, under a roof with symmetric
logarithmic singularities. Bounded type Diophantine conditions on IETs extend the notion of bounded type
(also called constant type) rotation numbers and, as among rotations, are measure zero (but full Hausdorff
dimension) conditions.
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require introducing yet another variant of the Ratner property, one which could take into
consideration average shearing and thus will require new ideas.

The result in [41], on the other hand, shows that the switchable Ratner property holds for
(the minimal component of) the typical (Arnold) flow inU¬min when g = 1 and the flow has
only one simple saddl (and center). In joint work with Kanigowski and Kułaga-Przymus [42],
we could prove that the switchable version of the Ratner property is typical among mixing
(components of) locally Hamiltonian flows inU¬min for any genus g ≥ 1 (thus extending to
more singularities33 and generalizing to higher genus g ≥ 2 the result by [18]):

Theorem 3 (Kanigowski, Kułaga-Przymus and U’ [42]) For any g ≥ 1, a typical locally
Hamiltonian flow ϕR inU¬min, restricted on any of its mininal component, has the switchable
Ratner form of shearing.

This result hence imply a rigidity type result for the classification of joinings (see footnote
31) and in particular allowed us to upgrade mixing to a stronger property, namely mixing of
all orders (see Sect. 2 and (4) for the definition).

Corollary 1 (KKU) For any g ≥ 1, the restriction of a typical locally Hamiltonian flow ϕR

in U¬min on any of its miminal components is mixing of all orders.

Thus, the Corollary show that Rohlin’s conjecture (see Sect. 2) holds for these class of
smooth flows.

Further recent works also show that Ratner properties also hold for other classes of slowly
chaotic flows. For example the Switchable Ratner property holds for a class of time changes
of constant type Heisenberg nilflows, see the recent work [18] by Forni and Kanigowski.

3.13 Disjointness of rescalings

Advances in our understanding of disjointness properties became possible building on the
switchable Ratner property [6,19,29]. The notion of disjointness34 was introduced in the
1970s by Furstenberg (see in particular [37]); two disjoint flows are in particular not isomor-
phic.35

A disjointness propertywhich has received a lot of attention recently (in particular as a tool
in connection with Sarnak’s conjecture on Moebius orthogonality, see below) is disjointness
of rescalings. Given a real number κ > 0, by the κ-rescaling of ϕR we simply mean the
flow ϕκ

R
:= (ϕκt )t∈R (in which the time is rescaled by the factor κ).36 Thus, a rescaling is a

33 For g = 1, Fayad and Kanigowski show in [18] that the switchable Ratner property holds for (the minimal
component of) a full measure set of Arnold flows only when there is a unique saddle; they also consider the
case of more saddles, but then require a condition which has measure zero. The main result in [42] (which can
be expressed in the language of special flows over IETs under roofs with asymmetric logarithmic singularities)
on the other hand gives a full measure condition not only the higher genus case, but also the case of genus one
and more saddles.
34 Two measure preserving flows ϕR and φR are called disjoint (in the sense of Fursterberg) if their only
common ergodic joining is the trivial joining (i.e. the product joining).
35 We say that two flows ϕR on (X , μ) and φR on (Y , ν) and are isomorphic as measure preserving flows
if there exists a isomorphism � : X → Y , i.e. a one-to-one measureable map which respects measure zero
sets and commutes with the dynamics, i.e. � ◦ φt (x) = ψt (�(x)) for μ-almost every x ∈ X . If two flows are
isomorphic, the isomorphism � yields a non-trivial joining, so that the two flows cannot be disjoint.
36 Notice that when p is an integer, the time-one map of p-rescaling coincides with the p-power of the
time-one map R1 of the flow, so considering rescalings is an analogous operation to considering the powers
of a given transformation.
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special type of time-reparametrization of a flow, given by a linear time-change. We say that
ϕR has disjoint rescalings if for all (or all but finitely many) p, q > 0, the rescalings ϕ

p
R
and

ϕ
q
R
, where p, q > 0 and p �= q , are disjoint (in the sense of Furstenberg). Disjointness of

rescalings has played a key role in proving some of the first instances of Sarnak’s conjecture
[77] of orthogonality of theMoebius function37 in number theorywith entropy zero dynamical
systems (as a tool to prove the conjecture via the so called Katai orthogonality criterion, see
for example [8,25] and more in general the survey [21]).

In recent joint work with Kanigowski and Lemańczyk [40], we introduced a new tool
to study disjointness phenomena for smooth surface flows, namely a disjointness criterion
based on the switchable Ratner property. The criterion was devised and formulated so that
it can be applied to prove disjointness of two flows which both have the switchable Ratner
property, so that in both flows one can observe a controlled form of divergence of nearby
trajectories (for example polynomial divergence), but the speed of divergence for the two
flows is different (for example for one flow is it linear, in the other quadratic).38 Exploiting
this criterium, we were able to show that disjointness of rescalings is typical among Arnold
flows (see Sect. 3.6, Fig. 1b).

Theorem 4 (Kanigowski–Lemanczyk-U’, [40]) A typicalArnold flowhasdisjoint rescalings.
In particular, if ϕR is the restriction of the unique minimal component of an Arnold flow, there
exists only two values39 of the form q, 1/q such that ϕR and ϕ

p
R
are disjoint for any positive

p /∈ {1, q, 1/q}.
As a Corollary, Sarnak’s Moebius disjointness conjecture holds for these flows (see [40] for
details).

We believe disjoitness of rescalings should also hold for typical locally Hamiltonian flows
in higher genus, but this is currently an open problem. Preliminary work seems to indicate
that, despite some technical additional difficulties, the techniques used to prove Theorem 4
should allow to prove disjointness of rescalings for all minimal components of typical flows
in the open setU¬min (refer to Sect. 3.7 for the definition of the open setU¬min ). The recent
work [6] by Berk and Kanigowski, even though it does not apply to surface flows directly,
gives a good indication that disjointness of rescalings could also hold for typical flows (under
a suitable full measure Diophantine-type condition) in the complementary set U¬min .

It is natural to ask whether disjoitness of rescalings could actually be a widespread fea-
ture of slowly chaotic systems. The new disjointness criterion is also used in [40] to prove
disjointness of rescalings for (a class of) smooth (non-trivial) time-changes of the horocy-
cle flow (see also [25], where the result is proved for a more general class of time changes
with different methods), answering in particular a question of Marina Ratner. Notice that

37 Let us recall that the Moebius function μ : N → Z is a multiplicative function defined on a prime p by
μ(p) := (−1)k if p = p1 · · · pk with pi istinct primes. Sarnak conjectured (see [77]) that μ is orthogonal
to entropy zero deterministic sequences, i.e. if f : X → X is a topological dynamical systems (i.e. X is
a topological space and f is continous) then, for every x ∈ X ,

∑N
n=1 f (T nx)μ(n) = o(N ) as N tends to

infinity. The survey [21] gives an introduction to the conjectures and the progress made so far.
38 The key shearing phenomenon exploited in the criterion is that, for pairs of two nearby points in the first
system and two nearby points in the second, after some time (depending on both pairs of points) we will see a
relative divergence, i. e. in one pair we will see a realignement with some shift C1 > 0 in the flow direction,
while in the other we will see a realignement with a shiftC2 > 0 withC1 �= C2. This explains how the relative
shearing appears in this situation.
39 The two values are related to the asymmetry of the saddles: in the special flow representation, the Arnold
flow can be written as a flow over a rotation Rα : [0, 1) → [0, 1) (given by Rα(x) = x + α mod 1) under a
roof with logarithmic singularities given by the roof function r(x) = C0 log |x |+C1 log(1− x)+h(x) where
h is smooth on [0, 1]; then q = C0/C1.
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two different rescalings of the (classical, non time-changed) horocycle flow hR are never
disjoint.40 Thus, it seems that (non trivial) time-changes of the horocycle flow are in some
sense better behaved and display chaotic features that the horocycle flow itself lacks, due to
its homogeneous and self-similar nature. Perhaps unfortunately, the most studied and best
understood model of a parabolic flow, the horocycle flow, may have not provided the most
significant example in terms of generic chaotic properties. Hence, the importance of better
understanding new and larger classes of slowly chaotic systems and their typical chaotic
features.

The new criterion for disjointness introduced in [40] has already proved useful in different
contexts, see for example the recent works [16,28] where it is applied to study disjointess
phenomena respectively for Heisenberg nilflows in [28], for von Neumann flows in genus
one in [16]. Finally, the disjointness criterion is used in [40] also to show that a typical Arnold
flow is disjoint from any smooth time change of the horocycle flow (and in particular from
the classical horocycle flow itself), thus showing that these two classes of parabolic flows are
truly distinct.

3.14 Spectral theory of locally Hamiltonian flows

The last aspect we want to discuss is the spectral theory of smooth area-preserving flows
(introduced in Sect. 2). The spectral properties (and in particular what is the spectral type,
see Sect. 3.14 for definitions) of locally Hamiltonian flows is a natural question, which has
been lingering for decades (see e.g. [49, Section 6] and [58]). While the classification of
mixing properties of locally Hamiltoninan flows is essentially complete (as summarized in
Sect. 3.8), very little is known on the spectral properties of these flows beyond the case of
genus one.

One of the few results in the literature concerning on the nature of the spectrum of some
area-preserving surface flows was proved by Frączek and Lemańczyk in [32], who showed
singularity of the spectrum for Blokhin examples41 (which were the first examples of ergodic
flows on surfaces, see [7]). This gives examples of locally Hamiltonian flows on surfaces
of any genus ≥ 1 with singular continuous spectrum (see [30, Theorem 1]), but these are
essentially built glueing genus one flows and thus, they are highly non typical.

It turns out that the geometric approach to (quantitative) mixing through shearing can
sometimes be pushed to provide also spectral information on parabolic flows. For example,
in joint work with Forni [29] we were able to show that from shearing estimates on can also
access information about the spectrum of time-changes of the horocycle flow, in particular
settling in particular a conjecture of Katok-Thouvenot (see also [83] where Tiedra deAldecoa
gave simultaneously a different proof by operator methods (see also a previous result by
Kuschnirenko [61]). Further developments based on our approach were achieved also for
unipotent flows by Simonelli [79].

A breakthrough on the spectral side was achieved recently in [19] for a special class of
smooth area preserving flows with degenerate singularities when the genus of the underlying

40 Indeed, if (gs ) denotes the geodesic flow, the renormalization equation ht gs = gshe−2s t for all t, s ∈ R,

yields that, for any positive p �= q, the flows h p
R
and hq

R
are conjugated by gs with s = − log(q/p)

2 (and hence
are not disjoint).
41 In the setting of special flows, Frączek and Lemańczyk in [30], study special flows over rotations with
single symmetric logarithmic singularity. In [30, Theorem 12] it is shown that (for a full measure set of rotation
numbers) such special flows are spectrally disjoint from all mixing flows, from which it follows in particular
that the spectrum is purely singular.
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Kochergin flow (a.c.spectrum) g = 2, two isomorphic simple saddles (singular)(a) (b)

Fig. 7 The locallyHamiltonian flowswith absolutely continuous and singular spectra respectively in Theorems
5 and 6

surface is one, sometimes known as Kochergin flows (since Kochergin [53] proved their
mixing, for any g ≥ 1). These are minimal flows on the torus with one stopping point (see
Fig. 7a), also called fake singularity (this point can be seen as a degenerate fixed point with
only k = 2 prongs). Taking as a starting point the idea used by Forni an myself in [29] to
prove absolute continuity of the spectrum for time changes of horocycle flows, Forni, Fayad
and Kanigowski, proved in [20] that, if the degenerate singularity is sufficiently strong42, the
spectrum is absolutely continuous (and actually Lebesgue).

Theorem 5 (Fayad, Forni, Kanigowski, [19]) A locally Hamiltonian flow in genus one with
only one sufficiently strong degenerate singularity as fixed point has countable Lebesgue
spectrum.

Countable Lebesgue spectrum is a strong spectral result, which implies in particular that
the spectrum is absolutely continuous (see Sect. 2 for the definition). The result provides
the first example of such a strong chaotic property in an entropy zero and low dimensional
smooth system.We remark that stopping points (andmore in general degenerate fixed points)
are known to produce shearing and hence mixing [53] (at rates which are expected to be
polynomial, see e.g. [17]). The absolute continuity of the spectrum is essentially43 based on
a decay of correlations which is square-summable.

A recent spectral breakthrough, which goes in the opposite direction, concerns the nature
of the spectrum of locally Hamiltonian flows on genus two surfaces, and, to the best of our
knowledge, is the first general spectral result for surfaces of higher genus, namely g ≥ 2.

Theorem 6 (Chaika–Fraczek–Kanigowski-U’, [13]) A typical locally Hamiltonian flow on
a genus two surface with two isomorphic simple saddles has purely singular spectrum.

This result in genus two was inspired by the singularity result proved by Fraczek and
Lemańczyk (for special flows over rotations) in [30]. Their result indeed shows that, when
one can prove absence of mixing and some form of (partial) rigidity, it might be possible
to deduce singularity of the spectrum. Theorem 6 strengthens one of the early results on
absence of mixing, i.e. the absence of mixing for typical flows in the same class (g = 2, two
isomorphic saddles) proved by Scheglov [78] (which is a special case of Theorem 1). As in

42 Kocergin flows admit a special flow representation where the roof has power-type singularities. In genus
one, for a flow with one degenerate singularity, one has a special flow over a rotation, under the roof r(x) =
c0/x

α + c1/(1 − x)α for some 0 < α < 1. The assumption in [19] is that α is sufficiently close to 1.
43 There are actually technical issues in controlling the part of space where there is not enough shearing.
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[78], the assumptions are crucial since the underlying surface has an inner symmetry44 which
plays a crucial role in the proof. Nevertheless, we believe it should be possible to extend the
result on higher genus exploiting the same singularity criterion used in [13] (which is an
extension of the criterion used in [30] as well as [31]), coupled with the delicate estimates
for absence of shearing proved in [86] to prove Theorem 1.

The nature of the spectrum for other classes of locally Hamiltonian flows is unknown. It
might be conjectured, in view of Theorem 5 for Kocergin flows, that also in higher genus,
in presence of sufficiently strong degenerate singular points, the spectrum is also absolutely
continuous (and even countable Lebesgue), essentially thanks to a strong quantitative control
of decay of correlations. It is not clear what to expect when the degenerate singularity is not
sufficiently strong.45

At the heart of our proof of Theorem 6, on the other hand, is a strengthening of results on
absence of mixing (in particular of the works [30,31,78]). As already mentioned, we hope
that the techniques of [86] might be pushed to allow to apply the singularity criterium for
typical flows in the open set Umin of minimal, uniquely ergodic (weakly mixing) but not
mixing locally Hamiltonian flows.

In the open set U¬min , which consists of flows with non-degenerate singularities that
are not minimal, but have several minimal components, the nature of the spectrum (for the
restriction of a typical flow to a minimal component) is unclear. These flows are indeed
mixing, but with sub-polynomial rate (see [73], which provides logarithmic upper bounds)
and it is not clear whether to expect singularity or absolute continuity of the spectrum.

Acknowledgements The author is part of SwissMAP (The Mathematics of PhysicsNational Centre for Com-
pentence in Research) and is currently supported by a SNSF (Swiss National Science Foundation) Grant
No. 200021_188617/1. Both are acknowledged for their support.

Funding Open access funding provided by University of Zurich.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Arnold, V.I.: Topological and ergodic properties of closed 1-forms with incommensurable periods. Funk-
tsional’nyi Analiz i Ego Prilozheniya 25, 1–12 (1991)

2. Auslander, L., Green, L., Hahn, F.: Flows on Homogeneous Spaces. Princeton University Press, Princeton
(1963)

3. Avila, A., Forni, G.:Weakmixing for interval exchange transformations and translation flows. Ann.Math.
(2) 165(2), 637–664 (2007)

44 More precisely, the linear flow of which the locally Hamiltonian flow is a time-change is a flow on a
translation surface S which admits an hyperelliptic involution, i.e. an affine automorphism � : X → X which
is an involution, i.e. �2 = I d.
45 As already remarked in a footnote, sufficiently strong means that the power α in the special flow represen-
tation is close to 1. One might hope that absolute continuity could hold for all powers α > 1/2, but this is out
of reach with the current techniques.

123

http://creativecommons.org/licenses/by/4.0/


Slow chaos in surface flows 253

4. Avila, A., Forni, G., Ulcigrai, C.: Mixing for time-changes of Heisenberg nilflows. J. Differ. Geom. 89(3),
369–410 (2011)

5. Avila, A., Forni, G., Ravotti, D., Ulcigrai, C.: Mixing for smooth time-changes of general nilflows.
arXiv:1905.11628

6. Berk, P., Kanigowski, A.: Spectral disjointness of rescalings of some surface flows. arXiv:1901.04724v2
7. Blohin,A.A.: Smooth ergodic flowson surfaces. TrudyMoskov.Mat.Obsc.27, 113–128 (1972). (Russian)
8. Bourgain, J., Sarnak, P., Ziegler, T.: Disjointness of Möbius from horocycle flows. arXiv:1110.0992
9. Bufetov, A., Sinai, Y., Ulcigrai, C.: A condition for continuous spectrum of an interval exchange trans-

formation. In: Representation Theory, Dynamical Systems, and Asymptotic Combinatorics, Amer. Math.
Soc. Transl. Ser. 2, 217, Adv. Math. Sci., vol. 58, pp. 23–35. Amer. Math. Soc., Providence (2006)

10. Bufetov, A., Solomyak, B.: The Hölder property for the spectrum of translation flows in genus two. Isr.
J. Math. 223(1), 205–259 (2018)

11. Bufetov, A., Solomyak, B.: On the modulus of continuity for spectral measures in substitution dynamics.
Adv. Math. 260, 84–129 (2014)

12. Burger, M.: Horocycle flow on geometrically finite surfaces. Duke Math. J. 61, 779–803 (1990)
13. Chaika, J., Fraczek, K., Kanigowski, A., Ulcigrai, C.: Singularity of the spectrum for smooth area-

preserving flows in genus two and translation surfaces well approximated by cylinders. arXiv:1912.10250
14. Chaika, J., Wright, A.: A smooth mixing flow on a surface with nondegenerate fixed points. J. Am. Math.

Soc. 32(1), 81–117 (2019)
15. Dani, S.G.: Invariant measures and minimal sets of horospherical flows. Invent. Math. 64(2), 357–385

(1981)
16. Dong, C., Kanigowski, A.: Rigidity of a class of smooth singular flows on T 2. arXiv:1811.00184
17. Fayad, B.: Polynomial decay of correlations for a class of smooth flows on the two torus. Bull. Soc. Math.

France 129, 487–503 (2001)
18. Fayad, B., Kanigowski, A.: Multiple mixing for a class of conservative surface flows. Invent. Math. 1–60

(2015)
19. Fayad, B.R., Forni, G., Kanigowski, A.L.: Lebesgue spectrum for area preserving flows on the two torus.

arXiv:1609.03757
20. Fayad, B.R.: Analytic mixing reparametrizations of irrational flows. Ergod. Theory Dyn. Syst. 22, 437–

468 (2002)
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31. Fraczek, K., Lemańczyk, M.: On disjointness properties of some smooth flows. Fund. Math. 185(2),

117–142 (2005)
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58. Lemańczyk, M.: Spectral theory of dynamical systems. Mathematics of complexity and dynamical sys-
tems, vols. 1–3, pp. 1618–1638, Springer, New York (2012)

59. Levitt, G.: La decomposition dynamique et la differentiabilie des feuilletages des surfaces. Ann. Inst.
Fourier 3, 85–116 (1987)

60. Maier, A.: On trajectories on orientable surfaces. Dokl. Acad. Nauk SSSR 24, 672–674 (1939)
61. Marcus, B.: Ergodic properties of horocycle flows for surfaces of negative curvature. Ann. Math. 2(105),

81–105 (1977)
62. Marcus, B.: The horocycle flow is mixing of all degrees. Invent. Math. 46, 201–209 (1978)
63. Masur, H.: Interval exchange transformations and measured foliations. Ann. Math. 115, 169–200 (1982)
64. Nikolaev, I., Zhuzhoma, E.: Flows on 2-dimensional manifolds. An overview, Lecture Notes in Mathe-

matics, vol. 1705. Springer, Berlin (1999)
65. Novikov, S.P.: The Hamiltonian formalism and a multivalued analogue of Morse theory. Uspekhi Matem-

aticheskikh Nauk 37(5), 3–49 (1982) (Traslated in: RussianMathematical Surveys, 37(5):1–56, 1982)
66. Parasyuk, O.S.: Flows of horocycles on surfaces of constant negative curvature. Uspekhi Mat. Nauk 8(3),

125–126 (1953)
67. Poincaré, H.: Sur les courbes definies par les equations differentielles. J. Math. Pures Appl. 2, 151–217

(1886)

123



Slow chaos in surface flows 255

68. Ratner, M.: Factors of horocycle flows. Ergod. Theory Dyn. Syst. 2, 465–489 (1982)
69. Ratner, M.: Rigidity of horocycle flows. Ann. Math. 2(115), 597–614 (1982)
70. Ratner, M.: Horocycle flows joinings and rigidity of products. Ann. Math. 2(118), 277–313 (1983)
71. Ratner, M.: Rigid reparametrizations and cohomology for horocycle flows. Invent. Math. 88(2), 341–374

(1987)
72. Ratner, M.: The rate of mixing for geodesic and horocycle flows. Ergod. Theory Dyn. Syst. 7, 267–288

(1987)
73. Ravotti, D.: Quantitative mixing for locally Hamiltonian flows with saddle loops on compact surfaces.

Ann. H. Poincaré 18 (12), 3815–3861
74. Ravotti,D.:Mixing for suspensionflowsover skew-translations and time-changes of quasi-abelianfiliform

nilflows. Ergod. Theory Dyn. Syst. 39(12), 3407–3436 (2019)
75. Ravotti, D.: Parabolic perturbations on unipotent flows on compact quotients of SL(3,R). Commun.

Math. Phys. 371(1), 331–351 (2019)
76. Sarnak, P.: Asymptotic behavior of periodic orbits of the horocycle flow and Eisenstein series. Commun.

Pure Appl. Math. 34, 719–739 (1981)
77. Sarnak, P.: Three lectures on theMoebius function randomness and dynamics. http://publications.ias.edu/

sarnak/
78. Scheglov, D.: Absence of mixing for smooth flows on genus two surfaces. J. Mod. Dyn. 3(1), 13–34

(2009)
79. Simonelli, L.: Absolutely continuous spectrum for parabolic flows/maps. Discrete Contin. Dyn. Syst.

38(1), 263–292 (2018)
80. Starkov, A.: Dynamical Systems on Homogeneous Spaces, vol. 190. Translations of the American Math-

ematical Society, Providence (2002)
81. Strömbergsson, A.: On the deviation of ergodic averages for horocycle flows. J. Mod. Dyn. 7(2), 291–328

(2013)
82. Thouvenot, J.P.: Some properties and applications of joining tranformations. J. Mod. Dyn. 3(1), 35–49

(2009)
83. Tiedra de Aldecoa, R.: Spectral analysis of time-changes of the horocycle flow. J. Mod. Dyn. 6, 275–285

(2012)
84. Ulcigrai, C.: Mixing for suspension flows over interval exchange tranformations. Ergod. Theory Dyn.

Syst. 27(3), 991–1035 (2007)
85. Ulcigrai, C.: Weak mixing for logarithmic flows over interval exchange tranformations. J. Mod. Dyn.

3(1), 35–49 (2009)
86. Ulcigrai, C.: Absence of mixing in area-preserving flows on surfaces. Ann. Math. 173(2), 1743–1778

(2011)
87. Veech, W.: Gauss measures for transformations on the space of interval exchange maps. Ann. Math. 115,

201–242 (1982)
88. Veech, W.: The metric theory of interval exchange transformations I. Generic spectral properties. Am. J.

Math. 106(6), 1331–1359 (1984)
89. von Neumann, J.: Zur Operatorenmethode in der klassischen Mechanik. Ann. Math. 33, 587–642 (1932)
90. Young, L.S.: Entropy of continuous flows on compact 2-manifolds. Topology 16(4), 465–467 (1977)
91. Zorich, A.: How do the leaves of a closed 1-form wind around a surface? Am. Math. Soc. 197, 135–178

(1999)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://publications.ias.edu/sarnak/
http://publications.ias.edu/sarnak/

	Slow chaos in surface flows
	Abstract
	1 Slowly chaotic dynamical systems
	Deterministic chaos and the butterfly effect
	Fast chaos versus slow chaos
	Examples of parabolic systems

	2 Chaotic properties
	Topological dynamics
	Ergodic theory
	Spectral theory of dynamical systems
	2.1 Generic chaotic properties in slowly chaotic systems

	3 Chaotic properties of smooth surface flows
	3.1 Flows on surfaces
	3.2 Locally Hamiltonian flows
	3.3 Linear flows and time-changes of locally Hamiltonian flows
	3.4 Linear flows and Teichmueller dynamics
	3.5 Genericity notions for locally Hamiltonian flows
	3.6 Periodic and minimal components
	3.7 Minimality and ergodicity
	3.8 Mixing properties of locally Hamiltonian flows
	3.9 The role of shearing in slow mixing
	3.10 Beyond mixing, exploting shearing: Ratner's work
	3.11 Searching for Ratner properties beyond unipotent flows
	3.12 The Switchable Ratner property in locally Hamiltonian flows
	3.13 Disjointness of rescalings
	3.14 Spectral theory of locally Hamiltonian flows

	Acknowledgements
	References




